104 research outputs found

    N-list-enhanced heuristic for distributed three-stage assembly permutation flow shop scheduling

    Get PDF
    System-wide optimization of distributed manufacturing operations enables process improvement beyond the standalone and individual optimality norms. This study addresses the production planning of a distributed manufacturing system consisting of three stages: production of parts (subcomponents), assembly of components in Original Equipment Manufacturer (OEM) factories, and final assembly of products at the product manufacturer’s factory. Distributed Three Stage Assembly Permutation Flowshop Scheduling Problems (DTrSAPFSP) models this operational situation; it is the most recent development in the literature of distributed scheduling problems, which has seen very limited development for possible industrial applications. This research introduces a highly efficient constructive heuristic to contribute to the literature on DTrSAPFSP. Numerical experiments considering a comprehensive set of operational parameters are undertaken to evaluate the performance of the benchmark algorithms. It is shown that the N-list-enhanced Constructive Heuristic algorithm performs significantly better than the current best-performing algorithm and three new metaheuristics in terms of both solution quality and computational time. It can, therefore, be considered a competitive benchmark for future studies on distributed production scheduling and computing

    Internet of Things in urban waste collection

    Get PDF
    Nowadays, the waste collection management has an important role in urban areas. This paper faces this issue and proposes the application of a metaheuristic for the optimization of a weekly schedule and routing of the waste collection activities in an urban area. Differently to several contributions in literature, fixed periodic routes are not imposed. The results significantly improve the performance of the company involved, both in terms of resources used and costs saving

    A Keyword, Taxonomy and Cartographic Research Review of Sustainability Concepts for Production Scheduling in Manufacturing Systems

    Get PDF
    The concept of sustainability is defined as composed of three pillars: social, environmental, and economic. Social sustainability implies a commitment to equity in terms of several “interrelated and mutually supportive” principles of a “sustainable society”; this concept includes attitude change, the Earth’s vitality and diversity conservation, and a global alliance to achieve sustainability. The social and environmental aspects of sustainability are related in the way sustainability indicators are related to “quality of life” and “ecological sustainability”. The increasing interest in green and sustainable products and production has influenced research interests regarding sustainable scheduling problems in manufacturing systems. This study is aimed both at reducing pollutant emissions and increasing production efficiency: this topic is known as Green Scheduling. Existing literature research reviews on Green Scheduling Problems have pointed out both theoretical and practical aspects of this topic. The proposed work is a critical review of the scientific literature with a three-pronged approach based on keywords, taxonomy analysis, and research mapping. Specific research questions have been proposed to highlight the benefits and related objectives of this review: to discover the most widely used methodologies for solving SPGs in manufacturing and identify interesting development models, as well as the least studied domains and algorithms. The literature was analysed in order to define a map of the main research fields on SPG, highlight mainstream SPG research, propose an efficient view of emerging research areas, propose a taxonomy of SPG by collecting multiple keywords into semantic clusters, and analyse the literature according to a semantic knowledge approach. At the same time, GSP researchers are provided with an efficient view of emerging research areas, allowing them to avoid missing key research areas and focus on emerging ones

    Mixed integer programming and adaptive problem solver learned by landscape analysis for clinical laboratory scheduling

    Full text link
    This paper attempts to derive a mathematical formulation for real-practice clinical laboratory scheduling, and to present an adaptive problem solver by leveraging landscape structures. After formulating scheduling of medical tests as a distributed scheduling problem in heterogeneous, flexible job shop environment, we establish a mixed integer programming model to minimize mean test turnaround time. Preliminary landscape analysis sustains that these clinics-orientated scheduling instances are difficult to solve. The search difficulty motivates the design of an adaptive problem solver to reduce repetitive algorithm-tuning work, but with a guaranteed convergence. Yet, under a search strategy, relatedness from exploitation competence to landscape topology is not transparent. Under strategies that impose different-magnitude perturbations, we investigate changes in landscape structure and find that disturbance amplitude, local-global optima connectivity, landscape's ruggedness and plateau size fairly predict strategies' efficacy. Medium-size instances of 100 tasks are easier under smaller-perturbation strategies that lead to smoother landscapes with smaller plateaus. For large-size instances of 200-500 tasks, extant strategies at hand, having either larger or smaller perturbations, face more rugged landscapes with larger plateaus that impede search. Our hypothesis that medium perturbations may generate smoother landscapes with smaller plateaus drives our design of this new strategy and its verification by experiments. Composite neighborhoods managed by meta-Lamarckian learning show beyond average performance, implying reliability when prior knowledge of landscape is unknown

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    An Energy-Efficient No Idle Permutations Flow Shop Scheduling Problem Using Grey Wolf Optimizer Algorithm

    Get PDF
    Energy consumption has become a significant issue in businesses. It is known that the industrial sector has consumed nearly half of the world's total energy consumption in some cases. This research aims to propose the Grey Wolf Optimizer (GWO) algorithm to minimize energy consumption in the No Idle Permutations Flowshop Problem (NIPFP). The GWO algorithm has four phases: initial population initialization, implementation of the Large Rank Value (LRV), grey wolf exploration, and exploitation. To determine the level of machine energy consumption, this study uses three different speed levels. To investigate this problem, 9 cases were used. The experiments show that it produces a massive amount of energy when a job is processed fast. Energy consumption is lower when machining at a slower speed. The performance of the GWO algorithm has been compared to that of the Cuckoo Search (CS) algorithm in several experiments. In tests, the Grey Wolf Optimizer (GWO) outperforms the Cuckoo Search (CS) algorithm

    Iterated Greedy methods for the distributed permutation flowshop scheduling problem

    Full text link
    [EN] Large manufacturing firms operate more than one production center. As a result, in relation to scheduling problems, which factory manufactures which product is an important consideration. In this paper we study an extension of the well known permutation flowshop scheduling problem in which there is a set of identical factories, each one with a flowshop structure. The objective is to minimize the maximum completion time or makespan among all factories. The resulting problem is known as the distributed permutation flowshop and has attracted considerable interest over the last few years. Contrary to the recent trend in the scheduling literature, where complex nature-inspired or metaphor-based methods are often proposed, we present simple Iterated Greedy algorithms that have performed well in related problems. Improved initialization, construction and destruction procedures, along with a local search with a strong intensification are proposed. The result is a very effective algorithm with little problem-specific knowledge that is shown to provide demonstrably better solutions in a comprehensive and thorough computational and statistical campaign.Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project "SCHEYARD - Optimization of Scheduling Problems in Container Yards" (No. DPI2015-65895-R) financed by FEDER funds. Quan-Ke Pan is supported by the National Natural Science Foundation of China (Grant No. 51575212).Ruiz García, R.; Pan, Q.; Naderi, B. (2019). Iterated Greedy methods for the distributed permutation flowshop scheduling problem. Omega. 83:213-222. https://doi.org/10.1016/j.omega.2018.03.004S2132228

    An efficient discrete artificial bee colony algorithm for the blocking flow shop problem with total flowtime minimization

    Get PDF
    This paper presents a high performing Discrete Artificial Bee Colony algorithm for the blocking flow shop problem with flow time criterion. To develop the proposed algorithm, we considered four strategies for the food source phase and two strategies for each of the three remaining phases (employed bees, onlookers and scouts). One of the strategies tested in the food source phase and one implemented in the employed bees phase are new. Both have been proved to be very effective for the problem at hand. The initialization scheme named HPF2(¿, µ) in particular, which is used to construct the initial food sources, is shown in the computational evaluation to be one of the main procedures that allow the DABC_RCT to obtain good solutions for this problem. To find the best configuration of the algorithm, we used design of experiments (DOE). This technique has been used extensively in the literature to calibrate the parameters of the algorithms but not to select its configuration. Comparing it with other algorithms proposed for this problem in the literature demonstrates the effectiveness and superiority of the DABC_RCTPeer ReviewedPostprint (author’s final draft

    Energy Efficient Manufacturing Scheduling: A Systematic Literature Review

    Full text link
    The social context in relation to energy policies, energy supply, and sustainability concerns as well as advances in more energy-efficient technologies is driving a need for a change in the manufacturing sector. The main purpose of this work is to provide a research framework for energy-efficient scheduling (EES) which is a very active research area with more than 500 papers published in the last 10 years. The reason for this interest is mostly due to the economic and environmental impact of considering energy in production scheduling. In this paper, we present a systematic literature review of recent papers in this area, provide a classification of the problems studied, and present an overview of the main aspects and methodologies considered as well as open research challenges

    An Iterated Greedy Heuristic for Mixed No-Wait Flowshop Problems

    Full text link
    [EN] The mixed no-wait flowshop problem with both wait and no-wait constraints has many potential real-life applications. The problem can be regarded as a generalization of the traditional permutation flowshop and the no-wait flowshop. In this paper, we study, for the first time, this scheduling setting with makespan minimization. We first propose a mathematical model and then we design a speed-up makespan calculation procedure. By introducing a varying number of destructed jobs, a modified iterated greedy algorithm is proposed for the considered problem which consists of four components: 1) initialization solution construction; 2) destruction; 3) reconstruction; and 4) local search. To further improve the intensification and efficiency of the proposal, insertion is performed on some neighbor jobs of the best position in a sequence during the initialization, solution construction, and reconstruction phases. After calibrating parameters and components, the proposal is compared with five existing algorithms for similar problems on adapted Taillard benchmark instances. Experimental results show that the proposal always obtains the best performance among the compared methods.This work was supported in part by the National Natural Science Foundation of China under Grant 61572127 and 61272377, in part by the Key Research and Development Program in Jiangsu Province under Grant BE2015728, and in part by the Collaborative Innovation Center of Wireless Communications Technology. The work of R. Ruiz was supported in part by the Spanish Ministry of Economy and Competitiveness through the project "SCHEYARD-Optimization of Scheduling Problems in Container Yards" under Grant DPI2015-65895-R, and in part by the FEDER Funds.Wang, Y.; Li, X.; Ruiz García, R.; Sui, S. (2018). An Iterated Greedy Heuristic for Mixed No-Wait Flowshop Problems. IEEE Transactions on Cybernetics. 48(5):1553-1566. https://doi.org/10.1109/TCYB.2017.2707067S1553156648
    corecore