195 research outputs found

    Robot Impedance Control and Passivity Analysis with Inner Torque and Velocity Feedback Loops

    Full text link
    Impedance control is a well-established technique to control interaction forces in robotics. However, real implementations of impedance control with an inner loop may suffer from several limitations. Although common practice in designing nested control systems is to maximize the bandwidth of the inner loop to improve tracking performance, it may not be the most suitable approach when a certain range of impedance parameters has to be rendered. In particular, it turns out that the viable range of stable stiffness and damping values can be strongly affected by the bandwidth of the inner control loops (e.g. a torque loop) as well as by the filtering and sampling frequency. This paper provides an extensive analysis on how these aspects influence the stability region of impedance parameters as well as the passivity of the system. This will be supported by both simulations and experimental data. Moreover, a methodology for designing joint impedance controllers based on an inner torque loop and a positive velocity feedback loop will be presented. The goal of the velocity feedback is to increase (given the constraints to preserve stability) the bandwidth of the torque loop without the need of a complex controller.Comment: 14 pages in Control Theory and Technology (2016

    Online impedance regulation techniques for compliant humanoid balancing

    Get PDF
    This paper presents three distinct techniques, aimed at the online active impedance regulation of compliant humanoid robots, which endeavours to induce a state of balance to the system once it has been perturbed. The presence of passive elastic elements in the drives powering this class of robots leads to under-actuation, thereby rendering the control of compliant robots an intricate task. Consequently, the impedance regulation procedures proposed in this paper directly account for these elastic elements. In order to acquire an indication of the robot’s state of balance in an online fashion, an energy (Lyapunov) function is introduced, whose sign then allows one to ascertain whether the robot is converging to or diverging from, a desired equilibrium position. Computing this function’s time derivative unequivocally gives the energy-injecting nature of the active stiffness regulation, and reveals that active damping regulation has no bearing on the system’s state of stability. Furthermore, the velocity margin notion is interpreted as a velocity value beyond which the system’s balance might be jeopardized, or below which the robot will be guaranteed to remain stable. As a result, the unidirectional and bidirectional impedance optimization methods rely upon the use of bounds that have been defined based on the energy function’s derivative, in addition to the velocity margin. Contrarily, the third technique’s functionality revolves solely around the use of Lyapunov Stability Margins (LSMs). A series of experiments carried out using the COmpliant huMANoid (COMAN), demonstrates the superior balancing results acquired when using the bidirectional scheme, as compared to utilizing the two alternative techniques

    Running synthesis and control for monopods and bipeds with articulated

    Get PDF
    Bibliography: p. 179-20

    Human Activity Recognition and Control of Wearable Robots

    Get PDF
    abstract: Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily activities. Therefore, there is an increasing attention in the development of wearable robots to assist the elderly and patients with disabilities for motion assistance and rehabilitation. In military and industrial sectors, wearable robots can increase the productivity of workers and soldiers. It is important for the wearable robots to maintain smooth interaction with the user while evolving in complex environments with minimum effort from the user. Therefore, the recognition of the user's activities such as walking or jogging in real time becomes essential to provide appropriate assistance based on the activity. This dissertation proposes two real-time human activity recognition algorithms intelligent fuzzy inference (IFI) algorithm and Amplitude omega (AωA \omega) algorithm to identify the human activities, i.e., stationary and locomotion activities. The IFI algorithm uses knee angle and ground contact forces (GCFs) measurements from four inertial measurement units (IMUs) and a pair of smart shoes. Whereas, the AωA \omega algorithm is based on thigh angle measurements from a single IMU. This dissertation also attempts to address the problem of online tuning of virtual impedance for an assistive robot based on real-time gait and activity measurement data to personalize the assistance for different users. An automatic impedance tuning (AIT) approach is presented for a knee assistive device (KAD) in which the IFI algorithm is used for real-time activity measurements. This dissertation also proposes an adaptive oscillator method known as amplitude omega adaptive oscillator (AωAOA\omega AO) method for HeSA (hip exoskeleton for superior augmentation) to provide bilateral hip assistance during human locomotion activities. The AωA \omega algorithm is integrated into the adaptive oscillator method to make the approach robust for different locomotion activities. Experiments are performed on healthy subjects to validate the efficacy of the human activities recognition algorithms and control strategies proposed in this dissertation. Both the activity recognition algorithms exhibited higher classification accuracy with less update time. The results of AIT demonstrated that the KAD assistive torque was smoother and EMG signal of Vastus Medialis is reduced, compared to constant impedance and finite state machine approaches. The AωAOA\omega AO method showed real-time learning of the locomotion activities signals for three healthy subjects while wearing HeSA. To understand the influence of the assistive devices on the inherent dynamic gait stability of the human, stability analysis is performed. For this, the stability metrics derived from dynamical systems theory are used to evaluate unilateral knee assistance applied to the healthy participants.Dissertation/ThesisDoctoral Dissertation Aerospace Engineering 201
    • …
    corecore