
 

  

 

 

 

Abstract—This paper presents three distinct techniques, 

aimed at the online active impedance regulation of compliant 

humanoid robots, which endeavours to induce a state of balance 

to the system once it has been perturbed. The presence of passive 

elastic elements in the drives powering this class of robots leads 

to under-actuation, thereby rendering the control of compliant 

robots an intricate task. Consequently, the impedance regulation 

procedures proposed in this paper directly account for these 

elastic elements. In order to acquire an indication of the robot’s 

state of balance in an online fashion, an energy (Lyapunov) 

function is introduced, whose sign then allows one to ascertain 

whether the robot is converging to or diverging from, a desired 

equilibrium position. Computing this function’s time derivative 

unequivocally gives the energy-injecting nature of the active 

stiffness regulation, and reveals that active damping regulation 

has no bearing on the system’s state of stability. Furthermore, 

the velocity margin notion is interpreted as a velocity value 

beyond which the system’s balance might be jeopardised, or 

below which the robot will be guaranteed to remain stable. As a 

result, the unidirectional and bidirectional impedance 

optimization methods rely upon the use of bounds that have been 

defined based on the energy function’s derivative, in addition to 

the velocity margin. Contrarily, the third technique’s 

functionality revolves solely around the use of Lyapunov 

Stability Margins (LSMs). A series of experiments carried out 

using the COmpliant huMANoid (COMAN), demonstrates the 

superior balancing results acquired when using the bidirectional 

scheme, as compared to utilizing the two alternative techniques. 

I. INTRODUCTION 

HE topic of bipedal robot balancing has been studied 

extensively, since it is unquestionably the single most 

fundamental property whose absence renders a robot 

incapable of performing any kind of task. A field of research 

has arisen aiming at systematizing the way through which a 

humanoid robot’s balance is evaluated, with [1] being among 

the most seminal works, as it introduced the Zero-Moment-

Point (ZMP) concept. Strictly speaking, the ZMP describes a 

point existing under the robot’s feet whose position defines 

the system’s overall stability, with a range of possible ankle 

torque and reaction force combinations yielding a stable robot 

configuration, which ensures the point’s residing within the 

confines of the convex hull of the support polygon. The 

literature is replete with works pertaining to humanoid 

balancing, which are contingent upon the use of this criterion, 

with quintessential examples of such techniques presented in 

[2]-[4].  
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The work described in [2] proposes a method aimed at 

rendering a humanoid passive, which exploits a combination 

of translating the ground reaction forces (GRFs) to joint 

torques, and gravity compensation control, thus obviating the 

requirement for inverse dynamics calculations. The work 

described in [3] manifested itself as a breakthrough, as it 

served the purpose of introducing the Linear Inverted 

Pendulum Model (LIPM) that significantly facilitated the 

humanoid control problem, while its simplicity also served as 

a valuable analysis tool that was exploited in various works 

thereafter. [4] delves into the use of such simplified models 

for the purpose of developing an array of decision surfaces, 

permitting the selection of the most appropriate model and 

strategy, at a given point in time, that would be capable of 

reinstating the system’s desired state of balance. A closely 

related balancing criterion referred to as the CoP, has also 

been investigated due to its frequent equivalence with the 

ZMP, with [5] analysing the discrepancies arising when 

comparing the actual CoP measurements, to ZMP values 

computed using two distinct techniques.  

In an attempt to produce robots capable of emulating 

natural, human-like behaviour during interaction with their 

respective environments, roboticists have striven to engineer 

appropriate impedance control schemes [6] that would be 

conducive to this objective. A natural consequence of this 

effort has been the employment of such control methods on 

bipedal robots [7]-[14], for the purpose of realizing a desired 

interaction with the environment, which may potentially lead 

to successful execution of the specified tasks, provided that 

the impedance levels are appropriately controlled. As regards 

humanoid balance maintenance, its achievement necessitates 

impedance regulation capable of endowing the system with 

terrain adaptability, in addition to accurate and rapid 

convergence towards a desired equilibrium point. The use of 

fixed gain impedance controllers would preclude the 

coexistence of both features simultaneously, which 

consequently gives rise to the need for a systematic approach 

to adjusting a robot’s impedance values. However, such an 

approach ought to incorporate the balancing constraints, as 

their exclusion would be tantamount to utilising constant gain 

controllers. Thus, the work described herein has striven to 

encapsulate real-time analytical impedance selection, and 

balance monitoring into a single, unified algorithm.    

It has been established that admittance control schemes could 

be utilized for the attenuation of landing forces [7], via 

 

 
                                                                                                                                                                                                                  

Online Impedance Regulation Techniques for Compliant Humanoid Balancing 

Emmanouil Spyrakos-Papastavridis1, Navvab Kashiri2, Peter R. N. Childs1,  

and Nikos G. Tsagarakis2 

T 

mailto:Navvab.kashiri@iit.it


 

  

 

 

measurement of the actual force values that in turn allows for 

a calculation of the desired foot position, while an additional 

time domain approach targeted at improved environmental 

interaction is provided in [8]. Conversely, [9][10] outline 

methodical, analytical strategies for the regulation of the 

system’s impedance during the distinct walking phases. 

[11][12] propose impedance control schemes for bipedal 

robots, whereby the swing leg’s foot and hip impedance 

parameters increase considerably upon contact with the 

environment, in order to absorb the landing forces and 

maintain contact with the ground. The methodology 

expounded in [13], epitomises the effectiveness of utilising 

compliance control techniques and operational space control, 

as regards a robot’s interaction with its environment. 

Additionally, there is ongoing research into balancing 

techniques that explicitly consider the physical ZMP 

constraints, through the monitoring of a particular control 

law, thereby facilitating the tuning/optimisation of the 

system’s viscoelasticity parameters [14][15]. Further work on 

dynamics computations for operational space control, is 

provided in [16].      

Despite the fact that all the afore-described works deal 

solely with humanoid robots comprising ‘stiff’ joints, the 

recent trend entailing the development of  bipeds powered by 

series elastic actuators, has led to the devise of balancing and 

walking strategies for this class of humanoids [17][18]. [17] 

details an approach that enables precise control of COMAN’s 

compliant joints [19]-[20], whilst [18] presents a CPG-based 

controller for the same robot.    

It is noticeable that the majority of works have dealt with 

ankle strategies relying upon the LIPM. Contrarily, the 

technique proposed in this paper is targeted at the real-time 

regulation of the impedance [22] of all the individual sagittal 

joints, thus allowing for the knee and hip joints’ contribution 

to the robot’s overall perturbation rejection performance. In 

summary, the proposed methodology unifies the benefits 

associated with low and high impedance controllers, as a 

means of ensuring amplified impact tolerance, contact 

maintenance, and convergence to a desired equilibrium. The 

content of this paper serves as an extension to [23], from 

which it differs by virtue of providing Appendices that 

accurately outline the steps involved in the stability analysis 

proof. Additionally, it offers an accompanying passivity proof 

that is germane to the experimental push recovery results, 

since they are directly involved with the application of 

external disturbances to the robot. This supplementary feature 

consolidates the theoretical facets of the work, and renders it 

suitable for application to robots directly interacting with their 

surroundings. Two additional push recovery techniques, 

namely the unidirectional optimization and the LSM-based 

tuning technique, are also introduced herein, as their direct 

comparison with the proposed method serves as a metric of 

the latter’s performance. Therefore, the contributions 

presented herein are the following:  

• Analytical methods for the tuning of a balancing 

humanoid’s joint impedances in real time. 

 
1 In this article, matrices, vectors, scalars and operators are represented in 

bold, bold italic, italic, and regular letters respectively. 

• A novel balance monitoring variable allowing for a 

replacement of challenging balance constraints with 

ones that are swiftly computed in real time.  

• The merging of an impedance optimization technique 

with the proposed velocity-based balance variable.   

• Mathematical analyses which are adduced to prove the 

system’s stability and passivity.       

• A direct comparison between the proposed method, 

and two correlated, alternative approaches. 

The rest of the paper is structured as follows; section II 

describes the double support dynamics and the associated 

energy function, section III introduces the velocity margin 

concept as a balance monitor, section IV provides a detailed 

explanation of the bidirectional impedance regulation 

algorithm, section V offers a thorough description of the 

alternative impedance tuning techniques, section VI presents 

the impedance regulation experimental results, and finally 

section VII gives the conclusions.  

II. COMPLIANT DOUBLE SUPPORT DYNAMICS AND 

VARIABLE IMPEDANCE ENERGY FUNCTION 

This section introduces the mathematical model describing 

the dynamics of the system, which shall be considered 

throughout the paper, for the development of the associated 

control algorithms and balancing techniques.  

For the double support case, a 𝑗 = 3 -DOF robot with 𝑛 = 2 

drives for each DOF is considered, where the total number of 

drives is 𝑛×𝑗 = 6. The link and motor dynamics1 may then be 

described as follows [24]: 

 

   𝐌𝐉(𝒒)�̈� + 𝐂(𝒒, �̇�)�̇� + 𝐒𝐦
𝐓𝐊(𝐒𝐦𝒒 − 𝜽) = 𝝉𝒈(𝒒) + 𝝉𝒆𝒙, (1) 

 

                            𝐉�̈� + 𝐃�̇� − 𝐊𝐒𝐦𝒒 + 𝐊𝜽 = 𝝉𝒎,                    (2) 
 

where 𝒒 ∈ ℝ𝑗 and 𝜽 ∈ ℝ𝑛 denote the link and motor 

positions, 𝐌𝐉(𝒒) ∈ ℝ
𝑗×𝑗 and 𝐂(𝒒, �̇�) ∈ ℝ𝑗×𝑗 represent the 

inertia and Coriolis/centripetal matrices respectively, 

𝝉𝒈(𝒒) ∈ ℝ
𝑗 is the gravity torque vector, 𝝉𝒎 ∈ ℝ

𝑛 is the 

actuation torque vector and 𝝉𝒆𝒙 ∈ ℝ
𝑗 symbolises the vector of 

external forces. 𝐊 ∈ ℝ𝑛×𝑛 is a diagonal matrix with positive 

entries representing the passive spring stiffness between the 

motors and the robot links, while 𝐉, 𝐃 ∈ ℝ𝑛×𝑛 are the motor 

inertia and damping. 𝐒𝐦 ∈ ℝ
𝑛×𝑗 is a selection matrix that 

serves the purpose of selecting the appropriate actuators for 

every link (𝑗 < 𝑛 is considered herein), with its columns 

associated to the system’s motors and its rows to the system’s 

joints. Assuming that the first 𝑛1 drives are connected to link 

1, the next 𝑛2 drives are connected to link 2, and so forth, then 

𝐒𝐦
𝐓   possesses the following form:1 

 



 

  

 

 

                  𝐒𝐦
𝐓 =

[
 
 
 
 
 
 
1 1⋯1⏟    

𝑚1

0 ⋯ 0

0 1 1⋯1⏟    
𝑚2

⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1 1⋯1⏟    

𝑚𝑛 ]
 
 
 
 
 
 

.                   

 

However, the above equation is transformed into an identity 

matrix if the system is equal actuated (𝑗 = 𝑛), while 𝑗 > 𝑛 

refers to redundant kinematic actuation.  

 

Remark 1: The work herein has revolved around the use of a 

model describing a simple form of a closed kinematic chain, 

as it befits the characteristics of the pertinent experimental 

platform, since the objective of this work has been to 

demonstrate the development of a systematic method for 

whole-body impedance gain tuning. Nevertheless, the 

proposed control technique can be adapted to a range of 

closed kinematic chain models, when the system dynamics is 

represented in the form described in [25].  

 

The over-actuation of the double support phase necessitates a 

lower-DOF model representation, which will however 

account for all the actuators. For instance, given a bipedal 

robot possessing three-DOF legs, as depicted in Fig. 1, the 

three-DOF double support gravity vector is arranged as 

follows:  

 

                                   𝝉𝒈 = [𝝉𝒂 𝝉𝒌 𝝉𝒉]𝑇,                                  (3) 
 

with 𝝉𝒂, 𝝉𝒌, 𝝉𝒉 representing the ankle, knee and hip torques 

respectively. An imperative property of the gravity vector, to 

be used in subsequent sections, is [26]: 

 

                                ‖
𝜕𝝉𝒈(𝒒)

𝜕𝒒
‖ = ‖

𝜕2𝑈𝑔(𝒒)

𝜕𝒒2
‖ ≤ 𝛼,               (4) 

 

for some 𝛼 > 0 ; where 𝑈𝑔(𝒒) denotes the potential energy 

due to gravity, 𝝉𝒈(𝒒) = −(𝜕𝑈𝑔(𝒒)/𝜕𝒒)
𝑇
 and the operator 

norm ‖𝐴‖ = max{‖𝐴𝑥‖/‖𝑥‖} is considered.   

The low-level joint controller is based upon gravity 

compensation control, employing motor feedback, thus the 

associated control law may be represented as follows [27]:  

 

                     𝝉𝒎 = 𝐊𝐏(𝐒𝐦𝒒𝒅 − 𝜽) − 𝐊𝐃�̇� + 𝒖𝒈𝒄,                 (5) 

 

where 𝒖𝒈𝒄 ∈ ℝ
𝑛 is the gravity compensation term and 𝒒𝒅 ∈

ℝ𝑗 is the desired position, while 𝐊𝐏 ∈ ℝ
𝑛×𝑛, 𝐊𝐃 ∈ ℝ

𝑛×𝑛 are 

the diagonal, positive definite motor position and motor 

velocity feedback gain matrices, i.e. 𝐊𝐏 =

diag(𝐾𝑃,1, …𝐾𝑃,𝑛), 𝐊𝐃 = diag(𝐾𝐷,1, …𝐾𝐷,𝑛), with diag([. ]) 

returning the diagonal matrix of the vector [. ]. For the double 

support model, 𝒖𝒈𝒄 is given by: 

 

                    𝒖𝒈𝒄 = −(𝐊𝐏𝐊
−1 + 𝐈)(𝐒𝐦

𝐓 )+𝝉𝒈(𝒒𝒅),                  (6) 

where 𝒒 has been replaced with 𝒒𝒅 since a desired gravity 

compensation controller is being considered, in contrast to 

that utilised in [28], while (𝐒𝐦
𝐓 )+ denotes the Moore-Penrose 

pseudoinverse of 𝐒𝐦
𝐓 . 

 

Remark 2: Equations (5) and (6) may be represented in a 

similar form to the conventional PD plus gravity 

compensation controllers, through a series of calculations that 

commence with a substitution of (6) into (5), as shown 

below: 

 

𝝉𝒎 = 𝐊𝐏(𝐒𝐦𝒒𝒅 − 𝜽) − 𝐊𝐃�̇� − (𝐊𝐏𝐊
−1 + 𝐈)(𝐒𝐦

𝐓 )+𝝉𝒈(𝒒𝒅). 

 

Since however (𝐒𝐦
𝐓 )+𝝉𝒈(𝒒𝒅) = −𝐊(𝜽𝒅 − 𝐒𝐦𝒒𝒅) [24], then: 

 

𝝉𝒎 = 𝐊𝐏(𝐒𝐦𝒒𝒅 − 𝜽) − 𝐊𝐃�̇� + (𝐊𝐏𝐊
−1 + 𝐈)𝐊(𝜽𝒅 − 𝐒𝐦𝒒𝒅) 

 

𝝉𝒎 = 𝐊𝐏(𝐒𝐦𝒒𝒅 − 𝜽) − 𝐊𝐃�̇� + 𝐊𝐏(𝜽𝒅 − 𝐒𝐦𝒒𝒅)
+ 𝐊(𝜽𝒅 − 𝐒𝐦𝒒𝒅), 

 

which leads to: 

 

𝝉𝒎 = 𝐊𝐏(𝜽𝒅 − 𝜽) − 𝐊𝐃�̇� + 𝐊(𝜽𝒅 − 𝐒𝐦𝒒𝒅), 
 

where the final term may be replaced by −(𝐒𝐦
𝐓 )+𝝉𝒈(𝒒𝒅), 

yielding: 

 

𝝉𝒎 = 𝐊𝐏(𝜽𝒅 − 𝜽) − 𝐊𝐃�̇� − (𝐒𝐦
𝐓 )+𝝉𝒈(𝒒𝒅). 

 

                
Figure 1. COMAN lower body and corresponding double support model. 

 

By accounting for the closed-loop system’s steady state 

equations, we can define the overall stiffness matrix  

 

               𝐓𝐃 = [
𝐒𝐦
𝐓𝐊𝐒𝐦 −𝐒𝐦

𝐓𝐊
−𝐊𝐒𝐦 𝐊 + 𝐊𝐏

] ∈ ℝ(𝑛+𝑗)×(𝑛+𝑗),             (7) 

 

where the 𝐃 subscript denotes the double support phase, and 

plays a pivotal role in the stability analysis, since its 

satisfaction of certain conditions ensures the uniqueness of 

the equilibria.  

By gathering the afore-presented terms ((1), (2), (7)), whilst 

nullifying the velocities and accelerations ((1), (2))  in the 

absence of external forces, the system’s closed-loop equations 

may be expressed as follows:  

 

𝐓𝐃 [
𝒒 − 𝒒𝒅
𝜽 − 𝜽𝒅

] = [
𝝉𝒈(𝒒) − 𝝉𝒈(𝒒𝒅)

0
]. 

 

Thus, the above equation indicates that the closed-loop 

system’s potential energy behaviour is defined by both a 



 

  

 

 

gravitational, and a stiffness term. In order to ensure that this 

pseudo-net-potential energy is strictly convex, the following 

condition ought to be satisfied: 

 

                                             λm(𝐓𝐃) > 𝛼,                                    (8) 
 

where 𝜆𝑚(. ) denotes the minimum eigenvalue/component of 

a given matrix/vector.  

Additionally, the desired motor positions 𝜽𝒅 ∈ ℝ
𝑛 are related 

to the desired link positions by: 

 

                        𝜽𝒅 = 𝐒𝐦𝒒𝒅 − 𝐊
−1(𝐒𝐦

𝐓 )+𝝉𝒈(𝒒𝒅).                    (9) 

 

In contrast to the majority of relevant controllers, it is 

noteworthy that this work considers the real-time variation of 

the diagonal elements of the 𝐊𝐏 and 𝐊𝐃 matrices, paving the 

way for the introduction of the two pertinent theorems, which 

are stated below.  

 

Theorem 1: By inserting (5) and (6) into the system 

described by  (1) and (2), and considering a Lyapunov 

function inspired by [27], of the form:  
 

   𝑉𝑇 =
�̇�𝑭
𝑻𝐌�̇�𝑭

2
+
𝒒𝑬
𝑻𝐓𝐃𝒒𝑬

2
+ 𝑈𝑔(𝒒) − 𝑈𝑔(𝒒𝒅) + 𝒒𝑬

𝑻 [
𝝉𝒈(𝒒𝒅)

0
], (10) 

 

where 𝒒𝑭 = [
𝒒
𝜽
], 𝒒𝑭𝒅 = [

𝒒𝒅
𝜽𝒅
], 𝒒𝑬 = (𝒒𝑭 − 𝒒𝑭𝒅),𝐌(𝒒) =

[
𝐌𝐉(𝒒) 0

0 𝐉
]; while assuming that λm(𝐓𝐃) ≥ 𝛼, and 𝐓𝐃 is a 

time-varying matrix, there exists a unique equilibrium 

solution at [𝒒𝒅
𝑻 𝜽𝒅

𝑻 0 0]. This equilibrium is globally 

asymptotically stable when 𝐓𝐃 is a constant matrix, and/or 

when 𝐓𝐃 is time-varying provided that either the system’s 

stiffness decreases, or that while the stiffness is increasing the 

following condition is satisfied: 

 

�̇�𝑭
𝑻𝛈�̇�𝑭 ≥

1

2
𝒒𝑬
𝑻�̇�𝐃𝒒𝑬, 

 

where 𝛈 = H(𝐃 + 𝐊𝐃) is the overall damping matrix and �̇�𝐃 

signifies the time derivative of the 𝐓𝐃 matrix. The matrix 

operator, H(. ), constructing an (𝑛 + 𝑗)×(𝑛 + 𝑗) matrix from 

the 𝑛×𝑛  matrix (.), is expressed as follows: 

 

H(𝐃 + 𝐊𝐃) = [
0𝑗×𝑗 0𝑗×𝑛
0𝑛×𝑗 𝐃 + 𝐊𝐃

], 

 

where 0𝜅×𝜗 symbolizes a zero matrix of dimension 𝜅×𝜗, and 

H−1 ([
0𝑗×𝑗 0𝑗×𝑛
0𝑛×𝑗 𝐃 + 𝐊𝐃

]) = 𝐃 + 𝐊𝐃. 

The mathematical stability proof pertaining to the above 

theorem, is delineated in Appendix A. 

 

Theorem 2: By inserting (5) and (6) into the system 

described by  (1) and (2), whilst assuming that λm(𝐓𝐃) ≥ 𝛼, 

and 𝐓𝐃 is a time-varying matrix, then the closed-loop system 

remains passive either when the stiffness decreases, or when 

the �̇�𝑭
𝑻𝛈�̇�𝑭 ≥

1

2
𝒒𝑬
𝑻�̇�𝐃𝒒𝑬 condition is satisfied, in the presence 

of increscent stiffness values. An analytical demonstration of 

the proof elicitation is provided in Appendix B. 

III. BALANCE MONITORING USING THE VELOCITY MARGIN 

This section focuses on providing a description of the balance 

monitoring technique that revolves around the use of the 

velocity margin, which is introduced both conceptually and 

mathematically.  

A. State of Balance Detection 

A compliant humanoid robot assuming a standing 

configuration, with zero ankle torques yielding 𝑋𝐶𝑜𝑃 = 0, 

shall inevitably diverge with respect to the equilibrium once 

an impulsive impact has been applied to its structure. Under 

the assumption that a balanced state ensues the disturbance, 

then the system will most likely oscillate around the 

equilibrium position, before coming to a halt at the desired 

configuration. The manner in which this transpires shall be 

contingent upon the system’s dynamics, with the springs 

potentially playing a vital role in the robot’s perturbation 

absorption performance during the post-impact phase. It is 

thus essential to contrive a method of determining whether the 

robot is converging or diverging, at a given point in time. One 

means of accomplishing this goal is through the monitoring 

of the energy variation between samples, 𝐸𝑆𝐺𝑁 , which should 

evidently occur in an online fashion, i.e. the robot diverges 

when 𝐸𝑆𝐺𝑁 > 0 and it converges when 𝐸𝑆𝐺𝑁 < 0. Therefore, 

the formula provided below: 

 

                        𝐸𝑆𝐺𝑁 = sgn(𝑉𝑇(𝑖) − 𝑉𝑇(𝑖 − 1)),                  (11) 
 

gives a scalar value that is indicative of the system’s state of 

balance, at every sample. A negative 𝐸𝑆𝐺𝑁 signifies 

convergence, whilst a positive 𝐸𝑆𝐺𝑁 implies divergence (Fig. 

2), which is initiated by the application of an external force to 

the system.  

B. Velocity Margin Formulation 

This term is initially reminiscent of the familiar ‘velocity-

based stability margin’ expression, which was coined in [29], 

and describes a margin that accounts for a humanoid robot’s 

dynamical parameters, including the CoM velocity and 

angular momentum. However, the velocity margin to be 

introduced in the subsequent lines, is a critical velocity value 

which when exceeded could potentially lead to system 

instability, or a value below which the robot’s stability is 

ensured. Ideally, the robot should perform a pre-emptive 

action prior to the occurrence of an unstable state, which 

totally justifies the desire for a margin that is slightly 

conservative. In order to acquire such a variable, the CoP-

Energy relationship derived in [30] could be shaped 

appropriately to yield a critical velocity value, as opposed to 

the critical energy value that it initially described in [30]. This 

is achieved via the formula: 

 

                                      𝑉𝑇 ≥
𝛿

2(𝑛𝑀 + 1)
𝑘𝑣 ,                           (12) 



 

  

 

 

where 𝑘𝑣 = (
|𝑋𝐶𝑜𝑃−𝑋𝐶𝑜𝑃𝑑|𝑚𝑇𝑔

‖𝑮𝐒𝐦
𝐓 𝐊‖

)

2

, 𝛿 = λm(𝐓𝐃) − 𝛼, with 𝑚𝑇, 

𝑔, 𝑋𝐶𝑜𝑃, 𝑋𝐶𝑜𝑃𝑑 being the robot’s total mass, gravitational 

acceleration constant, actual CoP position, and desired CoP 

position respectively. 𝑋𝐶𝑜𝑃 is assigned its value by virtue of 

knowing the dimensions of the support polygon, while 𝑋𝐶𝑜𝑃𝑑 

is defined based on either a precomputed desired 

configuration, a balancing controller, or a trajectory 

generator. Moreover, ‖𝐒𝐦‖ = √𝑛𝑀, 𝑛𝑀 = max
1≤i≤j

(ni), 𝑮 ∈ ℝ
𝑗 

is a constant selection vector which implies that the 

denominator of the scalar 𝑘𝑣, corresponds to the overall 

stiffness of the ankle joints. Consequently, the right-hand side 

of equation (12) denotes a critical energy value, which when 

surpassed by the magnitude of 𝑉𝑇, might indicate the arousal 

of an unstable state. A derivation of equation (12), termed the 

Lyapunov Stability Margin (LSM), has been provided in 

Appendix C, in order to clarify the mathematical logic that 

governs its operation. Although this is a sufficient rather than 

a necessary condition, one should be circumspect about 

exceeding the associated bound, and preferably treat it as a 

safety constraint.  

By then assuming that 𝑉𝑇 =
1

2
�̇�𝑭
𝑻𝐌(𝒒)�̇�𝑭 + 𝑉𝑃, wherein 𝑉𝑃 =

𝒒𝑬
𝑻𝐓𝐃𝒒𝑬

2
+ 𝑈𝑔(𝒒) − 𝑈𝑔(𝒒𝒅) + 𝒒𝑬

𝑻 [
𝝉𝒈(𝒒𝒅)

0
] denotes the 

potential energy, equation (12) may be expressed in the 

manner shown below: 

 

                         
1

2
�̇�𝑭
𝑻𝐌�̇�𝑭 + 𝑉𝑃 ≥

𝛿

2(𝑛𝑀 + 1)
𝑘𝑣 .                  (13) 

 

Segregating the kinetic energy term, results in:  

 

                     ‖𝐌‖‖�̇�𝑭‖
2 ≥

𝛿

(𝑛𝑀 + 1)
𝑘𝑣 − 2𝑉𝑃,                  (14) 

 

while rearranging (14) w.r.t the velocity term then yields: 

 

                      𝜈 ≥ √
1

‖𝐌‖
(

𝛿

(𝑛𝑀 + 1)
𝑘𝑣 − 2𝑉𝑃),                 (15) 

 

where ‖�̇�𝑭‖ has been substituted for the velocity margin 

variable, 𝜈. Equation (15) is not explicitly defined based on 

the slack, despite representing a margin, since this property is 

implicitly accounted for through the 𝑘𝑣 and 𝑉𝑃 values that 

(15) encompasses.     

The right-hand side of the above equation represents a critical 

velocity value, the exceedance of which may potentially 

correspond to the system’s possession of an unstable state, i.e. 

the system is about to fall. However, the validity of this 

condition is dependent upon whether the aforesaid term 

remains positive, which is only the case if:  

 

                                     
𝛿

(𝑛𝑀 + 1)
𝑘𝑣 ≥ 2𝑉𝑃 ,                            (16) 

and should be respected within a particular region encircling 

the equilibrium. It may then be stated that 𝜈 is a conditional 

velocity margin, whose values are indicative of the system’s 

balance only when (16) is satisfied.  
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Figure 2. Energy variations are positive during divergent phase (CoP 

diverging) and negative during convergent phase (CoP converging). 

 

To summarize, equation (15) implies that for a specific 

configuration, or energy value, there exists an associated 

critical velocity value, below which the robot is bound to 

remain stable. Nevertheless, it is worth mentioning that a 

judicious interpretation may be attached to the velocity 

margin, solely when its value is positive, since a negative 

value could insinuate that either the robot’s state of balance 

has actually been compromised, or that it has exceeded the 

region corresponding to the LSM, described by (12). Since 

the velocity margin is only conditionally valid (i.e. within a 

specific discoidal region in the support polygon), as it is 

associated with the conservative LSM quantity, its possession 

of negative values indicates that its region of validity has been 

exceeded. This aspect is crucial in its operation, since it allows 

it to serve as a safety margin, as opposed to a definite indicator 

of instability, which would hinder the algorithm’s capability 

of taking pre-emptive actions to prevent the arousal of 

dangerous states. To elaborate, the velocity margin possesses 

its maximum value when the robot is at rest, and is assigned 

a zero value at the boundaries of the validity region. This 

notion may alternatively be perceived as follows “For a given 

robot configuration, what velocity magnitude would be 

required in order to induce an unbalanced state to the 

system?” 

IV. IMPEDANCE PARAMETER TUNING  

This section explains the mechanics of the bidirectional 

online impedance tuning algorithm, and presents the 

mathematical tools required for the realisation of the proposed 

methodology.  

The propounded impedance regulation scheme’s operation, 

revolves around the optimization of the system’s impedance 

levels, that is in turn dictated by the robot’s instantaneous 

state of balance, monitored by virtue of the energy variation 

equation described by (11). As illustrated in Fig. 3, the 

algorithm attempts to minimize the robot’s impedance in 

response to an energy increase that typically ensues an 

external disturbance, in order to withstand as large a 

perturbation as possible. This entails a minimisation of the 

system’s stiffness and damping levels by utilising certain 

physically-motivated constraints, in addition to defining 

appropriate bounds ensuring that the proposed stiffness and 



 

  

 

 

damping optimization procedures yield values that conform 

to the stability-related conditions. Additionally, the damping 

value optimisation is directly contingent upon the previously 

mentioned velocity margin’s real-time evolution.  

Conversely, the impedance level is maximized once an energy 

decrease is detected, for the purpose of amplifying the 

system’s convergence capability. This procedure comprises 

online increases of the stiffness and damping values that 

endeavour to ensure the preservation of both stability and 

passivity, whilst accounting for the actuators’ physical 

limitations.    

A. Online Stiffness Optimization 

The establishment of the definitions of both the balancing 

strategy and the velocity margin, has laid the foundations for 

the formulation of a control method.  
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Figure 3. Impedance regulation scheme flowchart. 

 

As logic dictates, the mechanics of the online stiffness tuning 

technique shall firstly be introduced, since a lower bound may 

immediately be derived by constraining the magnitude of the 

𝐊𝐏 matrix in accordance with the value of 𝛼. However, since 

the ultimate goal is to acquire as low a stiffness as possible 

once the system diverges from a desired equilibrium, coupled 

with the fact that (8) may be expressed as2  

 

                            λM(H(𝐊𝐏)) ≥ 𝛼 − λM(𝐊𝐓),                      (17) 
 

with λM(. ) denoting the maximum eigenvalue, then the 

minimum stiffness gain scalar value, 𝑘𝑃𝑚𝑖𝑛, may be 

computed by utilizing the formula:  

 

                               𝑘𝑃𝑚𝑖𝑛 = (𝛼 − λM(𝐊𝐓)).                             (18) 

 

The matrix containing the passive stiffness elements, is 

represented through the equation: 

 

𝐊𝐓 = [
𝐒𝐦
𝐓𝐊𝐒𝐦 −𝐒𝐦

𝐓𝐊
−𝐊𝐒𝐦 𝐊

] ∈ ℝ(𝑛+𝑗)×(𝑛+𝑗), 

 
2 It can be shown that λM(𝜌 + 𝜒) ≤ λM(𝜌) + λM(𝜒) ([31]). 

Furthermore, an upper bound can be attained by calculating 

the 𝐊𝐃 gain value, denoted by 𝑘𝐷𝑚𝑎𝑥, that would lead to 

saturation of the input torque signal, under the assumption 

that the saturation damping gain can be described in the 

following manner: 

 

                              𝑘𝐷𝑚𝑎𝑥 = 2𝜉𝑑√𝑘𝑃𝑚𝑎𝑥‖𝐉‖,                        (19) 

 

wherein 𝜉𝑑 signifies the desired damping ratio, whereas 

𝑘𝑃𝑚𝑎𝑥 = ‖𝐊𝐏‖ is the maximum active stiffness value. The 

acquirement of the maximal attainable stiffness value, 𝑘𝑃𝑚𝑎𝑥, 

may be performed by incorporating (19) into (5), and taking 

into account the maximum achievable actuation torques that 

prevent the saturation of the input torque signal, it can be 

shown that: 

 

‖ 𝝉𝒎‖ = 𝑘𝑃𝑚𝑎𝑥𝑞𝐸𝑒𝑟𝑟 + ‖𝒖𝒈𝒄‖ 

                                     +2𝜉𝑑√𝑘𝑃𝑚𝑎𝑥‖𝐉‖‖�̇�‖,                         (20)  

 

where the ‖ 𝝉𝒎‖ and ‖𝐉‖ values are known beforehand 

according to the joint torque saturation values and the motor’s 

electromechanical properties, whereas ‖�̇�‖, 𝑞𝐸𝑒𝑟𝑟 =

‖𝐒𝐦𝒒𝒅 − 𝜽‖ and ‖𝒖𝒈𝒄‖ are assigned their respective values 

in real time, using sensory measurements. For the derivation 

of equation (19) above, the norms of the elements on either 

side are computed while accounting solely for the equality 

condition, resulting in the production of the largest attainable 

gain magnitudes exploiting the full capacity of the actuators. 

By then substituting an inherently positive variable, 𝐴2, such 

that 𝐴2 = 𝑘𝑃𝑚𝑎𝑥 , in the above equation (19), the following 

expression is generated: 

 

      𝐴2𝑞𝐸𝑒𝑟𝑟 + 𝐴 (2𝜉𝑑√‖𝐉‖‖�̇�‖) + (‖𝒖𝒈𝒄‖ − ‖ 𝝉𝒎‖) = 0.     

 

The above operation is carried out in view of the fact that the 

above relationship is quadratic, implying that it can be solved 

in a straightforward fashion, even though its discriminant’s 

positiveness requires validation on the basis of the standard 

quadratic equation solution, which should guarantee the 

provision of a real solution: 

 

         𝜉𝑑
2‖�̇�‖

2
‖𝐉‖ − 𝑞𝐸𝑒𝑟𝑟‖𝒖𝒈𝒄‖ + 𝑞𝐸𝑒𝑟𝑟‖ 𝝉𝒎‖ > 0.         (21) 

 

The soundness of the inequality, ‖ 𝝉𝒎‖ ≥ ‖𝒖𝒈𝒄‖, allows for 

the production of real solutions for the 𝑘𝑃𝑚𝑎𝑥  variable, using 

(20). It may hence be used to generate 𝑘𝑃𝑚𝑎𝑥 values, having 

previously set 𝜉𝑑 = 1, 𝜉𝑑 = 0.1 for the convergent and 

divergent cases respectively.  

The optimization program exploits the overall stiffness term 

in its original quadratic form, which is compatible with that 

appearing in the energy function. As the system begins to 

converge/diverge towards/from an arbitrary equilibrium 



 

  

 

 

point, the 𝒒𝑬
𝑻𝐓𝐃𝒒𝑬 stiffness term present in the Lyapunov 

function (10), should be confined to evolving within certain 

bounds. However, since the quadratic term inevitably 

generates scalar values, the associated gains will be incapable 

of reflecting the robot’s mass distribution. To this end, the 

work herein postulates that a distribution of this nature could 

be achieved using a gravitational weighting matrix, defined 

as: 

 

                    𝐖𝐊 = diag (
𝐒𝐦𝝉𝒈(𝒒)

‖𝐒𝐦𝝉𝒈(𝒒)‖1

) ∈ ℝ𝑛×𝑛,               (22) 

 

where ‖. ‖1 symbolizes the 𝐿1-norm operator, permitting an 

online calculation of ‖𝐒𝐦𝝉𝒈(𝒒)‖1
. 

The stiffness optimisation to be described, has revolved 

around the use of the overall quadratic stiffness term 

contained within the Lyapunov function (10), as it is the sole 

energy variable directly related to the system’s stiffness.  

The afore-described bounds, (18) and (21), in combination 

with the weighting matrix, (22), produce two distinct 

equations, as elaborated below: 

• The stiffness energy term can be bounded from 

above by applying the operator norm to the quadratic 

function comprising the maximum stiffness gain and 

the passive elastic elements. Initially, equation (7) is 

decomposed and presented in terms of its 

constituents as follows: 

 

𝐓𝐃 = 𝐊𝐓 + H(𝐊𝐏), 
 

while the 𝑘𝑃𝑚𝑎𝑥  term is subsequently multiplied by 

𝐖𝐊
−𝟏. The H(. ) operator is then used on the resulting 

matrix, while utilising the property 0 ≤ ‖𝐖𝐊‖ ≤ 1, 

to ensure the production of sufficiently large active 

stiffness gain values, thereby permitting the 

statement of the following upper bound, as 

demonstrated below:  

 

                  𝒒𝑬
𝑻𝐓𝐃𝒒𝑬 ≤ ‖𝐊𝐓 + H(𝐖𝐊

−𝟏𝑘𝑃𝑚𝑎𝑥)‖‖𝒒𝑬‖
2,                   

 

which may be rewritten in the following form: 

 

𝒒𝑬
𝑻H(𝐊𝐏)𝒒𝑬 ≤ ‖𝐊𝐓 + H(𝐖𝐊

−𝟏𝑘𝑃𝑚𝑎𝑥)‖‖𝒒𝑬‖
2

− 𝒒𝑬
𝑻𝐊𝐓𝒒𝑬.                                                 (23) 

     

• Obtaining the minimum eigenvalue of the quadratic 

stiffness term, could then yield a term serving as a 

lower bound (given that ‖𝐊𝐏‖ ≥ λM(𝐊𝐏)‖𝐖𝐊‖) 

described by the following equation: 

 

            λm (𝐊𝐓 +  H(𝐖𝐊𝑘𝑃𝑚𝑖𝑛)) λm(𝚽)
2 ≤ 𝒒𝑬

𝑻𝐓𝐃𝒒𝑬,             

 

which may also be rearranged as follows: 

 

λm (𝐊𝐓 +  H(𝐖𝐊𝑘𝑃𝑚𝑖𝑛)) λm(𝚽)
2 − 𝒒𝑬

𝑻𝐊𝐓𝒒𝑬

≤ 𝒒𝑬
𝑻H(𝐊𝐏)𝒒𝑬,                                             (24) 

where 𝚽 ∈ ℝ(𝑛+𝑗)×(𝑛+𝑗) is the diagonal matrix version of the 

𝒒𝑬 vector, i.e. 𝚽 = diag(𝒒𝑬). It is crucial to note that the 

magnitudes of ‖𝒒𝑬‖ and λm(𝚽)
2, are produced through real-

time computations. 

The stiffness optimization problem can thus be represented in 

the following form: 

 
                                    min/max  𝐽𝐾 = 𝒇𝑲

𝑻𝒙𝑲,                         (25) 
 

thereby attempting to optimise the values of the H(𝐊𝐏) 
matrix, via the modulation of the active stiffness terms 

contained in  𝐊𝐏. Therefore, the outlined procedure yields 

positive definite active stiffness matrices. In the above 

equation: 

 

                                     𝒇𝑲 = [1…1] ∈ ℝ
𝑛 ,                             (26) 

 

while the optimisation variables vector is defined as: 

 

                              𝒙𝑲 = [K𝑃,1…K𝑃,𝑛] ∈ ℝ
𝑛,                        (27) 

 

in view of the fact that H(𝐊𝐏) is defined through (7); subject 

to the constraints: 

                                             𝐀𝐊𝒙𝑲 ≤ 𝒃𝑲,                                  (28) 
 

which has been elicited by rearranging the conditions 

expressed by (23) and (24). 𝐀𝐊 ∈ ℝ
2×𝑛 is of the form:  

 

                           𝐀𝐊 = [
𝑞𝐸𝑗+1
2 , … , 𝑞𝐸

2
𝑗+𝑛

−(𝑞𝐸𝑗+1
2 , … , 𝑞𝐸

2
𝑗+𝑛
)
],                   (29) 

 

and contains the products of the multiplication operations 

performed between the elements of the two 𝒒𝑬 vectors, which 

are then multiplied by the respective diagonal and upper 

triangular elements of the H(𝐊𝐏) matrix. Additionally:  

 

                                𝒃𝑲 = [
𝛽𝐾 − 𝜓𝐾
−𝜁𝐾 + 𝜓𝐾

] ∈ ℝ2,                        (30) 

 

with the scalar terms being the following: 

 

𝛽𝐾 = ‖𝐊𝐓 + H(𝐖𝐊
−𝟏𝑘𝑃𝑚𝑎𝑥)‖‖𝒒𝑬‖

2, 

𝜁𝐾 = 𝜆𝑚 (𝐊𝐓 +  H(𝐖𝐊𝑘𝑃𝑚𝑖𝑛)) λm(𝚽)
2, 

𝜓𝐾 = 𝒒𝑬
𝑻𝐊𝐓𝒒𝑬. 

 

Thus, the optimization strives to either minimize or maximize 

the cost function, as part of a procedure that is contingent 

upon both the robot’s divergence/convergence with respect to 

an equilibrium point, in addition to whether the velocity 

margin’s value is positive or negative. In an ideal scenario, 

the stiffness value would decrease to its lowest theoretically 

attainable level once disturbed, thereby maximizing the 

robot’s disturbance absorption capability. Once the 

disturbance subsides, the stiffness value subsequently 

increases, conducing to a rapid convergence to the 

equilibrium point.     



 

  

 

 

B. Online Damping Optimization 

The damping regulation process may be realised using a 

similar approach to that outlined in the previous sub-section, 

with the caveat that it effectively commences after the 

execution of each stiffness optimisation procedure, which 

determines the values of the damping program’s bounds. 

Since a real-time variation of 𝐓𝐃 instantly suggests that the 

corresponding velocity margin values shall continuously  

fluctuate, this will unavoidably have an immediate effect on 

the values of the upper and/or lower bounds, and by extension 

on the resulting damping gain values. The optimization’s 

objective will be to adjust the magnitude of the Lyapunov 

derivative’s dissipative term, to the extent that it eclipses the 

energy-injecting term, thus assuring the system’s stability. 

Such a term can be described by equation (81), which has 

been defined in Appendix D, and is assigned to variable Ω for 

brevity, as shown below: 

 

                                   Ω(𝑡) = ω(𝒒, 𝜽, �̇�, �̇�, 𝑡),                        (31) 
 

where 𝑡 represents time. 

It is notable at this stage, that the energy-injection issue 

ceases to exist in the divergent case, due to the energy-

injecting term’s possession of a negative sign 

(
1

2
𝒒𝑬
𝑻�̇�𝐃(𝑡)𝒒𝑬 ≤ 0), which renders it a dissipative element.  

For this case, the optimization program may be represented as 

follows:  

 

• Divergent case  

 

                       Ω𝑑𝑖𝑣,𝑙𝑜𝑤(𝑡)  ≤   Ω(𝑡) ≤ Ω𝑑𝑖𝑣,𝑢𝑝(𝑡),               (32) 

 

wherein the lower bound, Ω𝑑𝑖𝑣,𝑙𝑜𝑤(𝑡), is computed by means 

of obtaining the minimum eigenvalue of (81), while 

replacing the velocity vector, �̇�𝑭, in (81) with the velocity 

margin, 𝜈, to assure that the latter would dictate the outcome 

of the divergent optimisation. Conversely, the upper bound, 

Ω𝑑𝑖𝑣,𝑢𝑝, is calculated by means of attaining the norm of (81), 

as shown below: 

 

                     Ω𝑑𝑖𝑣,𝑙𝑜𝑤(𝑡) = λm (𝜈
2𝛈 −

𝒒𝑬
𝑻�̇�𝐃𝒒𝑬

2
𝐈𝐧+𝐣),                  

          Ω𝑑𝑖𝑣,𝑢𝑝 = ‖[
𝛈𝐒𝐀𝐓 𝟎(𝑛+𝑗)×(𝑛+𝑗)

𝟎(𝑛+𝑗)×(𝑛+𝑗) −
�̇�𝐃

2

]‖ ‖[
�̇�𝑭
𝒒𝑬
]‖
2

,      

 

where 𝐈𝛋 symbolizes the identity matrix of dimension 𝜅×𝜅, 

and 𝛈𝐒𝐀𝐓 = H(𝐖𝐃
−𝟏𝑘𝐷𝑚𝑎𝑥  + 𝐃) is the value of the damping 

terms matrix norm that brings about saturation. For the 

purpose of deriving this lower bound, 𝐈𝐧+𝐣 is introduced to 

convert the scalar 𝒒𝑬
𝑻�̇�𝐃𝒒𝑬 term into a matrix. Moreover, by 

drawing inspiration from the method proposed in [32], a 

weighting matrix relying upon the motors’ dynamics has been 

used to perform a gain distribution, as described via the 

relationship:  

 

                                       𝐖𝐃 =
√𝐉𝐊𝐏

√‖𝐉𝐊𝐏‖
∈ ℝ𝑛×𝑛.                              

 

Recalling equation (82), the condition expressed via (32), 
may be written as follows: 

 

       Ω𝑑𝑖𝑣,𝑙𝑜𝑤(𝑡) − 𝜓𝐷  ≤   �̇�
𝑇𝐊𝐃�̇� ≤ Ω𝑑𝑖𝑣,𝑢𝑝(𝑡) − 𝜓𝐷 ,    (33) 

 

where 𝜓𝐷 = �̇�
𝑇𝐃�̇� −

1

2
𝜽𝑬
𝑻�̇�𝐏𝜽𝑬. 

Contrarily, the program utilised during the convergent phase 

is the following: 

  

• Convergent case 

 

                     Ω𝑐𝑜𝑛,𝑙𝑜𝑤(𝑡)  ≤   Ω(𝑡) ≤ Ω𝑐𝑜𝑛,𝑢𝑝(𝑡),                (34) 

 

whose lower bound, Ω𝑐𝑜𝑛,𝑙𝑜𝑤(𝑡), is derived via the individual 

computation of the minimum eigenvalues of [
𝛈 0

0 −
�̇�𝐃

2

], and 

the diag ([
�̇�𝑭
𝒒𝑬
]) vector, which are contained in equation (82). 

Moreover, for the divergent case program, the upper bound, 

Ω𝑐𝑜𝑛,𝑢𝑝(𝑡), is acquired by exchanging the actual velocity 

vector with the velocity margin (15) in (82), and 

subsequently obtaining the norm of the resulting vector, 

which is multiplied by the norm of [
𝛈𝐒𝐀𝐓 0

0 −
�̇�𝐃

2

], as the 

following equations demonstrate:  

 

Ω𝑐𝑜𝑛,𝑢𝑝(𝑡) = ‖[

𝛈𝐒𝐀𝐓 𝟎(𝑛+𝑗)×(𝑛+𝑗)

𝟎(𝑛+𝑗)×(𝑛+𝑗) −
�̇�𝐃
2

]‖‖[
𝝂(𝒏+𝒋)
𝒒𝑬

]‖
2

,   

  

Ω𝑐𝑜𝑛,𝑙𝑜𝑤 = 

λm ([

𝛈 𝟎(𝑛+𝑗)×(𝑛+𝑗)

𝟎(𝑛+𝑗)×(𝑛+𝑗) −
�̇�𝐃
2

])(min ([
�̇�𝑭
𝒒𝑬
]))

2

. 

 

Using a similar manipulation to that resulting in the 

production of equation (33), the following inequality is 

obtained: 

 

            Ω𝑐𝑜𝑛,𝑙𝑜𝑤(𝑡) − Γ ≤ �̇�
𝑇𝐊𝐃�̇� ≤ Ω𝑐𝑜𝑛,𝑢𝑝(𝑡) − Γ.              

 

Additionally, the construction of Ω𝑐𝑜𝑛,𝑢𝑝(𝑡) entails 

substituting �̇�𝑭 for 𝜈 in (61), and subsequently acquiring the 

norms of the resulting equation. On the other hand, Ω𝑐𝑜𝑛,𝑙𝑜𝑤  

is generated by calculating the minimum eigenvalues of (61), 
having previously transformed the state vector into its matrix 

form. 

By obtaining the velocity, �̇�𝑭, from the robot’s measurements, 

in an online fashion, the desired bounds on the quadratic 

damping term �̇�𝑭
𝑻𝛈�̇�𝑭 can be wrought. The formulation of the 

damping gain optimization program is then the following: 

 



 

  

 

 

                                    min/max  𝐽𝐷 = 𝒇𝑫
𝑻𝒙𝑫,                         (35) 

where 

 

                                  𝒇𝑫 = [1…1] ∈ ℝ
𝑛,                                (36) 

                            𝒙𝑫 = [𝐾𝐷,1, …𝐾𝐷,𝑛] ∈ ℝ
𝑛,                          (37) 

 

with 𝛿𝑖 signifying the elements of the overall damping matrix 

𝛈 that can be realized via the extraction of its diagonal and 

upper triangular elements due to its being symmetric; subject 

to the constraints 

 

                                         𝐀𝐃𝒙𝑫 ≤ 𝒃𝑫,                                      (38) 
 

which results from a manipulation of the conditions expressed 

by equations (31) and (34), for both of the previously 

mentioned scenarios. The  𝐀𝐃 ∈ ℝ
2×𝑛 matrix can be defined 

in the following manner: 

 

                         𝐀𝐃 = [
�̇�𝑗+1
2 , … , �̇�𝑗+𝑛

2

−(�̇�𝑗+1
2 , … , �̇�𝑗+𝑛

2 )
].                          (39) 

 

The  𝒃𝑫 vector that alternates between values for the two 

distinct cases, is constructed as follows:  

• Divergent case 

 

                         𝒃𝑫 = [
 Ω𝑑𝑖𝑣,𝑢𝑝 − 𝜓𝐷
−Ω𝑑𝑖𝑣,𝑙𝑜𝑤 + 𝜓𝐷

] ∈ ℝ2,                     (40) 

 

• Convergent case 

 

                          𝒃𝑫 = [
Ω𝑐𝑜𝑛,𝑢𝑝 − 𝜓𝐷
−Ω𝑐𝑜𝑛,𝑙𝑜𝑤 + 𝜓𝐷

] ∈ ℝ2.                    (41) 

 

The merging of the divergent and convergent phase 

optimisation processes into a unified equation was deemed 

unfeasible given the current constraints, owing to the 

difference between their respective state vectors, which 

necessitated two distinct optimisation routines for the 

balancing algorithm to alternate between, based on 𝐸𝑆𝐺𝑁. 

Nevertheless, the pursuit of a method that would allow for 

such a unification is currently being investigated, as it would 

hasten the overall operation of the algorithm.  

V. ALTERNATIVE IMPEDANCE TUNING TECHNIQUES  

Two supplementary online impedance parameter tuning 

methods are presented in this section, which pave the way for 

a direct comparison with the previously proposed 

bidirectional optimisation scheme.   

A. Unidirectional Optimization 

The technique expounded in the previous section, functions 

by optimizing the impedance parameters in the convergent 

and divergent cases alike. However, the energy-dissipating 

nature of the impedance-decreasing process was broached 

earlier, shedding light on the redundancy of the optimization 

technique for that particular case. It is thus possible to 

eliminate the optimization procedure from the divergent 

phase, by switching directly to a fixed set of proportional 

gains, computed using equation (18). Subsequently, the 

associated damping gains could be calculated using the 

following formula: 

 

                              𝑘𝐷𝑚𝑖𝑛 = 2𝜉𝑑√λm(𝐉𝑘𝑃𝑚𝑖𝑛).                     (42) 

 

As a result, both the stiffness and damping optimization 

processes are deactivated during the divergent phase, and 

replaced instead by a set of constant proportional and 

derivative gains computed using equations (18) and (42) 
respectively.  

The approach, which is depicted in Fig. 4, leads to a major 

simplification of the overall algorithm, as the computational 

burden of the bilateral optimization is alleviated.  

B. Active Impedance Tuning using LSM Constraint 

The optimization method introduced in this section, 

differentiates itself from those previously presented, in the 

sense that the goal is to exploit the full position tracking 

performance of the system, while respecting the balancing 

constraints. To this end, the proposed method strives to 

replicate maximum joint-level impedance via real-time 

modulation based on the LSM, as well as on the Lyapunov 

function’s elements, thus obviating the necessity for energy 

or velocity-margin-based triggers.  

The elicitation procedure described henceforth, will revolve 

around a specific objective, which is no other than the 

isolation of the proportional gain term. Commencing with 

equation (12), the entire potential energy function could be 

segregated on the left-hand side, yielding:   

       

                                    𝑉𝑃 ≥
𝛿𝑘𝑣

2(𝑛𝑀 + 1)
− 𝐾𝐸,                       (43) 

 

where 𝐾𝐸 =
1

2
�̇�𝑭
𝑻𝐌�̇�𝑭. Through the decomposition of the 

overall stiffness matrix, 𝐓𝐃, into its active and passive 

constituents, and the explicit definition of the potential energy 

term 𝑉𝑃, which is the following: 

 

     𝑉𝑃  =
𝒒𝑬
𝑻𝐓𝐃𝒒𝑬
2

+ 𝑈𝑔(𝒒) − 𝑈𝑔(𝒒𝒅) + 𝒒𝑬
𝑻 [
𝝉𝒈(𝒒𝒅)

0
],    (44) 

 
the quadratic active stiffness term may be expressed as 

follows:   

 

                                  𝒒𝑬
𝑻H(𝐊𝐏)𝒒𝑬 ≥ 𝐾𝐶 ,                         (45) 

 

where 

 

𝐾𝐶 = 2(
𝛿𝐾𝑣

2(𝑛𝑀+1)
− 𝐾𝐸 − 𝑈𝑔(𝒒)+𝑈𝑔(𝒒𝒅) − 𝒒𝑬

𝑻 [
𝝉𝒈(𝒒𝒅)

0
]) −

𝜓𝐾 .  
 

The above equation could then serve as a basis for the active 

stiffness tuning optimisation problem, whose cost function 

 𝐽𝐿𝑆𝑀 is defined as follows 



 

  

 

 

                                max  𝐽𝐿𝑆𝑀 = 𝒇𝑳𝑺𝑴
𝑻 𝒙𝑳𝑺𝑴,                          (46) 

where  

 

                              𝒇𝑳𝑺𝑴 = [1…1] ∈ ℝ
𝑙 ,                                (47) 

                        𝒙𝑳𝑺𝑴 = [𝛿𝐾𝑃1
, … , 𝛿𝐾𝑃𝑙

] ∈ ℝ𝑙 ,                        (48)  

 

in which 𝛿𝐾𝑃 denotes the elements of the H(𝐊𝐏) matrix; so 

that the joints’ impedance level is continuously maximised. 

 

 

 

Yes
Yes

Yes

Yes

No

No

No

No

 𝐸𝑆𝐺𝑁 ≈ 0 

𝜈 > 0 

 

 𝐸𝑆𝐺𝑁 < 0 

𝜈 > 0 

 

 𝐸𝑆𝐺𝑁 > 0 

 𝜈 > 0 

 𝐸𝑆𝐺𝑁 ≈ 0 

𝜈 > 0 

 

Yes

No

Switch to low 

KP & KD

max JK & JD

Increase KP & KD

Minimum

KP & KD values

Minimum

 KP & KD values

Switch to low 

KP & KD

max JK & JD

Increase KP & KD

Minimum

KP & KD values

Minimum

 KP & KD values

Push

Stop

𝜈 < 0 

 

 
Figure 4. Unidirectional impedance optimization scheme flowchart. 

 

In order to establish a set of limits for the optimisation 

program, it should firstly be ensured that it conforms to a 

lower bound constraint, and by subsequently gleaning the 

various constraint equations, the program may be represented 

as follows:  

 

     λm (H(𝐖𝐤
−𝟏𝑘𝑃𝑚𝑖𝑛)) λm(𝚽)

2 ≤ 𝒒𝑬
𝑻H(𝐊𝐏)𝒒𝑬 ≤ 𝐾𝐶 .    (49) 

 

Despite the fact that this specific optimization constantly 

attempts to maximize the cost function, the instantaneous 

active stiffness value could either increase or decrease, since 

the upper bound is time-varying. Hence, in order to ensure a 

suppression of the energy-injecting term when the stiffness 

increases, once this phenomenon has been detected, the 

damping optimisation program described by equation (35) is 

simultaneously executed. The active damping for the 

decreasing stiffness case, could be calculated by exploiting 

the relationship:   

 

𝐾𝐷 = 2ξd√𝐉𝐊𝐏, 
 

where 𝐊𝐏 is the proportional gain matrix calculated using the 

pertinent optimization.  

VI. IMPEDANCE OPTIMIZATION BALANCING EXPERIMENTS 

The results acquired during the performance of experiments 

involving the use of the afore-presented impedance regulation 

algorithms, are provided in the current section. 

A. Experimental Setup Description 

As far as its hardware configuration is concerned, the 

COMAN’s lower body comprises 15 DOFs, while standing at 

a height of 790 mm and weighing 18.9 kg. Each sagittal 

compliant joint incorporates three position encoders (2 

absolute and 1 relative) to measure the link and motor 

positions, in addition to a torque sensor. The robot is also 

endowed with a ground contact measurement capability, as it 

possesses 6-axis force/torque sensors located at its ankles. It 

is noteworthy that the robot’s six sagittal joints are powered 

by linear SEAs, thus ensuring that a zero-ankle-torque 

configuration, corresponds to an 𝑋𝐶𝑜𝑃 = 0 position.  

In terms of the optimisation technique, the proposed 

algorithm employs the interior point method to solve the 

linear programs described throughout the text, whose 

utilisation still allowed for an available control loop 

bandwidth of ~3.33 kHz (< 0.3 milliseconds).   

B. Bidirectional Optimization Results 

The approach described herein was practically validated by 

means of balancing experiments involving the COMAN’s 

lower body, during which it was manually perturbed while the 

designed controller attempted to stabilize its structure via the 

online tuning of its impedance parameters (Fig. 13). The 

associated video attachment experimentally demonstrates the 

efficacy of the proposed control scheme, as opposed to 

utilising fixed low and high gain controllers. The CoP 

position response arising immediately after the application of 

an impulsive impact, is displayed in Fig. 5 below, while the 

time evolutions of the associated stiffness and damping gains, 

𝐊𝐏 and 𝐊𝐃 respectively, may also be viewed in Figs. 6-7. 
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Figure 5. CoP evolution during balancing. 

 

Fig. 8 illustrates the energy variation transpiring over time, 

computed using 
(𝑉𝑇(𝑖)−𝑉𝑇(𝑖−1))

𝑡𝑠
, where 𝑡𝑠 symbolises the 

sampling time, which was set to a value of 1 millisecond in 

order to slightly exceed the available bandwidth of the control 

loop. The energy variation term is dependent upon numerous 

parameters, and is thus predisposed to producing noisy 

signals, if high levels of quantisation noise are present in its 

constituent variables. In the latter case, decreasing the 

sampling time would exacerbate the controller’s robustness, 

as it would result in an amplification of the signal peaks. On 

the other hand, increasing the sampling time might cause the 

Energy Variation’s noise levels to abate, even though it would 



 

  

 

 

introduce an undesired discrepancy between the evolution of 

the controller gain variables running on the robot, and the 

evolution of those same variables comprising the Energy 

Variation term. It can be observed that once the robot has been 

perturbed, an increase in the energy variation value occurs, 

and this action unfolds uninhibitedly until thse energy value 

reaches a culmination. Subsequently, it begins to decrease, 

thus signifying a convergence towards the equilibrium point. 

The change in velocity margin value, �̇�𝑀  , with respect to time 

is depicted in Fig. 9, which shows that due to the robot’s 

disturbance from its equilibrium position, the velocity margin 

value decreases for a period of time, thereby evolving in a 

converse manner to that of the energy variation shown in Fig. 

8. Hence, the velocity margin may only be regarded a margin 

while it possesses positive values, and may not be perceived 

as such when residing within the negative value range. The 

CoP position responses to numerous disturbances, inducing 

initial velocities spanning the 0.5-2 rad/sec range (considering 

a 5-10% error margin), are exhibited in Fig. 10, hence 

demonstrating the controller’s capability of rendering the 

system exceptionally tolerant to external impacts. 
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Figure 6. Stiffness gain value evolution during balancing.
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Figure 7. Damping gain value evolution during balancing. 
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Figure 8. Energy variation during balancing. 
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Figure 9. Velocity margin value during balancing. 

 

Similarly, Figs. 11-12 demonstrate the CoP responses to 

pushes, when employing low impedance (LIC) and high 

impedance (HIC) controllers respectively. It is noteworthy 

that the initial velocity values depicted in Figs. 11-12, account 

for a 5-10% error margin. The LIC outperforms the proposed 

controller in terms of disturbance rejection, albeit being 

incapable of driving the robot to the desired equilibrium. HIC 

on the other hand, possesses a significantly lower perturbation 

threshold in comparison to the other two controllers, implying 

that it is more susceptible to losing its balance for the same 

disturbance magnitudes. It is noteworthy that LIC and HIC 

utilise the lowest and highest impedance values produced by 

the optimization controller, respectively.    
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Figure 10. CoP position for 0.5-2 rad/s initial velocities (optimization). 
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Figure 11. CoP position for 0.5-2.5 rad/s initial velocities (low impedance). 
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Figure 12. CoP position for 0.5-1 rad/s initial velocities (high impedance). 

 

 

 
Figure 13. Snapshots of balancing experiments. 

C. Unidirectional Optimization Results 

This subsection shall focus predominantly on the effect of 

replacing the bidirectional optimization, with the 

unidirectional approach outlined in Section V.A. Fig. 14 

portrays the CoP response to initial velocities of 0.5-2 rad/s 

rad/sec (considering a 5-10% error margin), while Fig. 15 

isolates the response pertaining to the 1 rad/s initial velocity, 

whose corresponding stiffness and damping gain evolutions 

are illustrated in Figs.16 and 17 below. Although a quick 

inspection allows one to state that the CoP response portrayed 

in Fig. 15, bears a level of resemblance to that pertaining to 



 

  

 

 

the bidirectional technique, a thorough examination reveals 

that the settling time of the response is significantly slower in 

this case. However, the system’s impact absorption capability 

remains intact, as demonstrated in Fig. 15, despite changing 

the impedance regulation strategy. Moreover, the stiffness 

and damping gains vary in a distinct manner over time, as 

depicted in Figs. 16, 17. Likewise, the time evolution of 

velocity margin shown in Fig. 18, appears to possess positive 

values over a longer duration, as compared to its counterpart 

presented in Fig. 9, which consequently implies that the 

optimization algorithm also remains active for a longer period 

of time. Despite lacking a noteworthy convergence capability, 

this specific optimization technique inevitably leads to lower 

computational costs, by means of obviating the necessity for 

the execution of a linear programming problem during the 

divergent phase.  
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Figure 14. CoP position for 0.5-2 rad/s initial velocities (unidirectional). 
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Figure 15. CoP evolution during balancing. 
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Figure 16. Stiffness gain value evolution during balancing. 
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Figure 17. Damping gain value evolution during balancing. 
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Figure 18. Velocity margin value during balancing (1 rad/s initial velocity). 

D. LSM Tuning Results 

Finally, this section shall contrast the results obtained when 

utilizing the LSM-based tuning approach presented in Section 

V. B., to those acquired using the two previously described 

techniques. A noteworthy caveat at this stage, is that instead 

of relying upon the velocity margin variable, this regulation 

technique operates using a critical quadratic active stiffness 

variable, namely 𝒒𝑬
𝑻H(𝐊𝐏)𝒒𝑬. Fig. 19 clearly reveals that the 

LSM method yields unsatisfactory results as compared to 

both optimization methods, as neither the convergence, nor 

the impact absorption, capabilities, are particularly 

impressive in comparison to those presented earlier.       
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Figure 19. CoP position for 0.5-1.5 rad/s initial velocities (LSM tuning). 

 

This hindrance could be attributed to the method per se, since 

it relies upon a margin whose value varies in accordance with 

the kinetic energy term, thus leading to diminishing values of 

the quadratic active stiffness variable, as the impact 

magnitude increases. As a result, the impedance tuning 

procedure remains active for only a brief period of time, as 

clearly portrayed in Figs. 20-21, where the gain values are 

essentially set to the lower bounds at a very premature stage. 

Activating the impedance regulation while the values of this 

stability variable are negative, would be unreasonable, since 

such an occurrence renders it impossible to draw a safe 

conclusion about the robot’s state of balance. Fig. 22 

represents the evolution of the right-hand side of equation 

(45), which symbolises a critical stiffness energy, or margin, 

that is subsequently used to regulate the system’s overall 

stiffness, and by extension, its damping.  
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Figure 20. Stiffness gain value evolution during balancing. 
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Figure 21. Damping gain value evolution during balancing. 
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Figure 22. Critical quadratic stiffness energy (1 rad/s initial velocity). 

VII. DISCUSSION 

The dynamical model described here, has revolved around the 

use of an over-actuated serial-link mechanism in the frontal 

plane, which is attributed to the COMAN’s possession of 

mere compliant (SEA) frontal joints, in conjunction with 

‘stiff’ lateral joints. It is for this reason that the proposed 

algorithm has been directly implemented onto those particular 

sagittal joints, even though the inclusion of lateral joints in the 

current model is permissible, and obviates the need for 

performing any fundamental modelling changes to (1) and 

(2). However, for the purpose of accounting explicitly for the 

external contact forces that the system will be subjected to at 

the foot-ground interface, in the form of a closed kinematic 

chain, one would need to exploit a contact-force-based three-

dimensional compliant model of a humanoid, such as the one 

presented in [34]. It ought to be noted that model (1), (2) also 

considers external forces in the form of 𝝉𝒆𝒙, although the 

explicit double support constraints have been neglected. By 

following the paradigm outlined in [34], for designing 

controllers and computing constraint subspaces, it would be 

possible to generate stiffness and damping gains satisfying the 

contact constraints, whose online modulation would permit 

the performance of impedance regulation. Additionally, the 

construction of a velocity margin, based on the derivation of 

an LSM, is equally effortless when considering the afore-

described model.     

VIII. CONCLUSIONS 

This paper has scrutinized the effect of the online regulation 

of a humanoid robot’s impedance levels, on its balancing 

capability. The derivation of the velocity margin variable has 

manifested itself as a crucial stage of the balancing algorithm 

development, by forging a critical velocity parameter that 

ultimately dictates the functionality of the entire optimization 

procedure.  

A calculation of the energy function’s time derivative, has 

revealed the existence of an energy-injecting rate of stiffness 

change term, whose behaviour ought to be suitably repressed 

by the dissipative element, in an attempt to ensure the 

system’s passivity or stability.  

The stiffness tuning technique’s operation is primarily 

dependent on the definition of appropriate bounds, targeted at 

the performance of either a maximization or minimization of 

the active stiffness, when converging or diverging with 

respect to an equilibrium, respectively. Moreover, the active 

damping tuning procedure’s operation is founded upon the 

afore-described velocity margin, in addition to the energy 

function’s derivative, which is modulated accordingly as a 

means of guaranteeing stability/passivity. Two 

supplementary impedance regulation approaches have been 

contrived, namely the unidirectional optimization and the 

LSM-based, techniques. These were engineered to facilitate a 

just comparison with the bidirectional optimization method, 

which would emphasize the proposed method’s superior 

efficiency in terms of balancing performance. 

The experimental results performed using the COMAN, attest 

to the fact that constant high gain impedance controllers lead 

to exceedingly low disturbance absorption thresholds, while 

their low gain counterparts could render a humanoid tolerant 

to perturbations, albeit lacking a convergence capability. By 

contrast, the unidirectional optimization algorithm leads to 

the same heightened disturbance absorption, in spite of its 

slow convergence, whereas the LSM technique is beleaguered 

by both weak perturbation rejection, and poor convergence. 

Consequently, the experimental results shed light on the fact 

that the proposed impedance regulation scheme could 

successfully endow a humanoid with both disturbance 

rejection and convergence capabilities.           
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APPENDIX A 

This appendix provides the proof associated with Theorem 1, 

that has been stated in the paper.  

 

Proof 1: Using (1), (2), (7), and (8), while setting zero 

velocities and accelerations, gives the following expression 

(after some algebraic manipulations): 

 

                       𝐓𝐃 [
𝒒 − 𝒒𝒅
𝜽 − 𝜽𝒅

] = [
𝝉𝒈(𝒒) − 𝝉𝒈(𝒒𝒅)

0
].               (50) 

 

Letting 𝑸(𝒒𝑭) = 𝒒𝑭𝒅 + 𝐓𝐃
−𝟏𝝉(𝒒𝑭), where 𝝉(𝒒𝑭) =

[
𝝉𝒈(𝒒) − 𝝉𝒈(𝒒𝒅)

𝟎
], the contraction mapping theorem [33] 

yields: 

 

‖𝑸(𝒒𝑭) − 𝑸(𝒚)‖ ≤ 𝜆𝑀(𝐓𝐃
−𝟏)𝛼‖𝒒𝑭 − 𝒚‖, 

∴                        ‖𝑸(𝒒𝑭) − 𝑸(𝒚)‖ ≤
𝛼

𝜆𝑚(𝐓𝐃)
‖𝒒𝑭 − 𝒚‖. 

 
𝛼

𝜆𝑚(𝐓𝐃)
< 1 is a sufficient condition to ensure that (50) has a 

unique solution, as implied by the following equation: 

 

                                            𝜆𝑚(𝐓𝐃) > 𝛼.                                  (51) 
 

It can be demonstrated that (51) has a unique minimum at the 

equilibrium point (𝒒𝒅, 𝜽𝒅), by firstly recalling the following 

potential energy function: 

 

𝑉𝑃 =
𝒒𝑬
𝑻𝐓𝐃𝒒𝑬
2

+ 𝑈𝑔(𝒒) − 𝑈𝑔(𝒒𝒅) + 𝒒𝑬
𝑻 [
𝝉𝒈(𝒒𝒅)

0
], 

 



 

  

 

 

and by subsequently computing its gradient which produces 

the following equation:  

 

    ∇𝑉𝑃(𝒒, 𝜽, 𝒒𝒅, 𝜽𝒅) = 𝐓𝐃𝒒𝑬 + [
𝝉𝒈(𝒒𝒅) − 𝝉𝒈(𝒒)

0
] = 0.  (52) 

 

From (52), it can be concluded that the Hessian is positive 

definite and hence (53) has a unique minimum at (𝒒𝒅, 𝜽𝒅): 

 

          ∇2𝑉𝑃(𝒒, 𝜽, 𝒒𝒅, 𝜽𝒅) = 𝐓𝐃 − [

𝜕𝝉𝒈(𝒒)

𝜕𝒒
0

0 0

] > 0.        (53) 

 

Obtaining the time derivative of the Lyapunov function 

represented by (10), produces the following result: 

 

�̇�𝑇(𝒒, 𝜽, 𝒒𝒅, 𝜽𝒅, �̇�, �̇�, 𝑡)

= �̇�𝑭
𝑻

(

 
 
 

[
−𝐂 0
0 0

] �̇�𝑭 +
1

2
�̇�(𝒒)�̇�𝑭

+[
𝝉𝒈(𝒒𝒅) − 𝝉𝒈(𝒒)

0
] − 𝐓𝐃𝒒𝑬

− [
0 0
0 𝐃 + 𝐊𝐃

] �̇�𝑭 + 𝐓𝐃𝒒𝑬 )

 
 
 
+ �̇�𝑭

𝑻 [
𝝉𝒈(𝒒) − 𝝉𝒈(𝒒𝒅)

0
]

⏟                                      
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑡𝑒𝑟𝑚

 

 

+
1

2
𝒒𝑬
𝑻�̇�𝐃𝒒𝑬⏟        

,

𝑇𝑖𝑚𝑒−𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑡𝑒𝑟𝑚

 

 

which when simplified to a substantial degree using the skew 

symmetry of �̇� − 𝟐𝐂 = 0, leads to the expression: 

 

                            �̇�𝑇 = −�̇�𝑭
𝑻𝛈�̇�𝑭 +

1

2
𝒒𝑬
𝑻�̇�𝐃𝒒𝑬,                      (54) 

 

where 𝛈 = H(𝐃 + 𝐊𝐃), ensuing a series of calculations that 

have been omitted. In this case, it is evident that �̇�𝑇 = 0 if and 

only if �̇�𝑭 = 0. By then substituting �̈�𝑭 = �̇�𝑭 = 0 into the 

closed-loop equations (1), (2) and (5), one obtains: 

 

                                 𝐒𝐦
𝐓𝐊(𝐒𝐦𝒒 − 𝜽) = 𝝉𝒈(𝒒),                                

 

                    𝐊(𝜽 − 𝐒𝐦𝒒) = (𝐊𝐏(𝒒𝒅 − 𝜽) + 𝒖𝒈𝒄),                     

 

which may alternatively be represented in the form of 

equation (50), whose possession of the unique equilibrium 

solution [𝑞𝑑
𝑇 𝜃𝑑

𝑇 0 0]𝑇, was previously demonstrated. 

Thus, it can be concluded that this is also the largest invariant 

subset among the set of states yielding �̇�𝑭 = 0, in which case 

invocation of LaSalle’s theorem leads to the conclusion that 

the desired equilibrium point is globally asymptotically 

stable. However, this assumption is only valid when it has 

been ensured that the following condition holds: 

 

                                   �̇�𝑭
𝑻𝛈�̇�𝑭 ≥

1

2
𝒒𝑬
𝑻�̇�𝐃𝒒𝑬,                             (55) 

  

which is what the optimization programs presented 

throughout the text, shall attempt to achieve.  

APPENDIX B 

This appendix provides the proof associated with Theorem 2, 

that has been stated in the main body of text.  

Proof 2: Taking the time derivative of the storage function 

described by (10), while assuming that 𝝉𝒆𝒙 ≠ 0, then the 

following relationship arises: 

 

                    �̇�𝑇 = �̇�𝑭
𝑻𝝉𝒆𝒙 − �̇�𝑭

𝑻𝛈�̇�𝑭 +
1

2
𝒒𝑬
𝑻�̇�𝐃𝒒𝑬,                 (56) 

 

which satisfies the passivity inequality: 

 

         �̇�𝑇 = �̇�𝑭
𝑻𝝉𝒆𝒙 − �̇�𝑭

𝑻𝛈�̇�𝑭 +
1

2
𝒒𝑬
𝑻�̇�𝐃𝒒𝑬 ≤ �̇�𝑭

𝑻𝝉𝒆𝒙,           (57) 

 

either when,  

 

                                    �̇�𝑭
𝑻𝛈�̇�𝑭 ≥

1

2
𝒒𝑬
𝑻�̇�𝐃𝒒𝑬,                            (58) 

 

or when the active stiffness decreases, transforming the 

energy-injecting term into a dissipative element, as shown 

below: 

 

−�̇�𝑭
𝑻𝛈�̇�𝑭 −

1

2
𝒒𝑬
𝑻�̇�𝐃𝒒𝑬 ≤ 0. 

 

Consequently, this leads to the condition: 

 

                          �̇�𝑇(𝒒, 𝜽, 𝒒𝒅, 𝜽𝒅, �̇�, �̇�, 𝑡) = �̇�𝑭
𝑻𝝉𝒆𝒙                           

                           −�̇�𝑭
𝑻𝛈�̇�𝑭 −

𝒒𝑬
𝑻�̇�𝐃𝒒𝑬
2

≤ �̇�𝑭
𝑻𝝉𝒆𝒙,                    (59) 

 

which clearly satisfies the passivity relationship. 

APPENDIX C 

The LSM elicitation procedure is provided in the subsequent 

lines.   

The CoP equation corresponding to a humanoid possessing 

compliant joints, is the following: 

 

                                           𝑋𝐶𝑜𝑃 =
𝜏𝑎
𝑚𝑇𝑔

,                                 (60) 

 

where 𝜏𝑎 = −𝑮𝐒𝐦
𝐓𝐊(𝐒𝐦𝒒 − 𝜽). 

By then defining the referential version of the above equation 

as follows: 

 

                                           𝑋𝐶𝑜𝑃𝑑 =
𝜏𝑑
𝑚𝑇𝑔

,                               (61) 

 

with 𝜏𝑑 = −𝑮𝐒𝐦
𝐓𝐊(𝐒𝐦𝒒𝒅 − 𝜽𝒅), the statement of an ankle 

torque error term is permitted as shown below: 

 

           𝜏𝑎 − 𝜏𝑑 = −𝑮𝐒𝐦
𝐓𝐊(𝐒𝐦𝒒 − 𝐒𝐦𝒒𝒅 − 𝜽 + 𝜽𝒅),        (62) 



 

  

 

 

 

          |𝜏𝑎 − 𝜏𝑑| ≤  ‖𝑮𝐒𝐦
𝐓𝐊‖‖𝐒𝐦𝒒−𝐒𝐦𝒒𝒅 − 𝜽 + 𝜽𝒅‖.     (63) 

 

Utilizing the triangle inequality then yields: 

 

|𝜏𝑎 − 𝜏𝑑| ≤  ‖𝑮𝐒𝐦
𝐓𝐊‖ (‖𝐒𝐦𝒒−𝐒𝐦𝒒𝒅‖ + ‖𝜽 − 𝜽𝒅‖), 

 

 |𝜏𝑎 − 𝜏𝑑| ≤  ‖𝑮𝐒𝐦
𝐓𝐊‖ (‖𝐒𝐦‖ ‖𝒒 − 𝒒𝒅‖ + ‖𝜽 − 𝜽𝒅‖).  (64) 

 

while squaring both sides leads to the equation: 

 

  |𝜏𝑎 − 𝜏𝑑|
2 ≤ ‖𝑮𝐒𝐦

𝐓𝐊‖
2
(‖𝐒𝐦‖ ‖𝒒 − 𝒒𝒅‖ + ‖𝜽 − 𝜽𝒅‖)

2. (65) 
 

Given that: 

 

2‖𝐒𝐦‖‖𝒒 − 𝒒𝒅‖‖𝜽 − 𝜽𝒅‖
≤ ‖𝒒 − 𝒒𝒅‖

2 + ‖𝐒𝐦‖
2‖𝜽 − 𝜽𝒅‖

2,      (66) 
 

it may be stated that: 

 

(‖𝐒𝐦‖ ‖𝒒 − 𝒒𝒅‖ + ‖𝜽 − 𝜽𝒅‖)
2 

            ≤ (‖𝐒𝐦‖
2 + 1)( ‖𝒒 − 𝒒𝒅‖

2 + ‖𝜽 − 𝜽𝒅‖
2).          (67) 

 

Therefore: 

 

|𝜏𝑎 − 𝜏𝑑|
2 ≤ ‖𝑮𝐒𝐦

𝐓𝐊‖2(‖𝐒𝐦‖
2 + 1)( ‖𝒒 − 𝒒𝒅‖

2

+ ‖𝜽 − 𝜽𝒅‖
2), 

 

        |𝜏𝑎 − 𝜏𝑑|
2 ≤ ‖𝑮𝐒𝐦

𝐓𝐊‖2  (‖𝐒𝐦‖
2 + 1)( ‖𝒒𝑬‖

2).      (68) 
 

Finally ‖𝐒𝐦‖ = √𝑛𝑚𝑎𝑥, with 𝑛𝑚𝑎𝑥 = max
1≤i≤j

(ni), hence: 

 

                        ‖𝒒𝑬‖
2 ≥

1

𝑛𝑚𝑎𝑥 + 1
(
|𝜏𝑎 − 𝜏𝑑|

‖𝑮𝐒𝐦
𝐓𝐊‖

)

2

.              (69) 

 

Moreover, the following expression is valid: 

 

                              ‖𝒒𝑬
𝑻𝐓𝐃𝒒𝑬‖ ≥ λm(𝐓𝐃)‖𝒒𝑬‖

2,                   (70) 
 

thus leading to the relationship: 

    ‖
1

2
𝒒𝑬
𝑻𝐓𝐃𝒒𝑬‖ ≥

1

2(𝑛𝑚𝑎𝑥 + 1)
λm(𝐓𝐃) (

|𝜏𝑎 − 𝜏𝑑|

‖𝑮𝐒𝐦
𝐓𝐊‖

)

2

.   (71) 

In view of the fact that the  𝑈𝑔(𝒒) − 𝑈𝑔(𝒒𝒅) + 𝒒𝑬
𝑻 [
𝝉𝒈(𝒒𝒅)

0
] 

terms have been omitted in the analysis presented in the 

preceding lines, it is now necessary to prove that these terms 

are smaller than 
1

2
𝒒𝑬
𝑻𝐓𝐃𝒒𝑬. Bearing in mind the previously 

described property of the potential energy: 

 

‖
𝜕2𝑈𝑔(𝒒)

𝜕𝒒2
‖ < 𝛼, 

 

which implies the following relationship: 

 

  ‖𝑈𝑔(𝒒) − 𝑈𝑔(𝒒𝒅) + 𝒒𝑬
𝑻 [
𝝉𝒈(𝒒𝒅)

0
]‖ ≤  

1

2
𝛼‖𝒒 − 𝒒𝒅‖

2, (72) 

 
allows one to state that: 

 

      ‖𝑈𝑔(𝒒) − 𝑈𝑔(𝒒𝒅) + 𝒒𝑬
𝑻 [
𝝉𝒈(𝒒𝒅)

0
]‖ ≤  

1

2
𝛼‖𝒒𝑬‖

2,     (73) 

 

 ∴ ‖𝑈𝑔(𝒒) − 𝑈𝑔(𝒒𝒅) + 𝒒𝑬
𝑻 [
𝝉𝒈(𝒒𝒅)

0
]‖ ≤  

𝛼‖𝒒𝑬
𝑻𝐓𝐃𝒒𝑬‖

2λm(𝐓𝐃)
. (74) 

 

When considering an arbitrary equilibrium point 𝒒𝑭𝒅, 𝑉𝑃 

could be expressed in the following manner: 

 

   𝑉𝑃 =
1

2
𝒒𝑬
𝑻𝐓𝐃𝒒𝑬 + 𝑈𝑔(𝒒) − 𝑈𝑔(𝒒𝒅) + 𝒒𝑬

𝑻 [
𝝉𝒈(𝒒𝒅)

0
].   (75) 

 

By relating the above equation to (74), one acquires: 

 

                       𝑉𝑃 ≥ (1 −
𝛼

λm(𝐓𝐃)
)
‖𝒒𝑬

𝑻𝐓𝐃𝒒𝑬‖

2
,                   (76) 

 

while it is noteworthy that: 

 

                                               
𝛼

λm(𝐓𝐃)
< 1.                               (77) 

 

Through a simplification of (72), one obtains: 

 

        𝑉𝑃 ≥
1

2(𝑛𝑚𝑎𝑥 + 1)
(λm(𝐓𝐃) − 𝛼) (

|𝜏𝑎 − 𝜏𝑑|

‖𝑮𝐒𝐦
𝐓𝐊‖

)

2

.      (78) 

 

The total energy may subsequently be considered, by means 

of adding the positive (unless �̇�𝑭 = 0) 
1

2
�̇�𝑭
𝑻𝐌(𝒒)�̇�𝑭 term to 

the potential energy function, which yields: 

 

𝑉𝑇 ≥ 𝑉𝑃 ,  
 

⇒          𝑉𝑇 ≥
1

2(𝑛𝑚𝑎𝑥 + 1)
𝛿 (
|𝑋𝐶𝑜𝑃 − 𝑋𝐶𝑜𝑃𝑑|𝑚𝑇𝑔

‖𝑮𝐒𝐦
𝐓𝐊‖

)

2

,             

 

wherein 

 

                                 𝛿 = (λm(𝐓𝐃) − 𝛼) > 0.                         (79) 
Finally, the CoP error may be segregated on the left-hand side 

to attain the following expression: 

 

        |𝑋𝐶𝑜𝑃 − 𝑋𝐶𝑜𝑃𝑑| ≤
√2(𝑛𝑚𝑎𝑥 + 1)‖𝑮𝐒𝐦

𝐓𝐊‖

√𝛿𝑚𝑇𝑔
√𝑉𝑇 .       (80) 

APPENDIX D 

Evoking equation (54), and inverting its sign to ensure the 

extraction of positive damping gains during the pertinent 

optimisation process, it can be represented as follows:   

 

                  ω(𝒒, 𝜽, �̇�, �̇�, 𝑡) = �̇�𝑭
𝑻𝛈�̇�𝑭 −

1

2
𝒒𝑬
𝑻�̇�𝐷𝒒𝑬,             (81) 



 

  

 

 

 

where 𝛈 = H(𝐃 + 𝐊𝐃) is the overall damping matrix and �̇�𝐃 

signifies the derivative of the 𝐓𝐃 matrix. The above matrix 

could alternatively be displayed as follows: 

 

          ω(𝒒, 𝜽, �̇�, �̇�, 𝑡) = �̇�𝑇(𝐃 + 𝐊𝐃)�̇� −
1

2
𝜽𝑬
𝑻�̇�𝐏𝜽𝑬.       (82) 
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