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Abstract 

This thesis focuses on offline running synthesis and online running control designs 

for robots with one and two articulated legs. Since no compliant parts are used in 

the hardware designs, the robots are hard to stabilize due to large ground reaction 

forces. Study of extreme configurations may provide acute understandings of legged 

locomotion systems. 

Inspired by new results in biological sciences, biomechanical analysis, and legged 

robotics, a fundamental assumption is made: the energy cost of the robot in the 

flight phase is small, when the robot runs on flat even ground. This assumption is 

formulated as a static optimization problem. Solving this static optimization problem 

produces the initial joint velocities for the flight phase. The running gaits can then 

be generated by dynamic optimization. The ground reaction forces are constrained 

within the permitted range. The stability criterion based on the Zero-Moment Point 

(ZMP) serves as other nonlinear constraints. 

A finite-time controller is employed in the flight phase to improve landing ac-

curacy. In the stance phase, the controller is composed of three modules. The 

finite-time position-tracking module, designed with the same principle as the flight 

controller, prepares correct initial state for the subsequent flight phase. The force-

suppression module rejects excessive external forces, preventing robot damage. The 

online ZMP compensator drags the ZMP closer to the center of the support range, 

with sacrifice of position tracking accuracy, and thus, the running stability can be 

sustained. 

Simulations have demonstrated the effectiveness of the proposed approaches. 
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Chapter 1 

Introduction 

Locomotion usually refers to the ability of a body to move from one place to another, 

and it takes diverse forms [151]. Typical locomotion forms include swimming with 

fins, flying with wings, walking and running on feet, side-winding on belly, and so 

on. It is interesting that flying creatures (e.g. birds and flies) and amphibians (such 

as frogs and salamanders) also have legs, implying that legged locomotion may be 

the most fundamental locomotion form. 

The principles of legged locomotion have not been completely understood. Some 

radical questions remain to be answered in systematic ways. For instance, at a 

given forward speed, animals immediately choose important gait parameters, such 

as initial posture, stride length, and stride frequency [29, 72]. For legged robots, 

this may be very difficult. The need for better understanding of the mechanisms 

behind legged locomotion has been stimulating and inspiring the development of 

legged robots [118]. 

Legged robots have been one of the most active research topics in robotics for 

decades. Compared with wheeled and tracked vehicles, the legged robots possess 

better mobility [118]. An ideal legged robot has the potential to maneuver isolated 

step stones that wheeled and tracked vehicles cannot travel. Besides, legged ma-

chines, especially those with one or two legs, usually occupy small terrain areas, and 

thus, it is possible for legged robots to co-operate with humans in crowded environ-

ment. Moreover, legged robots can be more versatile than their wheeled and tracked 
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counterparts. By making use of other tools, legged robots, or more generally limbed 

robots, are capable of extending their functions. Riding on a unicycle, a two-legged 

robot becomes a wheeled vehicle [131]. 

Due to these remarkable features, legged robots are expected to accomplish mil-

itary missions in unexplored outdoors, hazardous inspection and repair tasks in nu-

clear and chemical industries, service work in crowded hospitals, companion and 

entertainment jobs at home, and much more. A wide spectrum of applications, with 

a huge potential of commercial profit, also drives forward the development of legged 

robots. 

This dissertation focuses on running synthesis and running control designs for 

robots with one or two articulated legs in the sagittal plane. Throughout this thesis, 

running is defined as a movement on foot so that all feet leave the ground for a 

portion of each stride. It relates to alternations of the two consecutive phases: the 

flight phase and the stance phase. In the flight (aerial) phase, the body flies in 

the air with all parts off the ground, and its center of mass (CoM) follows a ballistic 

trajectory. In the stance (support) phase, one foot is in contact with the ground, and 

the corresponding leg is the support leg. For a two-legged system, the leg other than 

the support leg is the swing leg. The movement of the swing leg that prepares for the 

next flight phase is the recovery. The two running phases switch according to events. 

When a flight phase finishes, one leg begins to collide with the ground. This event 

is the touchdown. When a stance finishes, the body starts to fly into the air. This 

event is called the take- off (also lift-off). Running of a one-legged system is usually 

termed "hopping". A complete hopping cycle contains a flight phase, a touchdown, 

a stance phase, and a take-off. Starting from a left foot take-off, a half bipedal 
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running cycle consists of a left foot take-off, a flight phase, a left foot touchdown, 

and a stance phase. The other half bipedal running cycle is skew-symmetric with 

the first half cycle, with roles of the feet switched. In fact, all bouncing gaits, such 

as hopping, running, jumping, leaping, etc., can be defined similarly, and thus, they 

are interchangeable in the latter chapters. 

For comparisons, Walking is a movement on foot with at least one foot in con-

tact with the ground for all times. Clearly, walking cannot be done by one-legged 

systems. It is characterized by alternations of the two consecutive phases: the single 

support phase and the double support phase. In the single support phase, only one 

leg supports the body, and the other swings. Naturally, the leg that supports the 

body is the support leg, and the leg that swings about the hip is the swing leg. In 

the double support phase, both feet support the body. 

The one-legged robot will often be called the one-legged hopper. Other aliases for 

the one-legged robot include one-legged machine, hopping machine, hopping robot, 

and monopod. The two-legged robot will also be called the two-legged machine or 

biped for short. Actually, a biped is not necessarily a robot. It may be a human, or 

an animal with two legs. 

1.1 Scope of the thesis 

The ultimate objective of the undergoing research is to build a versatile biped that 

can walk and run. To achieve this objective, many tasks need to be accomplished. 

This thesis aims to address control-related issues for running robots with one or two 

articulated legs. 
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LA 
  qd,qd, 

Figure 1.1: A possible control subsystem for the legged robots 

1.1.1 Tasks of the thesis 

A possible control subsystem is shown in Fig. 1.1. The commanded inputs are the 

average forward speed V,, the landing height h, and the stride length L. "OGG" is 

the offline gait generator, "DB" is the database containing a large number of gaits 

corresponding to different ground conditions and different commanded parameters, 

"LA" is the learning algorithm that generates gaits in real time based on the data 

generated offline, and "OC" is the online controller. (q T, T)T and (q, )T represent 

the actual and desired states of the robot, respectively. "GRFs" means the ground 

reaction forces to the robot, and "ZMP" stands for the Zero-Moment Point. The 

concepts of GRF and ZMP will be reviewed in Chapter 2. 

The solid blocks in Fig. 1.1 are covered in this thesis. 

1.1.2 Objective of the thesis 

The objectives of this thesis are: 

1. to provide solutions to the problem of building practical robots that can run 
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with one or two articulated legs. Offline gait generators and online control 

subsystems, respectively for the monopod and the biped, will be discussed.. 

2. to advance the understanding of legged locomotion via running analysis. The 

data captured from running motions of humans or animals can be reasonably 

explained. 

3. to obtain insight into the design details, such as power supplies and choice of 

actuators, by adding running functions to the robots originally developed for 

walking. 

1.2 Motivations 

Most existing biped robots are primarily designed to walk. It has been shown that 

walking and running are the most favorite gaits for bipeds [138], suggesting that 

running, should be paid more attention. To distinguish running from walking, crucial 

comparisons between them are made as follows: 

1. Running has the flight phase with no parts touching the ground. Walking 

contains a double support phase where both feet stand on the ground simulta-

neously. 

2. Running can achieve a faster maximum speed and a larger range of speed. 

The maximum speed of bipedal walking is bounded by V"g-10 with g being the 

gravity acceleration and lo being the length of the leg [5]. Running speed is 

constrained by the permitted ground reaction forces (GRFs) and capability of 

the actuators. 
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3. In human running, the vertical GRF usually appears to be Bell-shaped with 

the opening downwards. In contrast, the vertical GRF of walking is typically 

M-shaped, with two peaks and a valley between [37]. 

4. In running, the CoM reaches the lowest position at the mid-stance when the 

hip of the stance leg passes over the ankle, whereas the CoM climbs to the 

highest position at the mid-stance in walking [19]. 

These differences imply that the techniques for walking robots may not be effective 

for running robots, and thus running robots need more investigation. 

Some practices in running robots with articulated legs have motivated the work 

in this thesis. In experiments carried out by Vermeulen et al., a kneed hopper, 

named OLIE (for "one leg is enough"), failed many times to track the pre-planned 

joint trajectories [145]. In the experiment reported by Morris et al., the well-known 

bipedal robot, RABBIT, could only run for six consecutive steps [93]. After the sixth 

step, the experiment was automatically terminated since the tracking error at one 

knee exceeded the limit, 0.3 radians. Although the HRP-2LR, a humanoid robot 

with a height of 1.27m, has succeeded in running for several years, its forward speed 

is only 0.16ms' and the duration of the flight phase is only 0.06s [96]. Running 

synthesis and running control are far from "almost solved", as was declaimed in [114]. 

Compared to the great success of Raibert's hoppers and their descendants [118, 

117, 41, 2, 16], the running machines with articulated legs seem to be more difficult 

to control. For running of rigid bipeds, the joint accelerations and the impulsive 

impact from the ground are usually large. The magnitudes of the GRFs may reach 5 

times the robot weight [133]. To stabilize the robot while preventing it from damage, 
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special considerations in control design must be taken. 

Since the stance phase of running is similar as the single support phase of bipedal 

walking, the control algorithms that work for the stance phase of running can cer-

tainly be applied for the single support phase of walking. Conversely, a control 

algorithm stabilizing the single support phase of walking may not be able to work 

for the stance phase of running. Studies of running offer new ideas to investigate 

bipedal walking. 

Another technical challenge is the stabilization of the flight phase. Once the 

robot leaves the ground, its angular momentum and the CoM trajectory cannot be 

manipulated. Even for humans, the flight phase is vulnerable to external distur-

bances. Moreover, since a convincing "flight stability" concept does not exist, the 

control objective in the flight phase is not completely clear. Solutions to this issue 

require better understanding of running principles. 

Desire for a unified biped model that can execute both walking and running have 

also motivated this research. A promising model for this purpose was pioneered 

by Seyfarth and his coworkers. This model contains a point-mass torso and two 

telescopic springy legs [37, 60]. It successfully predicted both walking and running 

gaits. However, the resulting walking and running gaits are separated by a large 

speed gap [37], implying that slow running is impossible. Legs with variable stiffness 

offer a possible solution [56, 45]. Roughly speaking, legs with high stiffness are 

suitable for walking and with low stiffness for running. Similarly, legs with variable 

damping ratio may also work [63], assuming spring-damper pairs are employed in 

the biped model (e.g., see [144, 91]). Intuitively, change of the stiffness or damping 

ratio in real time is not costless [92]. It is unclear whether the energy-efficiency of 
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the robots with such actuators is satisfying. 

Examination of a simple rigid biped model is a good starting point, since such a 

robot can walk and run. Consequently, it is possible to compare running with walking 

in some crucial aspects, such as energy efficiency and permitted joint torques. Thus, 

valuable information can be provided for robot designs. 

Due to the great potentials for practical use, it is worthy revisiting robots with 

articulated legs, in the context of running synthesis and running control. 

1.3 Outline and contributions 

The remainder of this thesis is organized as follows: 

• Chapter 2 briefly reviews selected background material, including the most-

frequently applied gait stability concepts and the corresponding stability margins, 

and existing one- and two- legged running models and running robots. 

Chapter 3 explains the offline generator of hopping gaits. Observations from bi-

ological science, biomchanical analysis, and robotics directly inspire the algorithm. 

For running gaits of many animals, "the metabolic cost of swinging the limbs is 

negligible compared with the cost of supporting the body weight" [120]. This result 

is formulated as a static optimization procedure. The initial joint velocities of the 

flight phase can be automatically searched, provided that the initial joint angles are 

given. Then the flight phase can be generated by dynamic optimization. With a 

simple collision model, the states immediately after the foot/ground collision can be 

predicted. The stance phase is then treated as a typical two point boundary value 

problem (TPBVP). The entire hopping cycle can finally be optimized as a whole. In 
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the stance phase, the GRFs and the ZMP criterion serve as nonlinear constraints. 

Hopping gaits on even ground, and up stairs are simulated. One main contribu-

tion of the thesis is the formulation of the fundamental assumption inspired by the 

biomechanical observations. Another highlight of the algorithm is the universality 

of the formulations. 

Chapter 4 presents the offline generator of bipedal running gaits. This project is 

a natural extension of the offline hopping synthesis, with minor modifications. In the 

stance phase, the recovery motion of the swing leg is constrained such that scuffing 

with ground can be avoided. Role switching of the two legs is treated by a switching 

matrix. 

Chapter 5 explicates a novel control algorithm for the one-legged hopping robot. 

The finite-time control theory constitutes the basis of the algorithm. The sliding 

mode starts from the initial states of the hopping phase, and hence the reaching 

mode is not needed. In the flight phase, a finite-time controller is applied. By 

appropriately setting the settling time, the tracking errors between the actual states 

and the desired values converge to zero in finite time in a smooth fashion, producing 

an elegant flight phase. The finite-time control is robust to system uncertainties 

and disturbances at the joints. The control subsystem accepts the joint trajectories 

generated by the algorithm discussed in Chapter 3 as inputs. 

To prepare the correct states at the take-off for the next flight phase, the desired 

final states of current stance phase must be reached. For this purpose, a finite-time 

controller is also applied in the stance phase. 

In practice, the actual GRFs often go beyond the maximum permitted values due 

to the noisy joint accelerations and external force disturbances, setting the robot 
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under risk of damage. With the help of a force-suppression module, the actual 

GRFs can be kept within the maximum permitted values, and the damage due to 

large GRFs can be avoided. 

The noisy joint accelerations and external force disturbances also influence the 

actual ZMP trajectory. When the ZMP goes out of the support range, the robot 

may fall. An online ZMP compensator is proposed. As long as the sensory system 

detects abnormal ZMP values, the ZMP compensator is switched on to modify the 

desired hip state. As a consequence, the actual system trajectories deviate from 

the synthesized trajectories which are the original references of the control loop. 

Temporarily, the robot may not be able to track the commanded forward speed 

correctly, since the actual initial states of the following flight phase may be away 

from th desired values. 

The designs of the finite-time controllers, the force-suppression module, and the 

online ZMP compensator are other contributions of this thesis. 

Chapter 6 extends the finite-time control algorithm presented in Chapter 5 to 

stabilize the bipedal running. The inputs of the control subsystem are the joint 

trajectories generated by the algorithm presented in Chapter 4. 

Chapter 7 concludes the thesis. Future research directions are also suggested. 



Chapter 2 

Review of Related Background 

This chapter reviews selected background material, including the most popular def-

initions of gait stability and the corresponding stability margins, the typical one-

legged hopping models, and the influential bipedal models. The review is not in-

tended to be exhaustive, but to present the development flow of running robots with 

one and two legs. 

2.1 Gait stability 

It is a common sense that a gait executed by a legged locomotion system should be 

stable. Otherwise, the gait may not appear elegant. In extreme situations, the system 

falls. Ironically, to date, all existing definitions for gait stability are controversial. 

Pratt and Tedrake argued that a reasonable gait stability margin should satisfy the 

following conditions [116]: 

1. Necessary: if this condition is violated, the legged system is unstable. 

2. Sufficient: if this condition is satisfied, the legged system is stable. 

3. Comparable: the performance of two legged systems can be compared by using 

this condition. 

4. Measurable and Computable: all quantities related to the stability margin can 

be measured in real time, the stability margin itself can be computed online, 

11 
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and thus the control algorithm is applicable. 

5. Meaningful: The stability margin has understandable physical meanings. 

Here, the most-frequently used definitions of the gait stability and stability margins 

are briefly reviewed. 

2.1.1 Static stability 

When a legged locomotion system is moving, if the horizontal projection of its CoM 

is within the support polygon, the gait is said to be statically stable or statically 

balanced [85, 136, 36, 152]. With point feet, a robot achieving a statically stable 

gait must have at least four legs such that when one leg leaves the ground, the other 

feet can still form a support area. Bipeds with flat feet can also perform statically 

stable walking gaits. According to this definition, running-like gaits, which contain 

flight phases where all feet are off the ground, cannot be statically stable. The 

statically stable gaits usually have to be slow. Due to the effects of the inertia and 

accelerations, the horizontal projection of the CoM of a fast robot may go outside of 

the support region. 

The static stability margin can then be defined as the minimal distance between 

the horizontal projection of the CoM and the boundary of the support polygon. 

[36, 152]. 

The static stability concepts cannot be applied to those extreme cases where the 

contact points between the robot and the terrains are not in the same plane [152]. 
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2.1.2 Dynamic stability 

If a legged locomotion system maintains movement while violating the static stability 

condition, the gait is said to be dynamically stable or dynamically balanced [119, 

145]. To achieve a dynamically stable gait, the system has to adopt compensations 

for the tipping motion over time [119, 145]. A dynamically stable gait can be very 

fast, and the projection of the CoM often goes outside of the support polygon. What 

follows explains the main criteria for dynamically stable gaits. 

ZMP 

The concept of ZMP was first introduced by Vukobratovié and Juriëi in 1968, al-

though it was not officially named at that time [148]. It has been interpreted in 

many ways [49, 140, 7, 50, 39, 147, 125, 111]. For conceptual simplicity, the ZMP 

may be defined as the point on the ground at which the net moment due to inertial 

and gravitational forces has no component along the horizontal axes [111]. In Fig. 

2.1, ra, Tg, and rzmp are the Cartesian locations of the ankle, the robot's CoM, and 

the ZMP, Ma and Fa stand for the moment and force acted on the ankle by the links 

other than the support foot, Fzmp is the force applied at the ZMP by the ground, m 

is the robot's mass, and g is the gravitational acceleration. Clearly, mg is the robot's 

weight. When the support foot does not rotate about horizontal axes, the following 

equation must be satisfied: 

(ra x Fa + Tg x mg + rzmp X Fzmp + Ma)h = 0, (2.1) 

where the subscript "h" means the horizontal components of the overall moment 

inside the parentheses. Solutions to (2.1) give the Cartesian coordinates of the ZMP. 
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Figure 2.1: A definition of Zero-Moment Point 
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Figure 2.2: The ZMP stability criterion, (a) a stable gait, (b) an unstable gait 

The ZMP stability criterion says that, if the ZMP is within the support polygon, 

the gait is dynamically stable. Moreover, the stability margin is the shortest distance 

from the ZMP to the boundary of support polygon. Fig. 2.2 illustrates the ZMP 

stability criterion. Each rectangle represents a support foot. The cross indicates 

the ZMP location. A stable gait (left graph) and an unstable gait (right graph) are 

shown. 

If the contacts between the robot legs and the terrains are not in the same plane, 

the ZMP definition, as well as the ZMP stability criterion, cannot be applied. For 

bipedal locomotion, if the two feet are in contact with two non-planar terrains, 
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the terrains are projected vertically onto the horizontal surface, forming the virtual 

ground. On the virtual ground, there exists a virtual ZMP such that the horizontal 

components of the moment of the total inertia forces are zero. The projections of the 

two feet onto the virtual ground form the virtual support polygon. Correspondingly, 

if the virtual ZMP is within the virtual support polygon, the gait is dynamically 

stable, and the stability margin is the shortest distance from the virtual ZMP to the 

boundary of the virtual support polygon. 

For the flight phase in running-like gaits, since all feet are off the ground, sup-

port polygon and virtual support polygon are not defined. Consequently, the ZMP 

stability criterion does not work. 

Flight stability 

The flight stability was proposed by Kwon and Park recently [74]. During the flight 

phase, if the angular momentum about the CoM of the system maintains within a 

limited range around zero, the flight phase is said to be dynamically stable. During 

the flight phase the angular momentum about the CoM of the system cannot be 

manipulated. Thus, to prevent the system from rotating about its CoM in the air, 

the angular momentum about its CoM should be zero [33]. However, maintaining 

the angular momentum about the CoM is not sufficient to achieve "stable flight". 

If the upper body and the leg(s) rotate about the hip simultaneously with large 

angular velocities in opposite directions, the net angular momentum about the CoM 

is possibly zero, but the overall energy consumption is high, and the posture in the 

air is neither natural nor elegant. 

Once the variation range of the magnitude of the angular momentum is deter-
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mined, the flight stability margin may be defined as the difference between the range 

limit and the magnitude of the angular momentum. If this quantity is positive, 

then the flight is stable, and otherwise unstable. A larger value of this quantity 

indicates higher stability. Since the variation range of the magnitude of the angu-

lar momentum about the CoM is difficult to determine, it is not easy to apply the 

flight stability concept and flight stability criterion to running synthesis and running 

control at current stage. A more flexible method is to force the magnitude of the 

angular momentum, with respect to the system's CoM, to be as small as possible by 

some means, such as optimization techniques [110]. 

Orbital stability 

Qualitatively speaking, a system is orbitally stable if in presence of bounded distur-

bances, a phase trajectory of an autonomous system shifts to another nearby phase 

trajectory with similar shape [54, 40]. Mathematically, the phase trajectory of an 

autonomous system, denoted by II, is said to be orbitally stable if given an 6> 0 

there is a 5> 0 such that if P', a representative point on another phase trajectory 

IT', is within a distanée 5 of II at time to then F' remains within a distance 6 of II 

for all time t > 0 [48, 40]. If no such a 5 exists, the phase trajectory 11 is orbitally 

unstable. The orbital stability requires that the two phase trajectories 11 and If re-

main close if their initial distance is small. Analogous to the definition of asymptotic 

stability in the sense of Lyapunov, the phase trajectory H is said to be asymptoti-

cally orbitally stable, if H is orbitally stable and in addition, the distance between P' 

and H converges to zero as time approaches to infinity [40]. The asymptotic orbital 

stability requires that the two phase trajectories IT and If converge finally if their 
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initial distance is small. 

The difference between the orbital stability and the well-known Lyapunov sta-

bility lies in that the orbital stability does not describe the characteristics of the 

equilibrium that the Lyapunov stability deals with. 

With the controller applied, the closed-loop legged locomotion system becomes 

autonomous. The legged locomotion system is hybrid, since the gait cycle contains 

continuous dynamics in different gait phases and discrete events such as the take-offs 

and touchdowns. The orbital stability of the gait cycle can be examined by using 

the Poincaré return map of the gait. A Poincaré section can be chosen as the one 

dimensional lower subspace of the phase space of the gait cycle at a particular event, 

such as a touchdown. If the phase trajectory intersects the Poincaré section at the 

fixed point, denoted by x, in one gait cycle, it comes back to the neighborhood of x 

in the next gait cycle, if the gait is orbitally stable. Moreover, the phase trajectory 

comes back to x itself, if the gait is periodic. 

In the literature, the gaits are always expected to be periodic, for ease of analysis. 

For a periodic gait, the phase trajectory is a limit cycle, and x = F(x*), where 

F : R1 F-i is the discrete Poincaré map. Suppose a phase trajectory starts at 

X* + Lx *, a little away from the fixed point x", due to bounded perturbations. In 

the next cycle, the phase trajectory intersects the Poincaré section at F(x* + x*), 

the first return map of x + Lx*. The map can be expanded by using the Taylor 

Series as: 

F(x* + Lx*) F(x*) + (VF)Lx* = * + (VF)Lx*, 

where VF is the gradient of F with respect to the states x. If the periodic gait is 

orbitally stable, the limit cycle is attractive. This means that the magnitude of the 
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eigenvalues of VF evaluated at x' is strictly less than one. 

For many non-smooth systems, it is impractical to obtain the closed forms of the 

map F and of the gradient VF. Each state can be perturbed once a time by a small 

number. The first return map corresponding to this perturbation can be obtained. 

This process repeats until all states are perturbed. All of the perturbations form a 

diagonal matrix, denoted by v here, and all of the first return maps form a square 

matrix, denoted by u. The gradient of the map, VF, can be calculated with 

VF = uv'. 

The orbital stability margin may be defined as the difference between 1 and the 

largest magnitude of the eigenvalues of the sensitivity matrix VF [116]. According 

to this definition, a larger orbital stability margin means a faster speed with which 

the perturbed phase trajectory converges to the unperturbed limit cycle. 

The orbital stability concept offers a powerful mathematical analysis tool. By 

using this tool, stability of the periodic gaits performed by a legged robot can be 

strictly proved, in spite of the hybrid nature of the system. Also, this tool helps 

to pick the suitable initial values for the system such that the synthesized gaits are 

orbitally stable [84, 40, 38]. 

The Poincaré map has been widely applied in gait analysis for legged locomotion 

systems. In the latter sections of this chapter, this point will be frequently discussed 

whenever the running models with one or two legs are investigated by using this 

technique. However, it may not be convenient to apply this technique to a legged 

locomotion system with high degrees of freedom (DOFs), since construction of the 

Poincaré return map for such systems is usually difficult. Further, since this skill 
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assumes a periodic gait, and hence a limit cycle, it cannot be used to analyze non-

periodic gaits that a legged locomotion system performs in most times. Due to this, 

Pratt and Tedrake argued that the orbital stability is not a good concept in general 

[116]. Moreover, the Poincaré return map only handles autonomous systems, it im-

plicitly assumes that the form of the controller has been determined, and the control 

gains can then be chosen via stability analysis [92]. 

Other definitions of gait stability 

Pratt and Tedrake defined the gait stability for a biped as [116]: 

"A biped is stable if and only if the state of the robot is not inside the Basin of 

Fall, where a Fall means that a point on the robot, other than a point in the feet, 

touches the ground, and the Basin of Fall is a subset of the state space that leads to 

a fall". To be more specific, "a Time-Limited Basin of Fall is defined as a subset of 

the state space that leads to a fall within a finite time". 

Based on this stability definition, they proposed several stability margins, em-

phasizing the retrieval' capability from a trend of fall (see [116] for more details). 

Wieber defined a Viable Kernel that is a union of all Viable states from which a 

fall can be avoided, and out of which a fall is unavoidable [152]. In essence, the Viable 

Kernal is a complement of the Basin of Fall [116]. Then, the gait stability margin, 

the viability margin in Wieber's terminology, can be defined as the distance from the 

state of the system to the closest non-viable state. Conceptually, these definitions 

endow with insightful understandings about legged locomotion. Unfortunately, at 

current stage, it is neither feasible to accurately predict the recovery capability of 

'The word "recovery" was used in the original paper., In this thesis, "recovery" means the 
motion of the swing leg from hind to front to prepare the next flight. 
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the robot that is going to fall, nor is possible to compute the Viable Kernel of the 

system. Applications of these stability margins have not been found. 

More dynamic stability margins, rarely applied to legged locomotion, can be 

found in a survey paper [36]. 

2.2 One-legged hopping 

The existing one-legged hopping robots can approximately be classified into two 

categories: hopping with a telescopic springy leg or with an articulated leg. In an 

articulated leg, the hip-knee or hip-knee-ankle combination behaves like a spring. 

Therefore, all hoppers can be modeled as a spring-loaded inverted pendulum (SLIP) 

system. In this section, different SLIP models are presented first, the SLIP hoppers 

are then reviewed, and finally the articulated hoppers are discussed. 

2.2.1 The SLIP models 

The basic parts of the SLIP models consist of a massive upper body (torso) and a 

massless, telescopic, undamped, springy leg. The two links connect together at the 

hip. Since the leg is assumed massless, no energy is lost when the foot collides with 

the ground. This simplifies analysis and control designs. For different purposes, the 

models vary with different configurations. The hip is usually, but not necessarily, 

located at the CoM of the torso. The spring in the leg may be linear or nonlinear. 

According to the number of the degrees of freedom (DOFs) in the stance phase, the 

SLIP models may possess one, two, three, or more than three DOFs. The SLIP 

models can be utilized to analyze running-like motions [35, 129], or facilitate to 
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design control laws for running machines [118, 32, 112]. 

The 1-DOF SLIP model 

In the 1-DOF SLIP model, the torso is a point mass, the "hip" is fixed, and the leg 

length is the only state variable. Such a system can only perform vertical bouncing 

motions. If the leg is passive, this model can be used to analyze vertical hopping of 

animals and humans [14, 87]. For vertical hopping synthesis for realistic robots, the 

leg needs to be actuated [143, 28]. 

The 2-DOF planar SLIP models 

In the 2-DOF SLIP models, the torso is a point mass, and thus the inertia of the 

torso is ignored. The rotary hip is frictionless. The leg length and the leg angle are 

usually chosen as the generalized variables. 

When the hip and the leg are passive, the 2-DOF SLIP model accurately predicts 

the GRF patterns, energy fluctuations,- and other important relationships in running-

like gaits, with different initial states provided [14, 87, 127]. 

A periodic forward hopping gait can be obtained by applying a radial thrust force 

along the leg to the torso and choosing an appropriate foot location at the touchdown 

[86]. 

The 3-DOF planar SLIP models 

By adding the pitch angle of the torso as the third generalized variable, the 2-DOF 

planar SLIP models become the 3-DOF planar SLIP models. A typical configuration 

of this model is shown in Fig. 2.3. The three variables are the leg length 1, the leg 

angle 0, and the torso pitch W. In [6], the hip of the model coincides with the CoM 
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Figure 2.3: A 3-DOF planar SLIP model 

of the torso. In [38], the hip is intentionally a little higher than the CoM of the torso 

when the pitch angle of the torso is zero. For these two configurations, periodic 

running gaits are found by using the Poincaré return map. Poulakakis and Grizzle 

proposed a ASLIP (i.e. Asymmetric SLIP) model where the hip joint is located below 

the torso's CoM [112]. To maintain the torso upright, active controls are required. 

Note that the hip and the leg may or may not be passive, and a torsional spring may 

be fitted at the hip. 

A 3D SLIP model 

The planar 2- and 3- DOF SLIP models move in the sagittal plane. A SLIP model 

can also run in 3 dimensional space. The torso in the 3D SLIP model reported in 

[65] is simplified as a point mass, and thus no torso pitching is considered. When 

the foot is in touch with the ground, the system can be described by three variables: 

the leg length and the leg angles with respect to the sagittal plane and the lateral 
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plane. Therefore, the 3D SLIP model also possesses 3 DOFs in the stance phase. 

Seipel and Holmes examined this model by constructing the Poincaré return map 

[128]. They concluded that no 3D running gaits are stable if the leg and the hip are 

passive, and thus, active controls are needed, as in [65]. 

2.2.2 Realistic SLIP hoppers 

In the early 1980s, Raibert and his colleagues built a couple of one-legged robots 

that can hop in 2D or 3D [118]. In these designs, the hip was driven by pneumatic 

or hydraulic actuators, and the leg was formed by a pneumatic cylinder with a 

light-weighted rod sliding inside. The leg was attached to the torso at the torso's 

CoM. The forward speed, hopping height, and the leg angle could be controlled 

independently. A finite-state machine, essentially a top-level supervisory controller, 

helped to switch from one phase to the other. Raibert's hoppers have demonstrated 

remarkable robustness to ground changes and external disturbances, and have been 

regarded excellent implementations of the theoretical 3-DOF planar SLIP models 

and the 3D SLIP model [15, 38, 128, 126]. 

To improve the energy efficiency, Thompson and Raibert simulated a "passive 

dynamic running" model [141]. This SLIP-like model contains a massive leg. A 

torsional spring was adopted at the hip. As the name implied, the hip and the leg 

are passive. Periodic hopping gaits were found by optimization with suitable initial 

values. 

Alexander compared the Raibert's hopping robots with the leg mechanisms of 

animals, and suggested uses of springs in legged robots [4]. With this in mind, and 

also inspired by the success of Raibert's hoppers, Buehler and his team constructed 
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the Monopods I and II in the early 1990s [117, 41]. A DC motor was used to drive the 

hip, and a real spring was used in the leg. Especially, in Monopod II, springs connect 

in series with the hip actuator. Experiments exhibited that the energy efficiency of 

the Monopod II, in the sense of cost of transport [120, 26], is surprisingly high 

[2]. To investigate the stability and robustness of Raibert's hoppers, M'Closkey and 

Burdick studied a 2-D OF planar SLIP model, with a torque and a thrust force applied 

to the hip and the leg, respectively. With Raibert's control laws, they observed 

that the forward dynamics did not affect the vertical dynamics [86], verifying the 

reasonability of Raibert's decoupled control laws. Schwind and Koditschek examined 

extensively the 2-DOF planar SLIP models with different actuations and control 

laws, and found locally stable running gaits by using Poincaré return map [127]. 

Brown and Zeglin developed the Bow Leg hopper [16, 161]. The leg was made 

of light-weighted fiberglass material with a string connecting the toe and the hip. 

This design meets well the basic assumption of the 3-DOF planar SLIP models, and 

the energy consumption is very low. Due to success of Raibert-type hoppers, some 

researchers felt optimistic and declared that the problems of running had almost 

been solved by Raibert [114]. 

Francois and Samson introduced a linear control framework for a SLIP-like model 

which resembles the passive dynamic running model proposed by Thompson and 

Raibert, but with active hip and leg [32]. They simplified the nonlinear "complete 

model" of the hopper and obtained a "nominal" model which was linear and inte-

grable. For the linear nominal model, they proposed two control algorithms. Im-

pulsive or piecewise-constant control signals were injected into the actuators. Linear 

state feedbacks were also employed. The gains of the feedbacks were obtained by 
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using linear optimal control method. An integral control term was added to the 

linear control rules to remove residual velocity errors. For the same model, Hyon 

and Emura proposed the so-called "energy-preserving control" [57]. The researchers 

did not use any target dynamics, rather, they designed the control algorithm di-

rectly based on the complete nonlinear dynamics. In the flight phase, the hip joint 

is controlled by "once-switching" of two constant inputs. Quasi-periodic hopping 

gaits are obtained without touchdown dissipation. Then by adaptation of the touch-

down angle, the quasi-period hopping gaits asymptotically converge to periodic ones. 

Throughout the whole hopping cycle, the energy of the robot maintains constant. 

Mombaur et al. proposed another SLIP-like model that runs in the sagittal plane 

with a massive leg [91]. A torsional spring-damper pair at the hip was used in parallel 

with a rotary actuator. Another prismatic spring-damper pair was used in series 

with a "series elastic actuator" (SEA in [115]). A two-level optimization technique 

was applied to search for the periodic hopping gaits. The outer level optimization 

sought the appropriate initial values and system parameters with system stability 

being the objective function. The inner level optimization searched the periodic 

hopping gaits with the initial values and the system parameters provided by the outer 

level optimization. The hopper could hop stably without use of feedback. Open-

loop control laws were able to stabilize well the system and the system appeared 

to be robust to different parameter uncertainties and some external disturbances. 

Unfortunately, since all solutions were found by using numerical methods, more 

characteristics of such a system could not be analyzed directly. The energy efficiency 

of the system was not analyzed. On the one hand, the dampers consume energy. But 

on the other hand, absence of feedbacks may save energy. It would be interesting to 
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see the overall performance in the sense of energy cost. 

Although the SLIP hoppers accomplish stable hopping, they cannot be used 

in practical work. More versatile running robots are needed. Is the knowledge 

of the SLIP hoppers helpful for building more complex running robots, such as a 

bipedal runner? Raibert answered this question positively by comparing the single 

leg hopping and bipedal running, and combining two SLIP hoppers into one bipedal 

running machine [118]. However, some researchers thought the SLIP models and the 

SLIP hoppers are overly-simplified [22, 1], and may not be useful for development of 

articulated leg systems. 

2.2.3 Hopping with an articulated leg 

Before Raibert built the celebrated SLIP hoppers, he sketched an articulated leg 

which was supposed to execute 3D hopping [118]. In this conceptual sketch, the 

hopper was composed of three links (a torso, a thigh, and a shank), and two actuated 

joints. The hip could rotate in both sagittal and lateral planes, the knee was powered 

in sagittal plane only. This sketch is probably the first articulated leg model in 

formal publications. Although this idea was not really implemented, it stimulated 

the construction of the articulated hopper Monopod [75]. Monopod consists of an 

upper body, a leg, and a foot. The hip joint, driven by a hydraulic actuator, is offset 

from the CoM of the upper body. The ankle joint is actuated by an inelastic tendon 

connected to a hydraulic actuator mounted at the hip. A fiberglass leaf spring makes 

the foot. The maximum hopping speed is 2.3ms'. 

Zeglin built another articulated leg - Uniroo [160]. As the name hints, it morpho-

logically looks like a one-legged kangaroo with three links (torso, thigh, and shank). 
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The three rotary joints (hip, knee, and ankle) are driven by hydraulic actuators. The 

hip is away from the torso's CoM. The leg is massive. 

Zhang et al. simulated a couple of articulated legs, which were called unipeds in 

[163]. By applying neural-fuzzy controllers, several jump-like gaits were achieved. 

Saranli et al. proposed a 4-DOF articulated leg model consisting of a torso, a 

thigh, a shank, and a foot (called "AKH" model in [124], with "A" standing for 

ankle, "K" for knee, and "H" for hip). The hip, the knee, and the ankle are active, 

and the toe is passive. They also simulated a couple of control laws. First, a virtual 

2-DOF planar SLIP model was created by connecting the torso's CoM and the toe 

to form a virtual springy leg. The stiffness of the leg is manually tuned, depending 

on the desired behavior. A deadbeat controller and a Raibert-type controller were 

applied to the 4-DOF AKH model, respectively. The control parameters were chosen 

such that the dynamic behavior of the closed-loop system was as close as possible to 

those of the target 2-DOF planar SLIP model, with the assumption that the work 

done by the 4-DOF AKH model being roughly equal to that of the 2-DOF target. 

Berkemeier and Fearing commanded an acrobat model, with two rigid links and a 

revolute actuator in between [11]. Miyazaki et al. advanced Berkemeier and Fearing's 

work by removing the sliding motion accompanying the hopping [90]. Both groups 

applied the well-known feedback linearization techniques. 

Ikeda et al. constructed an articulated hopper, named "Mono-leg" [62]. Mimick-

ing kangaroos, Mono-leg contains five links and four rotary joints. The researchers 

first captured hopping data of kangaroos, then identified the mathematical model, 

such that the kangaroo's hopping could be described by a series of 2nd order ordi-

nary differential equations. Finally, the control laws derived by inverse dynamics 
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were applied such that the closed-loop behavior followed the kangaroo's model. 

Hyon and Mita developed a hopper, "Kenken", that appears like a dog's hind 

limb [59]. The hopper contains four links - a torso, a thigh, a shank, and a foot. The 

hip, located a little behind the torso's CoM, and the knee are actuated by hydraulics. 

The passive ankle is driven by a linear spring that connects the thigh and the heel in 

parallel with the shank. In the stance phase, the hip and the knee are controlled by 

simple rules, and the robot rotates about the toe. In the flight phase, the leg angle 

at touchdown is controlled by simple proportional laws. 

De Man and his research group built the OLIE [145], which has been mentioned 

in Section 1.2. The hopper is composed of three links (a torso, a thigh, and a shank) 

and two rotary joints (a hip and a knee). The hip is located at the CoM of the torso 

and is actuated by a DC motor. The knee is actuated by a DC motor, together with 

two torsional springs. The joint trajectories are generated in real time by fitting 5th 

order polynomials. This group also examined another legged model that directly 

copies the structure of a human leg. Diffeient from the OLIE, the hip connects the 

two ends of the torso and the thigh. A flat foot is used to improve gait stability in 

the stance phase. 

Recently, a creative articulated leg prototype was reported in [55]. The leg has 

three links, including a torso, a thigh, and a shank. The hip is driven by a DC motor, 

and the knee is actuated by a DC motor combined with springs. Steel cables are 

used as transmission mechanisms, and thus no backlash is introduced. The stiffness 

of the flexible knee can be adjusted in real time by software. This unique design 

makes the leg versatile: it has the potential to execute both walking and running 

gaits. A multi-loop nonlinear controller, with the hybrid zero dynamics (HZD) of 
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the ASLIP model being the target, has been simulated to stabilize the robot [112]. 

Compared to the SLIP hoppers, the articulated legs can be more compact, since 

the links can be folded about the rotary joints. As a consequence, the swing leg 

during the flight phase retracts easily, and hence it avoids scuffing with the ground 

in the middle of the flight without much effort. Also, it is easier to construct and 

control an articulated leg, due to use of rotary joints. Natural legs in animals imply 

that the articulated legs can be energy efficient, with compliant elements properly 

installed. 

2.3 Bipedal running 

The monopedal hopping and bipedal running share some common characteristics 

[118]. For either of the runners, only one leg supports the body at a time, only one 

leg recovers by swinging leg forward at a time, and the two running phases alternate 

strictly. Therefore, synthesis of bipedal running may borrow some ideas from the 

successful experience of the hopping machines. 

Certainly, bipedal running has its own features different from those of the monope-

dal hopping. Important comparisons are listed as follows: 

I. For two-legged running, the torso's pitching can be substantially slight in the 

flight phase, since the angular momenta of the two legs can be partly or com-

pletely compensated by each other with leg swinging in opposite directions. As 

a contrast, in the one-legged system with a massive leg, the leg recovery intro-

duces torso's pitching. The one-legged hopper with a massive leg is less efficient 

than the biped running, since the torso's pitching consumes large amount of 
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energy. To improve energy efficiency, . the leg of the hopper, e.g. the bow leg 

[16], should be very light-weighted. 

2. The biped can run faster than the monopod. For a one-legged hopper, the leg 

recovery takes time. If the forward speed is high, the recovery duration is too 

short for the hopper to finish in time, unless the actuators are very powerful. 

For bipedal running, recovery motion of the swing leg generally starts at the 

beginning of the stance phase, and hence, it finishes before the end of the flight 

phase with small and energy-saving actuators. However, the swing leg must 

have some retraction mechanisms to avoid scuffing with the ground during the 

stance phase. 

3. For a 3D biped moving in the sagittal plane, the motions of the legs, assuming 

not in phase, generate a yaw moment on the torso, and they must be compen-

sated by some special designs. In slow gaits, this could be done by swinging 

an arm in a proper way. In fast gaits, the next stride generates a counter yaw 

moment to compensate for the yaw moment in the current stride. The hoppers 

do not have such a problem, since the leg swings in the plane that contains the 

CoM. 

4. The biped has more DOFs than the monopod, and thus it is easier to find 

a solution to bipedal running than that to the one-legged hopping. In other 

words, bipeds are intrinsically easier to balance [149]. 
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2.3.1 Running with two telescopic legs 

After building the one-legged hoppers, Raibert's team constructed a bipedal running 

machine that runs in the sagittal plane [118]. The bipedal running machine contains 

two one-legged hoppers. It runs in such a way that the two hoppers hop out of phase. 

During the stance phase, the swing leg retracts quickly to avoid scuffing with the 

ground. The architecture of the two level control schemes for the one-legged hoppers 

maintains, with more states and state transitions in the finite state machine. 

Hyon et al. extended their "energy-preserving control" (see Section 2.2.2) to a 

planar bipedal running model [58]. The model consists of a massive torso and two 

massive, telescopic, springy legs. The torso's pitching is considered, and the hips are 

located below the torso's CoM. To hold the torso upright, the rotary hips have to be 

controlled. Thus, the energy of the whole system is not preserved. The same bipedal 

model was later examined by Abdallah and Waldron with different assumptions N. 

Throughout the entire running cycle, the torso is always upright. During the stance 

phase, the vertical GRIP is assumed to be constant, and the horizontal friction force 

is assumed large enough to avoid slipping. In periodic running, the two legs are 

always symmetric about the vertical. In acceleration or deceleration, the leg angles 

at take-off and touchdown are identical but the leg lengths are different. Stable 

running gaits were realized in simulations. 

McGeer simulated a passive bipedal running model in the beginning of 1990s [83]. 

The model is composed of a point-mass torso, two massive, telescopic, springy legs, 

and two semi-circular feet. A torsional spring connects the hip and the swing leg 

when the support foot is in contact with the ground. Like the well-known passive 
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walking model in [84], the passive running biped is not powered. It runs down along 

a slight incline, driven by gravity. The pendulum effects and the torque produced by 

the torsinonal spring help the swing leg to recover in time. During the stance phase, 

the support leg is suppressed and the swing leg shortens automatically to avoid 

scuffing with the ground, without changing its moment of inertia and the location of 

its CoM. The periodic bipedal running gaits were found by using the Poincaré return 

map. Other running bipeds without feedbacks were also reported in [109, 91]. It is 

not clear whether the self-stabilizing characteristics exist in all running robots. 

Unified biped models which can walk and run have also been investigated. Aim-

ing to add running functions to the humanoid robot HRP1, Kajita et al. proposed a 

running synthesis algorithm making use of a simple bipedal model [67]. The model 

contains a point-mass torso, attached by two telescopic massless legs at the hips. No 

compliant elements are used. The controllable telescopic legs act like two springs. 

During the stance phase, the desired vertical trajectory of the hip is assumed to be 

known in advance. The vertical GRF and the time durations of the two running 

phases can easily be calculated. By assuming that the net torque about the support 

foot is zero, the horizontal dynamics of the torso is formulated. The forward speed in 

the flight phase is adjusted by the foot placement at touchdown, following Raibert's 

idea. The resolved trajectory of the hip then helps to find the joint trajectories by 

using inverse kinematics. Unfortunately, simulation results showed that the gener-

ated running gaits are not realizable, since the required joint torques are too large, 

and the energy efficiency is extraordinarily low. A "resolved momentum control" 

was then proposed to overcome these shortcomings [97, 64]. The goal of the resolved 

momentum control is to track the desired linear and angular momentum about the 
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hip, rather than to track the joint trajectories directly. By this way, the planned joint 

trajectories can be modified online. Experimental results verified the effectiveness 

of the resolved momentum control law [66]. Srinivasan and Ruina utilized the same 

biped model to search for the natural choices of bipeds, with respect to different 

forward velocities [138]. They found that walking and running are the most favorite 

gaits for bipedal locomotion systems. 

Alexander investigated a simple bipedal model that walks and runs in the sagittal 

plane [5]. This model consists of a point-mass torso and two telescopic springy legs. 

The two primastic legs and the two rotary hips are actuated. The location of the leg's 

CoM is assumed unchanged when the leg lengthens and shortens. The vertical GRF 

is modeled as a truncated Fourier series with kernels being cosine functions of time. 

The model predicts walking and running gaits, corresponding to different stiffness 

of the leg springs. Geyer et al. investigated a simple bipedal model that contains a 

point-mass torso and two telescopic massless springy legs [37]. By using the Poincaré 

return map of a single step, stable periodic gaits are searched. Surprisingly, this 

simple model predicts both stable running and stable walking gaits. There exists 

a large speed gap between low-speed walking and high-speed running, and thus, 

according to their results, low-speed running may not be feasible. This apparently 

disagrees with humans' experience. Since a spring-mass model is traditionally used 

to characterize the running motion, these new results have greatly influenced the 

research community, and have been stimulating new research efforts. Similar work 

was also reported in [101]. The model follows McGeer's passive bipedal running 

model with the two semi-circular feet removed. A variety of spring stiffness were 

tested. Running, walking, and skipping gaits were observed. The running gait is the 
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favorite choice among the three. These successful practices suggest that a versatile 

biped can be compliant. 

2.3.2 Running with two articulated legs 

From late 2003 to late 2004, Qrio (developed by Sony Corp.), HRP-2LR (developed 

by Kajita et al.), and Asimo (developed by Honda Motor) realized running function. 

As a fact, research activities on running synthesis for articulated biped robots became 

very active after the turn of the century. 

Chevallereau et al. synthesized running gaits for a planar biped [23]. The rigid 

robot contains five links (a torso, two thighs, and two shanks) and four revolute 

joints (two hips and two knees). Each joint angle is represented by a 41h order 

polynomial. The five coefficients of the polynomial, and hence the running gaits, 

were obtained by dynamically optimizing the forward velocity, the joint torques, 

and the overall energy consumption. With the same model, Fujimoto reported an 

offline running generator [34], based on the Pontryagin's Minimum Value Principle. 

The initial states of the robot have to be chosen manually, depending on design 

intuition and experience. It is not clear whether or not the generated running gaits 

are energy efficient. Chevallereau et al. then developed a hybrid control algorithm 

for the biped model [24]. This algorithm requires defining a set of output functions 

equal in number to the controls. The control tasks are embedded into the output 

functions in such a way that zeroing the outputs ensures that the tracking errors 

converge to zero. Technically, this is equivalent to designing indirectly a reduced 

order hybrid zero dynamics for the robot. The Poincaré return map proves that the 

periodic running gaits can be asymptotically stable. Morris et al. tried to verify 
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this algorithm on a 5-link rigid biped, the RABBIT, and six running steps were 

performed [93]. This control algorithm was also applied to a biped with 7 links and 

6 actuators [132]. 

Park employed the impedance control algorithm [51] to control a 12-DOF rigid 

humanoid robot such that it walks stably [102]. Each massive leg has 6 DOFs, 2 

at the ankle, 1 at the knee, and 3 at the hip. The impedance control algorithm 

limited the GRFs while tracking the pre-planned joint trajectories. By inserting the 

desired impedances of the limbs into the dynamic models, joint torques were solved 

via inverse dynamics. This algorithm was then applied to a 19-DOF humanoid robot 

to achieve stable running [105, 73]. The stance phase was assumed to be symmetric 

about the vertical. In these works, the ZMP stability criterion was used to generate 

the desired joint trajectories. Very recently, Kwon and Park updated this algorithm 

and applied it to the 19-DOF humanoid robot again [74]. Asymmetric stance phases 

were assumed. They also proposed a novel stability criterion for the flight phase. 

The flight phase is said to be stable if the overall angular momentum about the 

robot's CoM is within a narrow range of zero. 

Inspired by Geyer's studies on the compliant bipedal model [37], lida et al. exam-

ined a more realistic bipedal model that aims for practical robotic applications. This 

bipedal model is composed of seven links (a torso, two thighs, two shanks, and two 

feet), and six rotary joints (two hips, two knees, and two ankles). The two hips are 

actively actuated, and other joints are passively driven by antagonistic arrangements 

of springs. By simulations, stable human-like walking was observed regardless of the 

initial conditions. A real bipedal robot mimicking this model was then developed. 

The experimental results verified that walking with compliant legs is plausible. Sey-
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farth et al. built the JenaWalker II that consists of compliant legs [130]. The biped 

with seven segments and six revolute joints resembles the lida's bipedal robot. The 

two hip joints are driven by the central pattern generators (CPU). The passive knees 

and ankles are driven by antagonistic spring pairs, respectively. The elastic structure 

is configurable, and the compliance of the joints is tunable. Walking and running 

experiments demonstrated that the hip torques corresponding to different forward 

speed exhibited within a reasonable range. More recently, lida et al. further vali-

dated the versatility of the compliant bipedal model [61]. They found that the leg 

angle at the touchdown can be self-tuned by the internal model dynamics. Walking 

and running gaits can be performed without or with very little feedback controls. 

2.4 Summary 

This chapter briefly reviewed the literature related to this thesis. Main definitions of 

gait stability and the corresponding stability margins were presented first. The ZMP 

stability and the orbital stability were emphasized. Theoretical running models and 

realistic running robots with one and two legs were then discussed. Despite stunning 

success of the SLIP hoppers, the running robots need more study. For versatility, the 

running robots should be able to walk as well, resulting in booming of unified bipedal 

robots. Rigid bipeds can certainly realize this goal. New observations in biomechan-

ical analysis and robotics suggest that multiple gaits can also be accomplished by 

compliant bipeds. 



Chapter 3 

Hopping Synthesis for a Rigid Articulated Leg 

Aiming for advancing the theoretical knowledge of hopping and running, an original 

offline gait generator for an articulated hopping leg without elastic elements, based 

on dynamic optimization, is presented in this chapter. Recent results from the bio-

logical sciences directly inspire our approach. "The metabolic cost of swinging the 

limbs is negligible compared with the cost of supporting the body weight" for running 

gaits of many animals [120]. Measured human torque curves at the ankle, the knee, 

and the hip show relatively small torques during the flight phase compared to the 

stance phase [88]. Synthesized bipedal running gaits also display this characteristic 

[97, 34]. Thus, based on these results found in biomechanical analysis and robotics, 

the following assumption is made: 

Assumption (Al): If the robot is hopping or running on even level ground, the energy 

consumed by the robot in the flight phase is much less than that in the stance phase. 

The assumption (Al) is the cornerstone of running synthesis reported in this the-

sis. It is formulated as a simple constrained static optimization problem. Solving 

this static optimization problem produces solutions for the initial joint velocities in 

the flight phase. This differs significantly from the approach in [34] which requires 

the initial velocities to be given, although both approaches assume known initial 

joint angles. Ultimately, after a dynamic optimization procedure, the generated gait 

37 
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serves to validate the assumption (Al). The same strategy can generate hopping 

and running gaits where even ground conditions do not hold, e.g. going up stairs. 

The commanded parameters are the desired horizontal step length, the average 

forward velocity, and the landing height. A numerical technique called the direct 

single shooting method performs the optimization, generating the gait. Section 3.1 

provides an overview of the fundamental procedures in optimal gait synthesis for 

legged robots. The dynamic model of the robot under investigation appears in Sec-

tion 3.2, including an analysis of the angular momentum and total energy. Two 

novel objective functions formulate the fundamental assumption (Al), and help to 

choose the initial joint velocities for the flight phase without much effort. Details 

of the computer algorithm implementation follow in Section 3.3 and the simulated 

robot performs its hopping in Section 3.4. 

3.1 Optimal gait synthesis for legged robots 

Suppose a planar legged robot contains rigid links and rotational joints. The general 

form for the dynamics is [137] 

D(q) + H(q, + G(q) = u, (3.1) 

where the vector q(t) E J?'contains the n generalized coordinates (including both 

Cartesian and angular). The terms D(q) E R'><, H(q, ') and G(q) E RI 

are the inertia matrix, the matrix containing the centrifugal and Coriolis terms, and 

the gravitational torque vector, respectively. The input vector u(t) E J?n is a linear 

combination of the (control) input joint torques. In state space, (3.1) becomes 

(3.2) 
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where x(t) = (q T, 1T)T is the state vector of the system. To determine an appropriate 

control, one can minimize the cost functional 

C= J C = J £(x, u, t)dt, (3.3) 
to 

where .C(x, u, t) is the Lagrangian determined according to the control objectives. 

During the minimization, the state variables x(t) must remain within certain 

bounds due to physical constraints. The equality constraints e(x) constrain the 

boundary states of a motion phase and the inequality constraints (x) constrain the 

motion, and take the general form 

e(x) = 0, 

(x) ≤ 0. 

The physical saturations of the jth actuator limit the joint torque such that 

Tmin,i ≤ (t) ≤ 'rmax,i. 

(3.4) 

(3.5) 

(3.6) 

Finding the optimal joint trajectory x,, (t) with associated control inputs u(t) 

means ensuring the cost functional (3.3) is minimized subject to the state constraints 

(3.4) and (3.5) as well as the torque saturations (3.6). This is a typical constrained 

nonlinear optimization problem, requiring a numerical solution. 

An approximation technique usually generates the ideal gait for a legged robot. 

In (3.2), the state vector x and the control vector u are coupled. Knowing one, 

the other follows. A common approach is to approximate the state vector x with 

a weighted sum of basis functions. Finite Fourier series [18]; polynomials [20], [21], 

[23], splines [46], or some mixture of them [156] can all serve as appropriate basis 
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functions. A nonlinear combination of the chosen basis functions can express the 

input vector u. Optimizing the chosen cost functional determines the coefficients 

of the basis functions, allowing approximate computation of x and u. Nonlinear 

programming [156], sequential quadratic programming [9], Pontryagin's Maximum 

Principle [121, 12], genetic algorithm [18], simulated annealing [18] can all perform 

a satisfactory search for the coefficients of the basis functions. 

Alternatively, one may construct the profile of the input vector u first. The 

state vector x depends on a given input vector u and initial state x0. Choosing a 

piecewise constant profile for u reduces computational complexity. Let us define a 

decision vector U E Nn that gathers all the input vector sequences of all joints as 

U = [U(I)T, u(2)T,... , U(N)] " , (3.7) 

where N is the number of time intervals, and the time interval is At = (tf - to)/N. 

Accordingly, (3.6) becomes 

Umin ≤ U ≤ Umax, (3.8) 

where the bounds Umjn and Umax define the admissible region of the decision vector. 

Given an initial estimate of U, denoted by U0, integrating (3.2) supplies the 

joint trajectories x. Then the cost functional C, the equality constraints (x), and 

the inequality constraints (x) can be evaluated. If the solution violates one of the 

constraints, the procedure repeats with a new U0. This trial-and-update procedure of 

U0, the direct single shooting method [122, 10], halts when it finds a local minimum 

value of the cost functional. Note that the decision vector (3.7) is composed of 

discrete-time values, but the system model, the cost functional, and the constraints 

are expressed in continuous time. In practice, discretizing these expressions achieves 
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better computational efficiency. Hence, the discretized version of the cost functional 

C is usually used, rather than C itself. 

Dynamic optimization has been widely applied to walking synthesis for bipedal 

robots. Applying this method to a one-legged hopper is a small contribution of the 

thesis. 

3.2 Modeling of the hopper 

The planar articulated hopper studied here consists of 4 links and 3 frictionless pin 

joints (Fig. 3.1). Without loss of generality, four assumptions are made. 

1. The mass and inertia of the foot are negligible compared to other links. 

2. The height of the foot is negligible, and the ankle joint is assumed to contact 

the ground. Due to this assumption, foot in this thesis can be replaced with 

ankle. 

3. During the stance phase, the foot firmly grips the ground, with no slip, bounce, 

or rotation. 

4. During the flight phase, the foot link remains parallel to the ground. 

The first three links have length li and masses M (i = 1, 2, 3). The total mass is 

= EL  M1. Each moment of inertia I is taken about the CoM of the i1h massive 

link. The joint angles Oi completely determine the robot's posture. The joint torques 

are . The counter-clockwise direction is positive. 

The CoM and the foot of the robot are related by 

Pg = Pf + f(e), (3.9) 
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Figure 3.1: The model of the articulated hopper 

where Pg = (Xg, Yg)T and Pf = (Xf, Yf)T are the positions of the CoM and the 

foot, respectively, f(.) is a function determined by kinematics, and ® = (01, 02, 03)T. 

Differentiating (3.9) once gives 

and twice gives 

(3.10) 

(3.11) 

In the stance phase, gravity and GRFs act on the robot. In contrast, during the 

flight phase gravity provides the only external force. When completing the flight 

phase, the robot foot collides with the ground with a certain velocity. This collision 

causes an abrupt velocity jump at each joint. The flight phase is to be discussed 

first, then a solution to the velocity jump due to the foot/ground collision follows, 
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and finally the stance phase is explained. 

3.2.1 The flight phase 

During the flight phase, the robot has 5 DOFs. The generalized coordinate vector, 

qf = (Pr, ® T)T, describes the robot's posture in the air. 

Equations of motion 

Using the Euler-Lagrange method leads to the equations of motion (EoM) during 

the flight phase (see A.1) 

D(q) + H(q, f)f + G(q) = BET", (3.12) 

where the superscript "f" specifies the flight phase, D(q') E J5>(5 is the inertia ma-

trix, H(q, ) E R'x' contains the centrifugal and Coriolis terms , and G(q) E 

is the gravitational torque vector. The vector = (rf, r, r)T contains the torques 

of the hip, the knee, and the ankle. The term Bf € R113 is the constant coefficient 

matrix of T f and can be determined by using the virtual work principle (based on 

the selected generalized coordinates). For the sake of clarity, the superscript "f" 

disappears in the later part of this subsection. 

One can partition the generalized coordinates into two parts: q (q, 4)T, 

where q1 = Pg, and q2 = e. Partitioning the inertia matrix D(q) produces 

D(q) = 
D1 °2x3 

O3X2 D2(q2) 
(3.13) 

where D1 = MI22, and D2(q2) E R3X3 contains the moment of inertia related to 

the rotation of the robot's links. Similarly, the partitioned matrices H(q, ') and B 
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become 

and 

H(q,j) = 

B= 

°2x2 °2x3 

O3X2 H2(q2,2) - 

°2x3 

B2 

The gravity torque vector is G(q) = (0, Mtg, 0, 0, o)T, with g being the gravity accel-

eration. The last three rows of (3.12) are: 

D2(q2)t 2 + H2 (q2, 42) 42 = B2r. (3.14) 

Simplifying the first two rows of the EoM (3.12) yields 

.kg = 0, (3.15) 

kg =—g, (3.16) 

which defines the acceleration of the robot's CoM and results in a parabolic trajec-

tory. Clearly, during the flight phase, the forward velocity of the robot's CoM is a 

constant, denoted by V hereafter. 

Denote the time instants at take-off and touchdown by subscripts "to" and "td", 

respectively, the step length by L5, and the landing height by h5. Assuming that 

the foot positions at take-off and touchdown are Pf,to = (0, o)T and Pf,td = (La, h)T, 

respectively, and e 0 and êtd have been picked in advance, equation (3.9) produces 

Pg,to and Pg,td. 

During the flight phase, the horizontal velocity Xg,to = Xg,td = Vx. The flight 

lasts for the duration 

Xg,td Xg,to  

V. 
(3.17) 
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The initial and final vertical velocity of the flight phase are 

2 
'g,td - 'g,to + 1 g frf 

"to 7. 
- 

and 

(3.18) 

,td = kg,t, - gTe. (3.19) 

Angular momentum about the CoM 

In the flight phase gravity acts as the only external force at the CoM. Thus the 

angular momentum of the robot about the CoM is conserved. Namely, 

Fg,to(Oto, è0) = Fg,td(êtd, Otd), (3.20) 

where " g stands for the angular momentum about the CoM. Denote the vector from 

the CoM of the i massive link to the CoM of the robot by p, and its first-order 

time derivative by Pi, rg can be expressed as [145]: 

Fg ((pj x Mipi)• + A) 

where the subscript "E" indicates the third component of the 3D vector pi x 

Equation (3.21) can be simplified as 

rg= sioi + .9202 + 8303, 

(3.21) 

(3.22) 

and s = I_3 for i = 1, 2, 3, with each d1, being an element of D(q) indexed 

by i, j. Therefore, the joint angles determine each s. 

Energy analysis 

Let k and I denote the kinetic and potential energy of the robot's CoM, respec-

tively. It can be written that 

= ? TD(q)ci. (3.23) 
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The total energy of the robot, denoted by can be expressed as 

= 

= TD(q) + p, 

= D11 + D2(q2)2 + p, 

= ( D11 + -15p) + 

= ( M: + Mt2 + .CDP+ D2(q2)2. (3.25) 

(3.24) 

Equation (3.24) implies that the total energy of the robot may be decomposed into 

three parts: the translational kinetic energy ( D11 ), the potential energy (), 

and the rotational kinetic energy of the links ( D2 (q2)2). 

Let the rotational kinetic energy of the links be denoted by rot• It can be inferred 

that 

and 

= [G(q)JTdt ?j, 

MtgYg, 

- ( rot) • q2T D2(q2)2 + 

= q2 + 

= q2 T  [B27 — H2 (q2, 42) 42 + 1b2 (q2) 42 

= q2 B2r. 

(3.26) 

(3.27) 

Note that H2 can be formulated such that O2 - 2112 is skew-symmetric, and hence 

c (]32 - H2) 2 = 0 (see [137]). 
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Differentiating both sides of (3.25) yields 

= gB2r = ( rot). (3.28) 

Equation (3.28) means that the sum of the translational kinetic energy and the 

potential energy is a constant, since the change rate of this sum is 0. In general, 

r is not 0, and thus g(r(,t) 0. Therefore, the rotational kinetic energy is not 

conserved. 

By integrating both sides of (3.27) over the whole flight phase and taking absolute 

values, it can be obtained that 

ttcl 

I rot,td - rot,to1 = it to "B2'rdt 

ftt 3 

tto Iq2,iI (B2r) 

(3.29) 

dt. (3.30) 

There are numerous possibilities for the robot to hop from one place to another. 

However, for an energy-efficient hopping gait, the rotational kinetic energy at the 

take-off, i.e. 'rot,to, must be small, within all physical constraints. Further, the right 

hand side (RHS) of (3.30) is essentially the energy supplied by the controller of the 

robot. The assumption (Al) says that on even ground, the energy consumed in the 

flight phase is small, and hence I rot,td - '1 rot,to is small. This relationship may be 

formulated as 

rot,to 'rot,td 

Unfortunately, this treatment can hardly be extended to more complicated situations, 

such as hopping or running up stairs. When the robot hops up stairs, the energy 

consumed by the robot may be large, and thus the difference between rot,to and 
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rot,td is large. To be more flexible, the assumption (Al) is formulated as a static 

optimization procedure, with an objective function proposed as 

01 = 'Y1 rot,to + (1 - 'y) (1rot,to - '1rot,td)2, (3.31) 

where the constant 'y E [0, 1] is a weighting factor. Note that 01 is a function of 

0t0 and ed, provided that e0 and ed have been chosen in advance. Minimization 

of the two terms on the RHS of (3.31) forces 1r0t,to and rot,td - rot,tol as small as 

possible. 

Since energies rot,to and rot,td are positive, it can be deduced that 

and 

rot,td - 'rot,to ≤ 'rot,td - rot,toI 

1 rot,td ≤ rot,to + 11rot,td - rot,tol 

(3.32) 

(3.33) 

Thus if 1rot,to is small so is rot,td• This leads to a second, more concise, objective 

function 

02 = 'Yrot,to + (1 - 'Y)rot,td. (3.34) 

Minimization of 02 forces rot,to and rot,td to be small. 

In practice, (3.34) outperforms (3.31) in two aspects. It results in more efficient 

gaits, and also, 'y can be chosen in a larger range. 

Boundary joint velocities 

The boundary joint angles are picked manually, but the boundary joint velocities 

have to be determined. The problem can be solved by using a static optimization 

procedure, which is stated as: 
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Solving for E0 and ® td, such that either one of the objective functions, (3.31) 

and (3.34), is minimized. The equality constraints could be 

7 ITT 7 i 
.rg,to - L'x, 1 g,tojT 

75 ITT i 
rg,td = Lvx, '7  g,tdJT 

Fg,to Fg,td. 

Some inequality constraints, such as the angular velocity bounds at all joints, can 

also be applied. For example, 

Wi,min ≤ W Wj,max, (3.35) 

where wi for i = 1, 2, 3 is the angular velocity at the joint, Wj,m in and Wi,max are 

the lower and upper bounds of the corresponding joint velocity. 

With this static optimization procedure, O O and ed can easily be solved. Note 

that O O will be used as the initial value of flight phase, and 0td is discarded. The true 

value of ed is searched by dynamic optimization, rather than the static optimization 

procedure. 

Not all è0, produced by the static optimization procedure, can be used as the 

initial velocity values of the dynamic optimization. This is not only determined by 

the flight phase, but also by the subsequent stance phase. The stance phase is also 

required to be efficient within' constraints. A suitable initial velocity vector leading 

to a satisfactory hopping cycle depends on appropriate choices of 'y, 0t0, and 0 td 

With e0 and ed picked in advance, there exists an optimal value of 'y, denoted by 

'y, which results in an optimal flight phase in the sense of the cost function, (3.3). 

However, this 'y may not be a good choice for the the stance phase. A more suitable 

'y can be found around 'y by trial-and-error. 
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When -y = 0, (3.31) and (3:34), degrade to 01 = ( r(,t,td - rot,to)2, and 02 = 

rot,td) respectively. When '' = 1, both objective functions become rot,to As -y 

changes from 0 to 1, the resultant initial velocity vectors, respectively corresponding 

to the two objective functions, move along two different trajectories, and they inter-

sect when y = 1. This may be regarded as the geometrical connection between the 

two objective functions. When -y 1, if one of the two objective functions produces 

satisfactory hopping cycle, it is highly possible that the other objective function can 

also generate a good result. 

Foot velocity regulation 

According to [145], energy loss due to the collision between the foot and the ground 

is proportional to the foot velocity immediately before the collision. Thus, if the foot 

velocity were 0, the robot would lose no energy when it collides with the ground. 

However, this setting may result in a dramatic increase of the control effort in the 

following stance phase. In this work, the foot velocity at the moment of touchdown 

is regulated to be 

k0 
Vf,td = Vg,td, (3.36) 

0 k 

where the constants k E [0, 1] and k e [0, 1] are recommended, trading off efficiency 

and control effort. A small k implies acceleration, and a large positive k slows down 

the robot. When k and k are both large, the energy loss due to the foot/ground 

collision is large, but the total energy consumption during a hopping cycle may be 

small. 
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3.2.2 Collision between the foot and the ground 

The collision of the support foot with the ground is assumed to be instantaneous and 

inelastic. The impulsive force applied by the ground to the robot causes an abrupt 

jump of joint velocities, while joint angles remain unchanged. Equation (3.9) can be 

rearranged as 

Pf=fi(q) := Pg—f(e). 

Letting the time instants immediately before and after the collision be denoted by 

superscripts "-" and "+", respectively, and defining the Jacobian 

allows to write [34], 

= II5x5 -  (Dr' jT ( (Dr' JT)' j] - 

(3.37) 

(3.38) 

where Df = D(q) and J = J(q) are evaluated at the touchdown. That is, q = td is 

inserted. Similarly, = 

3.2.3 The stance phase 

Adjustment of the forward velocity can only be achieved in the stance phase. Also, 

the stance phase prepares the necessary initial states for the next flight phase, and 

balances the whole body. Consequently, most control effort occurs in the stance 

phase. 

Equations of motion 

During the stance phase, the hopper has 3 DOFs, assuming that the foot is firmly 

in contact with the ground. Choose the convenient generalized coordinate vector 
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qS = 0, which results in the dynamic model of the hopper in stance phase (refer to 

A.6): 

Ds(qjs + ffs(qS, 4s ) 4s + Gs(qs) = Bsrs, (3.39) 

where DS E R 3X3 is the inertia matrix, HS E R 3X3 contains centrifugal and Coriolis 

terms, and GS E RI is the gravitational torque vector. The matrix B8 E 3x3 is the 

coefficient matrix and depends on the choice of the generalized coordinates. 

Time duration of the stance phase 

The average forward speed in the stance phase is assumed to be equal to the hor-

izontal speed in the flight phase ( t = V). Time duration of the stance phase 

becomes 
- 

T8 - Vi  

vx 

where the superscript "i" means the i1h hopping cycle, and - X td is the hori-g,to 

 distance that the robot's CoM travels in the stance phase. 

(3.40) 

Boundary joint velocities 

The stance phase is a typical TPBVP. The joint angles at the two boundary points 

are chosen manually. The boundary joint velocities can be determined by 

"initial 

0(i,St 'finaI 

- A td i,+ 
- 

- Ai+1 
- to 

where the superscripts "i" and "+" have the same meaning as before, and the sub-

scripts "initial" and "final" indicate the two boundary points. 



53 

The normal support force 

The GRFs include the normal support force of the ground and the tangential friction 

force between the foot and the ground. The normal support force of the ground 

pushes vertically, formulated as 

F = Mt(g+Y) ≥ 0, 

and hence 

(3.41) 

Assuming the foot/ground collision occurs instantaneously, during the collision 

the resultant normal GRF may be extremely large. To prevent the robot from 

damage, impact-absorbing designs, such as passive compliance devices (e.g. rubbers 

and springs in [50, 27]) or active force control schemes, could be useful for online 

gait adaptation. In this off-line gait generator, an upper bound of the normal GRF 

is considered, 

F ≤ Fy,max. (3.42) 

At the end of the stance phase, the normal GRF reduces in amplitude, and 

vanishes at the take-off of the next flight phase. This implies that F?fiflaI = 0, and 

final (3.43) 

The tangential friction force 

To ensure that the robot stands on the ground firmly, the horizontal inertial force of 

the robot must be less than the static friction force between the foot and the ground. 

That is 

IJI O'Y ≤. (3.44) 
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Clearly, once the ground, and hence the static friction coefficient p, is determined, 

the horizontal acceleration in the stance phase must be bounded. 

The ZMP 

Assuming the foot does not rotate during the stance phase, the ZMP should be 

located within the foot range [147]. Following the arguments by Popovic et al. [111], 

we derive the ZMP for the planar hopper as 

E= M (4 + g) - Y;] + i1o1 
X zmp (3.45) 

Mt (k .;-+g) 

Suppose front and rear lengths of the foot (separated by the ankle) are in and 112 

respectively. Then 

—112 ≤ Xzmp < ifi. (3.46) 

Starting and stopping 

In the starting phase the robot moves from an upright static position, defined by 

(E)T, (bT)T = (, , , 0, 0, 0)", into the desired initial state of the flight phase. The 

stoppping phase begins immediately after a foot/ground collision and ends when 

the robot reaches an upright static position. The same optimization procedure that 

works for the stance phase also works for the starting and stopping phases, with 

minor modifications of the boundary conditions. 

Differing from the ordinary stance phase, the starting phase begins with 

Q-s tart 
g,initial 

-c-start g' initial 

.Kstart 
zmp,initial 

=0, 

=0, 

=0, 
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where the superscript "start" specifies the starting phase. Similarly, we can also 

formulate the constraints at the final time instant of the stopping phase as 

• -stop 
g,final 

p-stop 
g,final 

yStOp 

zmp,fina1 

=0, 

=0, 

=0, 

where the superscript "stop" indicates the stopping phase. 

When the robot stands upright, the horizontal and vertical accelerations of the 

CoM are zero, and the ZMP must be zero. These constraints respectively imply that 

the tangential friction force between the foot and the ground disappears, the normal 

support force of the ground is equal to the total weight of the robot body, and the 

projection of the CoM on the ground coincide with the ankle in our simplified hopper 

model. 

3.3 Hopping optimization 

The flight and stance hopping phases can be optimized separately, or together as a 

whole hopping cycle. The direct single shooting method reviewed in Section 3.1 is 

implemented by the Matlab optimization routine fminconO. 

3.3.1 Simple rules for choosing the boundary joint angles 

The boundary joint angles of the flight phase, i.e. e 0 and ed, have to be picked 

manually. Although humans choose the initial posture easily, the underlying mech-

anisms are not completely revealed. For legged robots, a systematic method to pick 
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the appropriate initial posture does not exist. Specifically, for the hopper under 

study, humans' favorite initial posture in running can be tried first. Modifications 

can then be made according to the resultant ZMP trajectory in the stance phase. 

Some intuitive rules may be helpful for choosing appropriate initial values: 

1. If the calculated ZMP stays inside the foot range at all times during the stance 

phase then 0to and ® td remain unchanged. 

2. If the calculated ZMP is behind the heel in the beginning of the stance phase 

then decrease some components of ()td, moving the CoM of the robot forward. 

3. If the calculated ZMP is in front of the toe in the beginning of the stance phase 

then increase some components of ed, moving the robot's CoM backward. 

4. If the calculated ZMP is behind the heel in the end of the stance phase then 

decrease some components of ® to 

5. If the calculated ZMP is in front of the toe in the end of the stance phase then 

increase some components of e 0. 

6. If the calculated ZMP is always outside of the foot range, no matter how e0 

and ® td are selected. In this case, smaller V, h, or L5 should be commanded. 

3.3.2 Single-phase optimization 

Single phase optimization proceeds on the two hopping phases separately. Each 

phase has a unique dynamic model, and also differs in constraints. However, the im-

plementation method of the dynamic models, the definitions of the decision vectors, 

and the cost functions are almost identical for the two hopping phases. 
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Model implementation 

Simulation of the second-order dynamic models (3.12) and (3.39) is straightforward. 

In principle, the direct single shooting method needs to find an appropriate initial 

decision vector U0. Since inappropriate initialilization may cause the term H(q, c' 

to grow too large for numerical integration, in the Simulink model a saturation block 

limits the output of this term. 

The decision vector 

The decision vector is defined as 

U = [(i)•, r (2)T,... , r(N)], (3.47) 

where r(k) = [ri(k), r2(k), r3(k)]T, and k indicates the kth discretized time interval. 

U0, the initial estimate of U, is taken a zero vector with same dimension as U. The 

torque limits of the joints form the bounds of the decision vector which have been 

expressed as (3.6) 

The cost function 

The two hopping phases have the same cost function, which is defined as 

C1 = UTULt, (3.48) 

where At is the time interval with an assumption that the phase duration, T" or 

Ts, is discretized equally. The number of time intervals, N, may be different in the 

two phases. Clearly, this cost function implies the least control effort. Note that the 

discretized Lagrangian is .C(U(k)) = 1UTU. 



58 

Constraints in the flight phase 

In the flight phase, the boundary values and (3.36) are the equality constraints. The 

physical ranges of the joints constitute the linear inequality constraints. Besides 

(3.35), the following constraints must be satisfied: 

9min of Of  

a min max) 

where a = 92 - 93 is the relative angle between the upper leg and the lower leg. All 

the inequality constraints form the set (x). 

Constraints in the stance phase 

In the stance phase, the boundary values and (3.43) are the equality constraints. 

The linear inequality constraints could be written in the same way as those in the 

flight phase, with the superscript "f" being replaced by "s". The bound values in 

the stance phase may not be equal to their counterparts in the flight phase, but in 

our implementations, the corresponding bounds are designed to be identical. 

Constraints defined by (3.41), (3,42), (3.44), and (3.46) are the nonlinear in-

equality constraints. All linear and nonlinear inequality constraints form the set of 

3.3.3 Complete-cycle optimization 

Complete-cycle optimization synthesizes the two hopping phases together. The cost 

function, which evaluates the control effort of the whole hopping cycle, is defined as 

C2 = 

V1-1 N (+N8_1 

i (uf) T () i≥t + (Us)T (US) Lts 

1=0 i=N 

(3.49) 
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where LJ and US are the decision vectors, Nf and NS are the numbers of time 

intervals, it and At', of the discretized flight phase and stance phase, respectively. 

The constraints of the whole cycle are essentially the same as the two separate 

hopping phases, but they have to be written only in one constraint function. 

Correspondingly, the decision vector is U = [(Uf)T, (us)T]T. 

3.3.4 A five step procedure for optimizing the hopping cycle 

The following five step procedure generates an energy-efficient hopping cycle: 

1. Pick e0 and ed. 

2. Search for the initial joint velocities E, given L5, h5, V, and 'y. 

3. Search for the optimal flight phase. 

4. Search for the optimal stance phase. 

5. Optimize the generated flight phase and stance phase together as a complete 

cycle. 

Step 3 and step 4 belong to single-phase optimization, and step 5 is a complete-cycle 

optimization. Step 3 is relatively straightforward but step 4 contains nonlinear con-

straints. The nonlinear constraints make the system sensitive to the initial estimate 

of the decision vector Uo, and hence the solution may converge at a local minimum. 

To address this issue, step 4 occurs at least twice. For the first run, applying only 

linear constraints results in quick search for a feasible solution. This solution then 

becomes the initial value for the second run, in which the nonlinear constraints are 

applied. Step 5 is usually optional. Note that an energy-efficient flight phase may 
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actually result in the stance phase consuming a large amount of energy. Step 5 not 

only reduces the energy cost further but balances the two hopping phases. If the 

resultant gait is still not satisfactory, one can generate a different gait by picking dif-

ferent e0, ed, y and re-running the optimization procedure. If necessary, smaller 

V,, L, or h, can be tried. A one-legged hopper becomes unbalanced quite easily, so 

the range of suitable parameters is rather small. 

3.3.5 A performance index 

In the flight phase, the robot does work 

5 N-1 tto+(i+1)t1 

j=1 i=0 Ito+iAtf 

(Bfr). dt, (3.50) 

where the subscript "j" indicates the jth components of 4f, "i" indicates the ith time 

interval, Nf is the total number of time intervals, and Atf is the time interval. Note 

that each joint torque if is a piecewise constant signal. 

In the stance phase, the robot does work 

3 N5-1 ttd+(i+].)ts 

Ws = J (Bsi dt, (3.51) 
j=1 i=O td+itS 

and all symbols can be interpreted similar as those in the flight phase. The total 

work in a whole hopping cycle is 

W=Wf+WS. (3.52) 

To compare the energy efficiency of the robot, a performance index, the cost of 

transport, is defined as [120, 26] 

W  
MtgL' 

(3.53) 
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Table 3.1: Typical costs of running 
Species Values Data sources 
Humans 0.280 [120] 

Wild turkeys 0.632 [120] 
Monopod I 0.70 [3] 
Monopod II 0.22 [3] 

HRP-2L 3.57 [97] 

where I, is the distance traveled by the robot's CoM. For periodic hopping gaits, 

L= /L+h. 

A smaller cost of transport implies higher energy efficiency. For comparison, the 

costs of running for humans, wild turkeys, Monopod I, Monopod II, and the HRP-

2L are listed in Table 3.1. In [97], the cost of transport of the HRP-2L was not 

explicitly given. The value is estimated by using the provided specifications. Note 

that efficiency of the Monopod II is higher than that of humans! The springs indeed 

help to reduce energy consumption. 

3.4 Simulation results and discussions 

In this section, algorithms generate typical hopping gaits using the two objective 

functions (3.31) and (3.34). The resulting cost of transport serves a performance 

comparison. The robot first hops on even ground, then hops up stairs. All simula-

tions utilize some common parameters (Table 3.2). The step length L, the landing 

height h5, and the average forward speed V, are provided as inputs. 
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Table 3.2: The constants of the hopper 
Parameters Values Units Parameters Values Units 

M1 8 kg I 0.4 kg-M2 

2 kg 12 0.02 kg-M2 

M3 0.8 kg 13 0.01 kg-M2 

11 0.6 In r, 0.4 - 

12 0.35 In r2 0.6 - 

13 0.4 In r3 0.6 - 

la 0.15 In 42 0.05 m 

g 9.81 rn/s2 - - - 

6 i,min 45 deg 91,max 90 deg 

02,min 75 deg 02,max 225 deg 

03,min 30 deg 03,max 120 deg 

01,min —150 deg/s 01,max 150 deg/s 

°2,min —500 deg/s 02,max 500 deg/s 

O3,min —450 deg/s O3,max 450 deg/s 

amjn 0 deg amax 150 deg 

T1,min —40 N-rn T1,max 40 N-rn 

T2,min —50 N-rn T2,max 50 N-rn 

T3,min 30 N-rn T3,max 30 N-rn 
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Table 3.3: The parameters for hopping on even ground 
Parameters Values Units 

L8 0.25 In 
0 In 

V. 0.5 m/s 

®to 
(78,iio,75)T deg 

ed 
(73,115,95)T deg 

I_I 0.6 - 

k 0.5 - 

ky 0.5 - 

Fy,max 2Mtg N 

3.4.1 Hopping on even ground 

In this simulation, the robot hops on even ground using both objective functions 

(3.31) and (3.34). Both cases use the same parameters (Table 3.3) such that the 

results can be fairly compared. The gaits are synthesized using the first 4 steps of 

the 5-step procedure. 

0t0 vs. 'Y 

From (3.31) and (3.34), it can be observed that the initial joint velocities are affected 

by choice of -y. In Fig. 3.2, solid curves show the initial velocities produced by use of 

(3.34), and the dashed curves by use of (3.31). Using (3.31) makes the range of e0 

small. Consequently, if a particular 'y does not result in a decent hopping gait, the 

neighboring values of 'y cannot be used either. A wider range of ® to can be obtained 

by use of (3.34), facilitating generation of more gaits. Since the mass and inertia of 

the upper body are much larger than those of other links, the upper body contributes 

large portions of the total angular momentum and the total kinetic energy. Thus, 
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Figure 3.2: Initial velocities vs. 'y 

small 61,to is preferred. 

In each graph of Fig. 3.2, the corresponding velocity curves intersect at 'y = 1, 

as discussed in Section 3.2. 

rot,to and nrot,td VS. •7 

In Fig. 3.3, the three panes show how Qrot,to, rot,td with y, and Orot,to - rot,td 

change with y. The solid curves and dashed curves represent use of (3.34) and 

(3.31), respectively. They are very small, and the corresponding curves connect at 

= 1, as expected. 

Control effort vs. 'y 

The control effort of a complete hopping cycle is defined as 
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Figure 3.3: Boundary rotational kinietic energy vs. 'y 

where the subscript "cc" indicates the complete cycle. In fact, Cce is the same as 

(3.49). This new notation, rather than C2 in (3.49), indicate that step 5 (in the 5-

step procedure) is not used. In Fig. 3.4, the solid curves correspond to the objective 

function (3.34), and the dashed curves to (3.31). Note that in the top pane, for 

y < 0.6, use of (3.31) produces hopping gaits scuffing the ground in the beginning of 

the flight phase, and hence they are discarded. In contrast, when (3.34) is used, all 

'y E [0, 1] can be used to generate energy-efficient hopping gaits. For the parameters 

used in the simulations, when 'y E [0, 0.4], the synthesized flight phases contain better 

take-off, with the foot fully cleared. From the top pane (Fig. 3.4) it can be observed 

that 'y 0.46. 

The middle pane (Fig. 3.4) shows the energy consumed by the robot in a complete 

hopping cycle, varying with y. Note that 'y does not yield the least-energy gait. The 
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Figure 3.4: Performance vs. 'y 

efficiency index, i.e. the cost of transport e, is presented in the bottom pane. Since 

the denominator in (3.53) is constant, € and the consumed energy varies with 'y in 

the same way. The efficiency index is around 1.6. Assuming that the transmission 

efficiency is 50% as in [26], the simulated hopper seems more efficient than the biped 

HRP-2L, but less than humans and the ARL Monopods. 

Synthesized hopping gaits 

When 'y = 0.8, both (3.31) and (3.34) can generate efficient hopping cycles (Fig. 3.4 

). Figs. 3.5 and 3.6 show the two generated gaits, each with 3 periodic hopping 

cycles. Figs. 3.7, 3.8, and 3.9 compare the joint angles, velocities and torques, 

corresponding to the use of the two objective functions. Solid curves display the 

results from using (3.34), and dashed curves from (3.31). It is interesting to observe 
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Figure 3.5: Hopping on even ground generated by use of (3.31) 

that choice of the objective function mainly affects 01 and O, while 02, 02, 03 and 

03 remain nearly unchanged. 

Correspondingly, the ZMP, the horizontal and vertical accelerations, and the 

normal GRF of the generated gaits are shown in Figs. 3.10 and 3.11, respectively. 

The neutral position of the ZMP, where Xzmp = 0, coincides with the ankle position 

in the inertial coordinate. Note also that the ZMP is not defined in the flight phase. 

Clearly, (3.34) yields a better ZMP trajectory. 

Numerous simulations show that for the hopper model under study, (3.34) out-

performs (3.31) in a wider range of 'y, less control effort, and a better ZMP trajectory. 

3.4.2 Hopping up stairs 

As with hopping on even ground, this experiment uses 'y = 0.8. Again, (3.31) and 

(3.34) generate the two periodic gaits for comparison. The simulations use the same 

parameters (Table 3.4). This time, all 5 steps of the 5-step procedure are applied. 
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Figure 3.6: Hopping on even ground generated by use of (3.34) 
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resulted from (3.31) 

E 
0 

N 

a 

N
o
r
m
a
l
 G
R
F
 
(
N)

 

0.05 

—0.05 

10 

200 

100 

0.5 1.5 

- ddy 
- - ddx 

0.5 1.5 

V 
0.5 1 1.5 

Time (s) 

Figure 3.11: The ZMP, acceleration components of the CoM, and the normal GRF 
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Table 3.4: The parameters for hopping up stairs 
Parameters Values Units 

0.25 In 

h 0.08 In 

V. 0.5 m/s 

e0 
(73,115,70)T deg 

ed 
(65,133,85)T deg 

0.6 - 

0.5 - 

k 0.8 - 

Fy,max 2Mtg N 

• Figs. 3.12 and 3.13 present the gaits, corresponding to use of the two objective 

functions, respectively. Figs. 3.14, 3.15, and 3.16 show the comparisons of the 

resultant joint angles, velocities, and torques, respectively. 

When (3.31) is used, the cost of transport is about 1.69JN'm' . The flight 

phase and the stance phase consume energy, respectively of 7.34J and 37.45J. The 

ratio of the consumed energy in the flight phase to that in the complete cycle is 

about 16.3%. As a comparison, when (3.34) is used, the cost of transport is about 

1.58JN'm' , the energy consumed in the two hopping phases are 5.28J for the 

flight phase, and 36.50J for the stance phase. The stance phase consumes about 

13% of the total energy. Therefore, for this particular experiment, (3.34) performs 

better than (3.31). 

In both cases, the ZMP trajectories remain within the foot range, and the normal 

GRFs are less than 2 times of the robot's weight. 
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Figure 3.12: Hopping up stairs by using (3.31) 
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Figure 3.13: Hopping up stairs by using (3.34) 
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Figure 3.16: Comparison of joint torques when hopping up stairs 

3.4.3 A complete hopping sequence 

Fig. 3.17 presents a complete hopping sequence, containing a starting phase, an 

acceleration phase, two periodic cycles, a deceleration phase, and a stopping phase. 

The corresponding joint angles, velocities, and torques appear in Figs. 3.18, 3.19, 

and 3.20. All joint torques are within the limits listed in Table 3.2. The ZMP, 

acceleration of the CoM, and the normal GRF are presented in Fig. 3.21. The ZMP 

at the beginning of the sequence is 0, and at the end of the sequence, it returns to 0. 

The acceleration components of the robot's CoM also start from 0, and stop at 0. 

3.4.4 Some remarks 

The following remarks may help to understand synthesis of running-like gaits: 

Remark 1) Note that the joint angles are defined with respect to the horizontal 
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Figure 3.17: The complete hopping sequence 
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Figure 3.19: The joint velocities of the complete sequence 
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Figure 3.21: The ZMP, acceleration of the robot's robot, and the normal GRF of 
the complete hopping sequence 

level, rather than the relative angles between two neighboring links. This definition 

greatly simplifies the model of the robot, and hence speeds up the computation. 

Also, it is easier to design constraints for the dynamic gait optimization such that 

the overturning in the flight phase can be avoided. However, in reality, it is very 

hard to measure the absolute angles accurately. One possible solution to this issue 

is to install the posture sensors, such as gyroscopes or inclinometers, on the upper 

body of the robot. In general, the mass and inertia of the upper body are much 

larger than those of other links. As we have seen, during the whole hopping cycle, 

the change range of the upper body is small, compared to those of the other links. 

Therefore, the orientation of the upper body can be used as a baseline of the posture, 

and other absolute angles used in our model can easily be recovered by using simple 



78 

linear transformations. Another possible solution to this problem is to design online 

observers to estimate the absolute joint angles, making use of the relative angle 

measurements. [76] may provide more useful details on this topic. This problem is 

left as a future research project. 

Remark 2) To improve the energy efficiency, most weight, as well as the inertia, 

of the robot should be lumped at the upper body. It is recommend that the ratio of 

the weight of the upper body to that of the rest parts, denoted by A, be greater than 

2.5. Larger A implies smaller cost of transport, and hence higher efficiency. This fact 

has been revealed for traditional passive walkers in [47]. 

Remark 3) It may be conservative to use the ZMP as constraints for synthesis of 

running-like motion (see [151], [71]). Without these strict constraints, it is easier to 

find the solutions. Despite the controversy on the ZMP stability criterion in running 

synthesis and control, use of the ZMP constraints indeed makes the generated joint 

trajectories, especially the joint accelerations, more reasonable. Moreover, the ZMP 

criterion can be treated as a weak gait stability indicator. When the ZMP is located 

outside of the support polygon, the robot may not fall, but the gait is less stable 

than when the ZMP is within the support polygon. Therefore, one goal of running 

synthesis is to force the ZMP as close as possible to the center of the support range. 

3.5 Summary 

This chapter presented an original method for producing an energy-efficient gait for 

a single-leg, three-joint hopper. The algorithm accepts three desired parameters: 

the hopping distance, the average forward velocity, and the landing (stair) height. 
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Predetermined joint angles at the two ends of the flight phase constrain the solution. 

A static optimization procedure, which assumes small energy consumption during 

the flight phase, produces the initial joint velocities. Dynamic optimization, with 

constraints, first synthesizes gaits for the flight phase and the stance phase separately. 

Constraints include physical joint limitations, ground reaction forces, and the ZMP 

trajectory. An additional procedure can optimize the energy over the entire cycle. 

In simulation, the robot hops on level ground and up stairs. A novel method for 

producing the initial state vector allows us to produce these different solutions by 

simply choosing appropriate parameters in the initialization stage. These techniques 

provide an appropriate foundation for achieving efficient bipedal running gaits in the 

future. 



Chapter 4 

Running Synthesis for a Biped with Rigid 

Articulated Legs 

In this chapter, the techniques applied to the one-legged hopping synthesis, explained 

in the previous chapter, are to be extended to the bipedal running synthesis. For-

mulations for the two cases are quite similar, and hence, some of the contents in this 

chapter overlap with those presented in Chapter 3. To be self-contained, all over-

lapped contents are to be presented again with less details. Since the two legs of the 

biped play different roles, a switching matrix is to be used. Also, the clearance of the 

swing leg during the stance phase has to be treated. Section 4.1 explains the mod-

eling of the biped. Section 4.2 implements the dynamic optimization of the bipedal 

running gaits. The simulation results are demonstrated in Section 4.3, followed by 

the concluding comments in Section 4.4. 

4.1 Modeling of the biped 

The planar biped studied here consists of 7 links and 6 frictionless pin joints: 2 hips, 

2 knees, and 2 ankles. The masses, inertia, and heights of the two feet are assumed 

to be very small and hence negligible. The other 5 links have length and masses 

and M1 (1 = 1,••• , 5), as specified in Fig. 4.1. The total mass is Mt  

Each moment of inertia Ii is taken about the CoM of the i1h massive link. Each 

r1 is a ratio of the CoM location of the massive link to the link lengths. Fig. 4.1 

80 
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Link 1 

A2 

Figure 4.1: The model of the planar biped 

illustrates the biped model. 

Two assumptions are made as follows: 

1. During the flight phase, the feet are parallel with the ground; 

2. During the stance phase, the support foot grips the ground firmly, without 

bounce, slipping, or rotation. 

The CoM and the two ankles, labeled by A1 and A2 in Fig. 4.1, are related by 

Pg = Pal +fi(0), 

= Pa2+f2(0), 

(4.1) 

(4.2) 
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where Pg = (Xg, )T, Pai = (Xai, Yai )T, and Pa2 = (Xa2, Ya2)T are the positions of 

the CoM and the two ankles, respectively, fl(.) and f2() are two functions deter-

mined by kinematics, and 0 is defined to be (01, 02, 03, 04, 05)T. Differentiating (4.1) 

and (4.2) respectively once gives 

and twice gives 

Pg = Pal +, 

= 

Pg = 

(4.3) 

(4.4) 

(4.5) 

= Pa2+(ö.)e +ö.e. (4.6) 

In the stance phase, gravity and GRF's act on the robot. By contrast, during the 

flight phase gravity is the only external force. When completing the flight phase, the 

robot foot collides with the ground with a certain velocity. This collision causes an 

abrupt velocity jump at each joint. The flight phase will be explained first, followed 

by the velocity jump due to the collision between the support foot and the ground, 

and finally the support phase is discussed. 

4.1.1 The flight phase 

During the flight phase, the robot has 7 DOFs. The generalized coordinate vector, 

q' = (Pg?, OT)T, describes the robot's posture in the air. 

Equations of motion 

The equations of motion (EoMs) during the flight phase can be derived as (see B.1) 

+ H(q, 4f) 4f + G(q1) = B frf 7 (4.7) 
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where the superscript "f" stands for the flight phase, D(q) E is the inertia 

matrix, H(q, ) contains the centrifugal and Coriolis terms , and G(q) E 

is the gravitational torque vector. The vector rf = (r1, r2, r3, y4, y5, 6)T contains 

the torques of the hips, the knees, and the ankles. The term B' E R 7><6 is the 

constant coefficient matrix of and can be determined by using the virtual work 

principle, dependent on the chosen generalized coordinates. The superscript "f" will 

be dropped in the later part of this subsection where no ambiguity is introduced. 

The generalized coordinates can be partitioned into two parts: q = (q, qflT, 

where q = Pg, and q2 = 0. Partitioning the inertia matrix D(q) produces 

D(q) = [D, 0 2X5 

O5x2 D2(q2) 

where D1 = MI22, and D2(q2) € R5XI contains the moment of inertia related to the 

rotation of the robot's links, Inxn represents an n x n identity matrix. Accordingly, 

the matrices H(q, ) and B can respectively be partitioned as 

(4.8) 

H(q, 4) = 

and 

°2x2 °2x5 

°5x2 H2(q2,2) 

B2 

where H2(q2, 2) E 5x5 and B2 E 5x6 are sub-matrices of H(q, ) and B, respec-

tively. The gravity torque vector is G(q) = (0, Meg, 0, 0, 0, 0, o)T, with g being the 

gravity acceleration. The last 5 rows of (4.7) are: 

(4.9) 

(4.10) 

D2(q2)2 + H2 (q2, 2)2 = B2-F- (4.11) 
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Simplifying the first two rows of the EoMs (4.7) yields 

(4.12) 

(4.13) 

which defines the acceleration of the robot's CoM and results in a parabolic trajec-

tory. 

Denote the time instants at take-off and touchdown by subscripts "to" and "td", 

the stride length and the landing height by L8 and h8, respectively. Assuming that 

the position of the right ankle at the right foot take-off is Pai,to = (0, o)T, then the 

position of the left ankle at the left leg touchdown is Pa2,td = (L5, h)T. Suppose that 

e0 and ed have been picked in advance, Pg,to and Pg,td can be found by (4.1) and 

(4.2), respectively. 

In this work, the robot is commanded to run in a constant average forward 

speed, V,. Hence, the horizontal velocity Xg,to = Xg,td = V,. The flight lasts for the 

duration 

T = Xg,td - Xg,to  

V. 

The initial and final vertical velocity of the flight phase are 

/ 
- 'g,td - 'g,to + 1 rnf 2 g v  g, to 

- T 

and 

(4.14) 

(4.15) 

= kg,t, gTe. (4.16) 
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Angular momentum about the CoM 

In the flight phase gravity acts as the only external force at the CoM, implying that 

the angular momentum of the robot about the CoM is conserved. Therefore, 

Pg,to(®to, è0) = Pg,td(®td, ®td), (4.17) 

where Pg stands for the angular momentum about the CoM, and it can be expressed 

as 

(4.18) 

and si = E_ for i = 1,••. , 5, with each dij being an element of D(q) indexed 

by i,j. 

Energy analysis 

As what has been analyzed in Chapter 3, the total energy of the robot can be 

decomposed into three parts: translational kinetic energy, rotational kinetic energy, 

and potential energy. The total translational kinetic energy plus potential energy is 

conserved in the flight phase. The rotational kinetic energy of the robot in the flight 

phase is 

rot (e, (b) 42TD2(q2)'2, (4.19) 

which depends on the joint torques. Making use of the skew-symmetric property of 

- 2H2 (see [137]), it can be shown that d(rot) = 42TB2r. During the flight phase, 
dt 

r is usually not 0, and thus d(t) 0. Thus, the rotational kinetic energy is not 
dt 

conserved. 

By the assumption (Al), the flight phase consumes much less energy that the 

stance phase does. By the same arguments presented in Chapter 3, this understand-
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ing. leads to 1 rot,to 1 rot,td (i.e. 'rot,to - rot,td 0), and an objective function 

01 = 'yrot,to + (1 - 'y) (1rot,to - rot,td), (4.20) 

where the constant y E [0, 1] is a weighting factor. Note that 01 is a function of Et0 

and ed, provided that ®tO and ed have been chosen in advance. Minimization of 

the first term on the RHS of (4.20) gives rise to a minimal take-off rotational kinetic 

energy that guarantees the required running motion defined by the three commanded 

parameters L8, h, and V. Minimization of the second term on the RHS of (4.20) is 

inspired by the assumption (Al). In real running motion, I 1 rot,to rot,td is usually 

a small positive quantity. Since 'rot,td ≤ rot,to + rot,td rot,toi, in the case that 

'rot,to has been minimized, the minimization of ( rot,to - rot,td)2 means that 1rot,td is 

also minimized (see Chapter 3 for detailed derivation). Thus, a second, more concise, 

objective function arises 

02 = 'Y'rot,to + (1 - 'Y)rot,td. (4.21) 

Similar to the hopping synthesis reported in the previous chapter, (4.21) outper-

forms (4.20) in two aspects. It results in more efficient gaits, and also, 'y can be 

chosen in a larger range. In later sections of this chapter, only (4.21) is applied. 

Boundary joint velocities 

The boundary joint angles are picked manually, but the boundary joint velocities 

have to be determined. The problem can be stated as: 

Solve for Bt0 and ed, such that the objective function (4.21) is minimized. The 
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equality constraints could be 

Pg,to 

Pg,td 

ITT '- iT 
- Vx, 1g,toJ 

ITTx, ' &g,td j iT = L'  

Fg,to = t'g,td. 

Inequality constraints limit the motion. The angular velocities of the joints are 

bounded by 

Wi,min W Wi,max, (4.22) 

where wi for i = 1,••• , 5 is the angular velocity at the jth joint, Wi,min and wi,max are 

the lower and upper bounds of the corresponding joint velocity. 

A static optimization procedure, with constraints, then finds Ot, and ed. 0 to 

will be used as the initial value of flight phase, and ed is discarded. The true value of 

ed is searched by dynamic optimization. This treatment makes the entire algorithm 

more flexible. 

Foot velocity regulation 

Energy loss due to the collision between the foot and the ground is proportional 

to the front foot velocity immediately before the collision [145]. Although a front 

foot velocity of 0 at touch-down could be achieved, this would require a lot of extra 

control effort in current flight phase and the following stance phase. The front foot 

velocity immediately before the touchdown can be chosen such that 

Va2,td = 
k 0 

0 k 
Vg,td, (4.23) 
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where the constants k E [0, 1] and ic, € [0, 1] are recommended to trade off collision 

energy loss and control effort. Choosing k smaller increases forward velocity and vice 

versa. Although large k and ky,, may result in significant energy loss at touch-down, 

it may be worth the decreased control effort overall. 

4.1.2 Collision between the foot and the ground 

By assumption, the foot collides with the ground instantaneously and inelastically 

at touch-down. The joint angles change continuously but the joint velocities jump 

discontinuously. Equation (4.2) can be rearranged into 

Pa2 = f(qf) := Pg - f2(e). 

A Jacobian matrix J is defined as 

J=4. (4.24) 

Using superscripts "-" and "+" for states immediately before and after collision, 

respectively, the collision model in [34] predicts discrete velocity changes 

(17x 7  (D' JT (J'(D') —' JT )—I J) 4- 7 (4.25) 

where Df = D(q) and J = J(q) are evaluated at the touchdown when q = td and 

= qtd The velocity of the CoM immediately after the collision, d' follows 

directly from (4.4). 

4.1.3 The stance phase 

Assuming the foot remains firmly in contact with the ground during the stance phase, 

the robot moves with five DOFs. The superscript "s" indicates the variables used in 

the stance phase. 
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The stance dynamics 

Defining the stance-phase generalized coordinates as qS = e results in the dynamic 

model (B.6): 

Ds(qs)js + Hs(qs, 4s) 4s + Gs(qs) = Bsrs, (4.26) 

where DS E R5x5 is the inertia matrix, HS E R` contains centrifugal and Coriolis 

terms, and GS € is the gravitational torque vector. The matrix .B 5x6 is the 

coefficient matrix and depends on the choice of the generalized coordinates. 

Constraints 

In the stance phase, the time duration, boundary joint velocities, GRFs, and the 

ZMP have to be determined or bounded. The GRFs include the normal support 

force of the ground, and the tangential friction force between the support foot and 

the ground. Assuming the robot moves at commanded velocity V. the stance phase 

lasts for time 
Xi+1 - Xi 

=  g,to g,td 

V. 
(4.27) 

where the superscript "i" means the ill half running cycle, and - is the 

horizontal distance traveled by the robot's CoM in the stance phase. 

Since the boundary states are known in advance, the stance phase is a typical 

TPBVP. The boundary angles are chosen manually, the joint velocities are solved by 

the static optimization procedure, and the joint velocities just before touch-down are 

searched by the dynamic optimization of the flight phase. Thus, in the stance phase, 

the initial velocities follow from (4.25) and the final velocities are the velocities at 

the next take-off. 
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The support force from the ground is 

Fy Mt(g+Yg8)≥0, (4.28) 

and must point upward, implying 

Y≥ — g. (4.29) 

Assuming the touch-down collision is instantaneous implies the resultant normal 

touch-down GRF may be extremely large. To prevent the robot from damage, the 

maximum vertical GRF must be limited. Namely, 

F ≤ Fy,max. (4.30) 

At the end of the stance phase, the normal GRF vanishes, implying F nai = 0, 

where the subscript "final" indicates the end of the stance phase. This can further 

be expressed as 

1-/-s 
'g,final - —g. (4.31) 

Assuming the robot does not slip, the horizontal inertia force of the robot is less 

than the static friction at the foot, 

(4.32) 

where p is the friction coefficient between the support foot and the ground. 

The ZMP 

Assuming the support foot does not rotate during the stance phase, the ZMP should 

be located within the range of the support foot. The ZMP for the planar biped 
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follows from standard arguments [111] 

>i:= M [x;,1 0•g'i + g) - ygj.k,j] + >1  

with the restriction that 

M;+g)t(Y  

1f2 ≤ Xzmp ≤ lfl, 

(4.33) 

(4.34) 

where if1 and if2 are the front and rear lengths of the support foot, as measured from 

the ankle pivot point. 

4.2 Optimization of bipedal running 

The running gaits can be synthesized by using dynamic optimization. The EoMs 

(4.7) and (4.26) are highly nonlinear, requiring numerical methods. The Matlab 

function, fmincori(.), is chosen again as the optimization solver. 

The two running phases can be optimized separately, or together as a half running 

cycle. A five step optimization procedure is used in this work. 

1. Pick 0t0 and 0 td• 

2. Search for the initial joint velocities of the flight phase O O, given L, h, V, 

and 'y. 

3. Optimize the flight phase. 

4. Optimize the stance phase. 

5. Re-optimize the generated flight phase and stance phase together as a half 

running cycle. 
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4.2.1 Single-phase optimization 

Single phase optimization proceeds on the two running phases separately. In general, 

a nonlinear optimization solver requires a decision vector, boundary values of the 

decision vector, a cost function and some constraints (see [10] for more details). 

The decision vector, denoted by U, contains the discretized joint torques r1 for i = 

1) 2,•• , 6. The modeling method, the decision vector, and the cost function are 

almost identical for the two phases. However, the constraints in different phases 

may be very different. 

Implementation 

The computer model of second-order dynamic models (4.7) and (4.26) consists of 

Matlab Simulink blocks. As a matter of practical implementation, a saturation 

block limits the output of term H(q, to ensure the integrator does not fail. The 

definition of the decision vector is 

U = [r (1)T, r (2)T,... , r(k)",... , r(N)"] " , (4.35) 

where N is the number of discretized time intervals, k indicates the kt discretized 

time interval, and T(k) = [ri(k), r2(k), r3(k), r4(k), r5(k), r6(k)]T. The initial estimate 

of U is U0, a zero vector with the same dimension as U. The torque limits of the 

joints form the bounds of the decision vector, 

71,min :5,Ti ≤ Ti,max. (4.36) 

Correspondingly, the decision vector is bounded by Umin and Umax which are appro-

priate formations of Ti,min and Thmax. The cost function in each running phase has 
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the same form 

C = UULt, (4.37) 

where At is the time interval (assuming the phase duration, Tf or Ts, is equally 

discretized), and it may be different in the two phases. 

Constraints in the flight phase 

In the flight phase, the boundary joint angles, the initial joint velocities, and (4.23) 

are the equality constraints. The linear inequality constraints include all physical 

joint limits. Besides (4.22), the following constraints must be satisfied: 

'f ≤ef<e '-'i,min - Of 
cef 

a 1 ≤ a ≤ max 7 

where a is the relative angle of a knee. 

Constraints in the stance phase 

In the stance phase, the boundary joint angles, the boundary joint velocities, and 

(4.31) are the equality constraints. The linear inequality constraints could be written 

in the same way as those in the flight phase, with the superscript "f" being replaced 

by "s". In general, the values of the bounds in the stance phase may not be equal to 

their counterparts in the flight phase but in the implementation they are identical. 

Constraints defined by (4.29),(4.30), (4.32), and (4.34) impose the most impor-

tant nonlinear inequality constraints. 

During the stance phase, the swing foot may scuff the ground, if its lowest height 

is not controlled. This leads to 

Ya,sw ≥ Ya,sw,mjn, (4.38) 
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where the subscript "sw" indicates the swing leg. This is also considered as a non-

linear inequality constraint. 

4.2.2 Optimization of an entire half running cycle 

The half-running-cycle optimization synthesizes the two running phases together. 

The cost function evaluating the control effort of the half cycle is 

Nf NI+NS 

C1 = (Uf) T () zt1 + (U5)T (US) t5 (4.39) 

1=1 1=N+1 

where N is the number of discretized time intervals. The flight and stance constraints 

remain the same, but are now included as one constraint function. The decision 

vector for the half-running-cycle optimization is U = [(Uf)T, (US)T]T. 

4.2.3 The second half cycle 

The second half running cycle is simply a duplication of the first half cycle, with the 

leg label switched. This can be thought as change of the state values of the two legs. 

Namely, 

- Q(i 
'-'to - 

gi+1 - qti 
'-'to - k)..Jto, 
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where the superscript "i" specifies the i1h half running cycle, S is the switching 

matrix, and 

S 

4.2.4 A performance index 

10000 

00100 

01000 

00001 

00010 

In the flight phase, the robot does work 

NL1 tto+(i+1)t 

Wf = E f, E 142f 1i I I (Br 
1=0 j=1 

(4.40) 

dt. (4.41) 

where the subscript "j" indicates the angular velocity of the jth joint, and "i" indi-

cates the ith discretized time interval. Note that each joint torque ! is a piecewise 
constant signal. The work in the stance phase is similar, but with "f" replaced by 

"s". The total work in a half running cycle is 

W=.Wf+Ws. (4.42) 

To compare the energy efficiency of the robot, the cost of transport is chosen again 

as the performance index 

W 
MtgL' 

(4.43) 

where L is the distance traveled by the robot's CoM. A smaller cost of transport 

implies higher energy efficiency. 
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Table 4.1: The constants in the simulation 
Constants Values Units Constants Values Units 

M1 8 kg I 0.4 kg-m' 
1 kg 12/3 0.02 kg-m' 

M415 0.8 kg 14/5 0.01 kg-m' 

11 0.6 In rl 0.4 - 

12/3 0.35 In 0.6 - 

14/5 0.4 In r415 0.6 - 

lfi 0.15 In 42 0.05 In 

g 9.81 rn/s2 Ya,sw,min 0.05 In 

°i,min 45 deg 01,max 90 deg 

92/3,min 60 deg 92/3,max 225 deg 

94/5,min 30 deg 94/5,max 120 deg 

amjn 0 deg amax 150 deg 

8 1,min —4 rad/s O1,max 4 rad/s 

°2/3,min —9 rad/s 92/3,max 9 rad/s 

94/5,min —6 rad/s 84/5,max 6 rad/s 

T1/2,min —80 N-rn T1/2,max 80 N-rn 

T3/4,min —40 N-rn T3/4,max 40 N-rn 

T5/6,min —40 N-rn TS/G,max 40 N-rn 

0.6 - Fy,max 2Mtg N 

4.3 Simulation results and discussions 

The simulated robot runs on even ground and up stairs. The simulation produces 

a complete running cycle (i.e. two half cycles) for each gait. The constants listed 

in Table 4.1 apply in all simulations. The robot achieves a desired step length L, 

landing height h, and average forward speed V. 

4.3.1 Running on even ground 

This simulation uses the parameters listed in Table 4.2 and generates a complete 

running cycle (see Fig. 4.2) using the 5-step optimization procedure. In the stance 
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Table 4.2: The parameters for running on even ground 
Parameters Values Units 

0.6 In 
0 In 

V. 1.6 m/s 

e0 
(80,ioo,140,70,60)T deg 

ed 
(80,100,115,45,100)T deg 

0.3 - 

k. 0.5 - 

k 0.5 - 

phase, the trajectory of the CoM behaves like an elastic inverted pendulum, consis-

tent with the SLIP model, At mid-stance the CoM arrives at its minimum height. 

The joint angles are continuous (Fig. 4.3) whereas the joint velocities jump due to 

the collision between the foot and the ground ( Fig. 4.4). Immediately after the 

touchdown, some of the joint velocities, e.g. and 65 , may violate the allowed ve-

locity range (±8rad/s, or ±459deg/s) due to the overly-simplified collision model. 

In reality, the collisions should exhibit some elasticity resulting in smaller (within 

bound) velocity jumps. All joint torques fall within the corresponding ranges (Fig. 

4.5). 

The neutral position of the ZMP, where Xzmp = 0, coincides with the ankle 

positions in the inertial coordinate (Fig. 4.6 top). Note that the ZMP is not defined 

in the flight phase. Since the ZMP lies within the support foot, the robot will not 

tip over. The vertical acceleration of the CoM grows from 6.05m/s2 to g, and then 

decreases to — g (Fig. 4.6 middle). Thus, the normal GRF increases from 184N 

to Fy,max, then decreases dramatically before finally vanishing at the subsequent 

take-off (Fig. 4.6 bottom). Interestingly, the normal GRIP appears in an M-shape 
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Figure 4.2: A running cycle on even ground. The solid lines indicate right leg and 
upper body. The dotted lines indicate left leg. The curve formed by "k" indicates 
CoM trajectory. 
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which is rare in human running. Due to (4.32), the horizontal acceleration of the 

CoM becomes zero at the end of the stance phase (Fig. 4.6 middle). Therefore, the 

horizontal acceleration of the CoM remains continuous over the whole running cycle. 

In each half running cycle, the energy consumed in the flight phase and the stance 

phase are 11 Joules and 61.4 Joules, respectively. The flight phase consumes about 

15.2% of the total energy of the half running cycle. The cost of transport of the 

simulated robot is 1.06JN 1m'. Assuming that the transmission efficiency of the 

robot is about 50%, the true cost of transport is estimated to be around 2.2JN'm'. 

The cost appears to be higher than humans and the spring-loaded Monopods I and 

II, but possibly lower than HRP-2L (see Table 3.1). 

4.3.2 Running up stairs 

Using the parameters listed in Table 4.3 results in the robot running up stairs (Fig. 

4.7). The joint angles (Fig. 4.8), the joint velocities (Fig. 4.9), the joint torques 

(Fig. 4.10) differ in a reasonable manner from the even ground results. The ZMP 

trajectories, the horizontal and vertical accelerations of the CoM, and the normal 

GRF appear in Fig. 4.11 

The energy consumed in the flight phase and the stance phase are 8.1 Joules and 

68.8 Joules, respectively, and the flight phase consumes about 10.5% of the total 

energy of the half running cycle. The calculated cost of transport of the robot is 

about 1.7JN'm' , which shows that running up stairs is not as efficient as on even 

ground, even though the average forward speed is greatly reduced, from 1.6m/s to 

Q.8m/s. If the transmission efficiency of the robot is about 50%, the actual cost of 

running up stairs is about 3.4JN'm' . It may be a little more efficient than the 
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Table 4.3: The parameters for running up stairs 
Parameters Values Units 

0.4 in 

0.08 m/s 

V 0.8 m/s 

e0 (80, 100, 135, 70, 6O)T deg 

()td 

ly 

(75, 105, 115, 45, 95)T 

0.3 

deg 

- 

0.5 - 

ky 0.8 - 

Synthesized running gait 

1.4 

1.2 

0.8 

>. 
0.6 

0.4 

0.2-

0 0.5 
X (m) 

-0.5 1.5 

Figure 4.7: A gait cycle for running up stairs. The solid lines indicate right leg and 
upper body. The dotted lines indicate left leg. The curve formed with "k" indicates 

CoM trajectory. 
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HRP-2L's running on even ground. 

4.3.3 Some remarks 

Simulations of bipedal running also confirm the fundamental assumption (Al) pre-

sented in Chapter 3. The flight phases consume relatively little energy compared to 

the stance phases. This applies running on even ground and up stairs. The max-

imum normal GRF, Fy,max, is set to be twice the robot's weight. Although it is a 

reasonable value for humans and animals, this value may be too large for a real run-

ning robot. A physical robot may require active force control or passive compliant 

feet in order to partly damp the large vertical GRF. The static friction coefficient 

= 0.6 represents a typical real-world value. However, if smaller Fy,max and have 

to be used, the robot could reduce the average forward speed V,, the landing height 

or the stride length L to achieve safe running. 

Compared with [97], the robot model under study is more realistic. The generated 

running gaits are more efficient, in the sense of cost of transport. Compared with 

[34], the proposed method provides a systematic approach to choice of the initial joint 

velocities in the running phases, by using the fundamental assumption (Al). The 

rigid biped clearly does not achieve the energy-efficiency of designs that incorporate 

compliant elements, e.g. the Monopods, I and II. However, this approach lays a 

useful mathematical framework for future research into bipedal running, including 

compliant designs. 

The two legs of the biped play different roles. The foot that touches the ground is 

not the foot that leaves the ground. This results in two expressions of the CoM with 

respect to the two ankles, i.e. (4.1) and (4.2). During the stance phase, to prevent 
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the swing leg from scuffing the ground, the lowest ankle height has to be limited. 

Moreover, to switch the role of the two legs, a switching matrix is used. These 

particular characteristics do not appear in one-legged hopping. It is interesting to 

observe that solutions to the bipedal running synthesis are easier to find than those 

to the one-legged hopping. 

4.4 Summary 

In this chapter, the techniques, presented in Chapter 3, were extended to synthesize 

bipedal running gaits. The assumption (Al) was employed again as the cornerstone 

of bipedal running synthesis. Different from hopping synthesis, a switching matrix 

helps to switch the role of the two legs. When the swing leg recovers from hind to 

front during the stance phase, the lowest ankle height is forced to be higher than a 

threshold in order to avoid scuffing with the ground. Other designs are similar as 

those for hopping synthesis. The computational time of bipedal running synthesis is 

usually shorter than that of one-legged hopping, revealing that the bipedal robots are 

essentially more stable than the one-legged hopper. Simulation results show that the 

generated running gaits, both on even ground and up stairs, are visually appealing. 

The energy efficiency in the two cases is acceptable. 



Chapter 5 

Hybrid Finite-Time Control Designs for the 

One-Legged Hopper 

The hopping robot is a hybrid system, including two continuous hopping phases, 

and two discrete events. A touchdown triggers a transition from the flight phase to 

the stance phase, and a take-off symbolizes the end of a stance phase and the start 

of a flight phase. The two discrete events determine the initial conditions of the 

subsequent motion phase. In general, a two-level control architecture is needed. The 

top level is a supervisory controller, typically implemented as a finite-state machine 

(FSM), e.g. the control designs in Raibert's hoppers [118]. The low-level controllers 

stabilize the continuous motion phases. A good control subsystem must at least 

satisfy the following two conditions: 

1. The control subsystem itself is stable in some sense. 

2. The robot, with the control algorithm applied, must be free from damage or 

falling. In other words, the controlled gait must be stable. 

In accordance with different definitions of gait stability, the existing control algo-

rithms for robots with one or two rigid articulated legs roughly fall in two categories. 

The ZMP-based controllers employ the ZMP stability criterion such that the resul-

tant ZMP trajectory is within the support polygon [148], or more strictly, within 

the safety region which is defined as the middle part of the support polygon [73]. 

107 
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Typical robots based on ZMP concepts include the Honda's Asimo [50], the Sony's 

Qrio [95], and others [100, 94]. The other type of controllers are based on orbital 

stability [54, 40]. Rather than tracking the joint trajectories, these controllers pursue 

to track the phase orbits [151, 92]. Since no time information is contained on the 

phase portrait, these controllers are also called event-based [151, 92]. 

The biggest challenge to monopods or bipeds comes from the interaction between 

the robots and the environment. Due to the unstructured environment, the robot has 

to adjust its gaits frequently in real time, and the gaits are rarely periodic as what 

the event-based controllers assume. Varying with the environment, the GRFs change 

step by step. In case that the GRFs are greatly larger than the permitted limits, the 

robot gets damaged. An active force control mechanism must be embedded in the 

control algorithm, such that the excessive GRFs an be suppressed and damage to 

the robot can be avoided. 

An intuitive approach to suppress the excessive GRFs is to crouch the body, 

as humans do. Since the model of the environment is in general unknown, the 

impedance control, originally proposed by Hogan to regulate the contact force of 

robotic manipulators against the environment [51], may help to address this issue. 

In applications where a robotic manipulator has to maintain firm contact with the 

environment, the robot in the presence of contact forces is usually modeled as a 

mass-spring-damper system [150, 68, 82, 139], a mass-damper system [80, 123], or 

a mass-spring system [25, 81]. Also, it is convenient to formulate such a problem 

in the task space, based on the pioneering work done by Khatib [69]. Arimoto has 

shown that this problem can also be formulated in joint space without a force model 

[8]. In these works, a position-tracking control module achieves asymptotic stability, 
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and a PT (proportional-integral) control module, with the excessive forces being the 

inputs, limits the contact forces. Experiments have verified the effectiveness of the 

impedance control [146, 123]. 

Force-regulation control has been used in Honda's Asimo, but the technical details 

have not been disclosed [50]. Park and Chung proposed a hybrid control algorithm 

to achieve bipedal walking [103]. The impedance control method was applied to 

the swing leg to fulfill soft landing. The impedance parameters varied with the 

walking phases. The computed torque control was used for the support leg. The 

same algorithm was then tested in different biped platforms [102, 105, 73, 74]. Lim 

et al. implemented another impedance control algorithm [78] where the outputs of 

the controller are joint angles, rather than the joint torques as in [103]. In these 

work, the contact forces were modeled as mass-spring-damper systems in task space. 

Silva and Tenreiro Machado proposed another force control algorithm in which the 

environment was modeled as a spring-damper system. The desired vertical GRF 

was assumed to be the robot weight plus PD (proportional-derivative) compensation 

terms which regulate the hip height. Katie et al. employed a P1 regulator to reject 

the excessive GRFs. Unfortunately, strict stability analysis has not been presented 

in these reports. 

In reality, apart from the variable environment, system uncertainties, unmodeled 

dynamics, external disturbances, and imperfect control actions may cause the robot 

to lose its balance, or to fall. For the ZMP-based robots, this implies that the ac-

tual ZMP location is not within the support polygon. An online ZMP compensation 

module is needed to drag the ZMP back inside the safety region. Park and Chung 

suggested changing the height of the hip to achieve this goal, without sacrificing the 
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robot's forward speed [104]. Okumura et al. proposed altering the joint acceleration 

to compensate the ZMP deviation [99]. This method changes the forward speed. 

Prahiad et al. tried to adjust the torque at the ankle to sustain the desired ZMP 

trajectory [113]. This problem has also been formulated in the task space. A "Ja-

cobian compensation" method, aiming to modify the pre-planned joint trajectories, 

has been reported [135, 154]. 

The forward speed can only be controlled in the stance phase. In the stance 

phase, the final states (joint angles and joint velocities) should converge to the pre-

planned values before the phase end. The traditional asymptotic convergence does 

not satisfy this requirement. Moreover, the flight phase should also be stabilized 

before the phase end, in order to land at the right time and at the right foothold. 

Thus, the velocity jumps at the joints would not differ too much from the predicted 

values. This affects greatly the balance of the subsequent stance phase. To guarantee 

finite-time convergence, a finite-time controller is needed. 

The concepts of finite-time control and finite-time stability have existed for a long 

time [30], but the modern meanings of these concepts may be attributed to Haimo 

[44]. Bhat and Bernstein extended Haimo's work and gave more complete definitions 

of the concepts [13]. The completeness of the theory makes the finite-time control 

design more attractive than other fast sliding mode control algorithms, e.g. reported 

in [162, 107]. The finite-time controllers proposed by Haimo [44] and other terminal 

sliding mode controllers have been examined extensively for robotic manipulators 

(see [31, 159, 158, 79] and the references therein). In these algorithms, besides the 

controllers, the sliding surfaces also contain the finite-time functions. This may result 

in complex solutions. 
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In this chapter, a novel control algorithm for the one-legged hopper is presented. 

The sliding surfaces do not contain any finite-time functions. Instead, a 3' d order 

polynomial is embedded in each of the sliding surfaces, following [106]. A reaching 

interval' is not needed, and thus the system is more robust than traditional slid-

ing mode control algorithms [155]. Haimo's finite-time functions are used such that 

the system trajectories converge to the desired references in finite-time, if system 

uncertainties and external disturbances are absent. With system uncertainties and 

external disturbances present, the system trajectories are uniformly bounded (Defini-

tion 9.3, page 36 in [157]). The finite-time stability is briefly reviewed in Section 5.1. 

To reject the excessive GRFs while keeping tracking accuracy, a force-suppression 

module is implemented. The excessive GRFs are modeled as a mass-damper system 

in joint space, and stability analysis is provided. An original online ZMP compen-

sation module is also proposed. To maintain the ZMP within the safety region, the 

torso pitch angle is modified in real time. Details of the control algorithm are ex-

plained in Section 5.2. Simulation results are presented in Section 5.3. Concluding 

remarks follow in Section 5.4. 

5.1 Finite-time stability 

Consider a continuous system 

±(t) = f(x(t)), x(to) = xo, (5.1) 

'Also well known as "reaching phase" in sliding mode control theory. In this thesis, the word 
"phase" indicates a particular time period of a certain gait. 
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where x(t) E X C J?Y for t E 2O is system state vector, 2 is the maximal interval of 

existence of a solution x(t) to (5.1), X is an open set, 0 E X, f(0) = 0. Assume that 

(5.1) has a unique solution in forward time for all initial conditions except probably 

the origin. 

Definition 1 (Definition 4.7, page 254 in [43], Definition 2.2 in [13]). For the sys-

tem (5.1), the equilibrium x(t) = 0 of (5.1) is (locally) finite-time stable, if there ex-

ists an open neighborhood .N C X of the origin and a function T3 : f\{0} '4 (0, oo), 

called the settling-time function, such that the following statements hold: 

i) Finite-time convergence. For every x0 E .A/\{0}, x(t) E .,V\{0}, for all t E 

[0, T5(xo)), and limt.T8(0) x(t) = 0; 

ii) Lyapunov stability. For every e > 0 there exists a 5 > 0 such that for every 

xo E .N\{0} and Jjxojj ≤ 5 Ix(t)II ≤ e fort  [0,T8(xo)). 

The equilibrium Xe(t) = 0 of (5.1) is globally finite-time stable, if it is finite-time 

stable with M = X = 

If the equilibrium Xc 0 is finite-time stable, then it is also asymptotically 

stable. Therefore, finite-time stability is stronger than asymptotic stability. The 

settling time function T (x0) varies with the initial state x0. 

Specifically, if xo = 0, x(t) = Xe(t) = 0 for all t ≥ 0. By defining T3(0) := 0, 

T8(Xo) is continuous on A!. 

Theorem 5.1.1. (Theorem 4.17, page 257 in [4.9], Theorem 4.2 in [13]) For system 

(5. 1), assume that there exists a continuously differentiable function V : X - p 

real numbers k > 0 and -y € (0, 1), and a neighborhood I'! C X of the origin, such 
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that 

V(0) = 0, (5.2) 

V(x) > 0, x E .Af\{O}, (5.3) 

—k(V(x)), x E Al\{O}. (5.4) 

Then the equilibrium Xe = 0 is finite-time stable. Moreover, there exists an open 

neighborhood Al of the origin, and a settling-time function T8,1 : Al i—p 1>o such that 

and T8,i(xo) 

T8,i(xo) <  1  (V(xo))', xo E Al, (5.5) 
k(J. 

is continuous on Al. 

If JV = R n, the equilibrium Xe = 0 is globally finite-time stable. 

Example: (Example 4.12, page 255 in [43], Example 2.1 in [13]) Following Haimo 

[44], denote sig1'(x) = Ix' sgn(x) where sgn(.) is the signum function and y € (0, 1). 

A nonlinear dynamic system is described by 

:t(t) = —ksig'(x), x(0) = xo, t ≥ 0, 

with k being positive. It is easy to check that this system is globally finite-time 

stable, by using V(x) = x2, and the settling-time function is 

1  
T8(xo) = 

Theorem 5.1.2. (An extension of Theorem 5.1.1) For system (5.1), assume that 

there exists a continuously differentiable function V: X i—* o, real numbers k1 > 0, 
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k2 > 0, and e (0, 1), and a neighborhood Al C X of the origin, such that 

V(0) = 0, (5.6) 

V(x) > 0, x E Al\{O}, (5.7) 

'(x) ≤ —kV(x) - k2(V(x))', w E ..Af\{O}. (5.8) 

Then the equilibrium x = 0 is finite-time stable. Moreover, there exists an open 

neighborhood Al of the origin, and a settling-time function T8,2 : Al - 1 0 such that 

1  k 1V(x '''' + k 
T8,2(xo) ≤  ,. In(  . Oii 2) x0 E Al, (5.9) 

ki k2 

and T8,2(xo) is continuous on .AI. 

If Al = Rn, the equilibrium Xe = 0 is globally finite-time stable. 

Proof: (5.6), (5.7), and (5.8) indicate that the equilibrium Xe = 0 is Lyapunov 

stable. Also, direct integration of (5.8) yields (5.9), implying finite-time convergence. 

Therefore, the equilibrium is finite-time stable. Correspondingly, the other results 

follow. 

0 

Theorem 5.1.3. Consider (5.5), and let k = k2. The following inequality always 

holds: 

Proof: Let 

and hence 

T8,2(xo) ≤ Ts, i(xo). 

M  T,2 
= 

m= ln(p+1)  

p 

(5.10) 
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where p = ki(V(xo))1'1 It is obvious that m < 1, and only when p = 0, the equality 
k2 

in (5.10) holds. 

0 

Theorem 5.1.3 states that adding a negative proportional term to the right-hand 

side of (5.4) can speed up the convergence. Especially, increasing p leads to faster 

convergence. 

5.2 The control algorithm 

This section explains the details of the control algorithm. To proceed clearly, funda-

mental mathematical preliminaries are presented first. 

5.2.1 Mathematical preliminaries 

Here, three important inequalities are introduced. The first one is actually an ex-

tension of the classical Holder inequality. 

Lemma 5.2.1. (Theorem 3, Page 5, in [89]) Let aij (1 = 1,•.• , n;j = 1,••• , m) 

be positive numbers, and let k1, k2,..• , km be positive numbers such that 

1 1 1 
—+—+••+—≥1. 
k1 k2 km 

Then 

ai,i• ai,m ( a) k (E a) km  

Lemma 5.2.2. Let ai (i = 1,... , n) be positive numbers. For 1 < p < 2, the 

following inequality holds: 
n 

1=1 

af> 2 

0 

) 2 

1=1 

(5.12) 
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Proof: Let m = 2, a1,1 = a1,2 = a1, k1 = 2, and 1 < k2 = p < 2. Clearly, 

+ ≥ 1. By applying Lemma 5.2.1, it can be deduced that 

n 

i=1 

which leads to 
n n 

1 .1 
/ / \ p 

(a) ≤( a?) 

and hence (5.12) is satisfied. 

D 

Lemma 5.2.3. Let s = (S1,32," , 3)T and 'y E (0, 1). By extending Haimo'.s 

notation [1], define a vector function: 

sig '(s) = 

s1 'Y sgn(s1) - 

s2I sgn(s2) 

s11 'Y sgn(s ) - 

and a diagonal matrix K = diag(k1, k2,•• , ks), where k1 > 0. Then 

where kmin 

sTKsig(s) ≥ kmjn ( 
= min(ki,k2,... 

Proof: Note that 

I sjjsj'Ysgn(sj) _ —sil 1+y 

(5.13) 
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Link I 

Figure 5.1: The model of the articulated hopper 

Thus, 

sTKsig)'(s) = k sdl+, 

≥ kmin E IsiIl+1. 
1=1 

By using Lemma 5,2,2, inequality (5.14) produces (5.13). 

5.2.2 The hopping model 

(5.14) 

0 

Fig. 5.1 presents the planar articulated hopper under study. It is a duplication 

of Fig. 3.1. The physical meanings of the parameters remain identical to those in 

Chapter 3. 
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5.2.3 The flight phase 

During the flight phase, the robot has 5 degrees of freedom (DOFs). The generalized 

coordinate vector, q' = (Xg, Yg, 0, 92, 83)T, describes the robot's posture in the air. 

The practical model of the flight phase 

Without considering the parameter uncertainties and external disturbances, the hop-

per in the flight phase can be modeled as: 

+ H(q1, + G(q) = B"r', (5.15) 

where D(q) ERIX5 is the positive-definite, symmetric inertia matrix, H(q, ) E 

R5><5 contains the Centrifugal and Coriolis terms , and G(q) ER5 is the gravita-

tional torque vector. The vector Tf = (i-f, i-i, .r )T contains the torques of the hip, 

the knee, and the ankle. The constant coefficient matrix Bf E RIII can easily be de-

termined by using the virtual work principle. For the sake of clarity, the superscript 

"f" in the remaining of this subsection disappears if no ambiguity is introduced. 

By denoting q1 (Xg, Yg)T, and q2 = (Or, 02, 93)T, equation (5.15) can be decom-

posed into [42]: 

D1j1 + Ui = 0, (5.16) 

B2'r, (5.17) 

where D1 = diag(Mt, Mt), G1 = (0, Mtg), with g being the gravity acceleration. 

E R3X3 and H2 E R3X3 are right-bottom submatrices of D and H, respectively. 

B2 E R IX3 is a bottom submatrix of B. 

Equation (5.16) means that the hopper's CoM cannot be manipulated in the 

flight phase. The control actions can only affect the joint angles which are described 
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by (5.17). Considering the parameter uncertainties, viscous friction, and the external 

disturbances, the model (5.17) is extended as: 

D2(q2)2 + H2 (q2, 42) 42 = B2r - T + Tdis, (5.18) 

The matrices D2(q2) and H2(q2, 2) possess the following important properties 

[137]: 

1. D2(q2) is bounded by 

dminlnxn ≤ D(q) ≤ dmax'nxn, (5.19) 

where dmjn and dmax are the minimum and maximum eigenvalues of D2(q2), 

respectively. 

2. H2(q2, q) can be chosen such that .b2(q2) - 2H2(q2, 2) is skew-symmetric. 

Mathematically, 

xT(152 - 2H2)x = 0, 

where x € R3 is an arbitrary vector. 

3. The left-hand side (LHS) of (5.18) can be linearly expressed as 

D2(q2)2 + H2 (q2, 2)2 = Y(q2, q, 42) P, 

where Y(q2, q2, q2) is the regressor, and P contains system parameters. 

The following assumptions are made: 

1. The external disturbance torque Tdjs is bounded by IITdisII < 7d. 

(5.20) 

(5.21) 
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2. The viscous friction torque can be modeled as [108] 

Tf = Kf2, (5.22) 

where Kf = diag(kf,l, kf,2, kf,3) with each element being positive, and denote 

kf,max = max(kf,l, kf,2, kf,3). 

3. Denote the nominal parameter of the system by P. The system uncertainty 

y(P—P) = YP is assumed to be bounded by YP≤ M. + MI q2jj+m2 1142112 

[31, 159], where mi > 0. 

4. The overall effect of system uncertainties, viscous friction, and external distur-

bances are bounded, i.e., 

IIYPII + IIKf2II + II1disII ≤ it(q, q2), 

where 17t (q2, 42) = m0 + m1 II2II + m2 1142112 + kf"ax 114211 + ?7d. 

Control design for the flight phase 

Define the tracking error as 

q2 - q2,d, 

where q2,d consists of the desired joint angles. 

Define a sliding surface [106] 

(5.23) 

s = q2+A 2—i'(t)—Av(t), (5.24) 

= zb(t)+Aw(t), (5.25) 

= q2 — q2,r, (5.26) 



121 

where A = diag(Ai, A2, A3), ) j > 0 for i = 1, 2, 3, Amin = min(Ai, A2, A3), v(t) is the 

desired tracking error, and 

= q2,d—Aq2+v(t)+Av(t), (5.27) 

W(t) = 2—v(t). 

The desired tracking error, v(t), is defined as [106] 

Ipa+pit+p2t2+p3t3, t E [0,]; 
V  (5.28) 

10, t E (T,, 00), 

where Tf is the convergence time to be picked manually. The coefficients in (5.28) 

are chosen to be 

Pa = 42(0), 

= l2(0), 

3 
P2 = - q2(0) — q2(0), 

(T)2 

P3 = ( f)3 2(0) + (,f)2q2(0). 

Clearly, v(0) = 42 (0), i)(0) = 2(0). Hence, w(0) = 0 and s(0) = 0. 

Differentiating both sides of (5.27) gives 

= 42,d -  A 2 +O(t) + Ai'(t). (5.29) 

Rearranging (5.26) yields 

q2=s+q2,r. (5.30) 

Substituting (5.30) into (5.18) produces 

D2è + D22,r + H2s + H22,r = B2r - Kf2 - Tdis, 
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which leads to 

D2. + H2s = .82r - Kf'2 - Tdis - D22,r - H2I2,r. 

Theorem 5.2.4. For the system (5.18), if the following controller is applied: 

= B' (b242,, + H2q2,r - K1s - K2sig1(s)), 

- B2' (Y(q2,42, q2,r, q2,r)P - & S - K2sig7(s)), 
-  

(5.31) 

(5.32) 

where K1 = diag(k111 ,k1,2,k1,3), K2 = diag(k2,j,k2,2,k2,3), ki,j > 0 for i = 1,2;j = 

1, 2, 3, then the system trajectories are unifonnly bounded fort ≥ 0, and the bound 

of the sliding surface is Ilsil ≤ IIsII, where JJsJJ,, is the unique solution of the equation 

kiminIISII+k2,minIISI['7lc= 0, 

with y E (0, 1), ki,min = min(ki,i, k1,2, k1,3), k2,min = min(k2,1, k2,2, k2,3), and 

= sup (?(q, q)). 
q2,q2E 3 

Moreover, the tracking errors are bounded by 

.!iii IIII  ≤ Iq2,jl ≤ It)d + 'vu— 
Amin Amin 

where q2,j and vi are the ith elements of 42 and v, respectively. 

Proof: Substituting (5.32) into (5.31) generates 

D2. + H2s 

(5.33) 

(5.34) 

(5.35) 

= —D2q2,1. - H242,1. - Kis - K2sig7(s) - Kf 4 + Tdis, 

= —Y(q2, q2, q2,, q2,r)P - K1s - K2sig'1(s) - Kf4 + Tdis, (5.36) 

where (.), (.) are the nominal and uncertain parts of (.), and (.) = (.) - (.). 
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Define a Lyapunov function 

and its time derivative is 

V =  1 ST D28, (5.37) 

= ST D2 + sTl32s. (5.38) 

Due to (5.20), equation (5.38) implies 

= 

= 3T (_y,5 - Kfj2 + Td) - .9 - sTK2sig7(s), 

≤ 11811 ( Y + kf,ma 114211 + IITdIsII) - ki,min 11.9112_ k2,min  

≤ llsll 77t (q2, 42) - ki,min 113112 - k2,min IIII1+'y (5.39) 

At this moment, let us ignore the system uncertainties, the viscous friction, and the 

external disturbances. This means (q2, 2) = 0. Then inequality (5.39) becomes 

.Q. ≤ ki,min IIII - k2,min 118111+7 

≤ —cIV - c2V" <—O,  (5.40) 

where c1 = 2ki,min, C2 = 21'k2,min, and p = E (, 1). Clearly, the system is 

finite-time stable, and according to Theorem 5.1.2, the settling time is 

1  
In ci(1—p) (ci(V(0))'P+c2"\ 

C2 ) 

where V(0) = (s(0))TD2(q2(0))s(0) = 0. Thus by (5.41) 

(5.41) 

= 0, (5.42) 
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and 

vo, 

S 0. (5.43) 

Thus, equation (5.25) becomes 

s=zb+Aw0, 

which implies that 

W(t) = e_tw(0) (5.44) 

Since w(0) = 2(0) - v(0) = 0, the relations w(t) 0 and q2 v hold for t ≥ 0. 

Therefore, q2 converges to 0 at Tf by definition of v, and q2 = 0 for t ≥ 2. 

If system uncertainties, viscous friction, and external disturbances are taken into 

account, t(q2, q2) 0. Now, the design task is to choose the appropriate ICi, K2, 

and A, such that t(q2, q) is bounded by a constant qc. At this moment, assume 

that the inequality t(q2, q2) II ≤ m holds true for t ≥ 0. This condition needs to be 

verified a posteriori. 

When 0 < 11 77t (q, ') II ≤ m, inequality (5.39) becomes 

V ≤ IIsII 7c - ki,min 118112 - k2,min I IlI' 

'7 
- IISIl (ki,min IIlI + k2,min 11811 - ?lc). 

Define a function 

f(IIsII) = ki,min II9II + k2,min IIII - 7c, 

which has following properties: 

(5.45) 
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1. It is monotonically increasing with 11811; 

2. f(IIsIIO)=—?7c<0; 

3. f (I1sll = k Ic = k2,minIjS>0 i,min) 

1' 

4. f ( = (_flc = ki,min IIII > 0. 
k2,min) ) 

Therefore, the equation f(IIsIl) = 0 has a unique solution I lsIl, and 

0 < lIsII <mm ki,min' k2,min (nc  
/ m ) 

When IlsIl > IlsII f(IIsIl) > 0, implying < 0. Clearly, 

{sl Ilsil ≤ 11,511.1 

(5.46) 

(5.47) 

is an invariant set. Outside this set, 2 < 0. By (5.46), IIsII can be reduced by 

increasing ki,min or k2,min, and hence the invariant set (5.47) can be as small as 

desired. 

Since s(0) = 0 is inside the invariant set (5.47), s(t) for t ≥ 0 is always entrapped 

inside the invariant set. Therefore, the system trajectories are uniformly bounded 

for t ≥ 0. 

Due to (5.25), it can be inferred that 

(5.48) 

following arguments by Slotine and Li in [134]. 

Furthermore, since 

Il — lvI Ii — vil= Iwil :  11811. 
Amin 
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the relationship (5.35) follows. 

In practice, Iwd can be very small by properly picking ki,mjn, k2,min, or Amin. The 

tracking error 42,i can follow the desired error trajectory vi with high accuracy. Also, 

due to llib 11s1l. + IlAwli, zb is upper bounded. It can easily be concluded that 

42 = zb + ') + q2,d is also upper bounded, and thus (q, ) is indeed upper bounded. 

In above discussions, ki,min, k2,min, and )min can be arbitrarily large. In reality, 

large ki,min, k2,min, or Amin may cause dramatic oscillations of the system states. If 

42 becomes too large, the assumption that nt(q2, q2) is upper bounded may not hold 

true. In cases that ?lt > ki,mjn IIS+'2,min lIsI[, 2 becomes positive. Since the control 

signals cannot be too large, due to physical saturations, V> 0 sustains, resulting in 

failure of the algorithm. Therefore, trade-offs must be made when the gain matrices 

are chosen. 

5.2.4 The stance phase 

In the stance phase, .the number of the DOFs of the hopper is three. The vector of 

generalized coordinates is chosen as qS = (9k, 92, 83)T. 

Practical model of the stance phase 

The practical model of the stance phase maybe expressed as 

Ds(qjs + Hs(qs, 4s ) 4 s + Gs(qs) = BSTS - r + J(qs)E + r, (5.49) 

where Ds(qs) E 3x3, Hs(qs, S) E 3x3, and Gs(qs) E R3 are the symmetric, positive 

definite inertia matrix, the matrix containing the Centrifugal and Coriolis terms, and 

the gravitational vector, respectively, r e R3 is the vector of joint torques, B E 
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is the constant coefficient matrix of r, 4 represents the torque caused by the viscous 

friction forces, Jg(qS) E 2x3 ig the Jacobian mapping from the hopper's CoM to 

the ankle, F is the vector of excessive external forces equivalently applied to the 

hopper's CoM, and -rdis represents other external disturbances. In the remaining of 

this subsection, the superscript "s" will be dropped, if no confusion is introduced. 

In an ideal stance phase, the support foot were expected to maintain firm touch 

with the ground, and it dould be regarded as the base of a robotic arm. Thus, the 

GRFs could be treated as internal forces, and would not appear in the equations 

of motion. However, this is never true in practice. Due to unstructured ground 

conditions, unmodeled dynamics, uncertain parameters, unpredictable external dis-

turbances and imperfect control, the robot may lose its posture balance. The actual 

GRFs often go outside of their permitted ranges. Denote the vector of the GRFs by 

F. The lower and upper bounds of F are Fmin and Fmax, respectively. Suppose that 

F can be measured in real time with satisfactory accuracy. F can be formulated as: 

0, Fmin<F<Fm; 

FFmax, F>Fmax; 

F - Fmin, F < Fmin. 

Note that F essentially represents all calculated external forces acting on the robot's 

CoM and the true external forces are not required to be known. P, expressed in the 

task space, can be mapped into the joint space as a torque vector 'TF via the Jacobian 

Jg, complying with 

TF = J(q)P'. 



128 

With the superscript "s" dropped, the stance model (5.49) can be re-written as 

= Br—rf+ Tr. + rdl—D—H—G, 

= BT—Tf+TF+Td1—Y(q,q,q)P, (5.50) 

where (.) and (.) are the nominal and uncertain parts of (.), and () + (•) = (•). 

Control design for the stance phase 

The tracking error is defined as 

q=q — qd. (5.51) 

The desired error trajectory v(t) is defined in a similar way as (5.28), with the 

convergence time being 1. 

Define a sliding surface [106] 

where 

s(t) = +A1—i'(t) — Av(t), (5.52) 

= 'th(t) + Aw(t), (5.53) 

(5.54) 

w(t) = 4 - v(t), (5.55) 

q1 = - Aq + V + Av. (5.56) 

Note that the tracking error 4 is expected to evolve along v(t), and w(t) is the 

absolute tracking error with the bias v(t) removed. In other words, w(t) is expected 

to evolve along zero. Differentiating both sides of (5.56) leads to 

4r = 2d —A+D+A'). (5.57) 
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Clearly, w(0) = 0 and s(0) = 0. 

Denote the estimate of TF by ?F, and 

= 

where Jg(q) is the estimate of Jg(q). 

Theorem 5.2.5. For the system (5.50), if 

.1. the following controller is applied: 

with 

T = T + TF, 

(5.58) 

(5.59) 

= B—' (bd, + ft' + O bK,s - bK2sig7(s)) , (5.60) 

position—tracking module 

/ pt \ 

TF = —B' ((I3X3 + bK)F + .OK fo TFdt), (5.61) 
-I 

force—suppression module 

where 'y E (0, 1), K1 = diag(k,,i, k1,2, k,,3), K2 = diag(k2,i, k2,2, k2,3), k,j > 0 

fori = 1, 2;j = 1, 2,3, Kc, E RU3 and Kp E RU3 are diagonal, positive definite 

matrices; 

. to suppress the external forces, each joint is desired to behave like a mass-

damper system, complying with 

= h01O + h1th, (5.62) 

where h0 E R 313 and h, E R313 are diagonal, positive definite gain matrices, 

representing the desired moment of inertia and the desired damping ratio, and 

they can be picked arbitrarily to satisfy the design specifications; 
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then 

1. the system trajectories are uniformly bounded for t ≥ 0, and the bound of the 

sliding surface is JJsJJ ≤ IIsM, where IIsII is the unique solution of the equation 

k',min IIsII + k2,min sII - = 0, (5.63) 

with k,mjn is the minimum element of the matrix K = K1 + Kahi, k2,min 

min(k2,i) k2,2, k2,3), 77c = sup (b-1 (TF - Tf + Tdis - Y(q, 4, )P)), and TF = 

TF - 'TF. 

2. the tracking errors are bounded by 

IN -  Lh  ≤ IN ≤ Ivl + 11811.  
Amin Amin 

where qi and vi are theit' elements of 4 and v, respectively. 

Proof: Substituting (5.59) into (5.50) results in 

= b' (TF - T + Tdis - Y(q, 4, 4)P)-

77t 

—K1s - K2sig'(s) - Ka'F - Kp JO TFdt, 
= 71t - K1s - K2sig"(s) - KaF - K,3 in -Wt. 

Due to (5.62), 

JO 

t 

Ka ?F + K13 TFdt = Kaho'i) + (Kahi+ K13ho)'th + K13h1w, 

(5.64) 

(5.65) 

Kh0è + K13h1A's, (5.66) 

The purpose of (5.66) is to translate a function of )(t), th(t), and w(t) into a function 

of . (t) and s(t), for convenience of stability analysis. Equation (5.66) holds true if 
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and only if the following condition satisfies: 

KahoA + Kh1A' = Kahi + Kh0. (5.67) 

In (5.67), all matrices are diagonal with same dimension. After simple algebraic 

operations, it can be deduced that 

K,a = KaA = AK, (5.68) 

which is independent of h0 and h1. Inserting (5.68) into (5.66) gives 

fo 

t 

Ka F+KP -Wt Khoè+Kh1s. 

Substituting (5.69) into (5.65) produces 

(5.69) 

(I3X3 + Kh0) a = m - (K1 + Kh1) s K2sig'(s), 

= 77t - Ks - K2sig'(s). (5.70) 

Define a Lyapunov function 

V(s) (l3 x3+ Kaho) S. (5.71) 

Time-derivative of (5.71) is 

17(s) = 8T (I + Kaho) a, 

8T (,qt - Ks - K2sig)(s)) (5.72) 

Temporarily, assume flt is upper bounded and Ilit II ≤ "lc, k,min is the minimum 

element of K, then 

- IIll (k1' min Ilsil + k2,min lslV - ?lc). (5.73) 
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Note that (5.73) has the same form as (5.45), and thus same arguments can be 

applied. Roughly speaking, by appropriately choosing the gain matrices, K2, K2, 

and Ka, inequality (5.73) is ensured for Ilsil ≥ IIS, where II is the unique solution 

of the equation 

ki,min Ilsil + k2,min 118111' - ?7c = 0. 

Therefore, { SI II sI I II I I * } is an invariant set. In theory, once the sliding surface s 

enters this invariant set, it does not escape. Since s(0) = 0, the sliding surface is 

entrapped inside the invariant set from t = 0. Also, the bound of the invariant set 

11 can be arbitrarily small, by choosing large k. min or k2,min. 

By (5.53), w(t) is bounded, and 

1wi I < iill 
- Amin 

(5.74) 

By (5.55), 4 is bounded by IIII ≤ liwll + IlvIl and hence IIIl ≤ lI + IlqdII. By 

(5.56), 4, is bounded by IIrII ≤ IIdII + IIi'II + IlAwlI. By (5.54), 4 is bounded by 

11411 II I I + II II. Therefore, the system trajectories are uniformly bounded for 

t ≥ 0. Since q and 4 are bounded, IIY(q, 4, j)i' ≤ m + m III + m 114112 is 

bounded, leading to that qt is bounded, provided that -rf is modeled as (5.22) and 

Tdlis is bounded. Let i = sup (b-1 (FF - Tf + Tdjs - Y(q, 4, )P)), II1tII IIII is 

ensured. 

From (5.74) and (5.55), (5.64) follows. 

Note that the diagonal elements of i3 are all positive constants, and K1 and K2 

are diagonal matrices. Consequently, in (5.60), DK1 and DK2 can be simplified as 

two diagonal positive definite matrices, respectively. Likewise, in (5.61), DKa and 
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f)K,6 can also be simplified as two diagonal positive definite matrices. Therefore, 

(5.60) and (5.61) can be written as 

B' (bd, + f14 - KaS - KbsigY(s)) , (5.75) 

t 
TF = -B-' ((13x3 + KF + K L Fdt) (5.76) 

where Ka E 3x3, Kb E 3x3, K E and K € RU3 are diagonal, positive 

definite matrices, and K = KA = AK. 

The tracking aècuracy can be increased by using large K, and K2. More excessive 

external forces can be suppressed by using large Ka and A. However, large gain 

matrices may result in system chattering and instability. Trade-offs must be made 

when choosing these values. 

Online ZMP compensation 

Re-writing (3.45), the ZMP location is 

E3 S , M1 [x,1 (i•g'i + - 1, i,i] + L1 11ö1 
zmp Mt (k•t + g) 

Equation (5.77) can be expanded into (see Appendix A.3.2): 

Xzmp = a1O + bO + MtgXg  

M (L1 c19 + d8 + g) 

where a, b1, ci and d1 are trigonometric functions of qS = (0,, 82, 83)T. 

The variational ranges of Oj and 0j are usually very large, compared to the ranges 

of 0. Thus, a1, b1, c, and b1 are assumed nearly constant within a small sampling 

interval. Equation (5.78) can be re-organized as 

(a1 - XzmpMtci) O + 
1=1 1=1 

(5.77) 

(5.78) 

(b1 - XzmpMtdi) O + Mtg (Xg - Xzmp) = 0. (5.79) 
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If the actual ZMP is located outside of the safety region, the robot is likely to 

fall. The boundary of the ZMP safety region is denoted by Xzmp,b, and the joint 

angles when the ZMP is at the boundary of the safety region are denoted by 9i,b for 

i = 1,2,3, then 

3 

( 
i=1 

- Xzmp,bMtCi) °i,b 

3 

1=1 

( - Xzmp,bMtdi) 9i,b + Mtg (Xg - Xzmp,b) = 0-

(5.80) 

Let Xzmp = Xzmp,b - Xzmp and Oi = °i,b - j. Subtracting (5.79) from (5.80) yields 

(ai—Xzmp,bMtci)i+ 

3 

i=1 

(b1 - Xzmp,bMtdi) i ( + 28) = XzmpFy,b, (5.81) 

where F,b is the vertical GRF when the ZMP is at the boundary of the safety region, 

and 
3 

F,b = M (t Cj9j,b + dO + g) = M (,b + g), (5.82) 

with kg,b being the vertical acceleration of the hopper's CoM when the ZMP is at 

the boundary of the safety region. The actual value of F,b is unknown and hard to 

predict since 91,b and °i,b are unknown. In this work, the measured value F is used 

to replace F,b, based on an additional assumption that F,b F,. Thus, 

(a - Xzinp,bMtCj) O + 
1=1 i=1 

(b i-  Xzmp,bMtdi) Oi + 2O) = .kzmpFy, (5.83) 

To maintain the ZMP within the safety region, the pre-planned joint trajectories 

can be modified in real time according to (5.83). Note that (5.83) is a scalar equation 

with three unknowns (di for i = 1, 2, 3) and there are infinite solutions to online ZMP 

compensation. In this work, the pitch angle of the upper body, i.e. 9, is chosen to 

be adjusted online. Thus, (5.83) can be simplified as 

(ai - Xzmp,bMtC1) 01 + (b1 - Xzmp,bMtdl) O (01 + 261) = XzmpFy, 
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which can be changed into 

XzmpFy bi - Xzmp,bMtdl (2O1 + ) . 
a1 Xzmp,bMtC1 a1 X zmp,bMtC1 

(5.84) 

By assumption, X zmp and F can be measured with satisfactory accuracy. Since 0 

for i = 1) 2, 3 can be measured accurately in real time, a1, b1, c1, and d1 can be 

computed online. Integrating twice both, sides of (5.84), with the initial values of 01 

and 01 being set as zero, gives the compensation angle O. 

The stability of the closed-loop control subsystem can be analyzed by using the 

same arguments for the stance phase, with q being modified online. 

5.3 Simulations 

Simulations have been carried out to verify the effectiveness of the control laws (5.32), 

(5.59), and the online ZMP compensator (5.84). The desired joint trajectories, i.e. 

q, qds and their 1st and 2nd order derivatives, have been generated by using dynamic 

optimization reported in Chapter 3 (also in [42]). 

5.3.1 Simulation strategies 

First of all, it is worth pointing out that accurate position tracking for legged robots 

is not necessary. Instead, landing at the right time at the right foothold is more 

significant. More importantly, safe operation is always the primary concern. In the 

simulations, large convergence times T(f, and are chosen to achieve smooth joint 

trajectories. In general, T is chosen in [O.85Td, O.95Td] with Td being the phase du-

ration. If T is small, the actual joint trajectories converge to the desired references 

quickly, often resulting in large joint accelerations during the transient time. The 
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resultant gait can hardly be elegant. In the stance phase, quick convergence may 

cause the robot to lose its balance, since the ZMP is very sensitive to the joint accel-

erations, as suggested by (5.78). Moreover, the GRFs may become very large, due to 

the inter-dependency between the GRFs and the joint accelerations, as described by 

(5.82). As a result, the robot is likely to be damaged. Whenever the robot is at risk 

of a damage due to large GRFs or at risk of a fall due to loss of balance, a temporary 

retrieval motion has to be taken, sacrificing the accuracy of position tracking. 

For rigid legged robots, the large GRFs may affect the measurement accuracy. 

In general, the joint angles can be measured with high accuracy. However, joint 

velocities may contain strong noise. Also, the real system may deviate from the 

nominal model due to parameter uncertainties. Therefore, in the simulations to be 

presented, the initial joint angles are randomly perturbed by ±2%. The initial joint 

velocites and all system parameters are randomly perturbed by ±5%, respectively. 

To simulate the viscous friction force Tf and the external disturbances Tdjs, all viscous 

friction coefficients of the joints are set to be 0.01 ± 5%Nms, and all joint torques 

are perturbed by white noise with zero mean and limited variance (a2 ≤ 2.0). 

Particularly, to simulate the external forces in the stance phase, two external 

forces, in horizontal and vertical directions, respectively, are applied to the robot's 

CoM. It is expected to see that they are suppressed by using the force-suppression 

module. For both the flight phase and the stance phase, 'y is chosen to be 0.8. 

5.3.2 The flight phase 

In the flight phase, the control parameters are listed in Table 5.1. Figs. 5.2 and 5.3 

show the joint angles and joint velocities. The solid curves represent the references, 
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Table 5.1: Parameters of the controller in the flight phase 

Parameters Values 
Af 
Klf 
K2f 

diag(30, 30, 30) 
diag(25, 25, 25) 
diag(50, 50, 50) 

and the dashed curves are the actual joint trajectories. At the end of the flight 

phase, the actual joint trajectories converge to their references with small errors 

(Fig. 5.4). The three generalized coordinates are represented by solid, dotted, and 

dashed curves. These discrepancies, even small, may cause the ZMP at the beginning 

of the next stance phase out of the safety region. Fig. 5.5 shows the joint torques 

which appear noisy due to the noise intentionally added to the system. The joint 

torques are within their physical limits. As a comparison, Fig. 5.6 presents the joint 

torques when the traditional sliding mode s = q-+ Aq is used. In this trial, no friction 

force and external disturbances are applied. Clearly, the controller proposed in this 

chapter performs better. Especially, in the beginning of the flight phase, the control 

signals do not jump dramatically to compensate for the deviation of the initial state. 

The proposed controller stabilizes the system from the very beginning, due to the 

absence of the reaching surface. 

5.3.3 The stance phase 

In the stance phase, the controller contains three modules: the position-tracking 

module, the force-suppression module, and the ZMP compensator. To verify the 

effectiveness of these control modules, three control schemes are tested: 
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1. Scheme- 1: only the position-tracking module is turned on; 

2. Scheme-2: the position-tracking and the force-suppression modules are switched 

on; 

3. Scheme-3: all of the three modules are applied simultaneously. 

The parameters of the proposed controller are listed in Table 5.2. 

The two external forces, with magnitude of 65N and 75N, respectively, are acting 

at 0.0573s after the touchdown, and last for 0.01s. 

The results corresponding to the three control schemes are compared in the Figs. 

5.7 - 5.14. The columns in Figs. 5.7 - 5.9 show 0, 01, 02, 02, 03, and 0, respectively. 

Each row in the figures correspond to the Scheme- 1, 2, and 3. Solid curves stand for 

the references, and dashed curves for the actual joint angles or actual joint velocities. 
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Table 5.2: Parameters of the controller in the stance phase 

Parameters Values 
AS 

K 
K 

Ka 
Kfl 

diag(35, 35, 35) 
diag(44, 44,44) 
diag(50, 50, 50) 
diag(10, 10, 10) 
diag(350, 350, 350) 

When Scheme-3 is applied, the actual 01 and O do not converge to the pre-planned 

references. The tracking accuracy is sacrificed such that the ZMP trajectory remains 

within the range of the support foot. Tracking errors are shown in Figs. 5.10 and 

5.11. Note that when Scheme-3 is employed, the angle error and velocity error are 

actually O + O - 0,d and 0 + O - ° d' respectively. After the convergence time I, 

all tracking errors are small. For the three control schemes, all final angle errors are 

within ±0.0015 radians (±0.086 degrees) and all final velocity errors are within ±0.06 

radians per second (±3.44 degrees per second). The actual joint trajectories appear 

smooth, in the presence of parameter uncertainties, viscous friction, and external 

disturbances. 

Fig. 5.12 demonstrates the joint torques. The solid, dashed, and dotted lines 

correspond to the Scheme- 1, 2, and 3, respectively. The torques are infected by 

noise added intentionally to the system. When the force-suppression module is active, 

immediately after the external forces are applied, the joint torques change abruptly 

to reject the external forces. The excessive vertical GRF is reduced from more than 

240N to about 213.9N (the bottom graph of Fig. 5.14). As a contrast, the maximum 

horizontal GRF (in the top graph of Fig. 5.14) does not drop much, since it is less 
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than ItFy for = 0.6. Clearly, the force-suppression module works. 

Fig. 5.13 illustrates the ZMP trajectories for the three tests. The safety region 

is set to be identical to the foot range. In other words, if —0.05m < Xfl1P ≤ 0.15m 

satisfy, the hopping gait is stable. When Scheme-1 is employed, the ZMP is pushed 

backward by the external forces (see Fig. 5.14) to the hind of the safety region 

during 0.05s < t < 0.135s (top graph of Fig. 5.13). Use of Scheme-2 relieves the 

risk of damage, but the risk of falling remains, since the ZMP trajectory violates the 

stability criterion twice (middle graph of Fig. 5.13). Scheme-3 helps to maintain the 

ZMP trajectory within the safety region, while the GRF profiles are within permitted 

values. 

In simulations, the location of ZMP is calculated by using (5.78), which is sensitive 

to the joint accelerations. Consequently, the ZMP trajectory often goes outside of 

the safety region, even though the online ZMP compensator is switched on. Actually, 

for fast gaits, applicability of the ZMP stability criterion is controversial [71, 151, 

153, 92]. In this work, the ZMP trajectory is treated as a weak stability indicator. 

A ZMP that is located outside of the safety region does not necessarily make a fall, 

but a ZMP that is closer to the center of the safety region has higher stability. The 

online ZMP compensator helps to improve the running stability, by sacrificing the 

tracking accuracy. 

5.4 Summary 

In this chapter, a novel hopping control algorithm was presented. In the flight 

phase, a position-tracking controller was proposed based on the finite-time stability 
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theory. The sliding surface is specially designed and no reaching surface is needed. 

The desired tracking errors are modeled as a set of 3 order polynomials and are 

embedded into the sliding surface. By appropriately choosing the control gains, the 

sliding surface can be maintained within a small neighborhood of zero. Thus, the 

actual tracking errors converge to the vicinity of the desired tracking errors. Since 

the convergence time can be arbitrarily chosen, the resultant joint trajectories can 

be very smooth, and the resultant flight phase appears elegant. In spite of the 

parameter uncertainties, the viscous friction in the actuators, and the unpredictable 

external disturbances, the system trajectories converge to the desired values in finite 

time with high accuracy. 

In the stance phase, the controller is composed of three modules, the position-

tracking module, the force-suppression module, and the online ZMP compensator. 

The position-tracking module is designed in the same way as that in the flight phase. 

PT terms, with the excessive external forces being the inputs, are adopted as the 

force-suppression module. The control gains can be chosen such that the tracking 

errors, including the position errors and the excessive external forces, converge to 

the vicinity of zero along the desired errors. Moreover, the online ZMP compensator 

aims to modify the desired hip angle in real time. If the actual ZMP tends to go 

outside of the safety region, this module is switched on to force the ZMP to move 

closer to the center of the safety region. Thus, the running stability can be improved. 

Simulation experiments showed that the proposed control algorithm works sat-

isfactorily for hopping of an articulated leg. One of the future work directions is to 

extend the algorithm to bipedal running control. 



Chapter 6 

Hybrid Finite-Time Control Designs for Bipedal 

Running 

Compared with the one-legged hoppers, the bipedal robots are more versatile since 

they can perform different gaits. Therefore, the bipedal robots have the potential 

to work in practical applications, and study of bipedal robots is in essence more 

significant than study of one-legged hoppers. In this chapter, the control algorithm 

presented in Chapter 5 is extended to bipedal running. The desired joint trajectories 

are obtained by the offline running gait generator discussed in Chapter 4. 

The hopper shown in Chapters 3 and 5 is a fully-actuated system with as many 

control inputs as system DOFs [17]. In contrast, the running biped under study is 

an over-actuated system in which the number of actuators is more than the number 

of system DOFs [77], without considering the two DOFs of the CoM trajectory in 

the flight phase (since they cannot be manipulated by changing the joint torques). 

This difference implies that the control algorithm fOr the one-legged hopper cannot 

directly be applied to bipedal running if no modifications are made. 

Fortunately, due to similarity between one-legged hopping and bipedal running 

(see Chapter 2), the control designs in this chapter are similar to those in Chap-

ter 5. Section 6.1 presents the control algorithm for bipedal running. Section 6.3 

demonstrates the simulation results. Some concluding remarks are given in 6.4. 
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Figure 6.1: The model of the planar biped 

6.1 The control algorithm 

The control algorithm for bipedal running is briefly discussed in the following sub-

sections. Stability analysis is ignored since it can be carried out in the same way as 

that in Chapter 5. 

6.1.1 The bipedal model 

The biped model is re-drawn in Fig. 6.1. The meanings of all parameters are identical 

to those in Section 4.1. 
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6.1.2 The flight phase 

In the flight phase, the biped has 7 DOFs, and the vector of generalized coordinates 

can be chosen as qf = (Xg, Yg, 01, 02, 03 04, 95)T. 

The practical model of the flight phase 

At this moment, suppose that no parameter uncertainties and external disturbances 

are considered. By denoting q = (Xg, } g)T, and q2f = (01, 02, 03, 04 85)T, the flight 

phase can be modeled as 

D,f4,f + Gf = 0, 

= B2r, 

(6.1) 

(6.2) 

where D = diag(Mt, Mt), G = (0, Mtg), D E 5x5 is the symmetric, positive 

definite inertia matrix, D E 5x5 is the matrix containing the Centrifugal and 

Coriolis terms, . -r = (r1, T2, r3, r4,r5,r6)T, and B2 E R 5X6 is a constant coefficient 

matrix of r. In the remaining of this subsection, the superscript 'f' will be dropped 

if no confusion is introduced. 

Equation (6.1) implies that the CoM of the biped cannot be manipulated in the 

flight phase. The control actions can only influence the joint angles, governed by 

(6.2). In (6.2), the number of generalized coordinates is 5, and the number of control 

inputs is 6. Therefore, equation (6.2) describes an over-actuated system. 

Considering the parameter uncertainties, viscous frictions, and the external dis-

turbances, the model (6.2) is extended as: 

D2(q2)2 + H2 (q2, 42) 42 = B2  - Tf + Tdis, (6.3) 



151 

where 'i-i contains the torques caused by viscous friction forces, Tdis represents the 

torques due to external disturbances. D2 and H2 are composed of nominal and 

uncertain parts, respectively. D2 is bounded, ff2 is chosen such that D2 - 2112 is 

skew-symmetric, and the LHS of (6.3) is linear in parameters, i.e., 

D2j2 + H22 = Y(q2, q2, 

with Y(q, q, q2) and P being the regressor and parameter vector. 

The following assumptions are made: 

1. The external disturbance torque TdIS is bounded by IITdisI 17d. 

2. The viscous friction torque can be modeled as [108] 

Tf = K1'2, 

(6.4) 

(6.5) 

where Kf = diag(kf,1, kf,2,••• , with kf,1 > 0 for i = 1, 2,• , 5, and denote 

ki,max = max(kf,l, kf,2, . . . ) k,5). 

3. Suppose the nominal parameter is P. The system uncertainty Y(P - P) =  YP 

is assumed to be bounded by IIYP II ≤ m0+m1 IIq2Il + m2 IIq2II [31, 159], where 

mi >0 for i = 0, 1,2. 

4. The complex effect of system uncertainties, viscous frictions, and external dis-

turbances is bounded, i.e., 

+ IlKf'2II + IITdisI1 ≤ m(q2, q2), 

where 77t(q2,'2) =mo+millq2ll + m2lI2II2+kr,mII2lI +?7ci. 
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Control design for the flight phase 

Define the tracking error 

42 = q2 - q2,d, 

where q2,d consists of the desired joint angles. 

Define a sliding surface 

where A = diag(Ai, A2, 

(6.6) 

s = q2+Aq2—i(t)—Av(t), (6.7) 

'th(t)+Aw(t), (6.8) 

= 42 - q2,, (6.9) 

,A5),A1>0 for i=1,2,... ,5,Amin 

v(t) is the desired tracking error, and 

= min(A1, A2, • . ) A5), 

q2,r = 42,d -  A 2 + i'(t) + Av(t), (6.10) 

W (t) = q2—v(t). 

The desired error trajectory v(t) is defined as (5.28). Note that v(0) = 42(0), i(0) = 

q2(0), w(0) = 0 and s(0) = 0. 

Differentiating both sides of (6.10) gives 

q2,d - A 2 + '(t) + Ai) (t). 

Theorem 6.1.1. For the system (6.3), if the following controller is applied: 

= B (1322,r + 11242,r - K1s - K2sig )'(s)), 

= B (Y(q2,42,42,r,42,r)P — K     1s - K2sig(s)), 

(6.11) 

(6.12) 

where B = B(B2Bfl' E 6><5 is the Moore-Penrose pseudo-inverse of B2 /53], 

KI = diag(ki,i, k1,2, . . . , k1,5), .[ 2 = diag(k2,1, k2,2, . . . , k2,5), k1, > 0 for i = 1, 2;j = 
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1, 2,••• , 5, b2 and ft2 are the nominal parts of D2 and H2, respectively, then the 

system trajectories are uniformly bounded for t ≥ 0, and the bound of the sliding 

surface is Ilsil ≤ IIsII, where IlsiL is the unique solution of the equation 

ki,min lisil + k2,min 11811' -  = 0, (6.13) 

with 'y E (0, 1), ki,min = min(ki,i, k1,2, , k1,5), k2,min = min(k2,i, k2,2, • ) k,5), and 

nc = sup (it(q, 42)). 
q2,q2E 5 

Moreover, the tracking errors are bounded by 

ivii - ≤ 1q2,11 ≤ IiI + 
Amin 'min' 

where q2,j and vi are the i1h elements of 42 and v, respectively. 

Proof: Multiplying both sides of (6.12) by B2 gives: 

B2'r = Y(q2, 42, q2,, 42,,)P -  K1s - K2sig7(s). 

Mimicking the proof of Theorem 5.2.4, the conclusions can easily be drawn. 

6.1.3 The stance phase 

(6.14) 

(6.15) 

(6.16) 

El 

In the stance phase, the robot possesses 5 DOFs. The vector of generalized coordi-

nates is chosen as qS = (si, 02, 03, 04 05)T. 

The practical model of the stance phase 

The practical model of the stance phase may be expressed as 

Ds(qs) 4s + Hs(qs, 4s) 4s + Gs (q') = Br - r + JT(qS) + r, (6.17) 
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where Ds(qs) E R515 , Hs(qs, S) E 5x5, and Gs(qs) E are the symmetric, positive 

definite inertia matrix, the matrix containing the Centrifugal and Coriolis terms, and 

the gravitational vector, respectively, r E R6 is the vector of joint torques, B E 5x6 

is the constant coefficient matrix of r, r represents the torque caused by the viscous 

friction forces, Jg(qS) E RIX5 is the Jacobian mapping from the robot's CoM to the 

ankle of the support leg, F is the vector of excessive external forces equivalently 

applied to the robot's CoM, and represents other external disturbances. For 

clarity, the superscript "s" disappears in the remaining of this subsection, unless 

ambiguity is introduced. 

With the same arguments as those in Chapter 5, the excessive external forces can 

be mapped to the joint space via the Jacobian Jg: 

= 

Without the superscript "s", the stance model (6.17) can be re-written as 

Br—rf+rF+'1-dIs—b—ft—, 

= Br — rf+rF+7-d1 — Y(q,)P, (6.18) 

where (.) and (.) are the nominal and uncertain parts of ( V), and () +  

Control design for the stance phase 

The tracking error is defined as 

4=q — qd. (6.19) 

The desired error trajectory v(t) is defined in a similar way as (5.28), with the 

convergence time being T. 
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Define a sliding surface 

S(t) q +A—i(t) —Av(t), (6.20) 

= t(t)+Aw(t), (6.21) 

= - (6.22) 

where 

W (t) = 4 —v(t), (6.23) 

= q—Aq+v+Av. (6.24) 

The absolute tracking error w(t), with the bias v(t) removed, is expected to evolve 

along zero. Differentiating both sides of (6,24) leads to 

= qd—Aq+v+Av. (6.25) 

Clearly, w(0) = 0 and s(0) = 0. 

Denote the estimate of TF by F, and 

rF=J(q)F, (6.26) 

where Jg(q) is the estimate of Jg (q). 

Theorem 6.1.2. For the system (6.18), if 

1. the following controller is applied: 

TTp+TF, (6.27) 
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with 

B# (b4, + k4 + 13 —DK1s - bK2sig'(s)), (6.28) 

position—tracking module 

TF = B# ((15X5+ DKa)TF + bK JO rdt) (6.29) 

force—suppression module 

where B# = BT (BB T)_l (=- 6x5 is the Moore-Penrose pseudo-inverse of B, 

K1 = diag(ki,1, k1,2, • • , ki,5), .K2 = diag(k2,j, k2,2, • , k,5), kij > 0 for i = 

172;j = 1, 2,••. , 5, K E R 5X5 and Kp E R>< are diagonal, positive definite 

matrices,-

2. to suppress the external forces, each joint is desired to behave like a damper, 

complying with 

= h0ti) + h1tb, (6.30) 

where h0 E RIxI and h1 € RIxI are diagonal, positive definite gain matrices, 

representing the desired moment of inertia and the desired damping ratio. h0 

and h1 can be picked arbitrarily to satisfy the design specifications; 

then 

1. the system trajectories are uniformly bounded for t ≥ 0, and the bound of the 

sliding surface is IIsM ≤ IIslI, where IlslI is the unique solution of the equation 

k,min IIII + k2,min ISIl' - llc = 0, (6.31) 

with y E (0, 1), k,min is the minimum element of the matrix K = K1 + Kh1, 

k2,min = min(k2,1, k2,2,.•• ) k2,5), 7c = SUP 13_1 (-T, - Tf + Tdis - Y(q, 4, 4)P)  11, 
and TF = - 
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. the tracking errors are bounded by 

IIsII I IviI-----≤IiI≤IviI+IsII 
m min in 

where qi and v1 are the i1h elements of 4 and v, respectively. 

(6.32) 

Proof: Making use of the equality BB# = 15,15, and mimicking the proof. of 

Theorem 5.2.5, the conclusions of Theorem 6.1.2 follow. 

Online ZMP compensation 

Re-writing (4.33), the ZMP location is 

EL1 M1 [x,1 + -  ygi--•gj 

Xzmp = 
+EL1I1o1 

Mt (kg +g) 

Equation (6.33) can be expanded into (see Appendix B.3.2) 

Xzmp = Ei5=1 a101 + E b1O? + MtgXg  

Mt (E1 c1O + E d16? + g)' 

where a1, b, c1 and d1 are trigonometric functions of qS = (01, 62,"• , 

The boundary of the ZMP safety region is denoted by Xzmp,b, and Xzmp = 

Xzmp,b - Xzmp. The actual ZMP location can be changed by adjusting the torso 

pitch angle in real time. Denote the desired torso pitch angle when the ZMP is at 

the boundary of the ZMP safety region by ° 1,b, and 9] = 01,b - 9. With simple 

derivations similar to those in Chapter 5, it can be obtained that 

U. 

(6.33) 

(6.34) 

=  XzmpFy b1 -  Xznp,bMtdl (2O1 + ) 1, (6.35) 
a1 - Xzmp,bMtCl a1 - Xzmp,bMtC1 

where F1 is the vertical GRF, as before. 
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Integrating twice both sides of (6.35), with the initial values of 0 and Ui being 

set as zero, gives the compensation angle Ui. Note that the mass and inertia of 

the hind leg are small, and hence little placement change of the hind leg does not 

apparently influence the ZMP location. Adjustment of the torso pitch angle offers a 

better solution to biped stabilization. 

Stability analysis of the closed-loop system can be conducted in the same way as 

that of the one-legged hopper. 

6.2 Remarks on the control algorithm 

The following remarks may help to understand the design idea of the control algo-

rithm: 

1. The basic idea of the control algorithm is essentially the same as that for the 

hopper. Both of them are based on the finite-time control theory, and Haimo's 

finite-time function plays important roles. 

2. Since the biped is over-actuated, B2 and B, the coefficient matrices of r in 

different running phases, are not square. Thus, their corresponding Moore-

Penrose pseudo-inverse matrices have to be used in the control designs. 

3. For more complicated tasks, subtask optimizations can further be employed. 

This treatment has been widely adopted in redundant manipulators [69, 52, 

164, 70, 142, 98]. 
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6.3 Simulation results 

Simulations have been done to verify the efficacy of the control laws (6.12), (6.27), 

and the online ZMP compensator (6.35). The desired joint trajectories are generated 

by using dynamic optimization reported in Chapter 4. 

Same as Chapter 5, all system parameters are randomly perturbed by ±5% to 

mimic the parameter uncertainties. The initial joint angles and initial joint velocities 

are randomly perturbed by ±2% and ±5%, respectively, to account for the measure-

memt inaccuracy. Viscous friction coefficients take 0.01 ± 5%Nms. All joints are 

infected by white noise with zero mean and variance of 2.0 (i.e. o2 = 2.0). For all 

running phases, 'y = 0.8. 

6.3.1 The flight phase 

In the flight phase, the control parameters are listed in Table 6.1. Figs. 6.2 and 

6.4 show 01, üi, 02, and 62, respectively, with the conventions that the solid curves 

stand for the references, and the dashed curves represent the actual angles and the 

actual angular velocities (see the legends in the graphs). The corresponding tracking 

errors are shown in Figs. 6.3 and 6.5. The evolutions of other angles and angular 

velocities come out similar, and hence are not presented here. At the end of the 

flight phase the angle errors are within ±0.004 radians (or ±0.23 degrees), and the 

velocity errors are within ±0.25 radians per second (or 14.4 degrees per second). For 

practical tasks, the tracking performance is satisfactory. In Fig. 6.6, from top to 

bottom, the torques, of the hips, the knees, and the ankles, are shown. The swing 

leg and the support leg are represented by the solid and dashed curves, respectively. 
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Table 6.1: Parameters of the controller in the flight phase 

Parameters Values 
Af 
K f I 
K2f 

diag(15, 15, 15, 15, 15) 
diag(30, 30, 30, 30,30) 

diag(150, 150, 150, 150, 150) 
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78 
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50 

" 0 CO 
5) 

—50 
a,-

-100 

—150 

200o 

- Desired 
- - Actual 

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 02 

- Desired 
Actual  

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 02 

Time (s) 

Figure 6.2: 01 and Oj in the flight phase 

Clearly, they are infected by the noise added artificially to the system. 

6.3.2 The stance phase 

In the stance phase, at 0.0866s after the touchdown, two external forces with ampli-

tude of 65N and 85N, in horizontal and vertical directions, respectively, are applied 

to the biped's CoM, and they last for 0.01s. Three simulation strategies, termed 

Scheme- 1, Scheme-2, and Scheme-3, respectively, are tried. They are explained as 
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follows: 

1. Scheme- 1: only position-tracking module is applied. 

2. Scheme-2: the position-tracking module and the force-suppression module are 

turned on. 

3. Scheme-3: all of the three control modules are used. 

The parameters of the controller are listed in Table 6.2. Figs. 6.7 - 6.9 show the 

trajectories of 01 and O1, corresponding to the three strategies, respectively. When 

Scheme-3 is active, the tracking error of 01 is actually 9 + 071 - 01,d and the error 

of 0 is defined as 0 + 9 - d. The actual signals (dashed curves) converge to 

the references (solid curves) with small tracking errors after the convergence time 1 

(Fig. 6.10). 

Scheme- 2 and 3 deteriorate slightly the tracking accuracy of the support leg 

(Figs. 6.15 - 6.18), but do not degrade the tracking performance of the swing leg, as 

shown in Figs. 6.11 - 6.14. For all of the three strategies, the maximal final errors 

of the angles and the angular velocities are 0.006 radians (or 0.35 degrees) and 0.4 

radians per second (or 22.9 degrees per second), respectively. 04, 04, 05, 05, and their 

tracking errors are not presented, for conciseness of the thesis. 

The GRFs and ZMP trajectories are shown in Figs. 6.19 and 6.20. The safety 

region is set to be within [-0.05m, 0.15m], same as the foot range. When Scheme-1 

is tested, large vertical GRF arises three times (bottom graph of Fig. 6.19). The 

ZMP trajectory goes outside of the safety region twice (top graph of Fig. 6.20). If 

Scheme-2 is employed, the large vertical GRF values are greatly reduced to 235.9N, 
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Table 6.2: Parameters of the controller in the stance phase 

Parameters Values 
A S diag(15, 15, 15, 15, 15) 
Ks diag(30, 30, 30, 30, 30) 
K2s diag(150, 150, 150, 150, 150) 

Ka diag(30, 30, 30, 30, 30) 
K13 diag(450, 450, 450, 450, 450) 

233.9N, and 230.8N, respectively. They are still greater than 2Mg, the permitted 

maximal vertical GRF value. To protect the robot, passive force-reducing elements, 

e.g. springs or rubber pads, can be installed in the feet [50, 27, 102]. Unfortunately, 

use of Scheme-2 cannot guarantee satisfaction of the ZMP trajectory (middle graph of 

Fig. 6.20). Scheme-3 produces satisfactory vertical GRF profile and ZMP trajectory 

simultaneously, with trivial deterioration of tracking accuracy. The torques of the 

hips, the knees, and the ankles are shown in sequence as Figs. 6.21 - 6.23. They are 

noisy, infected by the white noise intentionally injedted to the system. 

6.4 Summary 

In this chapter, the control algorithm for the one-legged hopper, discussed in Chap-

ter 5, was extended to bipedal running with two modifications. Vectors and gain 

matrices possess higher dimensions. Moore-Penrose pseudo-inverse of the coefficient 

matrix of r was used to resolve the joint torques. 

The basic structure of the control algorithm for the hopper was inherited. The 

flight controller focuses only on position tracking. The stance controller consists 

of three modules: a position-tracking module, a force-suppression module, and an 
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online ZMP compensator. Their effectiveness was verified by simulations. 



Chapter 7 

Conclusions and Future Work Directions 

This thesis concentrates on running synthesis and running control designs for robots 

with one and two articulated legs. Although success of SLIP hoppers and bipeds 

with compliant legs suggests promising possibilities in constructing running robots, 

no compliant elements have been considered in the robot models studied in this 

thesis. Without use of compliant elements, the robots suffer very large impulsive 

impacts from the ground. This challenge distinguishes the rigid running robots from 

the compliant running robots and the walking machines. It is believed that solutions 

to this problem offer new understanding of bouncing gaits, which may facilitate 

development of more versatile one- and two-legged robots that can adjust gaits in 

real time and are ready for practical tasks. 

Concluding remarks are given in Section 7.1. Future research directions are pro-

posed in Section 7.2. 

7.1 Concluding remarks 

Two sub-projects have been discussed in previous chapters. Chapter 3 and Chapter 

5 deal with hopping synthesis and hopping control designs, respectively. The tech-

niques are then extended to synthesize and stabilize bipedal running in Chapter 4 

and Chapter 6 with minor modifications. 

Directly inspired by new observations in biological sciences and biomechanical 

174 
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analysis, it is assumed that the energy consumed by the robot in the flight phase 

is small when the robot hops or runs on flat even ground. This assumption is 

the cornerstone of this thesis. By using energy analysis, the assumption has been 

formulated as a simple static optimization problem, whose solutions provide the 

initial joint velocities of the flight phase with the boundary joint angles given in 

advance. The running gait can then be generated by dynamic optimization. 

The forward speed of the robot cannot be altered during the flight phase. One 

goal of the stance phase is to prepare the correct initial 9tates for the subsequent flight 

phase such that the desired stride length, landing height, and forward speed can be 

reached within error tolerances. The stance phase is also responsible for interaction 

between the robot and the ground. The robot may be damaged due to large GRFs. 

Meanwhile, large GRFs introduce large tipping moment about the support foot, and 

consequently, the robot loses its balance and falls down. To address the above two 

issues, a novel controller has been proposed. The controller is composed of three 

modules: a finite-time position-tracking module, a force-suppression module, and an 

online ZMP compensator. The finite-time position-tracking module helps to prepare 

desired initial conditions for the subsequent flight phase. The force-suppression mod-

ule rejects most of the excessive GRFs. The online ZMP compensator pushes the 

actual ZMP location closer to the center of the safety region, such that the stance 

stability can be improved. 

To improve landing accuracy, a finite-time position-tracking controller is also 

employed in the flight phase. 

Clearly, the finite-time control algorithm forms the basis of the whole control 

system. In this work, 3?d order polynomials have been adopted as the desired tracking 
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errors. The coefficients of the polynomials are chosen in such a manner that the 

reaching surface is removed and the sliding surface always contains the initial states of 

the system. Thus, the control system is highly robust to parameter uncertainties and 

external disturbances. Simulations verify the effectiveness of the control algorithm. 

Compared to synthesis and control designs for bipedal running, hopping synthesis 

and hopping control designs have been explained in more details. This does not mean 

that hoppers are more important than bipeds. There is no doubt that bipeds are 

more versatile and more suitable for practical use than hoppers. As a good stepping 

stone, the one-legged hopping model provides sharp insight into the problem, and 

thus greatly simplifies the formulations and discussions. Starting directly from a 

robot with complicated mechanical structure may result in daunting equations (see 

e.g. [88]). 

7.2 Future research directions 

Running with rigid articulated legs has been shown difficult by recent experimental 

practices [92, 74]. Numerous questions are to be answered. Explorations of the 

following ideas are direct extensions of the work reported in this thesis: 

1. In this thesis, the feet are assumed to be parallel with the ground for safe 

landing. This may not be necessary. When a human is running, the swing leg 

folds compactly in the beginning of the stance phase, resulting in easier recovery 

motion of the swing leg and less energy cost of the gait. This observation may 

be utilized to synthesize more efficient and more elegant bouncing gaits for 

legged robots. Unfortunately, this treatment complicates the stance phase. A 
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heel-strike happens first, a rotation of the support foot about the heel then 

occurs, followed by a second collision of the sole with the ground. The simple 

collision model employed in this thesis may not be plausible anymore. 

2. In this thesis, all motions take place in the sagittal plane and only planar 

robot models have been studied. More realistic 3D robot models may help to 

understand better the principles of legged locomotion systems. The effects of 

the yaw moments caused by the swing leg should be examined. 

3. Optimization of the flight phase can be very quick with the help of the assump-

tion (Al). Unfortunately, optimization of the stance phase is time-consuming. 

It is desirable to generate the running gaits in real time. A more efficient 

algorithm for synthesis of the stance phase is needed. 

4. Elastic elements should be added to the legged robots to improve energy ef-

ficiency. Recent observations in biomechanical analysis and legged robotics 

suggest that compliant bipeds can also perform multiple gaits, including walk-

ing and running [37, 130, 61, 60]. Combinations of these hardware designs with 

the fundamental assumption (Al) proposed in this thesis may lead to more ef-

ficient gaits, since collision loss can be greatly reduced due to use of compliant 

elements. Considering 3D gaits, exciting results are expected. 

5. According to above arguments, a series of robot prototypes can be built. Com-

parisons between the rigid robots and the robots with one or two compliant 

articulated legs may be interesting. The simulation predictions need to be 

verified by experiments. 
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6. Event-based finite-time control algorithm can also be tried, following the works 

done by Westervelt [151] and Morris [92]. The actual phase trajectories are 

expected to converge to the desired phase trajectories in finite time. The 

orbital stability criterion, rather than the ZMP stability criterion, has to be 

embedded into the control designs. 

Locomotion with one and two legs is an exciting subject which is still in infancy. 

The possible extensions listed above are directly inspired by the work reported in 

this thesis. New ideas sparkle whenever new observations are made, and research 

activities never stop. 
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Appendix A 

Model details of the hopper 

This appendix presents the model details of the one-legged hopper discussed in Chap-

ter 3. It may be useful for the readers who are interested in the complexity of legged 

locomotion problems. 

A.1 System constants 

Let 1g,i be the length between the CoM and the lower end of the i1h link, and r = 

lg,i/li. The system constants are listed as below: 

11M1r1  
Cl = 

C2 = 12(M1 + M2r2) 

C3 = 
13 (M1 + M2 + M3r3)  

A.2 Model details of the flight phase 

Constants for the flight phase are: 

e1 = c112(M3 + .M2(1 - 

e2 = cil3M3(1—r3), 

e3 = c2l3M3(1 - 
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Rewriting (3.12), the model of the flight phase is 

+ H(q', + G(q) = BET, (A.1) 

where D(q), H(q/), G(q'), and Bf are 

D(q) = 

H(q/) 

Q f(qf) 

B = 

Mt 0 0 0 0 

0 M 0 0 0 

Cl Cl ,-lf ,-lf _lf 
'J U U33 U'3,4 (J3,5 

Cl Cl ,-lf ,lf .-lf 
_) V U43 44 4,5 

Cl Cl ,'f ,,7f ,_lf 
V V U5,3 CL5,4 (A5,5 

00 0 0 0 

00 0 0 0 

0 0 0 h,4 h,5 

0 0 h ,3 0 h,5 

0 0 i4, h ,4 0 

0, Mg, 0, 0, o)T , (A.4) 

000 

000 

100 

—1 1 0 

0 —1 1 

(A.2) 

(A.3) 

(A.5) 
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with non-zero elements of D' (q') being 

,Jf 
U,33 

jf 
U,34 

jf 
U,35 

-If 
U,43 

U,44 

-If 
U,45 

12 2 
= 11+ 1r1Mi(M2+M3)  

M 

= ei COS (O1-02), 

= e2cos(Oi-03), 

f 
7 
U,34, 

12 (MI -  r2)2 + M3(JV[1 + M2r))  
12+ 

M 

= e3cos(82 93), 

df - ,lf 
U,53 - U,35, 

_lf - ,lf 
U,54 - U,45, 

-if 
U,55 

l(M1 + M2)M3(1 -  r3)2  
=13+ 

and non-zero elements of H(q, ) being 

7,f 
1'3,4 

= eisin(O1-92)O2, 

h,3 =' —e1 sin(O1 - 02)01, 

= e2sin(01 03)93, 

5,3 = —e2sin(01-03)Ôi, 

h,5 e3 sin (02 -  003, 

h,4 = —e3 sin(92 - 03)82. 
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A.3 Model details of the stance phase 

Constants for the stance phase are: 

ti = 

= 

t3 = 

t4 = t112, 

t5 

t6 = t213. 

A.3.1 The stance model 

Rewriting (3.39), the model of the flight phase is 

Ds(qs) + Hs(qs, 48) ds + Gs(qs) = .Br5, (A.6) 
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where DS(qS), H5(q5, s), G(q), and BS are 

D5 (q5) = 

H5(q5,á) = 

GS (q') 

AS AS 
"'12 "'13 

AS AS 
"'22 "'23 

AS AS 
"'3,2 "'3,3 

I,S 1-.S 
101,2 101,3 

(l I, IbS 
V 2,3 

I,S 
103,2 

= (gl,g2,g3) 

B5 = 

with non-zero elements of DS(qs) being 

1 00 

—1 1 0 

0 —1 1 

d,1 = Ii+lfrM1, 

= t4cos(01-02), 

d,3 = t5cos(01-03), 

- AS 
"'2,1 "'1,2' 

d,2 12 + 12(M1 + 

d,3 t6 cos(0 - 03), 

AS AS 
"'3,1 "'1,3' 

_JS 

"'3,2 "'2,3' 

d,3 I3+l(M1+M2+M3r), 

(A.7) 
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non-zero elements of HI (q', S) being 

h ,2 t4 sin (9 - 92)92, 

= —t4sin(91-82)O1, 

h ,3 t5 sin(91 - 93)93, 

h3 I = —t5sin(91-93)O1, 

14,3 t6 sin (02 - 93)93, 

14,2 = —t6 sin(92 - 93)92, 

and elements of Gs(qs) being 

gi = gt1cos(01), 

92 = gt2cos(02), 

93 = gtscos(93). 
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A.3.2 ZMP formulation 

Some variables are defined as 

a1 = c1cos(01), 

a2 = c2 COS (02), 

a3 = c3 COS (03), 

b1 = —c1sin(01), 

= —c2 sin (02), 

b3 = —c3sin(03), 

81 = ds 

83 

84 = —t4 sin(0 - 02) - t5 sin(01 - 03), 

= t4 sin(01 - 02) - t6 sin(02 - 03), 85 

86 = t5 sin(0i - 03) + t6 sin(02 - 03), 

87 = gMt ai = MtgX. 

By using the above variables, the ZMP location can be formulated as 

E3 i 'c"3 
-  1=i 8jVj 1 L11=i S3V 1 S7 

- M( 1 a1O + b10? + 
Xzmp 

+ 81+30? + MgX 

(Ygs  



Appendix B 

Model of the biped 

This appendix presents the model details of the biped discussed in Chapter 4. 

B.1 System constants 

Let lg,i be the length between the CoM and the lower end of the i1h link, and r = 

lg,i/li. The system constants are listed as below: 

11r1M1 
Cl = 

C2 = 

C3 = 

C4 

C5 = 

12 (MI +M2(1+r2) + M3)  

12(M2(1 - r2) + M3)  

13(M1+2M2+M3(1+'r3))  

M 
l3.T[3(1 - r3) 
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B.2 Model details of the flight phase 

Constants for the flight phase are: 

t1 = —c3IV4, 

t2 = —c5M, 

e1 = c1t1, 

e2 = c1t2, 

= 034, 

e4 = 

= c5t1, 

c3t2, 

= c5t2, 

Rewriting (4.7), the model of the flight phase is 

+ H(q, + G1'(q") = B1T1', (B.1) 
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where D1 (q1), H(q1, ), G(q), and B1 are 

M 0 0 0 0 0 0 

0 M, 0 0 0 0 0 

A A Al 71 ,-if ,-if d''-' '-' 3,3 3,4 3,5 3,6 3,7 

D1 (q1) = 

H1(q1,á) = 

(1 A Af' Al ,lf Al ,Jf 
U U (A'4,3 (A4,4 (A'4,5 4,6 4,7 

A A Af -if ,if ,if ,if 
U U Lb5,3 '-'5,5 Lb5 ,7 

A A Al .-if , f ,7f ,if 
(J U (A'6,3 "'6,4 Lb65 Lb6 ,6 Lb6 ,7 

A A ,Jf ,Jf ,71 ,Jf Af 
U U (A'7,3 Lb7,4 A'7,5 (A'7, Lb77 

00 0 0 0 0 0 

00 0 0 0 0 0 

A A A i-.f i,f f i,f 
U U U lb3,4 l&3,5 1b3,6 lb3,7 

0 0 h ,3 0 h ,5 h ,6 h ,7 

A A i.f 7.f fl if, 7-,f 
U U lb5,3 lb5,4 V tb5,6 lb57 

0 0 h ,3 h ,4 h ,5 0 h ,7 

A A if i, lb f f i-sf 
U U lb7,3 lb7,4 7,5 Ib7,6 

G1(q1) = (0,MtgcO,0,0,0,0)T, 

B = 

0 0 0 000 

0 0 0 000 

1 1 0 000 

-1 0 1 0 0 0 

0 -1 0 1 0 0 

0 0 -1 0 1 0 

0 0 0 -1 0 1 

(B.2) 

(B.3) 

(B.4) 

(B.5) 
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with non-zero elements of D(q') being 

,jf 
"'3,3 

U,34 

'If 
U,35 

'If 
U,36 

'If 
"'37 

= Ii + 2cirili(M + M3), 

= eicos(01-92), 

= e1 cos(01 - 

e2cos(91-94), 

= e2cos(91-95), 

= df 

12(M2(1 -  r2)2(Mi + M2 + M3) + M3(Mi + M2(1 + r) + M3)) 
4,4 12+ 2  

4,5 = e3cos(02-03), 

4,6 = e4cos(02-04), 

4,7 = e5cos(02—Os), 

df 5,3 = 4,5, 

df 5,4 = d, 

df 5,5 = 4,4, 

4,6 = e6cos(03-04), 

df 5,7 = e4cos(03—Os), 

U,64 

'If 
"'65 

'If 
U,66 

'If 
U,67 

'If 
U,4 ,6, 

f 'I 
"'56' 

13 + - r3)2(Mi + 2M2 + M3) 

= e7cos(04—O5), 
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- 

"'ff 7,3 - "'3,7' 

'-If 
"'7,4 "'4,7' 

,_If 
"'7,5 "'5,7, 

,jf 
"'7,6 "'6,7' 

Af 
"'7,7 "'6,6' 

and non-zero elements of H (qf, 4f) being 

h,4 = e1 sin(01 - 02)62, 

hf3,5 = e1 sin(01 - 03)03, 

hf 3,6 = C2 sin(01 - 04)64, 

hf 3,7 = e2 sin (Oi-05)05, 

h,3 = -e1sin(91-&2)Oi, 

h,5 = e3sin(02-03)O3, 

hf 4,6 = e4sin(02-04)Ô4, 

h,7 = e5 sin(92 - 05)O5, 

h,3 = -e1 sin(01 - 03)01, 

h,4 = -e3 sin(02 - 03)92, 

h,6 = e6 sin(03 - 0404, 

hf 5,7 = e4sin(03-05)05, 

h,3 = -e2 sin(01 - 04)91, 

h,4 = -e4 sin(02 - 04)O2, 
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h,5 = —e6 sin (03 - 84)03, 

h ,7 = e7 sin (04-05)O5, 

h,3 = —e2sin(01-85)1, 

h ,4 = —e5 sin (02 - 05)O2, 

h ,5 = —e4sin(83-05)03, 

hf 7,6 = —e7sin(84-05)O4, 

B.3 Model details of the stance phase 

Constants for the stance phase are: 

= ciM, 

t2 = 

= c3Mt, 

t4 = C4M, 

= c5M, 

e1 =  412, 

t113, 

e3 = t312, 

e4 =  4 12, 

e5 = t313, 

e6 = t513, 

e7 = t213. 
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B.3.1 The stance model 

Define some variables as follows: 

Th1 = e1sin(01-93), 

n2 = e2sin(&1-85), 

923 = e3sin(&2-93), 

124 = e4sin(82-84), 

n5 = e5 sin(02 - 85), 

fl6 = e4sin(03-94), 

n7 = e7 Sin (03 - 

fl8 = e6sin(04 - Os). 

Rewriting (4.26), the dynamic model of the stance phase is 

D(q) ds + Hs (q', 4') 4s + Gs(qs) = B5T, (B.6) 
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where D5(q5), H5(q,), G5(qs), and BS are 

Ds(qs) = 

1,1 

2,1 

d,1 

4,1 

d5 5,1 

h ,1 

2,1 

H(q) - - h,2 h,3 h,4 h ,5 

4,1 h,2 h,3 h,4 h,5 

1,s 1,s 1,S 7,s 
l&1,2 I&] ,3 1b14 lb15 

1.s 7.s I.s I-,s 
I&2,2 1&2,3 lb2,4 lb2,5 

5,1 h ,2 h,3 h,4 h,5 

Gs(qs) = (gl,g2,g3,g4,gs)T , - 

1 1 0 0 0 0 

-1 0 1 0 0 0 

o -i 0 1 0 0 

o o -1 0 1 0 

0 0 0 -1 0 1. 

Bs= 

(B.7) 

(B.8) 

(B.9) 

(B.10) 
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with all elements of DS(qs) being 

d,1 I1+rlM1, 

,IS (I 
U,1 ,2 U, 

d,3 = e1cos(91-93), 

AS 

AS 
"'1,5 

AS 
"'2,1 

AS 
"'2,2 

AS 

"'2,3 

AS 
"'2,4 

AS 
"'2,5 

S 
A 
"'3,1 

AS 

"'3,2 

AS 
(A,33 

AS 
"'3,4 

AS 
"'3,5 

AS 

"'4,1 

=0, 

= e2cos(Oi-05), 

"'1,2' 

= 12 + l(M2(1 - r2)2 + M3), 

= e3cos(02-03), 

= -e4 COS (O2-- 4), 

= e5cos(02-05), 

S 
A 

- "'13' 

= 

= I2+l(Mi+M2(1+r2)+Ms), 

= e4cos(03-04), 

= e7cos(03-Os), 

- ,1S 
1,41 

AS AS 
"'42 "'24' 

S 
A 
(A43 

AS 

"'44 

AS 
(A34, 

13 + 13M3(1 - 

= e6cos(94-05), 
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'is 
"'5,1 

- 'is 
- "'1,5' 

,is ,js 

"'5,2 "'2,5' 

,is 'is 
"'5,3 "'3,5' 

'is 
"5,4 

'is 
"'4,5' 

d,5 13 + l(M1 + 2M2 + M3(1 + r)), 

all elements of H5(q, s) being 

7,s A 
IL,1,1 - U, 

lb 
1,s - A 
1,2 - 

14,3 = n1O3, 

- A 
h '1,4 - 

S 
i 
U1,5 = fl2v5, 

7,S - A 
lb2,1 - U, 

1,s - A 
lb2,2 - U, 

7,S - LI 
U23 - fl3v3, 

LI 
h'2,4 = -fl4c74, 

LS - LI 
lb2,5 - fl5c, 

= -n1O1, 

h'3,2 
LI 

- - fl3c72, 

5 A  
7 
1b3,3 - U 

z..s - 

ll3,4 - n6 6  4, 

Iti_s3,5 --  n70 5, , 
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1_.s 01 

ts 
- fl4v, 

h,3 - —n6O3, 

i_s 
4 4 n 

It4,5 - flsus, 

= —n2O1, 

l.s 
(t5,2 = — fl5v2, 

h 3 = —n7O3, 

= —m804, 

i_s5,5  - ci 
- 

and elements of Gs(qs) being 

91 

92 

93 

94 

95 
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B.3.2 ZMP formulation 

Define some variables as 

a1 - c1cos(91), 

a2 = c3cos(82), 

a3 = c2cos(03), 

a4 = c5cos(94), 

a5 = c4cos(95), 

b1 = —c1sin(91), 

= —c3 sin (92), 

b3 = —c2sin(03), 

b4 —c5 sin (04), 

b5 = —c4 sin (05), 
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5 

s1 = ds 
1 

S2 = 

83 = 

84 = 

85 = 

5 

1 

AS 
tb2,1, 

p, = —ni—fl2, 

P2 = - fl3+fl4 - fl5, 

P3 = fll+fl3 - fl6 - fl7, 

p4 = —n4+n6—n8, 

p5 = fl2+fl5+fl7+fl8, 
5 

q = gM a1 = gMX. 
1=1 

By using the above variables, the ZMP location can be formulated as 

Xzmp =  EL1 SA + EL1 p1Ô? + q (B.11) 

M(EL1 aO + b10? + g)' 

EL1 + E15=1 pO? + MgX (B. 12) 

Mt(Y+g) 


