282 research outputs found

    Variable frame based Max-Weight algorithms for networks with switchover delay

    Get PDF
    This paper considers the scheduling problem for networks with interference constraints and switchover delays, where it takes a nonzero time to reconfigure each service schedule. Switchover delay occurs in many telecommunication applications such as satellite, optical or delay tolerant networks (DTNs). Under zero switchover delay it is well known that the Max-Weight algorithm is throughput-optimal without requiring knowledge of the arrival rates. However, we show that this property of Max-Weight no longer holds when there is a nonzero switchover delay. We propose a class of variable frame based Max-Weight (VFMW) algorithms which employ the Max-Weight schedule corresponding to the beginning of the frame during an interval of duration dependent on the queue sizes. The VFMW algorithms dynamically adapt the frame sizes to the stochastic arrivals and provide throughput-optimality without requiring knowledge of the arrival rates. Numerical results regarding the application of the VFMW algorithms to DTN and optical networks demonstrate a good delay performance.National Science Foundation (U.S.) (NSF grant CNS-0626781)National Science Foundation (U.S.) (NSF grant CNS-0915988)United States. Army Research Office (ARO Muri grant number W911NF-08-1-0238

    Dynamic Server Allocation over Time Varying Channels with Switchover Delay

    Get PDF
    We consider a dynamic server allocation problem over parallel queues with randomly varying connectivity and server switchover delay between the queues. At each time slot the server decides either to stay with the current queue or switch to another queue based on the current connectivity and the queue length information. Switchover delay occurs in many telecommunications applications and is a new modeling component of this problem that has not been previously addressed. We show that the simultaneous presence of randomly varying connectivity and switchover delay changes the system stability region and the structure of optimal policies. In the first part of the paper, we consider a system of two parallel queues, and develop a novel approach to explicitly characterize the stability region of the system using state-action frequencies which are stationary solutions to a Markov Decision Process (MDP) formulation. We then develop a frame-based dynamic control (FBDC) policy, based on the state-action frequencies, and show that it is throughput-optimal asymptotically in the frame length. The FBDC policy is applicable to a broad class of network control systems and provides a new framework for developing throughput-optimal network control policies using state-action frequencies. Furthermore, we develop simple Myopic policies that provably achieve more than 90% of the stability region. In the second part of the paper, we extend our results to systems with an arbitrary but finite number of queues.Comment: 38 Pages, 18 figures. arXiv admin note: substantial text overlap with arXiv:1008.234

    Scheduling algorithms for throughput maximization in time-varying networks with reconfiguration delays

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 247-258).We consider the control of possibly time-varying wireless networks under reconfiguration delays. Reconfiguration delay is the time it takes to switch network resources from one subset of nodes to another and it is a widespread phenomenon observed in many practical systems. Optimal control of networks has been studied to a great extent in the literature, however, the significant effects of reconfiguration delays received limited attention. Moreover, simultaneous presence of time-varying channels and reconfiguration delays has never been considered and we show that it impacts the system fundamentally. We first consider a Delay Tolerant Network model where data messages arriving randomly in time and space are collected by mobile collectors. In this setting reconfiguration delays correspond to travel times of collectors. We utilize a combination of wireless transmission and controlled mobility to improve the system delay scaling with load [rho] from [theta](1/(1-[rho])²) to [theta](1/1-[rho]), where the former is the delay for the corresponding system without wireless transmission. We propose control algorithms that stabilize the system whenever possible and have optimal delay scaling. Next, we consider a general queuing network model under reconfiguration delays and interference constraints which includes wireless, satellite and optical networks as special cases. We characterize the impacts of reconfiguration delays on system stability and delay, and propose scheduling algorithms that persist with service schedules for durations of time based on queue lengths to minimize negative impacts of reconfiguration delays. These algorithms provide throughput-optimality without requiring knowledge of arrival rates since they dynamically adapt inter-switching durations to stochastic arrivals. Finally, we present optimal scheduling under time-varying channels and reconfiguration delays, which is the main contribution of this thesis. We show that under the simultaneous presence of these two phenomenon network stability region shrinks, previously suggested policies are unstable, and new algorithmic approaches are necessary. We propose techniques based on state-action frequencies of Markov Decision Process theory to characterize the network stability region and propose throughput-optimal algorithms. The state-action frequency technique is applicable to a broad class of systems with or without reconfiguration delays, and provides a new framework for characterizing network stability region and developing throughput-optimal scheduling policies.by Güner Dinc̦er C̦elik.Ph.D

    Customer premise service study for 30/20 GHz satellite system

    Get PDF
    Satellite systems in which the space segment operates in the 30/20 GHz frequency band are defined and compared as to their potential for providing various types of communications services to customer premises and the economic and technical feasibility of doing so. Technical tasks performed include: market postulation, definition of the ground segment, definition of the space segment, definition of the integrated satellite system, service costs for satellite systems, sensitivity analysis, and critical technology. Based on an analysis of market data, a sufficiently large market for services is projected so as to make the system economically viable. A large market, and hence a high capacity satellite system, is found to be necessary to minimize service costs, i.e., economy of scale is found to hold. The wide bandwidth expected to be available in the 30/20 GHz band, along with frequency reuse which further increases the effective system bandwidth, makes possible the high capacity system. Extensive ground networking is required in most systems to both connect users into the system and to interconnect Earth stations to provide spatial diversity. Earth station spatial diversity is found to be a cost effective means of compensating the large fading encountered in the 30/20 GHz operating band

    The 30/20 GHz flight experiment system, phase 2. Volume 2: Experiment system description

    Get PDF
    A detailed technical description of the 30/20 GHz flight experiment system is presented. The overall communication system is described with performance analyses, communication operations, and experiment plans. Hardware descriptions of the payload are given with the tradeoff studies that led to the final design. The spacecraft bus which carries the payload is discussed and its interface with the launch vehicle system is described. Finally, the hardwares and the operations of the terrestrial segment are presented

    Performance analysis at the crossroad of queueing theory and road traffic

    Get PDF

    Performance analysis at the crossroad of queueing theory and road traffic

    Get PDF

    Overview of UMTS network evolution through radio and transmission feature validation

    Get PDF
    This project is based on several UMTS network feature validation with the aim to provide an end-to-end in-depth knowledge overview gained in parallel in the areas of radio network mobility processes (cell camping and inter-system handover), Quality of Service improvement for HSPA data users and transport network evolution towards the All-IP era.Hardware and software validation is a key step in the relationship between the mobile network operator and the vendor. Through this verification process, while executing that functionality or testing a specific hardware, the difference between the actual result and expected result can be better understood and, in turn, this in-depth knowledge acquisition is translated into a tailored usage of the product in the operator’s live network. As a result, validation helps in building a better product as per the customer’s requirement and helps satisfying their needs, which positively impacts in the future evolution of the vendor product roadmap implementation process for a specific customer. This project is based on several Universal Mobile Telecommunication Services (UMTS) network feature validation with the aim to provide an end-to-end in-depth knowledge overview gained in parallel in the areas of radio network mobility processes (cell camping and inter-system handover), Quality of Service improvement for High Speed Downlink Packet Access (HSPA) data users and transport network evolution towards the All-IP era.Las campañas de validación hardware y software son un paso clave en las relaciones comerciales establecidas entre un operador de telecomunicaciones y su proveedor de equipos de red. Durante los procesos de certificación, mientras se ejecuta una funcionalidad software o se valida un determinado hardware, se obtiene un conocimiento profundo de la diferencia entre el resultado obtenido y el esperado, repercutiendo directamente en un uso a medida de dicha funcionalidad o hardware en la propia red del cliente. Como consecuencia de lo anterior, podemos aseverar que los procesos de validación permiten en gran medida al proveedor adaptarse mejor a los requerimientos del cliente, ayudando a satisfacer realmente sus necesidades. Esto implica directamente un impacto positivo en la futura evolución del portfolio que el fabricante ofrece a un determinado cliente. Este proyecto está basado en la validación de diferentes funcionalidades de red UMTS, cuyo objetivo es proporcionar un conocimiento global de distintos aspectos que conforman el funcionamiento de una red de telecomunicaciones 3G, como son los procesos de movilidad de acceso radio (acampado de red y handover inter-sistema), las mejoras en la calidad de servicio para usuarios de datos HSPA y la convergencia de la red de transporte hacia la era IP.Els processos de validació hardware i software són un punt clau en les relacions comercials establertes entre un operador de telecomunicaciones i el proveïdor d'equipament de la xarxa. En el transcurs dels processos de certificació, a la mateixa vegada que s'executa una funcionalitat software o es valida un determinat hardware, s'obtenen grans coneixements respecte la diferència entre el resultat obtingut i l'esperat, que són d'aplicació directa a l'hora d'establir un ús adpatat a la xarxa del client. En conseqüència, podem asseverar que les campanyes de validació permeten en gran mesura al proveïdor adaptar-se millor als requeriments del client, ajudant a satisfer realment les seves necessitats. Això implica directament un impacte positiu en la futura evol.lució del portfoli que el fabricant ofereix a un determinat client. Aquest projecte es basa en la presentació d'un procès de validació de diferents funcionalitats relacionades amb la xarxa UMTS, amb l'objectiu de proporcionar un coneixement global de la varietat d'aspectes que conformen el funcionament d'una xarxa de telecomunicacions 3G, com són els processos de mobilitat en accès radio (acampat de l'usuari i handover inter-sistema), millores en la qualitat de servei per a usuaris de dades HSPA i la convergència de la xarxa de transport cap a l'era IP
    corecore