

Performance analysis at the crossroad of queueing theory and
road traffic
Citation for published version (APA):
Timmerman, R. W. (2022). Performance analysis at the crossroad of queueing theory and road traffic. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Eindhoven University of
Technology.

Document status and date:
Published: 28/01/2022

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/407a6e37-3420-416f-a5f7-5b9c5cb8a689

Performance analysis at the crossroad of
queueing theory and road traffic

Rik Timmerman

The work in this thesis has been sponsored by The Netherlands Organi-
zation for Scientific Research (NWO) under grant number 438-13-206,
ARS T&TT, and De Verkeersonderneming.

This thesis is part of the PhD thesis series of the Beta Research School for Oper-
ations Management and Logistics (onderzoeksschool-beta.nl) in which the fol-
lowing universities cooperate: Eindhoven University of Technology, Ghent Uni-
versity, Maastricht University, Tilburg University, University of Twente, VU Ams-
terdam, Wageningen University and Research, KU Leuven, Universiteit Hasselt.

© 2022 by Rik Timmerman

Performance analysis at the crossroad of queueing theory and road traf-
fic by Rik Timmerman.

A catalogue record is available from the Eindhoven University of Tech-
nology Library

ISBN 978-90-386-5422-5

Cover design by Rik Timmerman

Printed by Gildeprint

Performance analysis at the crossroad
of queueing theory and road traffic

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus prof.dr.ir. F.P.T. Baaijens, voor een

commissie aangewezen door het College voor
Promoties, in het openbaar te verdedigen op vrijdag

28 januari 2022 om 16:00 uur

door

Rik Wesley Timmerman

geboren te Drunen

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof. dr. J.J. Lukkien
1e promotor: prof. dr. J.S.H. van Leeuwaarden
2e promotor: prof. dr. ir. I.J.B.F. Adan
co-promotor: dr. ir. M.A.A. Boon
leden: prof. dr. ir. O.J. Boxma

dr. ir. N.P. Dellaert
dr. V.L. Knoop (Technische Universiteit Delft)
prof. dr. ir. J. Walraevens (Universiteit Gent)

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in
overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Acknowledgments

A period of four years has come to an end. It is my great pleasure to thank all of
you who have (in)directly contributed to the writing of this thesis in this period.

First and foremost I am indebted to the my supervisors. Marko, as a daily
supervisor, we have had a lot of contact and shared a lot of experiences. You
were always there for me when I needed you, no matter the topic or cause
of the need. You are truly a good person and I have learned a lot from your
way of looking at things. You are also a very nice person with a lot of humor
(which is much appreciated). Johan, you have been a source of inspiration for
me during the past years. Your enthusiasm and perfectionism in writing are
greatly appreciated. Ivo, we may not have talked often, but if we did it was
always a pleasure for me. You were always willing to free up some time for me
in your agenda, you were always very cooperative, and you came up with nice
views on all kinds of matters. Onno, although you are not an official supervisor
looking at the promotional committee, I have very much appreciated all of your
supervision. Your thoroughness, humor, and willingness to help others on all
kinds of matters (being research, education, or other matters) must be a blessing
for anyone that works with you. For me, it has been a blessing for sure and all
your help will not be forgotten.

I would like to thank Joris Walraevens, Victor Knoop, and Nico Dellaert for
being part of the promotion committee. Thank you for reading my thesis and
for giving critical comments which have improved the thesis in various ways.

My PhD position has been part of the Dynafloat grant. I would like to thank
Richard Boucherie, Jan-Kees van Ommeren, Sindo Núñez Queija, Rob van der
Mei, Wim van Nifterick (from ARS T&TT), and Gerard Eijkelenboom (from De
Verkeersonderneming) for being a critical audience at our joint meetings. Fur-
ther, I would like to thank Anna and Sara for sharing many nice moments and
for giving me a warm welcome into the Dynafloat group.

I would like to thank Guido Janssen for joint work on the complex contour
integral for the FCTL queue and the heavy-traffic scaling of the FCTL queue

leading to Chapters 2 and 3 in this thesis. I would also like to thank Bo Klaasse
for doing an excellent internship on the “goede dagen” assignment of De Ver-
keersonderneming and for co-writing a paper on it, which has lead to Chapter 8.

The stochastic operations research group is a very vibrant research group.
Thank you all for useful discussions. In particular, I would like to thank Stella
Kapodistria for several nice conversations. I am also grateful to Chantal, Ellen,
and Patty. Without you, the group would really look very different. Chantal,
thank you for our many nice conversations and your view on all types of matters.
Further, I feel very lucky to have been part of a research group with many PhD-
students and it was always nice to talk to all of you. A special thanks goes
to Ellen: I have enjoyed our early conversations over a cup of tea very much.
Hopefully we can extend this tradition in some way!

A special thanks goes to my officemates, Angelos, Mark, Mayank, and Vikto-
ria. We have been together at the office for about 3 years and I have thoroughly
enjoyed every minute of it. Angelos, I am glad to have been your coffee buddy
(even though I do not drink coffee) during your morning breakfast. Mayank,
you have always brought a very positive atmosphere to the office, thank you for
that. Viktoria, you were always willing to help your officemates with all sorts of
things and very often you brought some nice new perspectives. Mark, without
elaborating further, thank you for being a good friend. I hope that we continue
seeing each other! I would also like to thank Alberto, Chenyan, Martijn, Peter,
and Wessel for several nice conversations after the “old gang” left.

Maybe I would not have started this PhD position without you Yvonne. To-
gether we took the decision to do our bachelor final project with Marko and
Johan. As you can see, our final project has in some way been the foundation
for this thesis. Thank you for all the nice moments that we have shared dur-
ing and after our studies. I am very happy that we are still in touch and play
boardgames now and then with Eugène. Let’s try to keep this up!

Without the support of my family, I would probably not have been able to
write this thesis. Opa De Wit, dankjewel voor al je interesse in mijn onderzoek.
Hoewel Oma De Wit, en Opa en Oma Timmerman er niet bij zijn, weet ik zeker
dat ze trots zouden zijn. Verder, Pap, Mam en Fleur, dankjulliewel voor het
continu aanhoren van alle werkgerelateerde zaken die ik jullie heb verteld de
afgelopen jaren. Zonder jullie steun had me dit allemaal veel zwaarder gevallen.

Rik Timmerman
Vlijmen, December 2021

Contents

Acknowledgments v

1 Introduction 1
1.1 Motivation . 1
1.2 Signalized intersection modeling 6
1.3 Queueing models for road traffic 17
1.4 Main contributions and outline of this thesis 29

2 Pollaczek contour integrals for the Fixed-Cycle Traffic-Light queue 33
2.1 Introduction . 33
2.2 Standard solution for the FCTL queue 34
2.3 Main results . 35
2.4 Algorithmic methods . 42
2.5 Proof of the Pollaczek contour-integral representation 46
2.6 Conclusion . 55

Appendices 57
2.A Root-finding algorithm . 57
2.B Poisson case . 59

3 Optimal capacity allocation for heavy-traffic Fixed-Cycle Traffic-Light
queues and intersections 61
3.1 Introduction . 61
3.2 FCTL queue in heavy traffic . 63

viii Contents

3.3 Capacity allocation problems . 68
3.4 Numerical examples of capacity allocation 74
3.5 Proof of heavy-traffic theorem using the transform method 78
3.6 Conclusion . 88

Appendices 89
3.A Remaining proofs . 89

4 Heavy-traffic scaling of vehicle-actuated traffic lights 97
4.1 Introduction . 97
4.2 Model description . 99
4.3 Theoretical background . 100
4.4 Simulation results . 103
4.5 Conclusion . 113

5 Fixed-Cycle Traffic-Light queue with multiple lanes and blockages 115
5.1 Introduction . 115
5.2 Detailed model description . 119
5.3 PGFs and performance measures for the bFCTL queue 124
5.4 Examples . 134
5.5 Conclusion . 146

Appendices 149
5.A Stability condition for the bFCTL queue 149

6 Approximation scheme for multidimensional queueing models 153
6.1 Introduction . 153
6.2 Approximation scheme . 162
6.3 k-limited polling models . 170
6.4 A two-class queue with alternating service discipline 182
6.5 Traffic lights with double-lane access control 187
6.6 Conclusion . 192

Appendices 195
6.A PGFs for k-limited polling models 195
6.B PGFs for traffic lights with double-lane access control 197

Contents ix

7 Platoon forming algorithms for intelligent street intersections 201
7.1 Introduction . 201
7.2 Model formulation . 204
7.3 Platoon forming algorithms . 206
7.4 Speed profile algorithms . 211
7.5 Performance analysis . 226
7.6 Comparison traditional traffic light and PFAs 234
7.7 Conclusion . 237

8 Detection of high traffic flow in uncongested traffic states 239
8.1 Introduction . 239
8.2 Description of the location and the data 241
8.3 The main algorithm . 244
8.4 Key insights and validation . 254
8.5 Conclusion . 263

9 Conclusions and future work 265
9.1 Summary of contributions in this thesis 265
9.2 Suggestions for extensions and future research 268

Bibliography 271

List of publications 293

Summary 295

About the author 299

Chapter 1
Introduction

1.1 Motivation

Everyone who uses means of transportation like cars and bikes experiences con-
gestion. Congestion is a phenomenon that occurs when the interaction between
vehicles on the road causes the vehicles to slow down, which typically is the
case when there are (relatively) many vehicles on the road. Congestion has a
negative impact on many levels: it increases travel time, costs money, increases
pollution, etc. The KiM, the Dutch Institute for Transport Policy Analysis, has
estimated the amount of direct costs associated to congestion on the Dutch high-
way system for 2018 to be a devastating 3.3 billion euros [196]. In addition,
indirect costs add up to a number close to 1 billion euros [196]. As these num-
bers are only related to congestion at highways, we have a very conservative
estimation of the total costs caused by congestion in the Netherlands because
quite some secondary and urban roads are also congested. These numbers alone
should be sufficient to convince anyone to take a look at measures to reduce
congestion.

In fact, much research is aimed at reducing congestion. There are numerous
countermeasures against congestion which range from obvious ones, like reduc-
ing the amount of traveling in a network, to very advanced ones, e.g. network-
wide optimization of route choices. Despite ongoing research and taken coun-
termeasures, congestion remains an enormous societal problem. One of the
main reasons of the continuing problems is the discrepancy between capacity
and demand on the road-traffic network. Congestion emerges (more easily)

2 1.1 Motivation

when demand exceeds the capacity of a certain part of the network and two,
a priori easy, solutions become clear: increasing the capacity or decreasing the
demand. The former is often very costly and consumes much space as, gen-
erally, additional roads need to be built, which is sometimes met with (fierce)
resistance. Therefore, this way of tackling congestion does not seem to be sus-
tainable. Reducing demand is the other obvious option and this has a positive
effect when achieved. An illustrative example is the absence of traffic jams in
the lockdowns during the Covid-19 pandemic. However, a structural reduction
of travel demand, e.g. during peak hours, seems difficult to achieve. Therefore,
research on other countermeasures is conducted to mitigate congestion as much
as possible. This mainly focuses on more efficient use of the existing roads.

A potential and notorious source of congestion is the traffic-light controlled
intersection. Intersections are an inevitable part of road networks, although
they decrease the capacity of the connecting roads: indeed, only vehicles from
some of the connecting roads are able to cross the intersection simultaneously.
Traffic lights are often installed to make sure that traffic from various directions
can drive across the intersection safely and that traffic is organized smoothly.
Besides this, traffic lights at intersections should be designed in such a way that
the negative effects of intersections are mitigated as much as possible. Traffic-
light settings play a key role in this respect as they govern when each vehicle is
allowed to cross the intersection, which has a direct influence on the capacity
of and delay experienced at the intersection. Good traffic-light settings are thus
of substantial societal value and lead to less congestion by ensuring an efficient
use of the available roads.

Nowadays, traffic lights are not always functioning optimally with respect to
keeping congestion or, similarly, delay experienced by vehicles to a minimum.
As an example: how often do we get frustrated by a traffic light that turns red
just at the moment that we want to cross an intersection? Early research on
traffic-light settings goes back to at least 1940, which shows that frustration
caused by traffic lights, unfortunately, has a long tradition.

The current state-of-the-art in the Netherlands is the so-called intelligent
traffic-light installation (in Dutch: intelligente verkeersregelinstallatie). This
is usually a type of traffic light that adapts its green and red pattern to the
presence of vehicles on each road by obtaining a current view of the state of
the network. This allows for an efficient green and red time allocation [62].
On top of that, the intelligent traffic light might inform approaching vehicles
regarding the green and red pattern for the coming period. This enables vehicles
to anticipate on e.g. changes in the traffic light, which makes it possible for the
vehicle to approach the intersection in a smart way. An example would be to

Chapter 1. Introduction 3

reduce speed early and accelerate in such a way that vehicles start crossing
the intersection at the start of the green period and cross the intersection at a
high/maximum speed. This decreases the time spent on the intersection by an
individual vehicle, which leads to a more efficient use of the intersection. These
intelligent traffic lights have the potential to reduce congestion significantly, as
is shown by small-case real-life examples. An example can be found in Helmond
where a 20% reduction in waiting time was obtained [66]. This reduction partly
follows from a better coordination between the vehicles and the traffic light, but
also from vehicles approaching the intersection in a different way leading to a
better utilization of the intersection.

Despite many research attempts and field-case studies over the last decades,
the search for optimal traffic-light settings remains problematic, even for intelli-
gent traffic lights. Mathematically, traffic-light controlled systems are very hard
to analyze rigorously. Therefore, finding optimal settings for a big intersection,
and even more so for a network of intersections, is a hard and challenging task.
Complicating factors include, but are not limited to, randomness and compli-
cated traffic interactions; we next discuss those two factors.

Randomness in road traffic is omnipresent, e.g. at the level of an individ-
ual driver in the form of driver behavior; at the level of the number of vehicles
driving towards an intersection during a given period of time; and at the level
of congestion emergence. Other sources of randomness include the weather
and the occurrence of traffic accidents. Stochasticity (severely) complicates the
rigorous treatment of traffic models and limits our ability to give meaningful
advice to traffic engineers. Despite complicating the models, randomness can-
not be neglected and has to be taken into account as it significantly impacts the
performance of any road-traffic system. A canonical way to address complex
systems involving randomness and delays is the use of queueing theory.

Queueing theory is a research area that studies and develops mathematical
models for general queueing phenomena with a broad range of applications.
It makes sense that queueing-theoretic methods are a useful tool to analyze
delays in road traffic, due to their ability to explain the dynamics leading to
congestion. Therefore, the performance analysis of dynamic queueing models
is an important step towards the optimization of traffic management policies.

The second complicating factor is the mere fact that several roads meet at
an intersection as can be seen in Figure 1.1. Moreover, there might be a vary-
ing number of traffic streams from a single direction, potentially heading in
different directions; there might be green lights for several (conflicting or not)
groups of vehicle streams; there might be cyclists present (on separate lanes or
not); pedestrians might cross the intersection (on a pedestrian crossing with a

4 1.1 Motivation

Figure 1.1: A graphical representation of a general intersection with vehicles, cyclists,
and pedestrians. The intersection has six streams of cars, which are all governed by
traffic lights. Moreover, there are some pedestrian crossings and also cyclists claim their
share of the intersection’s capacity.

separate traffic light or not); and many more complications might exist.

Typically, models involving randomness are well-understood as long as we
study a single queue (e.g. corresponding to a single road or a single stream
of vehicles). For intersections, however, we typically need to study higher-
dimensional queueing models to capture queueing phenomena accurately as
can be observed from Figure 1.1. The caveat is that such higher-dimensional
stochastic models are much harder to analyze than single-dimensional models.

Chapter 1. Introduction 5

The study of higher-dimensional stochastic models has led to a very rich area of
research, yet exact results are often hard to obtain and are typically, if existing
at all, complicated in nature. However, it is sometimes possible to find good
approximations or guidelines that lead to good, or even optimal, settings.

Another important factor to take into account when developing traffic-light
control mechanisms is that infrastructural investments in road-traffic networks
are long-term investments, typically ranging from 10 to 50 years. Therefore,
special attention should be given towards the rise of (semi-)autonomous vehi-
cles, as such vehicles are expected to occupy the road in the near future. In fact,
at some places autonomous vehicles are already on the road, e.g. in Phoenix,
Arizona [119]. Such vehicles are much easier to guide than vehicles driven by
humans, be it only that humans might behave unexpectedly. Because of this,
we have to develop new control algorithms for autonomous vehicles. Possibili-
ties for new algorithms include, but are not limited to, different types of traffic
lights, a better spread of vehicles over a network of roads, and speed-advisory or
even speed-control algorithms for autonomous vehicles. We should thus think
about such strategies and potentially needed road-side equipment now in order
to prevent costly investments later on due to missing infrastructure.

Summarizing, there is an obvious need for smart(er) traffic-light control
strategies. This might seem easy at first glance, but this is a very complex and
challenging task. A reason why it is complicated to find good strategies, is that
congestion modeling of traffic lights, which naturally leads to queueing models,
is hard. This relates to the fact that we need to take random effects in road
traffic into account and to the need to consider all roads that are connected to
the intersection, which can be complicated as can be observed from Figure 1.1.
Moreover, due to the fact that investments in road traffic are often long-term
investments, we should also think about the long-term future when investing.
Therefore, in this thesis, we focus on several queueing models for traffic lights
and extend and deepen the knowledge on traffic-light modeling both in present-
day and in futuristic settings. We do so in various ways such as (i) by developing
new methodologies to address queueing models, (ii) by extending the general
applicability of traffic-light models, and (iii) by obtaining (close-to) optimal
traffic-light settings.

The remainder of this introductory chapter is organized as follows: we start
with an overview of the literature on the modeling of signalized intersections in
Section 1.2 and we continue in Section 1.3 with an exposition of some (math-
ematical) techniques and (queueing) models for road traffic that will be used
frequently in this thesis. We close this chapter in Section 1.4 with a sketch of
the main contributions and an outline of the remainder of this thesis.

6 1.2 Signalized intersection modeling

1.2 Signalized intersection modeling

As demonstrated in the previous section, there is a need for good and new
strategies to control intersections with traffic lights. The focus in this section
is on the modeling of traffic-light controlled intersections and to this end, we
give a partial overview of the literature on traffic-light models with a special
emphasis on queueing models for traffic lights. We briefly discuss the most
important directions of research below, before giving a more in-depth study of
each research direction in Subsections 1.2.1 up to 1.2.4.

A common first step is to significantly simplify an intersection like the one
in Figure 1.1. E.g., cyclists and pedestrians are often omitted in a traffic-light
control study. It is often argued that they can be accounted for in the following
way: either cyclists and/or pedestrians cross when a non-conflicting vehicle
stream receives a green traffic light; or the cyclists and/or pedestrians impose
an additional red time for all other vehicles if they receive an exclusive right of
way. In this way, we are usually able to separate the analysis for vehicles and
other traffic streams and significantly reduce the complexity of the model.

After such a simplification, we usually obtain a model that is amenable for
some kind of queueing-theoretic performance analysis. An important and well-
studied example of a tractable traffic-light model relates to a traffic light with
fixed red and green times. Compared to other traffic-light strategies, traffic
lights with such fixed settings allow for a relatively straightforward, exact anal-
ysis, as the analysis typically can be done separately for each incoming road
or stream of vehicles arriving at the intersection. In Figure 1.1, this could e.g.
correspond to the vehicle stream coming from the left. All that is needed for
such a separation to work, is that a green traffic light for one lane, implies a
red light for all conflicting flows. An example of what this means for an inter-
section with four streams of vehicles (and thus four traffic lights) is shown in
Figure 1.2. This separation per lane leads to a separate analysis for each lane.
Those models are one-dimensional queueing models which are much easier to
grasp rigorously than higher-dimensional models. Another definite advantage
of such a traffic-light model is that it can serve as a building block to study more
complicated models because of its relative simplicity. At the same time, traffic
lights with fixed settings have appealing properties in practice: in a network
of intersections, the fixed red and green times can easily be used to coordinate
the settings of all traffic lights in a network because the red and green times
are fixed, see e.g. [40, 107, 155]. For the same reason, such traffic lights are
predictable which might be beneficial if one wants to find an optimal route to
go from A to B. One of the canonical traffic-light models with fixed settings is

Chapter 1. Introduction 7

0 20 40 60 80 100 120 140 160

Lane 1
Lane 2
Lane 3
Lane 4

time (seconds)

Figure 1.2: An example of a green- and red-time allocation for an intersection with four
lanes and with fixed red and green times. We assume, for simplicity, that the clearance
times correspond to red times for all lanes.

the Fixed-Cycle Traffic-Light (FCTL) queue. The literature on the FCTL queue
and similar models is discussed in more detail in Subsection 1.2.1.

Another important set of examples of traffic-light controlled intersections are
traffic lights with a vehicle-actuated strategy. In contrast with the FCTL queue,
the green and red times are no longer fixed and might depend on the presence
of vehicles, or the queue length, at each lane. An example of a vehicle-actuated
strategy is as follows: if a queue dissolves during a green period, the remainder
of the green period is skipped and the next lane receives a green light (after an
appropriate clearance time). These strategies have obvious advantages above
traffic lights with fixed settings. Vehicle-actuated strategies generally ensure
that an empty queue does not receive a green light as long as there are vehicles
waiting to cross the intersection at one of the other lanes. This could decrease
the mean delay experienced by vehicles that cross the intersection. On the
other hand, there are also disadvantages as it is e.g. difficult to coordinate
the green and red times of traffic lights in a network since vehicle-actuated
traffic lights are not as predictable as traffic lights with fixed settings. On top
of that, the queueing models underneath such vehicle-actuated traffic lights
are multidimensional as the start of the green period of each lane depends on
the end of the green period of the previous lane. As such, vehicle-actuated
traffic lights are far more difficult to grasp in a mathematically rigorous way
than the queueing models underneath the FCTL queue or similar models with
fixed settings. In practice, however, vehicle-actuated control of traffic lights is
generally preferred above fixed control of traffic lights. We discuss part of the
literature on vehicle-actuated traffic lights in Subsection 1.2.2.

The FCTL queue and many vehicle-actuated traffic-light strategies are tra-
ditionally studied for isolated intersections. However, only some traffic-light

8 1.2 Signalized intersection modeling

controlled intersections can be studied in isolation in practice, because inter-
sections are often part of an entire network. Although the focus of this thesis
is not on such network models, we briefly discuss some research on networks
of intersections. In the models discussed in the previous two paragraphs, ar-
rivals of vehicles are commonly assumed to be independent. However, this is
often an invalid assumption in a network setting, simply because a downstream
intersection receives the output process of an upstream intersection. Such de-
pendencies fundamentally complicate the analysis of network models. Next to
this complication, the simultaneous study of intersections in a network leads to
a model with a higher dimension than that of a model used to study an isolated
intersection. This increases the complexity of the model even further. Models
for isolated intersections can be used as building blocks for a network study and
can (sometimes) be used to give a first-order approximation of the behavior of
an intersection in a network setting, see e.g. [19,144]. Besides these complicat-
ing factors, the route choice of the drivers in a network becomes important and
route choices might have a severe impact on the general traffic performance. An
example is Braess’s paradox [32], which states that adding roads to a network
might lead, counterintuitively, to additional congestion. Studies on networks of
intersections are obviously an important theme and some literature on traffic
lights in a network of intersections is discussed in Subsection 1.2.3.

Research on signalized intersections is not limited to current-day traffic ap-
plications. There is a vast amount of research on intersection management an-
ticipating the rise of intelligent vehicles, where the level of intelligence ranges
from “able to communicate with road-side equipment” to fully autonomous ve-
hicles. One of the bigger advantages is that intelligent vehicles are typically able
to announce their arrival at the intersection before they physically arrive at the
intersection. The traffic light (or more generally: an intersection controller) is
then able to anticipate on the arriving vehicles and e.g. organize the vehicles
into groups that cross the intersection together. This generally helps to decrease
the delay of vehicles. There are several challenges however, such as how the
groups of vehicles that cross the intersection together should be formed. The
speed advice that is given to vehicles is also an interesting topic of study. Some
literature devoted to traffic-light/intersection-access control for intelligent vehi-
cles is discussed in Subsection 1.2.4.

1.2.1 Traffic lights with fixed settings

Models with fixed settings for traffic lights are typically relatively simple to
study and understand. This traffic-light strategy has been well studied and one

Chapter 1. Introduction 9

of the first papers on this topic dates back to 1941 [53], which assumes con-
stant arrival and departure times. Other notable, early papers are the papers by
Wardrop [217], studying approximations for the mean delay and optimal green
and red times; by Webster [218], studying empirical and simulation observa-
tions for approximations; and by Newell [141], studying approximations for a
traffic light with fixed settings and binomially distributed arrivals.

A well-studied model in the realm of traffic lights with fixed signals is the
FCTL queue. This is a queueing model which focuses on deriving the character-
istics of the number of delayed cars in front of the traffic light. The FCTL queue
will be formally introduced in Subsection 1.3.1 as it will play an important role
in this thesis. Here, we give an overview of the literature on the FCTL queue.

The first complete steady-state analysis for the FCTL queue dates back to
1964 and was provided by Darroch [64]. Darroch focuses on the distribution
of the so-called overflow queue, the queue length at the end of the green pe-
riod, and computes its Probability Generating Function (PGF). From this PGF,
any information about the queue-length distribution, e.g. the queue-length dis-
tribution at an arbitrary moment, can be derived. Darroch’s solution requires
the solution to a set of linear equations, which requires roots of a certain equa-
tion as input. This has led to the belief that the model is complicated to use.
Perhaps this is the reason that many researchers have focused on obtaining ap-
proximations for various performance measures, see e.g. [148] for many such
approximations and a comparison. See also [198] for bounds and approxima-
tions for e.g. the mean overflow queue.

Van Leeuwaarden [206] was the first to obtain an explicit expression for
the PGF of the steady-state delay distribution by means of tagging vehicles and
investigating the delay of such tagged vehicles.

A recent breakthrough was spurred by an observation made in a paper by
Oblakova et al. [146]. The methodology developed in [146] avoids the use of
roots altogether when computing the mean overflow queue. Oblakova et al.
express this mean value in the form of a complex contour integral, which can
be computed numerically. Another contribution in [146] is the extension of
the FCTL queue to several other models, such as queueing models with slightly
different queueing dynamics, random red and green times, and a model where
some drivers might be distracted causing them to take a relatively long time to
depart from the queue. Such generalizations make the FCTL queue more widely
applicable, e.g. they allow one to model turning flows [146].

In [158], a traffic-light model with fixed settings is studied under slightly
different assumptions than the ones that are made for the FCTL queue. Matrix-
analytic techniques are employed to obtain several stationary performance mea-

10 1.2 Signalized intersection modeling

sures such as the mean delay. The authors of [158] also perform a study in
which they compare their theoretical results against a microscopic traffic simu-
lator, which is supposed to model traffic behavior realistically, and a model from
the Highway Capacity Manual. The authors in [158] argue that their model
serves as a good approximation for the simulation model for small to moderate
traffic loads and as a better approximation for reality for high loads than the
model used in the Highway Capacity Manual.

Turning towards finding good or optimal settings, we note that an approach
to obtain optimal green times for intersections with fixed settings can be found
in e.g. [77]. This study extends approximation results from [198] to find in-
tegral green-time allocations which minimize the mean delay using techniques
like integer programming optimization and graph theory. Other examples in-
clude the work of Van Zwieten [212], relying on linear and quadratic program-
ming techniques; the work of Haijema [88], using theory from Markov decision
processes; and many others. For a broader overview, see [76, 88, 212] and the
references therein.

Besides the common steady-state type of analysis, there are only few stud-
ies on the transient behavior of traffic signals with fixed settings. This perhaps
relates to the general belief that the transient analysis of queueing models is
hard. However, numerical examples are relatively easy to study as long as gen-
eral expressions or results are not pursued. E.g., in [216, Chapter 4], the time-
dependent behavior of a traffic-light model with fixed red and green times and
a possibly time-dependent arrival process is studied.

Although traffic lights with fixed settings are practically relevant in many
settings, actuated traffic signals might be favorable depending on the practical
situation at hand. If we e.g. allow the remainder of the green time to be skipped
if a queue gets empty, we enter the realm of vehicle-actuated control strategies.
Such strategies are the topic of the next subsection.

1.2.2 Vehicle-actuated traffic lights

There are various types of vehicle-actuated traffic lights. Looking at the case
where one lane receives a green light, a common feature seems to be that the
traffic light turns from green to red as soon as there are no longer vehicles
waiting to cross the intersection on that lane. There exist generalizations of such
a strategy to the case of multiple lanes receiving a green light simultaneously.
Differentiation of various types of vehicle-actuated control might be done on
the basis of when a traffic light switches from green to red if there are still
vehicles queueing on the lane with a green light. In some cases, a change from

Chapter 1. Introduction 11

green to red only happens if there is no queue of vehicles anymore on the lane
with a green light, whereas in other cases the traffic light might turn red even
when the queue is non-empty. We refer to the former case as an exhaustive type
of vehicle-actuated control and otherwise we refer to the strategy as a limited
type of vehicle-actuated control. Another differentiation for vehicle-actuated
control strategies is the following: sometimes, the actuated-control mechanism
is present for all lanes and sometimes only for e.g. the main stream. We will
mainly focus on the case where all lanes are governed by a vehicle-actuated
mechanism. If we discuss a different type, we mention it explicitly.

One of the first studies involving vehicle-actuated traffic-light control dates
back to 1940. In [81], a model is studied where there is a main road which
always has a green light except if there is a vehicle on a conflicting road. In
that case, a switch to the conflicting stream occurs after at most a predefined
period [81], which is a simple example of a limited vehicle-actuated control
strategy. Since then, a vast body of literature on vehicle-actuated traffic lights
has developed and many techniques exist to find good or (in some way) optimal
settings. We will not pursue a full overview and mainly focus on queueing
models for vehicle-actuated traffic-light control.

In the literature on vehicle-actuated traffic-light control, it is, e.g., often
assumed that there is only a single lane receiving a green light at each moment.
Then, after a clearance time, the next lane receives a green light. In practice,
this is often not the case as multiple lanes might receive a green light at the same
time, which makes the studied models less relevant. Traffic-light strategies with
fixed signaling are also often studied as if only a single lane receives a green
light at each moment of time, but this does not lead to a discrepancy between
theory and practice. This is because each lane can be studied separately under
static signaling, enabling a single-dimensional study of the model as argued
before, see e.g. Figure 1.2. This is not the case for vehicle-actuated traffic
lights, which implies the need to study more complicated, higher-dimensional
models. This might explain the difference in the amount of exact results for the
underlying queueing models for vehicle-actuated and fixed settings.

A study with some exact computations that is close to a practically relevant
version of vehicle-actuated traffic lights is discussed in [17]. The model at hand
in [17] is a vehicle-actuated controlled traffic light where two non-conflicting
roads receive a green light simultaneously. It is assumed that the traffic lights
stay green until both queues are dissolved. An approximation for the mean
queue length is provided which is based on exact light- and heavy-traffic limits,
but even here, a fully exact analysis for the queue-length distribution is lacking.

On the other hand, there are many papers dealing with vehicle-actuated

12 1.2 Signalized intersection modeling

traffic lights that do not focus on exact computations. A notable early pioneer is
Newell [142,143], who essentially uses a fluid model to study vehicle-actuated
traffic lights. In [142], approximations for e.g. the waiting time for an inter-
section with two one-way streets and no turning flow under a vehicle-actuated
control is given. It is claimed that such a strategy might reduce the waiting time
with a factor 3 compared to fixed-time control. A qualitative property that is
derived in [142], is that the traffic light should be switched from green to red
as soon as a queue empties if one wants to minimize the mean delay. This re-
lates to an exhaustive type of vehicle-actuated control. However, as soon as we
turn to an intersection with two two-way streets, matters complicate and it is a
priori not clear anymore what is optimal to do [143]. In fact, when two streams
receive a green traffic light simultaneously, Newell and Osuna claim in [143]
that a fixed-cycle strategy is better than a vehicle-actuated type of strategy.

Other early work at the interface of vehicle-actuated access control and
queueing theory can be found in [65, 121]. The authors in [65] study an
exhaustive type of vehicle-actuated control where one stream of vehicles re-
ceives a green light at each moment in time. Under several simplifying as-
sumptions, they are able to come up with the mean waiting times using PGFs.
Lehoczky [121] studies a similar model with two one-way streets, where vehi-
cles arrive according to a general Markov chain as opposed to the Poisson arrival
of vehicles considered in e.g. [142]. Again, only one lane at each moment in
time is allowed to have a green light and there are switching or clearance times
during which all traffic lights are red. In [121], the stability of the underlying
queueing system is proven by studying the length of the green periods, which
should remain finite to ensure stability. Subsequently, under appropriate as-
sumptions, expressions for e.g. the mean delay for both lanes are derived.

In [63], simple properties of the arrival and service process are used to ob-
tain the first and second moments of the steady-state queue lengths and waiting
times by means of a recursion. The derived results can be applied to e.g. traf-
fic systems, which include vehicle-actuated traffic lights. The corresponding
type of vehicle actuation is as follows: once the traffic light turns green, each
vehicle present at that moment is allowed to cross the intersection during the
current green time. Any vehicles arriving in the queue after the traffic light
turned green need to wait until the next start-of-green. The results in [63] are
worth mentioning because they provide tractable and analytical results, yet the
type of actuation mechanism seems less realistic for (current-day) traffic-light
engineering.

A more recent study on vehicle-actuated traffic lights can be found in [137].
A steady-state analysis of an intersection with two one-way streets with an ex-

Chapter 1. Introduction 13

haustive type of control is presented using various methods from queueing the-
ory. The model is solved by truncating the state space and the theoretical results
are compared with simulations. In [230, Chapter 5], similar types of reasonings
are used to study an intersection with four streets, each with multiple lanes and
a limited actuated control.

There are many more studies on vehicle-actuated control, but there are not
many that focus on an analysis of the underlying queueing model. Instead, they
use e.g. reinforcement-learning techniques, model-predictive control strategies,
or other optimization techniques to obtain good or optimal traffic-light settings.
For some additional and recent references on vehicle-actuated control mecha-
nisms we refer the interested reader to e.g. [76, Section 1.5.2].

To close this subsection, we refer to [145], which studies a semi-actuated
controller in a network setting. The authors in [145] assume that only some of
the lanes have a vehicle-actuated mechanism. The total cycle length is fixed and
this enables the authors to provide an exact analysis for the model at hand based
on techniques that are commonly used for the FCTL queue. The network setting
studied in [145] is an important extension compared to the traffic-light models
discussed in this and the previous subsection, as intersections tend to be part of
an entire network of intersections that typically influence one another. Traffic-
light control in a network setting is, therefore, the topic of the next subsection.

1.2.3 Networks of intersections

The complicated nature of the study of networks of intersections has not pre-
vented researchers from looking into such models. We give some pointers to
interesting overview papers and subsequently we focus on several works that
incorporate queueing theory in the study of networks of signalized intersec-
tions.

In the literature on traditional traffic-light control for networks of intersec-
tions, a distinction is often made between fixed-time and actuated or adaptive
systems. We refer the interested reader to e.g. [90, 95, 159] for historical ac-
counts and reviews. Popular fixed-time control strategies include the MAXBAND
algorithm and TRANSYT. For further information we refer to the references
in [95, 159]. SCATS, SCOOT, RHODES, and UTOPIA are adaptive systems, see
e.g. [90,95,159] and the references therein. Generally, those algorithms mainly
focus on finding good settings. A disadvantage is that an analysis of e.g. the
queue-length distribution is typically not feasible.

Nowadays, machine learning approaches for traffic-light control in a net-
work have been developed as well. We refrain from giving an overview of this

14 1.2 Signalized intersection modeling

rapidly evolving area of research and merely provide two references to review
papers on machine learning approaches used for traffic-light control [41,227].

Another option to find good settings for a network of traffic-light controlled
intersections is to implement a self-learning policy. An example is the frame-
work developed in [116], where an algorithm is sketched that allows for real-
time optimization of the traffic-light policy in a network of intersections. It
differs from the machine learning approaches in the previous paragraph in the
sense that there is no offline learning: it uses heuristics to find close-to-optimal
green times for the traffic lights in a network using only current information.
By means of coordination between the various traffic lights in the network,
green waves might be created automatically [116]. A case study using such
a self-learning policy can be found in [23], where a comparison between a
self-learning policy and a SCATS-like procedure is made for a small network of
intersections in Brisbane. In [23] it is shown that the self-organizing policy has
the potential to significantly reduce delays.

Only few papers try to explicitly capture the queueing dynamics at signal-
ized intersections in a network setting. This is probably due to the complex
task of taking all queues into account as well as the correlation structure for the
arrivals inside the network. Moreover, spillback effects of an upstream intersec-
tion might complicate the analysis of the network, because they may result in
(temporary) blockages of intersections which is difficult to capture in a queue-
ing model. However, there are some studies that aim at capturing the queueing
dynamics and we discuss them below.

Two examples can be found in [19] and in [145]. Both papers focus on
the analysis of a small network of intersections, where the output process of
an intersection is part of the input for the next intersection. Under additional
assumptions, like independence of the arrivals between different cycles, the in-
tersections can be studied in isolation which brings us back to studies discussed
in Subsections 1.2.1 and 1.2.2. The work in [19] exclusively focuses on fixed
red and green times, whereas [145] also allows for a so-called semi-actuated
control. The expressions in both [19] and [145] are quite complicated due to
the intrinsically complex nature of the model.

The study of a network of intersections also raises the question if one should
coordinate the green times of several intersections, think e.g. of green waves.
Oblakova et al. study a green wave for a series of intersections in [144], which
builds on results obtained in [145]. The results in [144] indicate that a lower
mean delay (compared to no green wave) might be obtained when optimal
settings are found. To find the optimal settings, a genetic optimization algorithm
is used. It turns out to be difficult to find such optimal settings as they for

Chapter 1. Introduction 15

example depend on the physical distances between intersections [144].
An interesting and recently developed line of research to study traffic lights

in a network setting is the use of the so-called aggregation-disaggregation tech-
nique which has been developed for general large Markov chains, see e.g. the
survey [175]. The authors in [155, 156] use this technique to formulate an
approximating analysis for large-scale networks of traffic lights, respectively fo-
cusing on a stationary and a transient analysis. Both papers model each queue
in front of a traffic light as a Markovian finite capacity queue (an M/M/1/K
queue to be precise) for which the states are divided in three aggregated sets.
Subsequently, a network decomposition into subnetworks of three queues is per-
formed, which allows the authors to circumvent the problems that come with
network modeling (such as the need to study a very high-dimensional model)
while still capturing most of the network structure such as spillback effects.
Such decomposition methods are more generally applied, see e.g. [150,154].

Another interesting line of research is constituted by stochastic optimization
methods. The key idea is to replace a complicated objective function which
is to be optimized with an approximating surrogate, a so-called metamodel,
see e.g. [151]. This metamodel is in turn easier to analyze and, if sufficiently
accurate as an approximation to the objective function, might serve as a way
to approximate the optimal solution well. Several papers have been written
on such an approach for traffic networks. In [50, 152, 153] such metamodels
are created using traffic simulators and a useful approximation of the objective
function seems to be obtained.

Lastly, we mention that the study in e.g. [152] indicates that the between-
intersection dependence has a (potentially) significant influence on the perfor-
mance measures. As such, an attempt to study a network of intersections ideally
contains an accurate description of such dependencies.

Even though it is already difficult to obtain optimal traffic-light settings for
current-day traffic, we also need to think about the future. What will happen
when self-driving or autonomous vehicles occupy the road and will it be easier
or more difficult to find good or optimal traffic-light settings? This is the topic
of the next subsection.

1.2.4 The intersection of the future

It seems that self-driving vehicles have the potential to fundamentally change
the way we look at transportation and that they allow for different control tech-
niques than vehicles driven by humans. This has been recognized by many

16 1.2 Signalized intersection modeling

researchers and a rich area of research has emerged. We partly discuss the
literature here, mostly focusing on studies which use queueing theory.

To start with, we note that already existing models and control strategies,
like the ones we discussed above, might be leveraged for the control of self-
driving vehicles. However, those do not use the full potential of self-driving ve-
hicles, because such vehicles can be controlled more easily than a human driver
is able to control a regular vehicle. Exactly this ability to be controlled in a better
way together with the possibility of self-driving vehicles connecting and com-
municating with other self-driving vehicles and road-side equipment, enables
one to create different, more advanced, and more efficient control mechanisms.

A highly-cited work in this realm is a study by Tachet et al. [184]. Their
aim is to organize efficient crossings for vehicles and they illustrate the benefits
of their strategy in a queueing-theoretical framework. This framework is used
to assess the quantitative properties of their so-called platoon-forming strategy,
which relates to algorithms that form groups of vehicles, platoons, that cross
the intersection together. The formation of platoons is based on arrival times of
vehicles and a maximum platoon size. Tachet et al. claim that if their frame-
work is employed, the capacity at intersections might be doubled compared to
the capacity nowadays. This leads to significant reductions in the delay experi-
enced by vehicles. This is mostly due to the platoon forming, which reduces the
number of switches between different signal groups, and to shorter headways
for vehicles on the same lane.

Organizing vehicles in a platoon seems a popular approach that is often
used. Another example can be found in two papers by Miculescu and Karaman,
see [133, 134]. They use ideas and results from a specific type of queueing
models, polling models, to derive upper bounds for the mean delay performance
of their algorithms. They use the so-called exhaustive service discipline meaning
that cars keep joining a platoon in front of them as long as the gap between the
platoon and the vehicle is not too big. Similar capacity gains can be obtained
as in [184]. Besides platoon formation, they also consider the problem of how
vehicles should approach the intersection. A linear programming approach is
used, see [134, Section V.A.], where the vehicles are controlled in such a way
that they are, under several constraints, as close to the intersection as possible.
The algorithm leads to provably safe trajectories [134].

Another paper in which optimal trajectories for platoons of self-driving vehi-
cles are studied, is [126]. Under the assumption of fixed-time signaling (during
a certain prediction horizon), [126] assumes that platoons are formed and pro-
poses a different optimal trajectory for vehicles driving towards the intersection
than the one obtained in [134]. The authors in [126] take several quantities

Chapter 1. Introduction 17

into account in order to obtain such an optimal trajectory: the throughput of
vehicles, driver comfort, the delay experienced by vehicles, and fuel consump-
tion. They use a sequential quadratic programming technique to determine the
optimal trajectory. They demonstrate that their approach can also be applied
to a network of intersections. For different ways of finding good or optimal
trajectories, see also the references in [126].

As can be seen, platoon forming algorithms and trajectory planning are im-
portant research directions for intersection control in futuristic settings with
self-driving vehicles. We refrain from giving a full overview of this research
field and instead give several pointers to papers in which relevant literature is
discussed. We refer the interested reader to the survey papers [43, 108, 170]
and references therein.

1.3 Queueing models for road traffic

Now that we have a high-level overview of relevant topics and models in traffic-
light engineering, we turn our focus towards specific models and mathematical
notions/techniques that are frequently used in the study of such models. Our
aim is also to set the stage for the upcoming chapters, e.g. by focusing on a
particular technique when introducing or discussing a model. We start with the
FCTL queue in Subsection 1.3.1, followed by a discussion on polling models in
Subsection 1.3.2. We wrap up with a look at traffic simulators, in particular
SUMO, in Subsection 1.3.3.

1.3.1 The FCTL queue

We provide the classical analysis of the FCTL queue. The derivation below was
first obtained by Darroch [64]. We start with a description of the FCTL queue.

The FCTL queue is a one-dimensional queueing model for a traffic light that
is governed by a static signal. The FCTL queue is traditionally modeled in dis-
crete time, which means that time is divided into slots of unit length. The green
and red periods, of length g and r slots, respectively, are assumed to be fixed
multiples of one slot. The total cycle thus has length c = g + r . Each slot cor-
responds to the time needed for a delayed vehicle to depart from the queue.
Vehicles that arrive during a red period are delayed as are the vehicles that ar-
rive during a green period and meet a non-empty queue. Such delayed vehicles
leave the queue one-by-one during the green period. Vehicles that arrive during
a green period and meet no other vehicles in the queue are treated differently

18 1.3 Queueing models for road traffic

according to the following assumption, which is often referred to as the FCTL
assumption.

Assumption 1.1 (FCTL assumption) For those cycles in which the queue clears
before the green period terminates, all vehicles that arrive during the residual green
period pass through the system and experience no delay whatsoever.

We further assume that the number of arrivals in each slot, Yk,n , where k =
1, . . . ,c denotes the slot and n the current cycle, are independent of one another.

This provides us with all details that we need to find the queue-length dis-
tribution at the end of the green period measured in number of vehicles. We
also commonly refer to this queue-length distribution as the distribution of the
overflow queue.

We follow the approach taken in [206]. As we are going to study the steady-
state behavior of the FCTL queue, we need to require stability in order to ensure
that the queue does not grow without bounds. When assuming that all Yk,n have

the same distribution and if we define Y
d= Yk,n , the stability condition turns out

to be

cE[Y] < g ,

i.e. the green time g , or the maximum number of delayed vehicles that are
allowed to depart during each cycle, should be bigger than the mean number of
vehicles that arrive per cycle, cE[Y], see e.g. [206].

Stability and steady-state behavior

The concept of stability requires a further explanation. In laymen terms,
it ensures that a queue does not grow beyond bounds, e.g. the number of
cars in front of the traffic light remains finite. A term that is used often in
the context of road-traffic research, is the vehicle-to-capacity ratio which
should be less than 1. This also ensures that the number of vehicles stays
finite and that the corresponding queue is stable.

We require stability, because we are interested in the steady-state be-
havior of the queue-length distribution. We do so to gain insight into
the long-term behavior of the system. The steady-state analysis usually
serves as a good approximation for reality when the circumstances do
not change (too much) over a longer period of time. As we are consid-
ering the long-term development of the queue, it makes sense to impose

Chapter 1. Introduction 19

a condition on the system to ensure that there is, on average, enough
capacity to meet the demand, which requires a stable queue or, alter-
natively phrased, a vehicle-to-capacity ratio which is less than 1. An
illustration of a stable and unstable queue is presented in Figure 1.3.

Q
ue

ue
le

ng
th

time

Q
ue

ue
le

ng
th

time

(a) (b)

Figure 1.3: A graphical representation of the queue-length process for
an unstable traffic light (a) and a stable traffic light (b). The colors on
the horizontal axis indicate whether the traffic light is green or red. As
can be seen, an unstable queue will, eventually, grow beyond bounds as
there are on average more arrivals than departures, whereas the length
of the queue remains bounded when the queue is stable.

The steady-state models that we consider are thus especially rele-
vant when the traffic conditions remain similar during a certain period
of time. For example, during a day there are several periods with similar
traffic conditions, think e.g. of the morning and evening peak hours. One
could thus identify periods with reasonably similar conditions through-
out the day. As such, a steady-state analysis for each period sheds light
onto the traffic behavior during each separate period and leads to mean-
ingful insights.

With Xk,n we denote the number of vehicles in the queue in slot k = 1, . . . ,c
during cycle n. We are especially interested in Xg , the steady-state overflow
queue defined as Xg ,n → Xg with n →∞ as essentially all performance measures
can be derived from Xg (as is noted in [206]).

We obtain the following relations between the various Xk,n ’s and Yk,n ’s. For

20 1.3 Queueing models for road traffic

k = g +1, . . . ,c, we have that

Xk,n = Xk−1,n +Yk,n ,

as we only have arrivals during the red period. For k = 1, . . . , g , we have

Xk,n =
{

Xk−1,n +Yk,n −1 if Xk−1,n > 0,

0 if Xk−1,n = 0,

where the latter case reflects the FCTL assumption and where X0,n is to be un-
derstood as Xc,n−1. This subsequently enables us to find the following relations.
For k = g +1, . . . ,c, we have, by conditioning on the number of vehicles in the
previous slot, that

P(Xk,n = i) =
i∑

l=0
P(Xk−1,n = l)P(Yk,n = i − l), (1.1)

and for k = 1, . . . , g , we have that

P(Xk,n = i) =

i+1∑
l=1

P(Xk−1,n = l)P(Yk,n = i − l +1) if i > 0,

P(Xk−1,n = 0)+P(Xk−1,n = 1)P(Yk,n = 0) if i = 0.

(1.2)

In order to derive results for Xg , we now need to turn to Probability Gener-
ating Functions (PGFs) to which we give a brief introduction before continuing
the study of the FCTL queue.

Probability Generating Functions (PGFs)

PGFs are one of the classical and essential tools in the study of stochastic
processes. They are discussed in several classical text books, such as [86,
Chapter 5], [102, Chapter 1], and [189, Appendix C]. They are used in
a wide variety of applications, such as in the study of random walks, see
e.g. [86, Chapter 5.3]; in branching processes, see e.g. [86, Chapters 5.4
and 5.5] and [102, Chapter 8]; and in queueing theory, see e.g. [55]. As
such, they play an important role in traffic-light models.

A PGF of a discrete, non-negative random variable A is defined as
A(z) = E[z A] = ∑∞

k=0 P (A = k)zk . From PGFs one is able to obtain proba-
bilities and moments from the associated random variable and as such

Chapter 1. Introduction 21

they prove useful in various situations as PGFs might be easier to obtain
than the distribution of a random variable itself. If one is interested in
obtaining probabilities, one can use a PGF to compute probabilities, e.g.
we have that P(A = k) = A(k)(0)/k !. Similarly, we might obtain moments
of a random variable from its PGF, e.g. E[A] = A′(1). If differentiation
of A(z) is difficult, one might resort to numerical schemes like the ones
in [2,51,52].

One of the advantages of PGFs is that they enable us to easily manip-
ulate sums of independent random variables: if A and B are independent
and if A(z) and B(z) are their PGFs, then the PGF of A+B is A(z)B(z). As
such, they are easy to work with, e.g. when one faces the recursions as
in Equations (1.1) and (1.2).

Let us introduce several PGFs: let Yk,n(z) be the PGF of Yk,n , Xk,n(z) the PGF
of Xk,n , and Xg (z) the PGF of Xg .

We now have everything that we need in order to derive Xg ,n(z) in terms of
Xg ,n−1(z). We have

Xg ,n(z) =
∞∑

i=0
P(Xg ,n = i)zi

=
∞∑

i=1

i+1∑
l=1

P(Xg−1,n = l)P(Yg ,n = i − l +1)zi +P(Xg−1,n = 0)+

P(Xg−1,n = 1)P(Yg ,n = 0)

=
∞∑

l=1
P(Xg−1,n = l)z l−1

∞∑
i=l−1

P(Yg ,n = i − l +1)zi−l+1 +P(Xg−1,n = 0)

=
∞∑

l=1
P(Xg−1,n = l)z l Yg ,n(z)

z
+P(Xg−1,n = 0)

=(
Xg−1,n(z)−Xg−1,n(0)

) Yg ,n(z)

z
+Xg−1,n(0)

=Xg−1,n(z)
Yg ,n(z)

z
+Xg−1,n(0)

(
1− Yg ,n(z)

z

)
,

which is in accordance with [206, Equation (7)].
Iterating further, we get that

Xg ,n(z) = Xc,n−1(z)
g∏

i=1

(
Yi ,n(z)

z

)
+

g−1∑
i=0

Xi ,n(0)

(
1− Yi+1,n(z)

z

) g∏
k=i+2

(
Yk,n(z)

z

)
, (1.3)

22 1.3 Queueing models for road traffic

where X0,n(0) is to be understood as Xc,n−1(0). We also derive Xc,n(z) in terms
of Xg ,n(z):

Xc,n(z) =
∞∑

i=0

i∑
l=0

P(Xc−1,n = l)P(Yc,n = i − l)zi

=
∞∑

l=0
z lP(Xc−1,n = l)

∞∑
i=l
P(Yc,n = i − l)zi−l

=
∞∑

l=0
z lP(Xc−1,n = l)Yc,n(z)

= Xc−1,n(z)Yc,n(z) = . . . = Xg ,n(z)
c∏

i=g+1
Yi ,n(z). (1.4)

We note that, in steady state, Xg ,n
d= Xg ,n−1, i.e. the steady-state queue length

at the end of the green period in cycle n should be the same in distribution as in
cycle n −1. If moreover the Yk,n are independent and identically distributed, if

we define Y (z) to be the PGF of Y where Y
d= Yk,n , and combine Equations (1.3)

and (1.4), we obtain that

Xg ,n(z) = Xg ,n−1(z)
Y (z)c

zg +
g−1∑
i=0

Xi ,n(0)

(
1− Y (z)

z

)(
Y (z)

z

)g−i−1

.

This leads to the following steady state expression for Xg (z):

Xg (z) =
zg ∑g−1

i=0 Xi (0)
(
1− Y (z)

z

)(
Y (z)

z

)g−i−1

zg −Y (z)c , (1.5)

where X0(0) is to be understood as Xc (0) and with Xi (0), i = 0, . . . , g − 1, the
steady-state probability that the queue is empty at the end of slot i .

The only thing left to do is to find the unknowns Xi (0) for i = 0, . . . , g −1. We
might employ the zeros within the unit circle of zg −Y (z)c , the denominator of
Xg (z), and the fact that we know that Xg (z) is analytical within the unit circle.
We thus need the numerator to be zero if zg −Y (z)c = 0. One can use Rouché’s
theorem, see e.g. [6], to show that there are g zeros of zg −Y (z)c within the unit
circle if the stability condition is satisfied. This leads to g −1 equations for the
numerator of Xg (z), as one zero (z = 1) leads to a trivial equation. As Xg (z) is a
PGF it should satisfy Xg (1) = 1, which gives one more equation. Using l’Hôpital’s

Chapter 1. Introduction 23

rule, this equation reduces to

g−1∑
i=0

Xi (0) = g − cE[Y]

1−E[Y]
.

Now, we have obtained a set of g linear equations in terms of g unknowns,
which can be solved to obtain the Xi (0). In [206], it is shown that the Xi (0) are
the solution of a Vandermonde system. Plugging the Xi (0) into Equation (1.5),
we have finished the characterization of Xg (z). Instead of obtaining Xg , we
thus have obtained Xg (z). Nevertheless, this enables us to find the associated
probabilities and moments of the overflow queue Xg by means of differentiation
as indicated before or by means of numerical inversion schemes as can be found
in e.g. [2,52].

M
ea

n
qu

eu
e

le
ng

th

2

4

6

8

10

0 2 4 6 8 10 12 14 16 18 20

Slot

Figure 1.4: Mean queue length at the end of slots 1 to 20 for two FCTL queues with
2g = c = 20. The blue bars correspond to a queue which starts with a green period in slot
1 and with Poisson arrivals in each slot with mean 0.45. The orange bars correspond to a
queue which starts with a red period in slot 1 and with Poisson arrivals in each slot with
mean 0.4.

We give a brief illustration of some results that can be obtained with the
developed framework for the FCTL queue in Figure 1.4. We see the steady-state
mean queue length at the end of slot i for i = 1, . . . ,20 for two FCTL queues with
2g = c = 20. The queue corresponding to the blue bars starts with a green period

24 1.3 Queueing models for road traffic

and for slots 1 to 10 the mean queue length decreases. After slot 10, the traffic
light turns red and the mean queue length starts increasing again. The number
of arrivals per slot is distributed according to a Poisson distribution with mean
0.45. The number of arrivals per slot in the other queue, corresponding to the
orange bars, is distributed according to a Poisson distribution with mean 0.4.
This queue starts with a red period in slot 1 and the mean queue length thus
increases (as opposed to the other queue). After slot 10, the traffic light for this
queue turns green and the mean queue length starts decreasing. The patterns
in Figure 1.4 are general: increasing queues for red traffic lights and decreasing
queues for green lights. The opposing effect of the decrease/increase in the
mean queue length for different queues as in Figure 1.4 is also a quite universal
phenomenon, as a green light for one queue usually implies a red traffic light
for a queue with a conflicting stream of vehicles, see e.g. also Figure 1.2.

1.3.2 Polling models

As discussed before, the analysis for vehicle actuated systems is significantly
more complex than for the FCTL queue due to the multidimensionality of the
problem. From a queueing perspective, the most typical feature of traffic inter-
sections with vehicle-actuated strategies is that they consist of multiple queues,
but only one queue (or, more generally, a subset of all queues) can be served si-
multaneously. In queueing theory, there is a class of models that exhibits exactly
this feature, and these are called polling models. The use of polling models in
studies of road traffic and the fact that (ideas stemming from) polling models
will often be used later on in this thesis, are the main reasons why we discuss
polling models separately in this introduction.

In Figure 1.5, we illustrate both a simplified model for a traffic-light con-
trolled intersection and a polling model. Looking at Figure 1.5, we immediately
see the resemblance between the two models and as such, polling models might
be leveraged to study traffic-light controlled intersections.

A polling model is a queueing model with one server which serves several
queues according to some general rules. Most often, it is assumed that the server
serves one queue at a time and after some time switches to the next queue, as
can be seen in Figure 1.5(b). The moment that the server initiates a switch is
determined by the service discipline. Such a switch might happen after a queue
has become empty (exhaustive service); after either a queue has become empty
or a fixed maximum number, k, of customers has been served (k-limited ser-
vice); after all customers have been served that were waiting in the queue upon
arrival of the server at the queue (gated service); and many more variants exist.

Chapter 1. Introduction 25

(a) (b)

Figure 1.5: Graphical representations of (a) a simplified model for an intersection with 4
lanes and a traffic light and (b) a polling model with 4 queues and a single server. Note
that vehicles driving towards the intersection in (a) are displayed as arriving entities in
the queue in (b). Some of those vehicles we count as in the queue, e.g. the top three in
the bottom queue, whereas the fourth vehicle is not yet considered to be in the queue.

The right combination of arrival processes, service processes, switchover pro-
cesses, and the service discipline enables one to realistically model all kinds of
processes, among which are traffic lights. Indeed, the use of polling models in
the study of traffic lights is evident in this respect as the incoming lanes repre-
sent the queues and the intersection itself represents the server. A recent review
on further applications of polling models can be found in [18], an overview of
commonly used techniques in [215], and a recent general overview in [24].

As we have already given an overview of traffic lights with a vehicle-actuated
control, we refrain from giving more in-depth studies which use polling mod-
els to study traffic-lights and refer the reader to Subsection 1.2.2. We continue
this subsection with a discussion on some commonly used concepts and tech-
niques in the study of polling models, with a special emphasis on methods and
techniques that will be of further use later on in this thesis.

Analysis techniques for polling models

Some polling models lend themselves for a relatively straightforward and exact
analysis, whereas for other polling models there are no known methods to de-
rive exact results. One of the crucial factors that differentiates these two sets of

26 1.3 Queueing models for road traffic

models is the service discipline. In more detail, service disciplines that satisfy
the so-called branching property often lend themselves for an exact analysis,
whereas service disciplines that do not, are often intractable. The branching
property was independently discovered by Fuhrmann [79] and Resing [168].
It states that service disciplines like the exhaustive and gated discipline satisfy
the following principle: each time the server arrives at or departs from a queue
(the so-called polling epochs), the joint number of customers at all queues can
be represented by a multi-type branching process with immigration. This seems
to be a crucial feature in being able to analyze a polling model in a relatively
straightforward way. The exhaustive and gated service discipline are important
service disciplines that satisfy the branching property, whereas the k-limited dis-
cipline is an important one (especially in traffic-light engineering) that does not
satisfy the branching property.

The branching property enables one to relate the queue-length distributions
at polling epochs to one another. Iterative use of these relations leads to an
implicit functional equation for the PGF of the joint queue-length distribution
at polling epochs. Although this functional equation usually does not allow for
an explicit expression of the PGF, it allows for explicit computations of e.g. mo-
ments. Through numerical inversion of the PGF, the distribution can also be
obtained numerically. This technique of relating the queue-length distributions
at polling epochs to one another is sometimes referred to as the buffer occu-
pancy method, see e.g. the paper by Levy and Sidi [123]. For an elaborate
exposition of the buffer occupancy method, we refer to [16, Section 2.2].

If the branching property is not satisfied, there is no general framework
available for the study of the queue-length distribution in polling models. Usu-
ally, intricate types of analysis are needed if an analysis is possible at all. An
example of the latter is a method based on boundary value problems from math-
ematical physics, like the Riemann and Riemann-Hilbert boundary value prob-
lem. This method might be leveraged to obtain, e.g., the joint PGF of the queue-
length distribution for a two-queue polling model with 1-limited service [29].
Unfortunately, boundary value problems can only be solved for a very limited
set of polling models. For a general treatment of boundary value problems and
their applications to queueing theory, we refer the interested reader to [57,73].

As a last technique, we mention an approximation technique for polling
models based on light- and heavy-traffic limits. This technique was first applied
to polling models in [22], building on ideas developed in [166]. Basically, the
light-traffic and heavy-traffic limit of the polling model at hand are established
and those are used to approximate, e.g., the mean waiting time in the polling
model by means of a simple function. A big advantage is that the approximation

Chapter 1. Introduction 27

results in a closed-form expression, which can subsequently be used for e.g. op-
timization purposes which is often not possible when using exact expressions.
Typically, the light-traffic limit is relatively easy to derive. For service disciplines
satisfying the branching property, heavy-traffic limits have been derived as well,
see e.g. [54, 200]. When the service discipline violates the branching property,
it is usually hard to obtain the heavy-traffic limit behavior. Some work in this
respect has been done by Boon and Winands, who focus on k-limited polling
models, see [20, 21]. They derive the heavy-traffic limit for k-limited polling
models with asymmetric loads, leaving the symmetric case for future research.
It seems difficult to come up with a unified approach for the heavy-traffic anal-
ysis of polling models that do not satisfy the branching property.

1.3.3 Road traffic simulators

Because of the complicated nature of road traffic and the limiting possibilities
of e.g. queueing models to capture road traffic phenomena, many traffic simu-
lators have been developed. Simulators might vary in the type of interactions
they allow for, ranging from macroscopic to microscopic. The most interest-
ing ones for our purposes are microscopic simulators. They explicitly model all
kinds of vehicle-to-vehicle interactions, enabling a realistic and detailed study
of the behavior of every single vehicle. These interactions are one of the core
advantages of microscopic simulators, as they enable the simulator to obtain
a good reflection of reality. A disadvantage of microscopic traffic simulators is
that they are computationally expensive. Moreover, due to randomness in the
interaction between vehicles, one often needs to execute several simulations to
dampen the effect of randomness in order to get accurate results, which is a fur-
ther complicating factor. We discuss one (microscopic) traffic simulator in more
detail, SUMO, as we will use it in some of the subsequent chapters. Other well-
known simulators are VISSIM and Aimsun. For a further overview of various
traffic simulators we refer to [160].

SUMO (Simulation of Urban MObility) [129] is a popular, free, and open-
source traffic simulator. SUMO is a microscopic traffic simulator with many
options and possibilities that enables one to set up a realistic simulation for
many case studies. It is e.g. possible to replicate simulations by fixing the seed
for the random number generator and one might model many different arrival
distributions of vehicles. Confidence intervals can be obtained by e.g. running
the same simulation with different seeds and obtaining performance measures
for each run, which can then be used to construct such confidence intervals.

28 1.3 Queueing models for road traffic

Other possibilities include the introduction of several vehicle types (cars, buses,
trucks, etc.), different behavior of drivers, and various traffic-light strategies.

We will use SUMO to study the steady-state behavior of various models that
we consider. In this respect, we merely use SUMO as a realistic benchmark for
current-day traffic, as it is difficult to test our models on-site in a real-life setting.
SUMO is a cheap and easy-to-use alternative. Moreover, SUMO is known to pro-
duce an accurate representation of reality and it automatically outputs some of
the performance characteristics that we are interested in, which are further rea-
sons to choose SUMO as a simulation tool. Besides the aforementioned, SUMO
also offers a nice visualization, as can be seen in Figure 1.6 and some output of
SUMO is visualized in Figure 1.7. We see some very detailed information per
vehicle in Figure 1.7 which shows the possibilities of SUMO in analyzing traffic
performance. Some of the more interesting output variables for our purposes
are the waiting time (time spent (almost) stationary) of vehicles and the time
loss, which corresponds to the delay experienced by vehicles. Note that much
more output might be generated, see also [82] for some examples.

Figure 1.6: A snapshot of a SUMO simulation.

Having discussed some of the advantages of SUMO, we now turn to lim-
itations of SUMO. As SUMO is a microscopic traffic simulator (which is one
of its key strengths), it models every vehicle individually with varying driver
characteristics. As such, there might be a considerable amount of randomness
in the behavior of vehicles and thus in the outcome of a simulation, a com-
mon drawback of microscopic traffic simulators. This is something that needs
to be accounted for. Moreover, the individual modeling of vehicles takes up a
lot of computational power, which makes SUMO slow compared to other (non-

Chapter 1. Introduction 29

Figure 1.7: Some output of SUMO.

microscopic) simulation methods.
SUMO can be leveraged in various other ways as well. SUMO can for exam-

ple be used for the verification of certain models, but is also used for real-time
traffic predictions by the company Sweco in their smart traffic application. This
shows that SUMO is indeed considered to be a good substitute for reality, both
by academicians and practitioners.

1.4 Main contributions and outline of this thesis

To close the introduction, we give an overview of the remainder of this the-
sis and its main contributions to the existing literature. We give a chapter-by-
chapter overview.

Chapter 2 provides an alternative analysis to the standard approach for ob-
taining the PGF of the distribution of the overflow queue of the FCTL queue.
Instead of having to find roots and to solve a set of linear equations, as is the
case in Subsection 1.3.1 and in [64,206], we provide a complex contour-integral
expression for the PGF of the distribution of the overflow queue. This expres-
sion does not require any roots to be found and also avoids the need to solve
a set of linear equations. Advantages and disadvantages of the new expression
are investigated and discussed. This chapter is based on [231].

30 1.4 Main contributions and outline of this thesis

The contour-integral expression for the PGF of the overflow queue for the
FCTL queue enables us to find a heavy-traffic scaling of the FCTL queue, which
is one of the main contributions in Chapter 3. The scaling that we propose,
relates the green period, g , to the cycle length, c, in the following way

g = cµ+βσpc,

where µ is the mean arrival rate per slot, σ the standard deviation of the num-
ber of arrivals per slot, and β > 0 a parameter that can be chosen freely. This
scaling gives rise to a Halfin-Whitt type of regime, see e.g. [89,208]. We derive
the convergence, after properly scaling, of the overflow queue to the so-called
maximum of a Gaussian random walk with negative drift. The convergence re-
sult allows us to formulate approximations for e.g. the mean overflow queue,
which allows us to construct green-time allocation problems which are solved
to optimality. A benefit of our approach is that the optimal green times are easy
to compute and explain. This chapter is based on [232].

In Chapter 4 we use the intuition that we developed in Chapter 3 and apply
a similar scaling rule for the green periods to various traffic-light control strate-
gies. We demonstrate by means of simulation that the queueing process for
several vehicle-actuated strategies with limited control exhibits a similar type
of Halfin-Whitt behavior as the FCTL queue in Chapter 3. We resort to simula-
tion techniques, because the strategies we study are currently considered to be
analytically intractable. This chapter is based on [234].

In Chapter 5 an extension of the FCTL queue is introduced. Motivated by
simulation work in [96], we investigate a traffic light with both turning and
straight-going traffic. The turning vehicles might be blocked by pedestrians
who receive a green light at the same time as the turning vehicles. A turning
vehicle is only blocked if there are pedestrians crossing, which in turn causes all
vehicles behind the turning vehicle to be blocked as well. As this is a realistic
scenario at various intersections in practice, it is important to gain insight into
the influence of such pedestrian crossings and we formulate a tractable exten-
sion of the FCTL queue to close this gap in the literature. Moreover, we allow
for a general number of delayed vehicles departing, say m, in each slot, whereas
in the traditional FCTL queue at most one delayed vehicle departs in each slot.
As we show in Chapter 5, this is another relevant extension of the FCTL queue.
Chapter 5 is based on [237].

Motivated by k-limited polling models, their intractability, and their rele-
vance in the study of vehicle-actuated traffic lights, we propose a novel ap-
proximation scheme for k-limited polling models in Chapter 6. It turns out

Chapter 1. Introduction 31

that many multidimensional queueing models can be approximated with our
scheme, as long as a kernel-type functional equation can be derived for the PGF
of the steady-state joint queue-length distribution. The scheme uses this func-
tional equation along with several roots of the so-called kernel to approximate
a finite number of probabilities. Our scheme leads to an approximation of the
joint steady-state queue-length distribution. Next to k-limited polling models,
we also study some specific traffic-light models for which no exact results have
been derived as far as we are aware. Chapter 6 is based on [235].

Figure 1.8: Two streams of vehicles (depicted in red and blue) approaching an inter-
section located at the middle of the figure. It can be seen that vehicles are grouped
together in platoons and that vehicles start decelerating early (if they are delayed) and
start accelerating in such a way that they cross the intersection at maximum speed. In
this example, the vehicles minimize the amount of applied acceleration.

As argued before, it is not inconceivable that self-driving vehicles will oc-
cupy the roads in the near future. Anticipating the introduction of such vehi-
cles, we turn to platoon forming algorithms in Chapter 7. We investigate and
compare several traffic-light or intersection-access control strategies, where we
focus on obtaining approximations for mean performance measures. The de-
rived approximations are different in nature than the ones derived in Chapter 6
and are based on light- and heavy-traffic limits, similar to those in e.g. [22]. We
also investigate how vehicles should approach the intersection and consider two
strategies: one minimizes spillback to other queues, while the other minimizes
the amount of acceleration. We obtain closed-form solutions for both strategies,
adding to the practical value of our schemes. The key ideas used in Chapter 7
are visualized in Figure 1.8. Chapter 7 is based on [236].

Chapter 8 relates to joint work with De Verkeersonderneming, a Dutch com-

32 1.4 Main contributions and outline of this thesis

pany aimed at improving traffic flow and mobility. De Verkeersonderneming
was looking for an algorithm to identify special days at highways. Those special
days correspond to days with both a high traffic flow and the absence of con-
gestion. Based on common notions in traffic engineering, like the fundamental
diagram, and regression techniques, we are able to identify those special days.
The algorithm has been tested at several sites and has proven to give reliable
results. Chapter 8 is based on [233].

We close this thesis with a general discussion and conclusion in Chapter 9.
We also briefly touch upon topics for future research.

Chapter 2
Pollaczek contour integrals for
the Fixed-Cycle Traffic-Light
queue

2.1 Introduction

In Subsection 1.3.1, we have provided a detailed model description and analy-
sis of the Fixed-Cycle Traffic-Light (FCTL) queue. The final expression for the
Probability Generating Function (PGF) of the distribution of the overflow queue
or the queue length at the end of the green period, denoted with Xg (z), involves
several a priori unknown parameters. Those can be found using roots located
within the unit circle from the denominator of Xg (z) and subsequently solving a
set of linear equations. As the authors in [146] show, the mean overflow queue
can be obtained without any root finding and solving sets of linear equations. In
this chapter we extend those results, showing that root-finding can be avoided
when obtaining the PGF Xg (z) by employing several basic notions from complex
analysis, among which Cauchy’s residue theorem, see e.g. [37, Chapter 2.7]. In
the end, we obtain a Pollaczek-type contour-integral expression for Xg (z), which
can be evaluated numerically.

The type of contour integral reminds of early results on the classical single-
server queue analyzed in ground-breaking work of Pollaczek, see [1,55,100] for
historical accounts. A similar approach is taken in [101], where subsequently

34 2.2 Standard solution for the FCTL queue

heavy-traffic results for the Bulk-Service Queue (BSQ) are derived. Our results
for the FCTL queue can easily be extended to a more general set of models, in-
cluding the BSQ and the models considered in [146], see also Subsection 2.3.2.

Besides the absence of the need to find roots to obtain Xg (z), another major
advantage of the new representation is that the complex contour integral allows
for different types of analysis than the representation based on the roots. E.g.,
we will employ the structure of the contour integral in Chapter 3 to obtain a
heavy-traffic scaling based on the Halfin-Whitt regime, which would have been
very difficult to obtain with the roots-based representation. A disadvantage of
the complex contour integral is that one needs to evaluate the integral numeri-
cally, but also the roots have to be computed numerically in most cases.

Our main contributions can be summarized as follows:

(i) We provide a novel contour-integral expression for the PGF of the steady-
state queue-length distribution at the end of the green period.

(ii) We show that this contour-integral expression can be used to obtain sev-
eral interesting performance measures.

(iii) We show that a contour-integral type of expression can be derived for a
much larger class of queueing models than just the FCTL queue.

Chapter outline

We continue this chapter with a brief recap of the analysis of the FCTL queue in
Section 2.2, as this provides an excellent starting point for the derivation of the
main result in this chapter. Subsequently, we present the new analysis which
leads to a contour-integral expression in Section 2.3 after which we provide
contour-integral expressions for a more general set of models. In Section 2.4
we study some numerical examples and reflect on the differences for the com-
putations between the root-based and contour-integral formulas. The proof of
the contour-integral representation is presented in Section 2.5 and we wrap up
with some conclusions in Section 2.6.

2.2 Standard solution for the FCTL queue

We present a short exposition of the derivation of the steady-state overflow
queue, Xg (z). As in Subsection 1.3.1, we define Y to be the number of arrivals
during one slot and define Y (z) = E[zY]. Moreover, we denote with A(z) the PGF

Chapter 2. Pollaczek contour integral for the FCTL queue 35

of the distribution of all arrivals during a cycle, i.e. A(z) = Y (z)c . We assume
P(Y = 0) > 0, Y ′(1) < 1, A′(1) < g , and Y (z) to be analytic in a region |z| < R with
R > 1 and R maximal. Then, it can be shown, as detailed in Subsection 1.3.1
and as in [64,206], that

Xg (z) =
(z −Y (z))

∑g−1
k=0 qk zk Y (z)g−1−k

zg − A(z)
. (2.1)

This expression still contains g unknowns q0, . . . , qg−1, with qk representing the
probability that the queue empties before or during slot k, where slot 0 is to
be understood as slot c. We thus have Xk (0) = P(Xk = 0) = qk , with Xk the
distribution of the queue length at the end of slot k and with Xk (z) its PGF. The
qk ’s can be found by exploiting the analytic properties of PGFs as explained in
Subsection 1.3.1. With Rouché’s theorem, it can be shown that the denominator
of (2.1) has g zeros on or within the unit circle |z| = 1. Because a PGF is well-
defined in |z| ≤ 1, the numerator of Xg (z) should vanish at each of the zeros.
This gives g equations. One of the zeros equals 1, and leads to a trivial equation.
However, the normalization condition Xg (1) = 1 provides an additional equation.

This summarizes the highest level of general development for the analysis
of the FCTL queue: transform techniques yield an expression for Xg (z) that in
order to be evaluated demands finding g −1 roots in the complex plane of the
function zg = A(z) and solving a set of g linear equations. In the next section,
we show that the finding of the g−1 roots and solving the set of linear equations
can be avoided.

2.3 Main results

In Subsection 2.3.1 we present the contour-integral representation for the PGF
of the overflow queue for the FCTL queue. In Subsection 2.3.2 we derive simi-
lar contour-integral expressions for several generalizations of the FCTL queue,
some of which are also considered in [146].

2.3.1 Standard FCTL queue

We now turn to the alternative expression for Xg (z) which is based on a contour
integral. Here is the main result in this chapter, continued with a sketch of the
proof (the proof is deferred to Section 2.5):

36 2.3 Main results

Theorem 2.1 There is an ε0 > 0 such that for all ε ∈ (0,ε0) and for all |w | < 1+ε,

Xg (w) = exp

(
1

2πi

∮
|z|=1+ε

Y ′(z)z −Y (z)

z −Y (z)

w −Y (w)

zY (w)−wY (z)
ln

(
1− A(z)

zg

)
dz

)
, (2.2)

with principal value of the logarithm.

Here, ε0 satisfies the inequality ε0 < min{t0,R0}, where t0 = sup{t ∈ R+|Y ′(t)t −
Y (t) ≤ 0} and R0 is the unique root of Y (z) = z in (1,∞).

Remark 2.1 Equation (2.2) is essentially equivalent with

Xg (w) = exp

(
1

2πi

∮
|z|=1+ε

ln

(
wY (z)− zY (w)

Y (z)− z

)
(zg − A(z))′

zg − A(z)
dz

)
, (2.3)

with principal value of the logarithm, except that the validity range is more delicate
due to the more complicated argument of the ln in Equation (2.3). Equation (2.2)
follows upon manipulating Equation (2.3) using partial integration (details can
be found in Section 2.5).

Sketch of the proof

The proof of Theorem 2.1 finds a way to go from representation (2.1) to contour
integrals. A significant start in this direction was made by [146], who rewrote
Equation (2.1) as

Xg (z) =
(z −Y (z))zg−1 ∑g−1

k=0 qk

(
Y (z)

z

)g−1−k

zg − A(z)
.

Then denote the g roots of zg = A(z) on and within the unit circle by z0 =
1, z1, . . . , zg−1. Now here is where the authors in [146] took an eye-opening step:
instead of using the g roots in the traditional manner for finding the unknowns
qk and completing the transform Equation (2.1), use these roots for factorizing
the numerator of Equation (2.1). Notice that this cannot be done immediately,
because interpreted as a function of z, the numerator is by no means a polyno-
mial of degree g or less. However, by treating the function Y (z)/z as a variable
itself, the summation in the numerator is a polynomial of degree g −1 and can
be factorized as

g−1∑
k=0

qk

(
Y (z)

z

)g−1−k

= q0

g−1∏
k=1

(
Y (z)

z
− Y (zk)

zk

)
, (2.4)

Chapter 2. Pollaczek contour integral for the FCTL queue 37

using that Xg (z) is well-defined in the disk |z| ≤ 1, that z1, . . . , zg−1 are roots of
the denominator and therefore also should be roots of the numerator, and that
Y (z)/z is injective (see Section 2.5). After normalization using Xg (1) = 1, the
factorization in Equation (2.4) leads to the representation

Xg (z) = g − A′(1)

zg − A(z)
· z −Y (z)

1−Y ′(1)
· zg−1

g−1∏
k=1

Y (z)/z −Y (zk)/zk

1−Y (zk)/zk
. (2.5)

Our proof proceeds by interpreting Equation (2.5) as the outcome of Cauchy’s
residue theorem, the classical tool from complex analysis to evaluate line in-
tegrals of analytic functions over closed curves. An important step is to write

ln

(
zg−1

g−1∏
k=1

Y (z)/z −Y (zk)/zk

1−Y (zk)/zk

)
=

g−1∑
k=1

ln

(
zY (zk)− zk Y (z)

Y (zk)− zk

)
, (2.6)

and to regard Equation (2.6) as the sum of residues at z = zk , where we used
that the zk are either real or come in complex conjugates. To construct an
analytic function that, in conjunction with Cauchy’s theorem and the closed
curve |z| = 1+ε, returns Equation (2.6) and has singularities at z1, . . . , zg−1, leads
us to consider the integrand in Equation (2.3). Here, the logarithmic function

ln

(
wY (z)− zY (w)

Y (z)− z

)
= ln

(
Y (z)/z −Y (w)/w

Y (z)/z −1
w

)
(2.7)

follows from Equation (2.6) and the singularities with appropriate residues
are created through (zg − A(z))′/(zg − A(z)). First, we derive useful properties
of the function Y (z)/z present in Equation (2.7) such as injectivity in a suffi-
ciently large region. Then, after careful consideration of the analytic proper-
ties of the integrand in Equation (2.3), we show that Cauchy’s theorem gives
Equation (2.5) from which Equation (2.3) follows. As mentioned before, Equa-
tion (2.2) is obtained by manipulating Equation (2.3) using partial integration.
The formal proof of Theorem 2.1 is presented in Section 2.5.

Historical notes

Integrals of this sort go a long way back in the history of queueing theory and
were first found in the ground-breaking work of Pollaczek on the classical single-
server queue (see [1, 55, 100] for historical accounts). Let us point out the
connection to the well known Pollaczek type integral for the BSQ [101]. The

38 2.3 Main results

analysis of the FCTL queue would be greatly simplified if all vehicles are de-
layed [198]. In that case we obtain a standard stochastic recursion driven by
independent and identically distributed (i.i.d.) random variables and the FCTL
queue reduces to the classical BSQ, a special case of the more general single-
server queue investigated by Pollaczek. Let Xb denote the steady-state queue
length of the BSQ, defined as the solution of the stochastic equation

Xb
d= max{Xb + A− g ,0}.

Pollaczek’s result then says that (see [101] for a direct derivation)

Xb(w) = exp

(
1

2πi

∮
|z|=1+ε

ln
(w − z

1− z

) (zg − A(z))′

zg − A(z)
dz

)
(2.8)

holds when |w | < 1+ ε with ε positive and bounded by some constant. Observe
the striking similarity with Equation (2.3). While the FCTL queue is harder to
analyze than the BSQ, the two contour-integral representations Equation (2.3)
and Equation (2.8) only differ in the logarithmic function. We find this quite
surprising, particularly because there seems no way to interpret the FCTL queue
as a reflected random walk (that is, a recursive structure with i.i.d. increments),
while in the literature so far this seems to be a prerequisite for establishing
Pollaczek-type contour integrals. Do observe that Equation (2.8) is valid in an
area that includes the unit disk while Equation (2.3) is guaranteed only in an
open set containing [0,1], see Section 2.5. This objection does not hold against
the representation in Equation (2.2) of Xg (w).

The bulk-service queue and a comparison with the FCTL queue

The BSQ is a popular approximation of the FCTL queue [198]. The BSQ
can be described as follows: there are arrivals according to a generally
distributed random variable A and after a randomly distributed time B ,
a randomly distributed number, G, of customers are cleared from the
queue after which the process repeats itself. When we choose B = c, G =
g , and A to be the number of arrivals in a period of length c, it is evident
that the BSQ might serve as an approximation to the FCTL queue, where
the BSQ accumulates all departures at a single time whereas the FCTL
queue has departures throughout the cycle.

To compare the FCTL queue and the BSQ, we assume for the moment
that the arrivals at both queues are identical and that they start with the

Chapter 2. Pollaczek contour integral for the FCTL queue 39

same number of entities in the queue. If the queue is non-empty at the
end of the green period for the FCTL queue or after a service completion
in the BSQ, there is no difference between the number of departures
in the FCTL queue and the BSQ and in such a case they thus behave
identically. The only case when there might be a difference between the
number of departures between the two queueing models is when the
FCTL queue becomes empty during the green period: then there might
be more than one departure per slot due to the FCTL assumption (and
thus the total number of departures in a cycle might be larger than g).
This is not possible in the BSQ. The only way in which the BSQ and the
FCTL queue thus deviate when having the same arrivals and starting at
the same level, is when the FCTL queue becomes empty during the green
period. The FCTL queue, in some sense, thus provides a more detailed
version of the BSQ with more complicated within-cycle-dynamics. To
illustrate this, we provide sample paths for the BSQ and the FCTL queue
in Figure 2.1.

Q
ue

ue
le

ng
th

time

Q
ue

ue
le

ng
th

time

(a) (b)

Figure 2.1: A sample path for the FCTL queue (a) and the BSQ (b). The
colors on the horizontal axis indicate whether the traffic light is green
or red. The arrivals in both figures are the same and we can clearly see
the difference between the departure process in the FCTL queue, with
within-cycle dynamics, and the BSQ without within-cycle dynamics: de-
partures only occur once per cycle. Careful inspection of the sample
paths in (a) and (b) tells us that the queue length at the departure mo-
ments in the BSQ is the same as in the FCTL queue for the considered
sample paths, except for the one-but-last departure moment in the BSQ:
there were some arrivals that could leave in the FCTL queue because of
an empty queue and a green traffic light, which could not all depart in
the BSQ at the next departure moment.

40 2.3 Main results

When the number of arrivals per slot in the FCTL queue is at most
one, so for Bernoulli arrivals, there is no difference between the FCTL
queue and the BSQ. This is because there are at most g departures in
the FCTL queue during a green period (even when the queue is empty
there is at most one departure per slot, because of the Bernoulli arrivals
per slot), while in the corresponding BSQ there are also at most g de-
partures. So, the BSQ and the FCTL queue are equivalent in this case.
To see this in Equation (2.3), we substitute Y (z) = 1− p + pz into the
logarithmic function in Equation (2.3), and observe that this gives the
logarithmic function in Equation (2.8).

2.3.2 Generalizations of the FCTL queue

Oblakova et al. [146] have introduced several generalizations of the FCTL queue
and established contour integrals for the first moment of the steady-state queue
length for those models. We now show how contour-integral representations
for these generalizations of the FCTL queue follow almost directly from the
contour integral for the standard FCTL queue. We start from the definition of
X (z) in [146], a generalization of the function Xg (z) that contains the FCTL
queue and several extensions of the FCTL queue as special cases.

Definition 2.1 (Generalized FCTL queues, after [146]) Consider the function
X (z) with X (1) = 1 and

X (z) =
∑g−1

k=0 xk zk B(z)g−1−k

zg − A(z)
ξ(z), (2.9)

where B(z) and A(z) are PGFs and ξ(z) is a function satisfying ξ(1) = 0, ξ(zl) 6= 0
with zl 6= 1 the roots of zg −A(z) inside the unit disk. Assume moreover that B ′(1) <
1, A′(1) < g , that for some δ> 0 the functions A(z) and B(z) are analytic within the
disk |z| < 1+δ, and that X (z) is analytic inside the unit disk and continuous up to
the unit circle. Also assume that t0 > 1, where t0 = sup{t ∈R+|B ′(t)t −B(t) ≤ 0}.

Here is the main result for the function X (z):

Theorem 2.2 Under Definition 2.1 there exists an ε0 > 0 such that for all ε ∈ (0,ε0)

Chapter 2. Pollaczek contour integral for the FCTL queue 41

X (z) = exp

(
1

2πi

∮
|w |=1+ε

ln

(
zB(w)−wB(z)

B(w)−w

)
(w g − A(w))′

w g − A(w)
dw

)
1−B ′(1)

z −B(z)

ξ(z)

ξ′(1)
,

(2.10)

for all |z| < 1+ε, with principal value of the logarithm.

Proof. The proof will express Equation (2.9) as a product of the PGF of the
standard FCTL queue and some analytic function. Denote the g − 1 roots of
zg − A(z) inside the unit circle by z1, . . . , zg−1. We rewrite Equation (2.9), using
X (1) = 1, as

X (z) = (g − A′(1))

zg − A(z)

ξ(z)

ξ′(1)

g−1∏
k=1

B(z)zk − zB(zk)

B(zk)− zk
.

If we replace Y (z) with B(z) in Xg (z), we see from Equation (2.5) that

Xg (z) = g − A′(1)

zg − A(z)

z −B(z)

1−B ′(1)

g−1∏
k=1

B(z)zk − zB(zk)

B(zk)− zk
.

Using this, we see that we can express X (z) in Xg (z):

X (z) = Xg (z)
1−B ′(1)

z −B(z)

ξ(z)

ξ′(1)
.

This gives the result. ä
Let us now discuss some of the extensions contained in X (z).

(i) The first extension concerns right-turning traffic. In this setting, the dif-
ference in discharge rate between delayed and non-delayed vehicles almost van-
ishes, i.e. the speed difference of delayed and non-delayed vehicles is almost
negligible. This requires us to modify the FCTL assumption in order to put an
upper bound on the number of vehicles that pass the traffic light without de-
lay. This upper bound is set to one, whereas the FCTL assumption assumes this
upper bound to be infinite. In this adjusted setting, we have that at most one
vehicle can depart per green slot. Following [146], it can be shown that this
model for right-turning traffic follows by setting B(z) = Y (z), A(z) = Y (z)c , and
ξ(z) = (z −1)Y (0), where Y (z) is the PGF of the number of arrivals per slot. The
contour-integral expression for the PGF thus follows from Theorem 2.2.

(ii) Another extension of the classical FCTL queue is one that accounts for
disruptions of the traffic flow by e.g. pedestrians. To account for such disrup-
tions, one could extend the red period for the traffic light of vehicles or shorten

42 2.4 Algorithmic methods

the green period [146] according to some probability distribution. This exten-
sion thus requires an FCTL queue with random (but finite) green and red times,
for which we choose g = G with G denoting the maximum green time. Setting
B(z) = Y (z), A(z) = ∑

r,g pr,g Y (z)r+g zG−g with pr,g the probability that a cycle
consists of g green and r red slots, and ξ(z) = z −Y (z), then shows that this
extension of interrupted flows is contained in Theorem 2.2.

(iii) The third extension we mention, relates to uncertainty in departure
times of vehicles. Usually, we assume that in each slot corresponding to a green
traffic light, a delayed vehicle might depart. In the case of distracted drivers
we assume that a driver does not depart in such a slot with some probabil-
ity p [146]. In the next slot, again, the driver does not depart with prob-
ability p. This results in drivers requiring a geometrically distributed num-
ber of slots before leaving the queue. We thus get B(z) = Y (z)(1 − p + pz),
A(z) = Y (z)c (1−p+pz)g , and ξ(z) = z−Y (z)(1−p+pz). Theorem 2.2 thus can be
used to obtain a performance analysis for this model.

(iv) A fourth extension deals with relaxing the independence assumption of
the arrival process during the red slots [146]. In this extension, the arrivals dur-
ing a red time within a cycle may be dependent as opposed to the i.i.d. assump-
tion on the Y (however, the arrivals during green slots still need to be i.i.d.).
For this FCTL queue we should choose B(z) = Y (z), A(z) = Ar (z)Y (z)g , where
Ar (z) denotes the PGF of the arrival process during the whole red period, and
ξ(z) = z −Y (z).

In comparison with [146], we give an expression for the PGFs in terms
of contour integrals. The results in [146] can be recovered by evaluating the
derivative at z = 1 of our expression for the appropriate PGF. For insights into
the differences between the various FCTL queue extensions we refer to the elab-
orate numerical study in [146].

2.4 Algorithmic methods

We now discuss the computational challenges that come with calculating the
steady-state queue-length distribution, using either the contour integrals in The-
orem 2.1 or the standard expression in terms of roots. The algorithms using con-
tour integrals in this section are based on the representation in Equation (2.3)
(but one could also take Equation (2.2)). Notice that we only need to expand
Xg (w) at w = 0 and w = 1, so inside the validity range of Equation (2.3).

Chapter 2. Pollaczek contour integral for the FCTL queue 43

2.4.1 From PGF to performance measures

The mean stationary overflow queue E[Xg] is given by X ′
g (1) and takes the form

E[Xg] = 1

2πi

∮
|z|=1+ε

Y (z)− zY ′(1)

Y (z)− z

(zg − A(z))′

zg − A(z)
dz. (2.11)

This result was recently obtained in [146] using a direct proof that converted
the classical expression for E[Xg] in terms of complex-valued roots into the in-
tegral expression as in Equation (2.11).

From the PGF Xg (z) we can in principle determine all stationary moments.
Define

f (w) := 1

2πi

∮
|z|=1+ε

g (w, z)
(zg − A(z))′

zg − A(z)
dz,

g (w, z) := ln

(
wY (z)− zY (w)

Y (z)− z

)
,

hk (w) :=
{

1, k = 0,

hk−1(w) f ′(w)+h′
k−1(w), k = 1,2,

The moments E[X k
g] then follow from symbolically differentiating the PGF as in

Equation (2.3), and these derivatives can be expressed as

X (k)
g (w) := dk

dwk
Xg (w) = dk

dwk
exp

(
f (w)

)= hk (w)exp
(

f (w)
)

,

for k = 0,1,2, Using this recursive expression, X (k)
g (w) can be expressed in

terms of f (w) and the first k derivatives of f (w), denoted by f (1)(w), . . . , f (k)(w)
with

f (j)(w) := ∂ j

∂w j

1

2πi

∮
|z|=1+ε

g (w, z)
(zg − A(z))′

zg − A(z)
dz

= 1

2πi

∮
|z|=1+ε

g (j)(w, z)
(zg − A(z))′

zg − A(z)
dz

and g (j)(w, z) := ∂ j

∂w j g (w, z), for j = 1,2, . . . ,k. After substituting w = 1, we can
express the first k moments of Xg in terms of k contour integrals that only
involve the model primitives and the first k moments of Y . Using f (1) = 0, the
variance of Xg given by Var(Xg) = h2(1)+h1(1)− (h1(1))2 takes the form

Var(Xg) = 1

2πi

∮
|z|=1+ε

z2Var(Y)− zY (z)(1+E[Y 2]−2E[Y])

(z −Y (z))2

(zg − A(z))′

zg − A(z)
dz.

44 2.4 Algorithmic methods

To determine the stationary distribution of the overflow queue we use that

P(Xg = k) = 1

k !

dk

dwk
Xg (w)

∣∣∣
w=0

= 1

k !
hk (0)exp

(
f (0)

)
.

We observe that

P(Xg = 0) = exp
(

f (0)
)= exp

(
1

2πi

∮
|z|=1+ε

ln

(
zP(Y = 0)

z −Y (z)

)
(zg − A(z))′

zg − A(z)
dz

)
.

Expressions for the other probabilities P(Xg = k) follow in a similar way as for
E[X k

g], but require evaluating the resulting function at w = 0 instead of w = 1

and dividing by k !. P(Xg = k) can thus be expressed in terms of f (0), f (1)(0), . . . ,
f (k)(0), again an expression that involves explicit contour integrals only.

2.4.2 Roots or integrals?

Compared with root finding, contour integrals have advantages and disadvan-
tages. On the one hand, avoiding the implicitly defined roots is nice, because
the integrals are explicit expressions in terms of the model primitives g , r , and
Y (z). On the other hand, the number of terms required to evaluate f (j)(w)
grows exponentially in j . For, e.g., tail probabilities this symbolic differentia-
tion becomes computationally cumbersome.

While in the early queueing literature root finding was considered to be
prohibitively difficult, with the computational methods available nowadays it is
possible to find the complex-valued roots of zg − A(z) with great accuracy. In
Appendix 2.A we present the root-finding algorithm that we use in this chapter,
which after extensive testing was found to be accurate and reliable for all con-
sidered choices of A(z). The idea behind the algorithm is to approximate A(z)
with its Taylor series of order n, An(z), reducing the problem to finding roots
of polynomial equations. We also present some results that show that the roots
of the n-th system converge to the roots of zg − A(z) as n → ∞, and provide
an explicit characterization of the roots for the case when A(z) is the PGF of a
Poisson random variable. In that case, the roots can be written in terms of the
Lambert W-function, see Appendix 2.B.

Extensive tests with both algorithms did not result in any numerical issues,
except for two obvious limitations: for tail probabilities the symbolic differen-
tiation within the integrand becomes a bottleneck and for root finding loss of
accuracy is expected when the number of roots g becomes excessively large (al-
though a thousand roots present no difficulties). It seems that for most practical
purposes both methods lead to reliable and accurate algorithms.

Chapter 2. Pollaczek contour integral for the FCTL queue 45

In terms of computation time, contour integration generally seems to be
slower than root finding. For moments there is little difference, because both
methods lead to explicit expressions. Our experiments have indicated, how-
ever, that the root-based PGF seems to be more suitable for determining the
queue-length probabilities, because the roots have to be determined only once,
whereas the contour integral approach requires the evaluation of another inte-
gral for each probability.

To illustrate the algorithms we now show some results for the FCTL queue
with g = 20 and c = 50 in Figure 2.2. We consider Poisson arrivals with on aver-
age µ vehicles arriving per slot and four scenarios: µ= 0.2 (light traffic), µ= 0.3
(moderate traffic), µ= 0.36 (heavy traffic), and µ= 0.38 (extreme traffic). These
arrival rates correspond to a vehicle-to-capacity ratio ρ = µc/g ranging from
0.5 to 0.95. The results are calculated with both the roots-based and contour-
integral expression, and are indistinguishable on the scale of the displayed fig-
ures.

Figure 2.2(a) shows the mean queue lengths E[X1], . . . ,E[Xc] through one
cycle. Observe the strong cyclic behavior and the high sensitivity for ρ. Fig-
ure 2.2(b) shows the queue-length distribution at the start of the cycle, the
moment that the traffic signal turns green and queue lengths are expected to
peak. Observe the difference between operating at 75% or 95% of maximal ca-
pacity: the probability that more than 20 vehicles are waiting is only 0.002 for
µ= 0.3 and 0.32 for µ= 0.38. Figure 2.2(c) depicts the distribution of the effec-
tive green time G, defined in [198] as the number of slots used for departure of
delayed vehicles that arrive throughout the whole cycle. We have

P(G = k) =

q0 for k = 0,

qk −qk−1 for k = 1, . . . , g −1,

1−qg−1 for k = g .

Since only one delayed vehicle departs per slot, this can also be considered to be
the distribution of the platoon length consisting of delayed vehicles departing
during one cycle. Observe that P(G = g) is practically zero when ρ = 0.5, but as
high as 0.71 when µ= 0.38, which means that only in 29% of the cycles the green
time is long enough to let the queue vanish before the end of the green period.

Finally, we consider the delay distribution of an arbitrary vehicle arriving in
the 10-th slot, which is during the green period. The stationary delay of a vehicle
arriving in slot k, denoted by D[k], is defined as the number of slots between
arrival and departure, not including the slot of arrival. Figure 2.2(d) shows
D[10], which can be computed directly from X9, i.e. the number of vehicles

46 2.5 Proof of the Pollaczek contour-integral representation

10 20 30 40 50
k

5

10

15

(Xk)

10 20 30 40
k

0.05

0.10

0.15

ℙ(X0 k)

(a) (b)

5 10 15 20
k

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ℙ(G k)

20 40 60 80 100
k

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

ℙ(D[m] k)

(c) (d)

Figure 2.2: Several performance measures for the FCTL queue in Subsection 2.4.2 with
g = 20, c = 50, and Poisson arrivals. The colors blue, orange, green, and red correspond
to vehicle-to-capacity ratios of, respectively, 0.5, 0.75, 0.9, and 0.95. The subfigures show
(a) the mean queue lengths during a cycle, (b) the queue-length distribution at the start
of green periods, (c) the distribution of the effective green periods, and (d) the delay
distribution of vehicles arriving in slot 10 (for ρ = 0.9,0.95 only).

waiting at the start of the 10-th slot. If X9 = 0 we have that D[10] = 0; otherwise
the delay can be expressed as a function of the number of vehicles present at
the arrival of the tagged vehicle. This function (studied in detail in [206])
should take into account interruptions due to red periods, which explains the
fragmented histograms in Figure 2.2(d).

2.5 Proof of the Pollaczek contour-integral repre-
sentation

The proof of Theorem 2.1 contains several challenging steps and requires among
others a proof that the function Y (z)/z is injective in a region that contains the

Chapter 2. Pollaczek contour integral for the FCTL queue 47

unit disk, and a way to account for the branch cut caused by the logarithm
in Equation (2.7) being taken over negative values. As explained briefly in
Section 2.3, the proof of Theorem 2.1 exploits the factorized form as in Equa-
tion (2.5) and investigates in detail the logarithmic function in Equation (2.7).
We present some useful properties of the function Y (z)/z, visible in both Equa-
tions (2.5) and (2.7). We then proceed to use Cauchy’s theorem to obtain the
contour-integral representation in Equation (2.3) for the case that 1 < w < 1+ε,
and finally manipulate Equation (2.3) to obtain Equation (2.2) on the full range
|w | < 1+ε.

2.5.1 Auxiliary results

Before we prove Theorem 2.1, we present some auxiliary results for the function
Y (z)/z. In [146, Theorem 1] it was shown that the function Y (z)/z is injective
on the disk |z| ≤ 1, so that all Y (zk)/zk 6= Y (zl)/zl when zk 6= zl . For our proof
we also need injectivity, but then for the larger disk with radius t0 > 1. More
specifically, let

t0 : = sup{t ∈ (0,R) | Y ′(t)t −Y (t) ≤ 0},

where R is the maximum value such that Y (z) is analytic in the region |z| < R.

Lemma 2.3 The function Y (t)/t is strictly decreasing in t ∈ (0, t0].

Proof. We have that

Y (t)

t
= y0

t
+ y1 + y2t + . . . , 0 < t < R,

is strictly convex since y0 > 0, with derivative(
Y (t)

t

)′
= Y ′(t)t −Y (t)

t 2 , 0 < t < R. (2.12)

Since Y ′(1) < Y (1) = 1, we have that t0 > 1. Now consider the following cases:
(i) yk = 0 for k = 2,3, . . . and (ii) there is a k = 2,3, . . . such that yk 6= 0. For case
(i), Y (t)/t = y0t−1 + y1 is strictly decreasing in t > 0 since y0 > 0. For case (ii),
yk > 0 for some k ≥ 2, and so

Y ′(t)t −Y (t) =−y0 +
∞∑

k=2
(k −1)yk t k (2.13)

48 2.5 Proof of the Pollaczek contour-integral representation

is strictly increasing in t ∈ (0,R). From the definition of t0, we then get that

Y ′(t)t −Y (t) < 0, t ∈ (0, t0), (2.14)

and so Y (t)/t is strictly decreasing in t ∈ (0, t0) by Equation (2.12). ä

Lemma 2.4 The function Y (z)/z is injective on the open disk |z| < t0, so that for
|z| < t0, |w | < t0:

Y (z)

z
= Y (w)

w
⇒ z = w. (2.15)

Proof. In case (i), yk = 0 for k = 2,3, . . . , we have Y (z)/z = y0z−1 + y1 and the
result is trivial since y0 > 0. For case (ii), there is a k = 2,3, . . . such that yk 6= 0,
we let |z| < t0, |w | < t0. Then∣∣∣∣Y (z)

z
− Y (w)

w

∣∣∣∣= ∣∣∣y0
w − z

zw
+

∞∑
k=2

yk (zk−1 −wk−1)
∣∣∣

= |z −w |
∣∣∣− y0

zw
+

∞∑
k=2

yk
zk−1 −wk−1

z −w

∣∣∣.
Let t := max{|z|, |w |} < t0. Then |y0/(zw)| ≥ y0/t 2 while

∣∣∣ zk−1 −wk−1

z −w

∣∣∣= ∣∣∣zk−2 +w zk−3 +·· ·+ zwk−3 +wk−2
∣∣∣≤ (k −1)t k−2.

Therefore, when z 6= w ,∣∣∣∣Y (z)

z
− Y (w)

w

∣∣∣∣≥ |z −w |
(y0

t 2 −
∞∑

k=2
(k −1)yk t k−2

)
> 0

by Equation (2.13) and Equation (2.14). This proves Equation (2.15). ä

Lemma 2.5 Let ε> 0 be such that 1+ε< t0, and take w ∈ (1,1+ε). For |z| < t0,

wY (z)− zY (w)

Y (z)− z
∈ (−∞,0] ⇔ 1 ≤ z ≤ w. (2.16)

Furthermore

−1 < z < 1 ⇒ wY (z)− zY (w)

Y (z)− z
> 0. (2.17)

Chapter 2. Pollaczek contour integral for the FCTL queue 49

Proof. For a ≤ 0,

wY (z)− zY (w)

Y (z)− z
= a ⇔ Y (z)

z
= Y (w)−a

w −a
.

Since 1 < Y (w) < w , the function (Y (w)− a)/(w − a) increases from Y (w)/w at
a = 0 to 1 at a = −∞ when a decreases from 0 to −∞. Since Y (v)/v decreases
strictly in v ∈ [1, w], there is for any a ≤ 0 a unique v = v(a) ∈ [1, w] such that

Y (v)

v
= Y (w)−a

w −a
.

Since by Lemma 2.4 Y (z)/z is injective in |z| < t0, we get Equation (2.16).
We next show Equation (2.17). Obviously, Equation (2.17) holds for z = 0.

For z 6= 0, we have

wY (z)− zY (w)

Y (z)− z
= w

Y (z)/z −Y (w)/w

Y (z)/z −1
.

By Lemma 2.3, we have

Y (z)

z
− Y (w)

w
> Y (z)

z
−1 > 0,

if 0 < z < 1 < w < t0, and so Equation (2.17) holds for z ∈ (0,1). Next, by
Lemma 2.4, we have Y (z)/z 6= Y (w)/w when z ∈ (−1,0) and 1 < w < t0. Also,
Y (z)/z → −∞ when z ↑ 0. Because of continuity of Y (z)/z in z ∈ (−1,0) and
because Y (z)/z is real, we thus have that

Y (z)

z
< Y (w)

w
< 1, z ∈ (−1,0),

and so Equation (2.17) also holds for z ∈ (−1,0). ä
As a consequence of Lemma 2.5, taking the principal value logarithm in

Equation (2.7) when 1 < w < 1+ε< t0, we obtain a function of z that is analytic
in the open disk |z| < t0, with a branch cut along [1, w]. Indeed, Lemma 2.5 tells
us that, with w > 1, the only negative values for (wY (z)− zY (w))/(Y (z)− z) in
the entire complex circle with radius at most t0 are attained for 1 ≤ z ≤ w . We
thus might take the principal value logarithm of (wY (z)− zY (w))/(Y (z)− z) and
this implies that we need to take care of the branch cut along 1 ≤ z ≤ w . By
means of this logarithm, we create the appropriate residues at the roots of the
function zg − A(z), which is the function that we consider in the next part of the
proof of Theorem 2.1.

50 2.5 Proof of the Pollaczek contour-integral representation

C1 Cw

δ δ

0 1 1+εw

z1

z2

zg−1

zg−2

L+

L−

Figure 2.3: The four components, C1, Cw , L+, and L−, of contour C .

2.5.2 Contour integral for (2.3)

We next consider the function zg − A(z) that has its zeros in |z| ≤ 1 at z = z0 =
1, z1, . . . , zg−1, while its other zeros have modulus greater than one. Let R0 be the
zero outside |z| ≤ 1 of smallest modulus; we have that R0 is real and larger than
one. Take ε> 0 such that 1+ε< min{t0,R0} and consider the integral

I (w) = 1

2πi

∮
|z|=1+ε

ln

(
wY (z)− zY (w)

Y (z)− z

)
(zg − A(z))′

zg − A(z)
dz. (2.18)

Choose δ > 0 such that δ < 1
2 (w − 1) and δ < 1+ ε− w while |zk − 1| > δ,k =

1, . . . , g −1. Now let C be the positively oriented contour consisting of the circles
C1(δ) and Cw (δ) of radii δ around 1 and w , respectively, together with the line
segments L±(δ) = {z = t±i 0 | 1+δ≤ t ≤ w−δ}, where ±i 0 := limc↓0±ci and i 2 =−1.
See Figure 2.3 for the positioning of the contour C with its four components in
the disk |z| < 1+ ε and relative to the zeros of zg − A(z). Then, by Cauchy’s
theorem,

I (w) =
g−1∑
k=1

ln

(
wY (zk)− zk Y (w)

Y (zk)− zk

)
+ 1

2πi

∮
C

ln

(
wY (z)− zY (w)

Y (z)− z

)
(zg − A(z))′

zg − A(z)
dz.

(2.19)

Chapter 2. Pollaczek contour integral for the FCTL queue 51

On the line segments z = t ± i 0, 1+δ≤ t ≤ w −δ, we use that

wY (t)− tY (w) > 0 > Y (t)− t .

With the principal value choice for ln, we then get for 1+δ≤ t ≤ w −δ:

ln

(
wY (t ± i 0)− (t ± i 0)Y (w)

Y (t ± i 0)− (t ± i 0)

)
= ln

(
wY (t)− tY (w)

t −Y (t)

)
±πi . (2.20)

Therefore, also using that t g − A(t) > 0 and 1 < t < 1+ε, we have

1

2πi

∮
C

ln

(
wY (z)− zY (w)

Y (z)− z

)
(zg − A(z))′

zg − A(z)
dz

= 1

2πi

∫ w−δ

1+δ

{[
−

(
ln

(
wY (t)− tY (w)

t −Y (t)

)
+πi

)
+

(
ln

(
wY (t)− tY (w)

t −Y (t)

)
−πi

)]
(t g − A(t))′

t g − A(t)
dt

}
+ 1

2πi

∮
C1(δ)

+ 1

2πi

∮
Cw (δ)

= −
∫ w−δ

1+δ
(t g − A(t))′

t g − A(t)
dt + 1

2πi

∮
C1(δ)

+ 1

2πi

∮
Cw (δ)

, (2.21)

where

1

2πi

∮
Cx (δ)

= 1

2πi

∮
Cx (δ)

ln

(
wY (z)− zY (w)

Y (z)− z

)
(zg − A(z))′

zg − A(z)
dz,

with x = 1, w . Now, since g − A′(1) > 0 (due to stability), we have that∫ w−δ

1+δ
(t g − A(t))′

t g − A(t)
dt = ln

(
t g − A(t)

)∣∣∣w−δ
1+δ

= ln
(
w g − A(w)

)+O(δ)− ln
[
(g − A′(1))δ+O(δ2)

]
= ln

(
w g − A(w)

g − A′(1)

)
− lnδ+O(δ), (2.22)

where we have used that

t g − A(t) = 0+ (t g − A(t))′t=1(t −1)+O
(
(t −1)2), t → 1.

As to the last integral on the last line of Equation (2.21), we use that

wY (z)− zY (w) = (wY ′(w)−Y (w))(z −w)+O(|z −w |2),

52 2.5 Proof of the Pollaczek contour-integral representation

Y (z)− z = Y (w)−w +O(|z −w |),

zg − A(z) = w g − A(w)+O(|z −w |),

with non-vanishing numbers wY ′(w)−Y (w), Y (w)−w , and w g − A(w). There-
fore, we have

1

2πi

∮
Cw (δ)

=O(δ ln δ), δ ↓ 0. (2.23)

The middle integral on the last line of Equation (2.21) is more delicate since
both Y (z)− z and zg − A(z) vanish at z = 1. For z = 1+δe iφ with 0 < φ< 2π and
δ ↓ 0, we get

wY (z)− zY (w)

Y (z)− z
= w −Y (w)+O(|z −1|)

1+Y ′(1)(z −1)− z +O(|z −1|2)

= − w −Y (w)+O(|z −1|)
(1−Y ′(1))(z −1)+O(|z −1|2)

= −w −Y (w)

1−Y ′(1)

1

δ
e−iφ(

1+O(δ)
)
.

Hence, since w −Y (w) > 0, 1−Y ′(1) > 0, we obtain

ln

(
wY (z)− zY (w)

Y (z)− z

)
= ln

∣∣∣∣ wY (z)− zY (w)

Y (z)− z

∣∣∣∣+ i arg

(
wY (z)− zY (w)

Y (z)− z

)
= ln

(
w −Y (w)

1−Y ′(1)

)
− lnδ+ i (π−φ)+O(δ). (2.24)

Next, as z → 1, we have

(zg − A(z))′

zg − A(z)
= g − A′(1)+O(|z −1|)

(g − A′(1))(z −1)+O(|z −1|2)
= 1

z −1
+O(1), (2.25)

since g − A′(1) > 0. Hence, from Equations (2.24) and (2.25), with z = 1+δe iφ

and dz = iδe iφdφ in the integral over C1, we get

1

2πi

∮
C1(δ)

= 1

2πi

∫ 2π

0
ln

(
wY (z)− zY (w)

Y (z)− z

)
(zg − A(z))′

zg − A(z)
iδe iφdφ

= 1

2πi

∫ 2π

0

[
ln

(
w −Y (w)

1−Y ′(1)

)
− lnδ+ i (π−φ)+O(δ)

]
·[1

δ
e−iφ+O(1)

]
iδe iφdφ

Chapter 2. Pollaczek contour integral for the FCTL queue 53

= ln

(
w −Y (w)

1−Y ′(1)

)
− lnδ+O(δ), (2.26)

where we have also used that
∫ 2π

0 (π−φ)dφ= 0.
Using Equations (2.22), (2.23), and (2.26) in Equation (2.21) yields

1

2πi

∮
C

ln

(
wY (z)− zY (w)

Y (z)− z

)
(zg − A(z))′

zg − A(z)
dz

= ln

(
g − A′(1)

w g − A(w)

)
+ lnδ+O(δ)+O(δ lnδ)+ ln

(
w −Y (w)

1−Y ′(1)

)
− lnδ+O(δ)

= ln

(
g − A′(1)

w g − A(w)
· w −Y (w)

1−Y ′(1)

)
+O(δ).

Returning then to Equations (2.18)-(2.19), letting δ ↓ 0, we see that

I (w) = ln

[
g − A′(1)

w g − A(w)
· w −Y (w)

1−Y ′(1)

g−1∏
k=1

wY (zk)− zk Y (w)

Y (zk)− zk

]
= ln

[
Xg (w)

]
(2.27)

by Equation (2.5). Here we have also used that the zeros zk are real or come
in conjugate pairs (as is noted in Subsection 2.3.1) so that for w ∈ (1,1+ε) both
Xg (w) and the product

∏g−1
k=1 in Equation (2.27) are real and positive, with

ln

(
g−1∏
k=1

wY (zk)− zk Y (w)

Y (zk)− zk

)
=

g−1∑
k=1

ln

(
wY (zk)− zk Y (w)

Y (zk)− zk

)
.

This proves Equation (2.3) for w ∈ (1,1+ε).

2.5.3 Completion of the proof

The extension of the validity range of Equation (2.3) beyond the set 1 < w < 1+ε
is compromised by the appearance of the factor ln[(wY (z)−zY (w))/(Y (z)−z)] in
the integrand. The validity range can be extended to an open set containing the
interval [0,1], allowing computation of moments and derivatives. To see this, let

Q(z, w) = wY (z)− zY (w)

Y (z)− z
= Y (w)

1− Y (z)/z
Y (w)/w

1−Y (z)/z
, |z|, |w | ≤ 1+ε.

For 0 ≤ w ≤ 1 and |z| = 1+ε, we have

0 < Y (0) ≤ Y (w) ≤ 1,

54 2.5 Proof of the Pollaczek contour-integral representation

∣∣∣∣ Y (z)/z

Y (w)/w

∣∣∣∣≤ ∣∣∣∣Y (z)

z

∣∣∣∣≤ Y (1+ε)

1+ε < 1,

and so Q(z, w) is bounded away from (−∞,0] when 0 ≤ w ≤ 1 and |z| = 1+ ε. By
continuity of Q as a function of w , this continues to hold for w in an open set Ω
containing [0,1] and |z| = 1+ ε. This implies that lnQ(z, w) is analytic in w ∈Ω,
with the principal value ln, extending the validity of Equation (2.3) to w ∈Ω by
analyticity. We have extensive numerical evidence that the set of w for which
Q(z, w) 6∈ (−∞,0], all z with |z| = 1+ ε, contains a disk around 0 with radius not
significantly smaller than 1+ε. This would extend the validity of Equation (2.3)
beyond the unit disk |w | ≤ 1.

We now re-express the integral form in Equation (2.3) to a form that is valid
for all w , |w | < 1+ε. We choose ε here such that 1+ε< min{t0,R0} =: 1+ε0 as in
Subsection 2.5.2. Let w be fixed with 1 < w < 1+ε. We compute, for |z| = 1+ε,

(zg − A(z))′

zg − A(z)
= g

z
+

(
1− A(z)

zg

)′
1− A(z)

zg

= g

z
+ d

dz

[
ln

(
1− A(z)

zg

)]
,

where we can choose the principal value of ln since∣∣∣∣ A(z)

zg

∣∣∣∣≤ A(1+ε)

(1+ε)g < 1, |z| = 1+ε.

As in Equations (2.20)-(2.21), we have

1

2πi

∮
|z|=1+ε

ln

(
wY (z)− zY (w)

Y (z)− z

)
g

z
dz

=g ln

(
wY (z)− zY (w)

Y (z)− z

)∣∣∣∣
z=0

+ g

2πi

∮
C

ln

(
wY (z)− zY (w)

Y (z)− z

)
1

z
dz

=g ln w − g
∫ w−δ

1+δ
1

z
dz +O(δ lnδ)

=g ln w − g ln

(
w −δ
1+δ

)
+O(δ lnδ),

and this vanishes as δ ↓ 0. Therefore, see Equation (2.18), we have

I (w) = 1

2πi

∮
|z|=1+ε

ln

(
wY (z)− zY (w)

Y (z)− z

)
d

dz

[
ln

(
1− A(z)

zg

)]
dz

= −1

2πi

∮
|z|=1+ε

d

dz

[
ln

(
wY (z)− zY (w)

Y (z)− z

)]
ln

(
1− A(z)

zg

)
dz,

Chapter 2. Pollaczek contour integral for the FCTL queue 55

where we have used partial integration with the continuous differentiable func-
tions ln

(
1− A(z)/zg

)
and ln[(wY (z)− zY (w))/(Y (z)− z)] on the closed contour

|z| = 1+ε. We compute

d

dz

[
ln

(
wY (z)− zY (w)

Y (z)− z

)]
= Y ′(z)z −Y (z)

Y (z)− z

Y (w)−w

wY (z)− zY (w)
,

and obtain

I (w) = −1

2πi

∮
|z|=1+ε

Y ′(z)z −Y (z)

Y (z)− z

Y (w)−w

wY (z)− zY (w)
ln

(
1− A(z)

zg

)
dz, (2.28)

which is valid for any w ∈ (1,1+ε).
We now extend Equation (2.28) to all w with |w | < 1+ ε using Lemma 2.5.

Let 0 < ε1 < ε. We have |Y (z)− z| > 0 when |z| = 1+ε and∣∣wY (z)− zY (w)
∣∣> 0,

when |z| = 1+ ε and |w | ≤ 1+ ε1 by Lemma 2.5 and Y (0) 6= 0. Therefore, by
continuity and compactness, (wY (z)− zY (w))(Y (z)− z) is bounded away from
0 when |z| = 1 + ε and |w | ≤ 1 + ε1. This implies that the right-hand side of
Equation (2.28) is analytic in w , |w | < 1+ε1, by analyticity of Y . Since Xg (w) =
exp(I (w)) for 1 < w < 1+ε, we then get by analyticity of Xg that

Xg (w) = exp

(−1

2πi

∮
|z|=1+ε

Y ′(z)z −Y (z)

Y (z)− z

Y (w)−w

wY (z)− zY (w)
ln

(
1− A(z)

zg

)
dz

)
(2.29)

holds for all w , |w | ≤ 1+ ε1 and any ε1 ∈ (0,ε). Then a simple rearrangement of
the integrand in Equation (2.29) yields Theorem 2.1.

2.6 Conclusion

We have presented novel formal solutions for the FCTL queue in the form of
contour integrals. Theorem 2.1 presents the contour-integral representation for
the PGF of the overflow queue Xg (z). From this PGF, essentially all relevant in-
formation about the stationary behavior of the FCTL can be obtained, by taking
derivatives at z = 1 for the moments, derivatives at z = 0 for the distribution, and
by using simple recursions to obtain the queue lengths at all time epochs within
the cycle and the stationary delay distribution. A contour-integral expression for
the first moment was recently obtained by Oblakova et al. [146] and the present

56 2.6 Conclusion

chapter can be seen as an extension of that work. Together, those results present
an alternative approach for the FCTL queue and its generalizations, using con-
tour integrals instead of factorizations in terms of complex roots that need to be
determined numerically. In [146] generalizations of the FCTL assumption were
considered, for which we have obtained similar Pollaczek-type contour integrals
for the PGF.

In classical queueing theory, a prominent line of research is related to heavy
traffic, an asymptotic regime in which the traffic intensity approaches 100%.
Next to more probabilistic methods such as weak convergence techniques and
coupling, another way to obtain heavy-traffic results is through the asymptotic
evaluation of Pollaczek-type integrals, see e.g. [55,110] for single-server queues
and [101] for classical bulk-service queues. Now that Pollaczek-type integrals
for the FCTL queue are available, it is worthwhile to explore the possibilities for
a heavy-traffic analysis, which is one of the topics studied in Chapter 3.

It is of interest to provide a proper comparison between the various methods
that are available for studying the FCTL queue. We think e.g. of obtaining
performance measures from a PGF based on the root-based expression and the
contour-integral expression. It would be interesting to know in which cases one
could better use the expression for the PGF which is based on roots and when
the one based on the contour integral is more suitable.

Appendix

2.A Root-finding algorithm

We present a root-finding algorithm and some supporting results. A similar
algorithm was used in [19]. The idea behind the algorithm is that roots of poly-
nomial equations are generally easy to find, at least numerically. Therefore, we
approximate A(z) (which typically is a non-polynomial function) with its Taylor
series An(z) of order n. Solving this truncated equation boils down to root-
finding of a polynomial. If the roots of the truncated equation are sufficiently
close to the roots of zg − A(z), we can find the latter roots easily from the roots
of zg − An(z) by using a Newton-Raphson type method.

Algorithm 2.1 Root-finding based on truncated Taylor series of zg − A(z).

1: Input: A(z), g (and often A(z) = Y (z)c).
2: Define: D(z) = zg − A(z).
3: Compute n: max{100,50+max{c, g }}.
4: Compute Taylor expansion Dn(z) of D(z) of order n.
5: Numerically solve Dn(z) = 0 for |z| ≤ 1, obtaining roots ẑ1, . . . , ẑg .
6: Use ẑ1, . . . , ẑg as input for a method to find the roots of D(z) for |z| ≤ 1,

obtaining roots z1, . . . , zg .
7: Return z1, . . . , zg .

We now present two propositions in support of Algorithm 2.1. The first
proposition states that under very mild conditions the number of roots of zg −

58 2.A Root-finding algorithm

A(z) on or within the unit circle is equal to the number of roots of the truncated
equation zg − An(z) on or within the unit circle. The second proposition shows
that the roots of the truncated equation converge to the roots of zg −A(z) (when
n tends to infinity).

Proposition 2.6 Let D(z) = zg − A(z) and let Dn(z) := zg − An(z), where An(z)
denotes the n-th order Taylor approximation of A(z). Upon assuming that A(z) is
a PGF; that A(z) is analytic in the disk |z| < 1+δ for some δ> 0; and that g < A′(1),
Dn(z) = 0 has as many roots on or within the unit circle as D(z) (i.e. g).

Proof. Rouché’s theorem says that if f and g are analytic inside some region
K with closed contour ∂K and if |g (z)| < | f (z)| on ∂K , then f and f + g have the
same number of zeros inside K .

The conditions that A(z) has to be analytic in |z| < 1+δ and g < A′(1) together
imply

(1+γ)g > A(1+γ), (2.30)

for some γ ∈ (0,δ), see e.g. [64]. Assume |z| = 1+γ. Then:

|z|g = (1+γ)g > A(1+γ) ≥ An(1+γ) = An(|z|) ≥ |An(z)|,
where the strict inequality follows from Equation (2.30) and the remaining in-
equalities from the fact that A(z) is a PGF. So we may apply Rouché’s theorem
on f (z) = zg and g (z) = −An(z). Since for any γ > 0, zg has g roots within the
circle |z| = 1+γ, we conclude that Dn(z) has g roots as well, just as D(z). ä
Proposition 2.7 Let D(z) and Dn(z) be as defined in Proposition 2.6. Let z j ,
j = 1, . . . , g , be the roots of D(z) on or within the unit circle. Then

|Dn(z j)| ≤
∞∑

j=n+1
ak ,

for j = 1, . . . , g , where ak =P(A = k).

Proof. We directly obtain from the definition of z j that

|Dn(z j)| = |Dn(z j)−D(z j)|

=
∣∣∣∣∣zg

j −
n∑

i=0
ai zi

j − zg
j +

∞∑
i=0

ai zi
j

∣∣∣∣∣=
∣∣∣∣∣ ∞∑
i=n+1

ai zi
j

∣∣∣∣∣≤ ∞∑
i=n+1

ai ,

because ai ≥ 0 and |z j | ≤ 1. ä
From Proposition 2.7 we see that if we let n tend to infinity, then Dn(z j)

tends to 0. This implies that the roots obtained by using Dn(z) will be close to
the actual roots of D(z) when n is sufficiently high.

Chapter 2. Pollaczek contour integral for the FCTL queue 59

2.B Poisson case

To close this chapter, we provide an explicit expression for the roots of zg − A(z)
in case of Poisson arrivals, i.e. we take A(z) = ecµ(z−1). Let W (·) denote the
principal value of the Lambert W-function, see e.g. [60]. Then

zk =− g

cµ
W

(
−cµ

g
e2πi k/g e−cµ/g

)
, k = 1, . . . , g −1,

with i the imaginary unit satisfying i 2 = −1. It is then straightforward to show
that the zk are the solutions of zg − A(z) = 0 within the unit circle as we have
that

A(zk) = exp(cµ(zk −1))

= exp

[
cµ ·

{
− g

cµ
W

(
−cµ

g
e2πi k/g e−cµ/g

)}]
e−cµ

=
W

(
− cµ

g e2πi k/g e−cµ/g
)g

(
− cµ

g e2πi k/g e−cµ/g
)g e−cµ

=
(
− g

cµ

)g

W

(
−cµ

g
e2πi k/g e−cµ/g

)g

e−2πi k ecµe−cµ

=
(
− g

cµ

)g

W

(
−cµ

g
e2πi k/g e−cµ/g

)g

= zg
k ,

where we used some properties of the Lambert W-function and that e2πi k =
e−2πi k = 1 for k = 1, . . . , g −1.

Chapter 3
Optimal capacity allocation for
heavy-traffic Fixed-Cycle
Traffic-Light queues and
intersections

3.1 Introduction

Optimizing traffic-light settings is particularly relevant when the vehicle-to-
capacity ratio approaches the maximal sustainable level. To deal with such
scenarios, we establish heavy-traffic limit theorems for the FCTL queue that
provide accurate performance approximations for one queue in heavy traffic.
We use these heavy-traffic approximations to approximatively solve optimiza-
tion problems that aim for an optimal division of green times among multiple
conflicting traffic streams. It turns out that the reduced complexity of the heavy-
traffic approximations leads to tractable optimization problems and close-to-
optimal signal prescriptions. Our optimization problems are reminiscent of the
so-called capacity allocation problem, originally formulated by Kleinrock [111]
for dividing capacity among multiple independent M/M/1 queues, with the aim
of minimizing the average waiting time in all queues. This optimization prob-
lem has an elegant explicit solution and was later generalized by Wein [219]
for Jackson networks with product-form solutions. Wein [219] solved the opti-

62 3.1 Introduction

mization problem by relaxing the original problem through insertion of classi-
cal heavy-traffic approximations. We adopt a similar approach, but need to deal
with the specific challenges that come with considering FCTL queues rather than
standard queues.

The heavy-traffic scenario that we consider lets the cycle length grow large
while at the same time the load or vehicle-to-capacity ratio approaches 100%.
As far as we are aware, this is the first study that applies this scenario for the
FCTL queue. Related scalings in continuous-time single-server queues are re-
ferred to as “nearly-deterministic regime” [177, 178] and in multi-server set-
tings as the Halfin-Whitt regime or Quality-and-Efficiency-Driven (QED) regime
[89, 208]. The term QED regime was coined because queueing systems in this
regime can deal with high vehicle-to-capacity ratios while the probability of no
delay stays strictly between 0 and 1. We show that similar favorable properties
exist for the heavy-traffic FCTL queue.

To establish the FCTL heavy-traffic results, we use the transform expressions
obtained in Chapter 2. In particular, we use the contour-integral representation
for the PGF of the overflow queue, Equation (2.2) in Theorem 2.1. Establish-
ing scaling limits requires showing convergence of transforms such as the PGF
which proves to be quite challenging. The main idea of our proof is to ex-
pand the integrand of the contour integral and to show that in the heavy-traffic
regime only the first few terms of the expansion (up to leading order) dom-
inate the numerical value of the integral. Making such observations rigorous,
however, requires careful analysis. While this analysis is new, in classical queue-
ing theory, establishing heavy-traffic results through the asymptotic evaluation
of contour integrals was done in e.g. [55, 110] for single-server queues and
in [101] for classical bulk-service queues.

In the heavy-traffic regime that we consider, the scaled queue length turns
out to converge to a reflected Gaussian random walk, a stochastic process that
occurs in a range of other applications and that has been studied in great de-
tail [15, 39, 99]. We exploit this connection to convert known results for the
reflected Gaussian random walk into heavy-traffic approximations for the FCTL
queue. These heavy-traffic approximations are considerably easier than the ex-
act (contour-integral) expressions, which presents analytic advantages when
considering the optimization problem of finding the optimal traffic-light settings
for intersections with cyclic arrangements of multiple conflicting traffic flows.
The heavy-traffic approximations let us obtain closed-form expressions for such
optimal settings. A similar strategy to obtain optimal green times for vehicle-
actuated traffic lights is formulated in [197, Chapter 6], where an approxima-
tion is found for the mean delay per lane, which is then used to approximate an

Chapter 3. Optimal allocation for heavy-traffic FCTL queues 63

objective function. This optimization problem is then solved to optimality using
the approximated objective function and Lagrange multiplier techniques, simi-
lar in spirit to what we do in Subsection 3.3. The optimal green-time allocation
for vehicle-actuated traffic lights obtained in [197] also has a similar structure
as the optimal allocations that we obtain in Section 3.3. Traffic lights with fixed
settings are also studied in [197] where the problem is formulated and solved
as a Mixed Integer Program. Instead of the need for such optimization schemes,
we present one-line calculations for close-to-optimal green-time allocations.

Our main contributions can be summarized as follows:

(i) For the FCTL queue we obtain novel heavy-traffic limit theorems by asymp-
totic evaluation of contour integrals, showing that the scaled queue length
converges to a reflected Gaussian random walk.

(ii) We leverage the limit theorems to obtain sharp performance approxima-
tions for one queue in heavy traffic, utilizing existing results for the re-
flected Gaussian random walk.

(iii) We consider optimization problems that find the optimal division of green
times among multiple conflicting traffic streams and show that inserting
heavy-traffic approximations leads to tractable optimization problems and
close-to-optimal signal prescriptions.

Chapter outline

This chapter is organized as follows. In Section 3.2 we present the heavy-traffic
analysis of the FCTL queue. Using the resulting heavy-traffic approximations,
we present in Section 3.3 the close-to-optimal traffic-light settings for the situa-
tion of multiple conflicting traffic streams. Numerical examples are presented in
Section 3.4. We present the main heavy-traffic proof in Section 3.5 and provide
a conclusion in Section 3.6.

3.2 FCTL queue in heavy traffic

First, we briefly review the traditional analysis of the FCTL queue. Subsequently,
we give the heavy-traffic scaling that we use in the remainder of the chapter
and provide several results for the queue-length process under the introduced
heavy-traffic scaling.

64 3.2 FCTL queue in heavy traffic

The queue-length process at the end of the green period for the FCTL queue
gives rise to a Lindley-type recursion. We have that

Xg ,n+1 = max{0, Xg ,n + An − g }, (3.1)

with An the number of delayed vehicles arriving in cycle n. Observe that (3.1)
is not a standard Lindley recursion, due to the FCTL assumption and hence the
intricate dependency between the delayed arrivals An and Xg ,n .

We shall focus on the limiting queue length Xg := limn→∞ Xg ,n , which is well
defined if the system is stable. I.e. we require that cE[Y] = cµ < g , with Y the
number of arrivals per slot and where we define µ to be the mean number of
arrivals per slot. As before, we refer to Xg as the overflow queue. The PGF of Xg

was first obtained in [64] and in Theorem 2.1 an alternative expression is given.
The latter allows us to establish a heavy-traffic limit theorem for the overflow
queue. We consider a heavy-traffic regime that connects the cycle length and
the green period according to

g = cµ+βσpc. (3.2)

Here σ denotes the standard deviation of Y and β > 0 is a parameter that can
be chosen freely, and optimal choices for β will be obtained in Section 3.3.

The main intuition for considering the regime in Equation (3.2) is as fol-
lows. In heavy traffic, there will be many delayed cars, and during each cy-
cle g delayed cars can depart while on average cµ new delayed cars will ar-
rive. We therefore choose the green period as roughly cµ, but add βσ

p
c to

account for variability of the number of newly arriving cars. Observe that
for large cycles, βσ

p
c will be considerably smaller than cµ. In the heavy-

traffic regime that we consider where c will be large, cµ is the dominant term
and is needed to ensure stability, while βσ

p
c is a hedge against uncertainty.

To understand the effect of this hedge, substitute (3.2) into (3.1) to obtain
Xg ,n+1 = max{0, Xg ,n + An − cµ−βσpc}. After dividing the term An − cµ−βσpc
by the standard deviation of the number of arrivals per cycle, σ

p
c, we expect

it to be approximately normally distributed (with mean −β and standard devi-
ation 1) when c grows large because of the Central Limit Theorem (CLT), see
e.g. [86, Section 5.10]. This is not entirely straightforward, because An cannot
be interpreted as the sum of c independent random variables, and hence the
CLT cannot be applied directly. We therefore resort to the transform method.
We take the expression for the PGF of Xg established in Theorem 2.1, and show
that this transform converges in the heavy-traffic regime (3.2) with c →∞ to the
transform of a non-degenerate random variable Mβ. The convergence of trans-
forms then implies the convergence of the underlying random variables. Here,

Chapter 3. Optimal allocation for heavy-traffic FCTL queues 65

Mβ is a special random variable equal to the all-time maximum of the so-called
Gaussian random walk with drift −β and standard deviation 1, see e.g. [99]
for a detailed study of various characteristics of Mβ, including expressions and
approximations for all moments. We will give more details on Mβ later, and

first present our main heavy-traffic limit theorem. Let d→ denote convergence in
distribution.

Theorem 3.1 Assume that E[zY] is analytic in a disk of radius R with R > 1, µ< 1,
and σ2 > 0. Under scaling (3.2), as c →∞,

1

σ
p

c
Xg

d→ Mβ, (3.3)

P

(
Xg

σ
p

c
= 0

)
=P(Mβ = 0)

(
1+O

(
1p
c

))
, (3.4)

and for k ≥ 1,

E[X k
g] = (

σ
p

c
)k
E[M k

β]

(
1+O

(
1p
c

))
. (3.5)

The proof is deferred to Section 3.5. Theorem 3.1 has two practical implica-
tions. First, since the scaled overflow queue Xg converges to a non-degenerate
limiting variable, the scaling rule (3.2) can serve as a guiding principle for
choosing the cycle length as a function of the traffic pressure. That is, since
there exists a non-degenerate limit, scaling rules that let g scale faster (e.g. g =
cµ+βσc2/3 or g = (µ+β)c) or slower (e.g. g = cµ+βσc1/3 or g = cµ+β) likely
lead to degenerate behavior in the large cycle limit c →∞, that is Xg converges
with high probability to either 0 or ∞. The second practical implication is that
known results for the limit Mβ can be converted into approximations for Xg . As
Theorem 3.1 suggests, for large enough c, we have

E[Xg] ≈σpc E[Mβ],

P(Xg = 0) ≈P(Mβ = 0).

Let ζ(.) denote the Riemann zeta function. For 0 <β< 2
p
π it was shown in [99]

that

E[Mβ] = 1

2β
+ ζ(1/2)p

2π
+ β

4
+ β2

p
2π

∞∑
r=0

ζ(−1/2− r)

r !(2r +1)(2r +2)

(−β2

2

)r

, (3.6)

P(Mβ = 0) =p
2βexp

{
βp
2π

∞∑
r=0

ζ(1/2− r)

r !(2r +1)

(−β2

2

)r }
. (3.7)

66 3.2 FCTL queue in heavy traffic

These expressions give heavy-traffic approximations for the overflow queue that
are accurate when β is small and c is sufficiently large. Expression (3.6) also
reveals that for small β, E[Mβ] ≈ 1/(2β), a particularly easy approximation that
will be helpful when we optimize signal settings later in the chapter.

The random variable Mβ

As mentioned before, the random variable Mβ is equal to the all-time
maximum of a Gaussian random walk with drift −β and standard devi-
ation 1. Perhaps the most intuitive way to understand why this process
pops up, is to consider the following. In a continuous queueing model,
a limiting process that is often encountered is the all-time maximum of
the Brownian motion with negative drift (under a similar scaling as we
use), see e.g. [83]. The normal distribution popping up, which has a
strong connection with the Brownian motion, is no surprise either as the
scaled version of the An ’s are approximately normally distributed with
mean −β and standard deviation 1. However, as we are not dealing with
a continuous queueing model but with a queueing model in discrete
time, we need to adjust the Brownian motion encountered in the scaling
of continuous queueing models to a Gaussian random walk. As [208]
states: “The only difference, one could say, is that Brownian motion
is a continuous-time process, whereas the Gaussian random walk only
changes at discrete points in time.”, so in this sense, the fact that the
Gaussian random walk turns up is not a surprise.

The all-time maximum of a Gaussian random walk with negative drift
is a quite challenging process to understand. In contrast with the all-
time maximum of Brownian motion with negative drift (which has an
exponential distribution), the all-time maximum Gaussian random walk
does not allow for easy and exact computations. Indeed, as detailed in
e.g. Equation (3.6), we have an expression for E[Mβ] in terms of infinite
series or in terms of integrals as detailed in Proposition 3.2 below. For
further properties of the process Mβ we refer the interested reader to
e.g. [99].

We also derive other approximations for E[Xg] and P(Xg = 0) that are more
accurate, in particular for smaller c and larger β. Let us introduce the integrals

G0(b) =
∫ ∞

0

t 2

b2 + t 2

e−b2−t 2

1−e−b2−t 2 dt ,

Chapter 3. Optimal allocation for heavy-traffic FCTL queues 67

G1(b) =
∫ ∞

0

e−b2−t 2

1−e−b2−t 2 dt ,

that can be computed numerically by standard software packages. In addi-
tion, [101] provides ζ-series such as in Equations (3.6) and (3.7), for G0(b)
and G1(b) as well as rapidly convergent series involving the standard Gaussian
and the complementary error function, see Equations (4.27), (4.29), and (4.31)
in [101]. One consequence of the results of the latter type is the series repre-
sentation

G ′
0(b) =−pπ

∞∑
k=0

∫ ∞

b
p

k+1
e−t 2

dt , (3.8)

that shows that G ′
0(b) is negative and strictly increasing in b > 0, which will be

used later on. We prove the following result in Appendix 3.A.

Proposition 3.2 The mean overflow queue satisfies, as c →∞,

E[Xg] =
p

2

π

(
σ
p

c + βσ2

2µ

)
G0(b(β))+ θβ

π
G1

(
βp

2

)
+O

(
1p
c

)
, (3.9)

where

b(β) = βp
2

(
1+ βσ

µ
p

c

)−1/2

,

a = µ3 −µ3 −3(1+µ)σ2

µ
, (3.10)

θ = σ2

µ
p

2

(
µ

σ2 + 1

3

(µ
σ2

)2
a −1

)
, (3.11)

with µ3 the third moment of Y .

A direct consequence of Proposition 3.2 is the slightly easier approximation

E[Xg] =
p

2

π
σ
p

c G0

(
βp

2

)
+O(1). (3.12)

Tables 3.1 and 3.2 show the asymptotic approximations we have just derived.
We assume here that c is allowed to be any real positive number. As we couple
g and c as in Equation (3.2), often either g or c is non-integer. It is easy to
deal with non-integer c, as we can simply adjust the Y (z)c term to account for

68 3.3 Capacity allocation problems

Table 3.1: Various results for P(Xg = 0) and E[Xg] for several values of g and c with
Poisson arrivals with mean µ= 0.3 in each slot and with β= 0.1.

P(Xg = 0)
g c true value Approx. (3.7)

10 32.3 0.1649 0.1334
20 65.2 0.1551 0.1334
30 98.2 0.1509 0.1334
50 164.3 0.1468 0.1334

100 330.0 0.1427 0.1334
200 662.0 0.1399 0.1334
500 1659.2 0.1375 0.1334

E[Xg]
g c true value Approx. (3.9) Approx. (3.12)

10 32.3 13.935 13.985 13.826
20 65.2 19.767 19.803 19.644
30 98.2 24.238 24.267 24.109
50 164.3 31.324 31.346 31.188

100 330.0 44.340 44.356 44.198
200 662.0 62.744 62.754 62.597
500 1659.2 99.254 99.261 99.104

non-integer c, see also extension (iv) in Subsection 2.3.2. As expected, the ap-
proximations become more accurate for larger c. However, the approximations
also serve as useful, somewhat looser approximations for small and moderate
values of c. In conclusion, we have derived two asymptotic approximations for
E[Xg], the first-order approximation (3.12) with error O(1), and the refined ap-
proximation (3.9) with error O(1/

p
c). Although both approximations perform

well already for small values of c, (3.9) is more accurate than (3.12) for values
of β as large as 2. Both approximations will be employed in the next section for
the purpose of solving optimization problems.

3.3 Capacity allocation problems

We now turn to optimal green-time allocations for an intersection with n lanes,
where each lane is modeled separately as an FCTL queue. Let µi denote the

Chapter 3. Optimal allocation for heavy-traffic FCTL queues 69

Table 3.2: Various exact results for P(Xg = 0) and E[Xg] for several values of g and c with
Poisson arrivals with mean µ= 0.3 in each slot and with β= 1.

P(Xg = 0)
g c true value Approx. (3.7)

10 24.3 0.8450 0.8005
20 53.3 0.8312 0.8005
30 83.3 0.8253 0.8005
50 144.7 0.8200 0.8005

100 301.6 0.8138 0.8005
200 621.2 0.8098 0.8005
500 1593.8 0.8063 0.8005

E[Xg]
g c true value Approx. (3.9) Approx. (3.12)

10 24.3 0.3944 0.4437 0.3414
20 53.3 0.5664 0.5996 0.5055
30 83.3 0.6960 0.7225 0.6319
50 144.7 0.8998 0.9199 0.8326

100 301.6 1.2722 1.2860 1.2021
200 621.2 1.7971 1.8001 1.7251
500 1593.8 2.8369 2.8387 2.7633

mean number of arrivals per slot at lane i , σi the standard deviation of the
number of arrivals per slot at lane i , gi the green time allocated to lane i within
one cycle of length c, and E[X (i)

gi
] the mean overflow queue at lane i . While the

lanes operate independently once the green times are fixed, they do depend on
each other through the cycle time c and, obviously, the green time of one lane
corresponds to a red period for the other lanes. We leverage this independence
across lanes and the asymptotic approximations developed in Section 3.2 to for-
mulate several optimization problems that search for the vector of green times
that minimizes the total expected overflow queue.

3.3.1 Minimizing the sum of overflows

Consider the problem of finding the green times that minimize the sum of the
mean queue lengths at the end of the green periods

∑n
i=1E[X (i)

gi
]. Assume that

c is fixed, and let rT < c represent the time that cannot be used as green time.

70 3.3 Capacity allocation problems

This rT could e.g. model clearing times between lanes. Hence, we have that
c = rT +∑n

i=1 gi . Again applying the substitution as in (3.2), gi = µi c +βiσi
p

c,
for i = 1, . . . ,n, this gives the following optimization problem:

minimize
β1,...,βn

n∑
i=1

E[X (i)
gi

]

subject to
n∑

i=1
βiσi

p
c = c(1−µT)− rT ;

βi > 0, i = 1, . . . ,n,

(3.13)

with µT = ∑n
i=1µi . The first constraint in (3.13) relates to the requirement c =

rT +∑n
i=1 gi and together with the constraints βi > 0 for all i , it is ensured that

each gi might be chosen so as to ensure a vehicle-to-capacity ratio less than 1
for each lane as c(1−µT)− rT > 0.

Optimization problem (3.13) seems mathematically intractable due to the
lack of an explicit expression for the objective function

∑n
i=1E[X (i)

gi
]. We shall

therefore use approximations based on Equations (3.12) and (3.9) to replace
the objective function with a heavy-traffic approximation, which then leads to a
tractable, more structured optimization problem.

Using (3.12) gives the following optimization problem:

minimize
β1,...,βn

n∑
i=1

σi

π

p
2c G0(βi /

p
2)

subject to
n∑

i=1
βiσi

p
c = c(1−µT)− rT ;

βi > 0, i = 1, . . . ,n.

(3.14)

Theorem 3.3 Optimization problem (3.14) is solved by setting

βi = c(1−µT)− rTp
c
∑n

j=1σ j
=:β∗. (3.15)

Proof. Introduce the Lagrange multiplier λ0 ∈R, so that

∂

∂βi

(
n∑

j=1

σ j
p

2c

π
G0(β j /

p
2)

)
=λ0

∂

∂βi

(
n∑

j=1
β jσ j

p
c − c(1−µT)+ rT

)
,

Chapter 3. Optimal allocation for heavy-traffic FCTL queues 71

for i = 1, . . . ,n. This gives

G ′
0(βi /

p
2) =πλ0. (3.16)

The function G ′
0(b) is negative and strictly increasing in b > 0, see Equation (3.8).

Combining this with the fact that λ0 is independent of the index i , we conclude
that the βi are the same for i = 1, . . . ,n and should satisfy

βi
p

c
n∑

j=1
σ j = c(1−µT)− rT ,

for i = 1, . . . ,n, which completes the proof. ä
Theorem 3.3 shows that the optimal parameters βi should be equal for all

lanes. We now turn to the second approximation for the problem formulated in
Equation (3.13), based on the refined heavy-traffic approximation in (3.9):

minimize
β1,...,βn

n∑
i=1

p
2

π

(
σi

p
c + βiσ

2
i

2µi

)
G0

(
bi (βi)

)+ θiβi

π
G1

(
βip

2

)
subject to

n∑
i=1

βiσi
p

c = c(1−µT)− rT ;

βi > 0, i = 1, . . .n.

(3.17)

Theorem 3.4 Optimization problem (3.17) is solved by

βi =β∗+Ωi (β∗), i = 1, . . . ,n, (3.18)

with β∗ as in (3.15),

Ωi (β∗) =
√

2

c

1

G ′′
0

(
β∗/

p
2
) (∑n

j=1 K j∑n
j=1σ j

− Ki

σi

)
,

and

Ki =
σ2

ip
2µi

G0

(
β∗p

2

)
− β∗σ2

i

2µi
G ′

0

(
β∗p

2

)
− β2∗σ2

i

2
p

2µi
G ′′

0

(
β∗p

2

)
+

θi G1

(
β∗p

2

)
+ θiβ∗p

2
G ′

1

(
β∗p

2

)
. (3.19)

72 3.3 Capacity allocation problems

The proof of Theorem 3.4 is presented in Appendix 3.A. The result may seem
complicated at first glance, but in fact reveals a remarkably elegant structure.
The termΩi (β∗) can be thought of as a refinement of β∗, due to using the refined
approximation (3.9) instead of (3.12). An intriguing finding is that Ωi (β∗) can
be written explicitly in terms of β∗. From that perspective, the rule in (3.18)
can be interpreted as a two-step procedure. First divide the green time into
parts of length gi = µi c +β∗σi

p
c, and then correct or refine this division using

β∗+Ωi (β∗) instead of β∗. Note that in this second step, lane i gets a larger or
smaller share depending on the sign of∑n

j=1 K j∑n
j=1σ j

− Ki

σi
.

Generally, the solution to optimization problem (3.17) will lead to more
accurate results for the minimization of

∑n
i=1E[X (i)

gi
] than the solution to the op-

timization problem (3.14), as the approximation of the individual E[X (i)
gi

] terms
is more accurate. We return to this observation in Section 3.4, Example 1.

Remark 3.1 The solutions of both optimization problems formulated above gen-
erally result in non-integer values for gi . Depending on the exact setting, we might
opt, e.g., for rounding the values to the nearest integer or rounding the value of
gi down (along with checking for stability). An alternative procedure is to allow
for a random green time. If Gi denotes such a random green time, we can choose
it in the following way: Gi is equal to bgi c with probability p and equal to dgi e
with probability 1−p such that gi = pbgi c+ (1−p)dgi e. We show how this can be
accounted for in Remark 3.2.

3.3.2 Minimizing the weighted sum of overflows

In practice, it might be preferable to give more priority to certain lanes, which
can be modeled by introducing weights associated with each lane. Assume that
lane i gets weight di > 0 and formulate the optimization problem

minimize
β1,...,βn

n∑
i=1

diE[X (i)
gi

]

subject to
n∑

i=1
βiσi

p
c = c(1−µT)− rT ;

βi > 0, i = 1, . . . ,n.

(3.20)

Chapter 3. Optimal allocation for heavy-traffic FCTL queues 73

Due to the weights d1, . . . ,dn we cannot (approximately) solve the problem (3.20)
explicitly with the same heavy-traffic approximations that are used in (3.14) and
(3.17). We therefore resort to the approximation E[X (i)

gi
] ≈σi

p
c/(2βi) as derived

from Equation (3.6), and solve the problem

minimize
β1,...,βn

n∑
i=1

di

p
cσi

2βi

subject to
n∑

i=1
βiσi

p
c = c(1−µT)− rT ;

βi > 0, i = 1, . . . ,n.

(3.21)

Proposition 3.5 Optimization problem (3.21) is solved by

βi =
√

di (c(1−µT)− rT)
p

c
∑n

j=1

√
d jσ j

. (3.22)

Proof. Follows from the same Lagrange multiplier technique as in the proof of
Theorem 3.3. ä

Equation (3.22) reduces to Equation (3.15) for di = 1.
We next use a more accurate approximation for the E[X (i)

gi
] and define the

following minimization problem.

minimize
β1,...,βn

n∑
i=1

di
σi

π

p
2c G0(βi /

p
2)

subject to
n∑

i=1
βiσi

p
c = c(1−µT)− rT ;

βi > 0, i = 1, . . . ,n.

(3.23)

Corollary 3.6 There exists a unique solution to optimization problem (3.23),
which can be obtained numerically.

Proof. Along the same lines as in the proof of Theorem 3.3, we get that there
exists a Lagrange multiplier λ0 ∈R satisfying

G ′
0(β j /

p
2) = πλ0

d j
p

c
. (3.24)

As G ′
0 is a strictly increasing function, it is invertible and thus Equation (3.24)

can be solved for β j . This implies that a Lagrange multiplier λ0 exists, that the

74 3.4 Numerical examples of capacity allocation

problem formulated in Equation (3.23) is solvable, that the solution is unique,
and that the optimal values can be obtained numerically. ä

While the minimization problem in (3.23) cannot be solved analytically,
Corollary 3.6 implies that a numerical solution can be found.

3.4 Numerical examples of capacity allocation

We now numerically investigate the capacity allocation procedures developed
in Section 3.3, that in turn use the asymptotic approximations for the mean
overflow established in Section 3.2. In particular, the first-order approximation
(3.12) and the refined approximation (3.9) were both used to solve capacity
allocation problems in the asymptotic regime where cycle times become large.
This led to asymptotic dimensioning rules that prescribe how to divide the cycle
time over the various lanes, and in particular how to choose the green time in
an (asymptotically) optimal manner. Because the capacity allocation problems
in Section 3.3 were solved analytically, we have conducted many numerical ex-
periments for assessing the effectiveness of the asymptotic results for various
cycle lengths and distributional assumptions on the arrival processes. From
these many experiments, we concluded that the asymptotic dimensioning rules
perform well, also for settings with a small or moderate cycle length and/or rel-
atively small vehicle-to-capacity ratios. We shall now substantiate these findings
by discussing two examples in more detail.

3.4.1 Two-lane example

First consider an example with two lanes as depicted in Figure 3.1(a). Due to
the fixed cycle, both lanes operate as independent FCTL queues. The challenge,
however, is to determine the optimal capacity allocation that dictates how the
cycle time should be divided. In this example, we set the cycle length according
to the sum of the green times and we choose an all-red or clearance time of
rT slots. We consider Poisson arrivals at lane 1 and geometric arrivals at lane
2, both with a mean arrival rate of 0.4 vehicles per slot. We further choose
rT = 5 and study various values of c. We determine the optimal βi according
to the first-order dimensioning rule in (3.15) and the refined rule in (3.18). In
Table 3.3 we display the optimal βi according to the two dimensioning rules
together with the resulting green times. We see in Table 3.3 that the green
times only weakly depend on the distribution (Poisson or geometric). This, at
least partly, relates to the scaling rule (3.2) that we propose: if the mean arrival

Chapter 3. Optimal allocation for heavy-traffic FCTL queues 75

(a) (b)

Figure 3.1: Graphical representations of (a) the two-lane example considered in Subsec-
tion 3.4.1 and (b) the four-lane example in Subsection 3.4.2.

rate of two vehicle streams is the same (as is the case in this example), the only
difference in the green time is caused by differences in the standard deviation
of the arrival processes and by the parameters βi . The latter are the same for
all flows under the dimensioning rule as in (3.15) and only differ slightly under
the dimensioning rule as in (3.18).

As such, the difference between the green times based on the first-order
dimensioning rule and the refined dimensioning rule in Table 3.3 is generally
small. These small differences in the green-time allocations can be explained

Table 3.3: Optimal green times and βi ’s according to Theorem 3.3 (rule (3.15)) and
Theorem 3.4 (rule (3.18)). For rule (3.18) we use the notation βc

i and g c
i . We consider a

Poisson arrival stream with mean 0.4 at lane 1, a geometric arrival stream at lane 2 with
mean 0.4, and rT = 5. We study various values of c.

Dimensioning rule (3.15) Dimensioning rule (3.18)
c g1 (β1) g2 (β2) g c

1 (βc
1) g c

2 (βc
2)

30 12.46 (0.132) 12.54 (0.132) 12.46 (0.132) 12.54 (0.132)
50 22.29 (0.512) 22.71 (0.512) 22.29 (0.511) 22.71 (0.513)

100 46.87 (1.086) 48.13 (1.086) 46.84 (1.082) 48.16 (1.090)
200 96.03 (1.792) 98.97 (1.792) 95.92 (1.780) 99.08 (1.803)
500 243.51 (3.077) 251.49 (3.077) 243.11 (3.049) 251.89 (3.101)

76 3.4 Numerical examples of capacity allocation

Table 3.4: Exact values of the mean overflow queue with the green time based on Theo-
rem 3.3, E[X (i)

gi
], and on Theorem 3.4, E[X (i)

g c
i

], respectively. The green times are random-

ized as in Remark 3.1. The table also displays an approximation of the mean overflow
queue based on Equation (3.12) for the gi and an approximation based on Equation (3.9)
for the g c

i . The results are for Poisson arrivals with mean 0.4 at lane 1, geometric arrivals
with mean 0.4 at lane 2, and rT = 5. We study various values of c.

c E[X (1)
g1

] Eq. (3.12) E[X (1)
g c

1
] Eq. (3.9)

30 11.53 11.19 11.53 11.35
50 2.396 2.285 2.402 2.417

100 0.6978 0.6383 0.7066 0.7286
200 0.1686 0.1431 0.1742 0.1887
500 0.00609 0.00412 0.00666 0.00960

c E[X (2)
g2

] Eq. (3.12) E[X (2)
g c

2
] Eq. (3.9)

30 13.60 13.24 13.60 13.52
50 2.870 2.704 2.863 2.923

100 0.8577 0.7553 0.8500 0.8930
200 0.2156 0.1693 0.2104 0.2343
500 0.00865 0.00488 0.00801 0.0124

by the fact that the first-order approximation for the mean overflow queue is al-
ready sharp, see Table 3.4, where we take the various green-time allocations as
in Table 3.3 while randomizing the green times as in Remark 3.1, and compute
the exact value and approximations for the mean overflow queue. The mi-
nor differences in the green-time allocations in Table 3.3 also lead to relatively
small differences in the mean overflow queue as can be observed in Table 3.4.
The larger green times are allocated to the flow with the larger standard de-
viation of the number of arrivals per slot (and thus also to the flow with the
larger mean overflow queue), which makes sense intuitively: if there is any
excess green time, it should be allocated to the longest queue (within certain
boundaries). We also found the optimal integer green-time allocation for the
cases studied in Table 3.3 and the optimal green times generally agree with the
rounded values of the non-integer green times presented in Table 3.3, certainly
when using (3.18). Summarizing, both dimensioning rules yield results that are
close to the optimum. As a last remark, we note that the first-order rule (3.15)
is already a good way of dimensioning this two-lane intersection.

Chapter 3. Optimal allocation for heavy-traffic FCTL queues 77

3.4.2 Four-lane example with weights

We next consider the influence of weights for an intersection with four lanes,
see also Figure 3.1(b), again assuming an all-red time rT of 5 slots. We apply
the dimensioning rule in (3.23) and obtain the optimal βi numerically (see
Corollary 3.6).

We show results for equal weights di = 1 in Table 3.5 and unequal weights
di = i in Table 3.6. We assume geometrically distributed arrivals at lane 1 with
mean 0.3 and Poisson arrivals at lanes 2, 3, and 4 with means 0.3, 0.1, and
0.1 respectively. We display the green time and the optimal βi for each lane
in both tables. With equal weights, the βi are the same and the difference in
green times is solely due to differences in the mean and the standard deviation
of the arrival process because the βi are all the same, see Table 3.5. With
unequal weights, the βi increase with the weight di , as expected, although the
influence of the weights on the green times remains limited as can be observed
in Table 3.6. This makes sense, since the amount of green time that one can
freely allocate is rather limited as well, especially for small c. E.g., if c = 30, we
only have one green slot to allocate freely (since we need µT c = 24 for stabilizing
all flows and rT being equal to 5). This is clearly visible in Tables 3.5 and 3.6.
If c increases, the number of green slots that we can allocate freely increases,
e.g. if c = 500 we can distribute 95 slots to minimize the weighted sum of the
mean overflow queues. In this case, we thus see a bigger, although still rather
small, difference between the case where di = 1 in Table 3.5 and the case with
di = i in Table 3.6. We also computed the optimal integer green-time allocation
for the cases studied in Tables 3.5 and 3.6 and they mostly coincide with the
rounded green times that we obtain when we round the obtained green times

Table 3.5: Dimensioning rule (3.23). Optimal green times and the βi ’s for a four-lane
example with geometric arrivals with mean 0.3 in lane 1, Poisson arrivals with mean 0.3
in lane 2, Poisson arrivals with mean 0.1 in lane 3, Poisson arrivals with mean 0.1 in lane
4, with rT = 5, and di = 1 for various values of c.

c g1 (β1) g2 (β2) g3 (β3) g4 (β4)
30 9.346 (0.101) 9.304 (0.101) 3.175 (0.101) 3.175 (0.101)
50 16.73 (0.392) 16.52 (0.392) 5.876 (0.392) 5.876 (0.392)

100 35.19 (0.831) 34.55 (0.831) 12.63 (0.831) 12.63 (0.831)
200 72.11 (1.371) 70.62 (1.371) 26.13 (1.371) 26.13 (1.371)
500 182.9 (2.354) 178.8 (2.354) 66.65 (2.354) 66.65 (2.354)

78 3.5 Proof of heavy-traffic theorem using the transform method

Table 3.6: Dimensioning rule (3.23). Optimal green times and the βi ’s for a four-lane
example with geometric arrivals with mean 0.3 in lane 1, Poisson arrivals with mean 0.3
in lane 2, Poisson arrivals with mean 0.1 in lane 3, Poisson arrivals with mean 0.1 in lane
4, with rT = 5, and di = i for various values of c.

c g1 (β1) g2 (β2) g3 (β3) g4 (β4)
30 9.243 (0.071) 9.300 (0.100) 3.212 (0.123) 3.245 (0.141)
50 16.24 (0.280) 16.51 (0.390) 6.053 (0.471) 6.199 (0.536)

100 33.93 (0.629) 34.58 (0.836) 13.08 (0.975) 13.41 (1.079)
200 69.88 (1.119) 70.75 (1.388) 26.93 (1.549) 27.44 (1.664)
500 179.6 (2.122) 179.1 (2.375) 67.79 (2.516) 68.48 (2.614)

in Tables 3.5 and 3.6. The main source for differences seems to be the rounding
effect, often causing the rounded green times, g̃i , to add up to c −∑

i g̃i = rT −1
rather than rT . Modulo this effect, the optimal green times and the obtained
green times in Tables 3.5 and 3.6 coincide up to one slot. This indicates that
our dimensioning rules are, again, yielding close-to-optimal results while being
easy to compute and interpret in terms of the input parameters.

3.5 Proof of heavy-traffic theorem using the trans-
form method

In this section, we present the proof of Theorem 3.1, which we regard as the
main mathematical novelty in this chapter. The theorem shows weak conver-
gence of the scaled overflow queue to a non-degenerate limit. The general proof
structure is explained in Subsection 3.5.1 and executed in Subsection 3.5.2.

3.5.1 Sketch of the proof of Theorem 3.1

As before, let Xg (w) denote the PGF of the stationary overflow queue. In Theo-
rem 2.1, we derived that there is an ε0 > 0 such that for all ε ∈ (0,ε0)

Xg (w) = exp

(
1

2πi

∮
|z|=1+ε

(Y ′(z)z −Y (z))(w −Y (w))

(z −Y (z))(zY (w)−wY (z))
ln

(
1− Y c (z)

zg

)
dz

)
,

(3.25)

for any |w | < 1+εwith principal value of the logarithm and where Y (z) is the PGF
of the number of arrivals in a single slot. We switch to the moment generating

Chapter 3. Optimal allocation for heavy-traffic FCTL queues 79

function (MGF) by a change of variables, replacing w by exp(t/(σ
p

c)).
We will prove that the MGF of the FCTL overflow queue converges to the

MGF of the Mβ given by, see [1],

E[et Mβ] = exp

(
1

2πi

∫
C

t

u(t −u)
ln

(
1−e−βu+ 1

2 u2
)

du

)
,

where t ∈C and C is a curve going from −i ·∞ to +i ·∞, passing t to the right.
We choose C : u =β+ i v , −∞< v <∞, and then we get for Re(t) <β that

E[et Mβ] = exp

(
1

2π

∫ ∞

−∞
t

(β+ i v)(t −β− i v)
ln

(
1−e−

1
2β

2− 1
2 v2

)
dv

)
. (3.26)

Then, we will prove that

Xg (w) = E[et Mβ
](

1+O
(1p

c

))
, (3.27)

with w = exp(t/(σ
p

c)), as c →∞, uniformly in t in any bounded set contained in
Re(t) ≤ 1

2β, proving Equation (3.3) in Theorem 3.1. We work from the integral

Ic (w) := 1

2πi

∮
|z|=1+ε

Y ′(z)z −Y (z)

z −Y (z)

w −Y (w)

zY (w)−wY (z)
ln

(
1− Y c (z)

zg

)
dz, (3.28)

with w = exp(t/(σ
p

c)), see Equation (3.25), towards the integral

J (t) := 1

2π

∫ ∞

−∞
t

(β+ i v)(t −β− i v)
ln

(
1−e−

1
2β

2− 1
2 v2

)
dv,

see Equation (3.26). We do this by using the dedicated saddle point method
presented in [101] for the bulk-service queue in heavy traffic. To avoid certain
technical complications, we assume, as in [101], that the maximum of |Y (z)|
over z, |z| = r , is uniquely achieved at z = r for any r ∈ (0,R). Under this assump-
tion, see [101], the function

h(z) :=− ln z + c

g
lnY (z) (3.29)

has a unique saddle point zsp in (1,R) with

h(zsp) < 0 = h′(zsp),

h′′(zsp) → σ2

µ
,

80 3.5 Proof of heavy-traffic theorem using the transform method

when c → ∞ and such that Re[h(z)], |z| = zsp , is strictly maximal at |z| = zsp .
This saddle point converges to 1 as c →∞, and zsp < z0, where z0 is the zero of
zg −Y c (z) outside the unit disk of smallest modulus. We shall take 1+ ε = zsp

in Equation (3.28). As c →∞, we have, due to rapid decay of |Y c (z)/zg | along
|z| = zsp from z = zsp onwards, that we may restrict the integration over z in
Equation (3.28) to only a small portion of |z| = zsp near z = zsp → 1. Also, we
have w = exp(t/(σ

p
c)) → 1, c →∞, since t is in a bounded set.

Our proof has the following main steps.

I. Approximating the integrand in Equation (3.28)

Y ′(z)z −Y (z)

z −Y (z)

w −Y (w)

zY (w)−wY (z)
by

w −1

(z −1)(w − z)
(3.30)

for z and w near 1.

II. Substituting z = z(x), −δ≤ x ≤ δ with z(0) = zsp to achieve that

Y c (z(x))

(z(x))g = exp

(
g h(zsp)− 1

2
g h′′(zsp)x2

)
(3.31)

assumes the form of a Gaussian (steepest descent curve).

III. Showing that

g h(zsp) →−1

2
β2, (3.32)

h′′(zsp) → σ2

µ
,

as c → ∞. Substituting v = x
√

g h′′(zsp), −δ ≤ x ≤ δ, we see from Equa-
tions (3.31) and (3.32), that we approximate

ln

(
1− Y c (z(x))

(z(x))g

)
by ln

(
1−e−

1
2β

2− 1
2 v2

)
(3.33)

as c →∞.

IV. Showing that the total effect on (w −1)/((z −1)(w − z)) in Equation (3.30)
of the substitutions z = z(x), v = x

√
g h′′(zsp) amounts to approximating

(w −1)dx

(z −1)(w − z)
by

tdv

(β+ i v)(t −β− i v)
,

where w = exp(t/(σ
p

c)) and c →∞.

V. Completing the proof of Equation (3.27).

Chapter 3. Optimal allocation for heavy-traffic FCTL queues 81

3.5.2 Full proof of Theorem 3.1

We shall next present the details for the five main steps.
Step I. We have in |z −1| ≤ 1

2 (R −1) =: δ

Y (z) = 1+µ(z −1)+O(|z −1|2), (3.34)

Y ′(z) =µ+O(|z −1|),

so that

z −Y (z) = (1−µ)(z −1)(1+O(|z −1|),

zY ′(z)−Y (z) =−(1−µ)(1+O(|z −1|)).

Therefore, in a set of z ’s, |z −1| ≤ δ1 with δ1 > 0,

zY ′(z)−Y (z)

z −Y (z)
= −1

z −1

(
1+O(|z −1|)). (3.35)

We shall show below that for |z −1| and |w −1| ≤ 1
2 (R −1) = δ, we have that:

zY (w)−wY (z) = (1−µ)(z −w)
(
1+O(|z −1|+ |w −1|)). (3.36)

Therefore, also using Equation (3.34) with w instead of z,

w −Y (w)

zY (w)−wY (z)
= (1−µ)(w −1)

(
1+O(|w −1|))

(1−µ)(z −w)
(
1+O(|z −1|+ |w −1|)) (3.37)

holds in a set of z ’s and w ’s, |z −1| ≤ δ2 and |w −1| ≤ δ2 with δ2 > 0. Combining
Equations (3.35) and (3.37), we get

Y ′(z)z −Y (z)

z −Y (z)

w −Y (w)

zY (w)−wY (z)
= w −1

(z −1)(w − z)

(
1+O(|z −1|+ |w −1|)),

(3.38)

holding in a set of z ’s and w ’s, |z −1| ≤ δ3 and |w −1| ≤ δ3 with δ3 > 0.
We finally show that Equation (3.36) holds when |z −1| and |w −1| ≤ δ. We

have

Y (v) = 1+µ(v −1)+
∞∑

k=2
ck (v −1)k ,

82 3.5 Proof of heavy-traffic theorem using the transform method

for |v −1| < δ and where
∑∞

k=2 |ck (v −1)k | ≤∑∞
k=2 k|ck |δk <∞, and so

zY (w)−wY (z) = (1−µ)(z −w)+
∞∑

k=2
ck

(
z(w −1)k −w(z −1)k

)
. (3.39)

For k = 2,3, . . . , we have

z(w −1)k −w(z −1)k =
(w −1)k − (z −1)k + (z −1)(w −1)

(
(w −1)k−1 − (z −1)k−1

)
.

Using an −bn = (a−b)
∑n−1

i=0 ai bn−1−i with a = w −1, b = z −1, and n = k,k −1, we
get

z(w −1)k −w(z −1)k = (3.40)

(w − z)

[
k−1∑
j=0

(w −1) j (z −1)k−1− j +
k−2∑
j=0

(w −1) j+1zk−1− j

]
.

Let m = max{|z − 1|, |w − 1|}. The modulus of the quantity within the [] of the
right-hand side of Equation (3.40) is bounded by

kmk−1 + (k −1)mk ≤ (|z −1|+ |w −1|) (kδk−2 + (k −1)δk−1)

since m ≤ |z −1|+ |w −1| and |z −1|, |w −1| ≤ δ. Therefore∣∣∣∣∣ ∞∑
k=2

ck

(
z(w −1)k −w(z −1)k

)∣∣∣ (3.41)

≤ |z −w | (|z −1|+ |w −1|)
∞∑

k=2
|ck |

(
kδk−2 + (k −1)δk−1

)
.

The infinite series at the right-hand side of Equation (3.41) has a finite value and
does not depend on z, w when |z−1|, |w −1| ≤ δ. From this and Equation (3.39)
we get Equation (3.36) for such z, w .
Step II. We have

Y c (z)

zg = exp
(
g h(z)

)
,

with h(z) given by Equation (3.29). We define z = z(x) for real x of small mod-
ulus by setting

h(z(x)) = h(zsp)− 1

2
x2h′′(zsp).

Chapter 3. Optimal allocation for heavy-traffic FCTL queues 83

In Section 3 of [101], it is shown that there is a δ> 0, independent of c ≥ 1, such
that z(x) is given by a power series

z(x) = zsp + i x +
∞∑

k=2
ck (i x)k , |x| ≤ δ,

with real ck and i 2 = −1. We thus have z ′(x) = i +O(|x|), which shows that the
curve (x, z(x)) is tangent to the circle |z| = zsp at z = zsp .

Substituting z = z(x), −δ ≤ x ≤ δ, in Equation (3.28) produces an approx-
imation of Ic (w) with exponentially small error. Note that dz = z ′(x)dx = (

i +
O(|x|))dx. When we use, furthermore, Equation (3.38), we get

Ic (w) = 1

2π

∫ δ

−δ
w −1

(z(x)−1)(w − z(x))
ln

(
1− Y c (z(x))

(z(x))g

)
(1+O)dx, (3.42)

where O abbreviates O
(|x| + |z(x)− 1| + |w − 1|). Note that Y c (z(x))

(z(x))g is given by
Equation (3.31) in Gaussian form.
Step III. We have that zsp is the solution of h′(z) = 0 with z larger than, but close
to, 1. From

0 = h′(zsp) = a1 +a2(zsp −1)+ 1

2
a3(zsp −1)2 + . . . ,

where ai = h(i)(1), we get

zsp −1 = −a1/a2

1+a3(zsp −1)/2a2 + . . .
− a1

a2
+ a1a3

2a2
2

(zsp −1)+ . . . (3.43)

=−a1

a2
− a3

2a2

(
a1

a2

)2

+

Next, from Equation (3.43), using h(1) = 0, we get

h(zsp) = a1(zsp −1)+ 1

2
a2(zsp −1)2 + 1

6
a3(zsp −1)3 + . . .

=− a2
1

2a2
− a3a3

1

6a3
2

−

We express ai = h(i)(1), i = 1,2,3, in terms of µ, σ, β, and c. We have

h′(z) =−1

z
+ c

g

Y ′(z)

Y (z)
,

84 3.5 Proof of heavy-traffic theorem using the transform method

and so, from g = cµ+βσpc, Y (1) = 1, and Y ′(1) =µ we have

a1 = h′(1) = cµ

g
−1 =−βσ

p
c

g
= −βσ
µ
p

c

(
1+O

(1p
c

))
.

Next, we have that

h′′(z) = 1

z2 + c

g

Y ′′(z)Y (z)− (Y ′(z))2

(Y (z))2 ,

and so

a2 = h′′(1) = 1+ 1

µ

(
1+O

(1p
c

))(
Y ′′(1)− (

Y ′(1)
)2

)
= 1

µ

(
Y ′′(1)+µ−µ2)+O

(1p
c

)
= σ2

µ
+O

(1p
c

)
.

In a similar fashion, a3 = h′′′(1) can be computed as a quantity that remains
bounded as c →∞.

We then find, subsequently,

zsp −1 = β

σ
p

c

(
1+O

(1p
c

))
, (3.44)

h(zsp) = −β2

2cµ

(
1+O

(1p
c

))
,

h′′(zsp) = h′′(1)+O(zsp −1) = σ2

µ

(
1+O

(1p
c

))
.

It then follows that

g h(zsp) =−1

2
β2 +O

(1p
c

)
, (3.45)

h′′(zsp) = σ2

µ

(
1+O

(1p
c

))
.

For later use in Step IV, we also mention that√
g h′′(zsp)

σ
p

c
= 1+O

(1p
c

)
, (3.46)

(zsp −1)
√

g h′′(zsp) =β
(
1+O

(1p
c

))
. (3.47)

Chapter 3. Optimal allocation for heavy-traffic FCTL queues 85

Note that for −δ≤ x ≤ δ we have from Equation (3.45):

ln

(
1− Y c (z(x))

(z(x))g

)
= ln

(
1−exp

(
g h(zsp)− 1

2
g h′′(zsp)x2)) (3.48)

= ln
(
1−e−

1
2β

2− 1
2 v2

)(
1+O

(1p
c

))
,

where we have set v = x
√

g h′′(zsp).

Step IV. Let t be in a bounded set with Re(t) ≤ 1
2β. Then

w −1 = exp(t/(σ
p

c))−1 = t

σ
p

c

(
1+O

(1p
c

))
.

With z = z(x) = zsp + i x +O(x2), we have

w −1

(z −1)(w − z)
= t/(σ

p
c)(

zsp −1+ i x
)(

t/(σ
p

c)− (zsp −1)− i x
) (

1+O
(
|x|+ 1p

c

))
.

(3.49)

The factor 1+O
(
|x|+ 1p

c

)
follows from Equation (3.44) and Re(t) ≤ 1

2β, so that

zsp −1−Re
(

t

σ
p

c

)
≥ β

2σ
p

c

(
1+O

(1p
c

))
.

We next substitute v = x
√

g h′′(zsp). Writing

γ=
√

g h′′(zsp)

σ
p

c
= 1+O

(1p
c

)
,

η= (zsp −1)
√

g h′′(zsp) =β
(
1+O

(1p
c

))
,

where we use Equations (3.46) and (3.47), we have uniformly in x ∈R:

t/(σ
p

c)dx(
zsp −1+ i x

)(
t/(σ

p
c)− (zsp −1)− i x

) (3.50)

= γtdv

(η+ i v)(γt −η− i v)
= tdv

(β+ i v)(t −β− i v)

(
1+O

(1p
c

))
.

86 3.5 Proof of heavy-traffic theorem using the transform method

Step V. By Equations (3.42), (3.48), (3.49), and (3.50), we have, with w =
exp(t/(σ

p
c)),

Ic (w) = 1

2π

∫ ∆

−∆

[
t

(β+ i v)(t −β− i v)
ln

(
1−e−

1
2β

2− 1
2 v2

)(
1+O

(1+|v |p
c

))]
dv,

where ∆= δ
√

g h′′(zsp). For this it has been used that

|x| = |v |√
g h′′(zsp)

=O

(|v |p
c

)
,

|z(x)−1| ≤ |zsp −1|+O(|x|) =O

(
1+|v |p

c

)
.

Finally, since

ln
(
1−e−

1
2β

2− 1
2 v2

)
=O

(
e−

1
2 v2

)
when ν→∞, while ∆= δσpc

(
1+O

(
1p
c

))
→∞ like

p
c, we get that

Ic (w) = 1

2π

∫ ∞

−∞
t

(β+ i v)(t −β− i v)
ln

(
1−e−

1
2β

2− 1
2 v2

)
dv

(
1+O

(1p
c

))
.

That is, Ic (w) = J (t)
(
1+O

(
1p
c

))
, and this holds uniformly in t in any bounded

set with Re(t) ≤ 1
2β, finishing the proof of Equation (3.27).

Turning to Equation (3.5) in Theorem 3.1, we have for the MGF’s Fc and F
in Equation (3.27)

Fc (t) =
∞∑

k=0

mk (c)

k !
t k ,

F (t) =
∞∑

k=0

mk

k !
t k ,

where mk (c) and mk are the kth moment of Xg /(σ
p

c) and Mβ. By Cauchy’s
integral formula for the kth derivative at 0 of an analytic function, we have

mk (c)

k !
= 1

2πi

∮
|t |=a

Fc (t)

t k+1
dt ,

Chapter 3. Optimal allocation for heavy-traffic FCTL queues 87

where we take a > 0 such that the disk |t | ≤ a is contained in the set of t ’s where
the convergence in Equation (3.27) is uniform. Since Fc (t) = F (t)

(
1+O

(
1p
c

))
uniformly on |t | = a, this yields mk (c) = mk

(
1+O

(
1p
c

))
, proving Equation (3.5)

in Theorem 3.1.

To prove Equation (3.4) in Theorem 3.1, we must argue differently. Letting
t →−∞ in Equation (3.26), we have

P(Mβ = 0) = exp

(
1

2π

∫ ∞

−∞
1

β+ i v
ln

(
1−e−

1
2β

2− 1
2 v2

)
dv

)
.

Also, setting w = 0 in Equation (3.25), we have that the front factor in the
integral in Equation (2.2) is given by

Y ′(z)z −Y (z)

z −Y (z)
· −1

z
= 1

z −1

(
1+O

(|z −1|)),

where Y (0) > 0 and Equation (3.35) have been used. We are now in a completely
similar, and indeed even simpler, situation as before:

P

(
1

σ
p

c
Xg = 0

)
= exp

(
1

2πi

∮
|z|=1+ε

1+O(|z −1|)
z −1

ln
(
1− Y c (z)

zg

)
dz

)
.

The combined effect on the front factor of the two substitutions z = z(x) and
v = x

√
g h′′(zsp) amounts to

1

i

dz

z −1
= dv

β+ i v

(
1+O

(1p
c

))
and this yields P

(
Xg /(σ

p
c) = 0

)=P(Mβ = 0)
(
1+O

(
1p
c

))
.

Remark 3.2 We can allow the green time g to be random as we for example do
for the Gi in Remark 3.1. The randomness in Gi as introduced in Remark 3.1 has
a minor impact on the proof of Theorem 3.1. We need to modify Equation (3.31)
slightly and multiply the left-hand side of Equation (3.31) with 1/

(
p + (1−p)z(x)

)
with p as in Remark 3.1. Observe that

1/
(
p + (1−p)z(x)

)= 1+O(z(x)−1) (3.51)

uniformly in p for 0 ≤ p ≤ 1. As the right-hand side of Equation (3.31) is smaller
than 1, see Equation (3.32), we may take the factor in Equation (3.51) out of the
logarithm in (3.33). In this way, the proof of Theorem 3.1 still works with the
only further modification that Equation (3.42) gets an additional O (z(x)−1) term
from Equation (3.51).

88 3.6 Conclusion

3.6 Conclusion

The main technical novelty in this chapter concerns establishing heavy-traffic
limits for the single-lane FCTL queue, in particular Theorem 3.1. These heavy-
traffic limits follow from combining a suitable large-cycle regime (3.2) with the
transform method for establishing convergence in distribution of the stationary
overflow to a nondegenerate limit. We are able to use this transform method
thanks to Theorem 2.1, providing an alternative expression for the PGF of the
overflow queue than the one established in the existing literature. The proof
that exploits this transform method is presented in Section 3.5 and is interesting
in its own right. The key technical novelty, the asymptotic expansion of the
complex contour integral, is likely to be of broader interest and not limited
to the FCTL queue. Examples where this proof method applies include the
bulk-service queue and extensions of the FCTL queue considered respectively
in [146] and in Chapter 2.

The limiting heavy-traffic behavior is governed by a reflected Gaussian ran-
dom walk with negative drift, a well-studied stochastic process. This gives
heavy-traffic approximations that reduce the complexity of the (pre-limit) ex-
pressions for the mean overflow queue in the FCTL queue considerably. These
limiting results enable us to formulate easy-to-calculate approximations and al-
low us to solve capacity allocation problems in the form of optimization prob-
lems that generate (close-to-optimal) green times. This adds to the literature of
capacity allocation problems [112,219] and asymptotic dimensioning of queue-
ing systems [25,208].

In some practical situations, it might be beneficial to have non-static signal-
ing strategies, such as vehicle-actuated strategies. Generalizations of the results
to non-deterministic cycle times and green times are possible. Under appropri-
ate adaptations of Equation (3.2) and certain restrictions, e.g. on the standard
deviation of the red and green periods, similar heavy-traffic results can be es-
tablished as the ones derived in this chapter, see also Remark 3.2. Another
example is vehicle-actuated signaling, where the green times depend on the
queue lengths. An example would be that, instead of a fixed green time, we in-
troduce a maximum green time and switch to the next queue as soon as either
the queue empties or the maximum green time is reached. The corresponding
model is multidimensional (as opposed to the one-dimensional FCTL queue)
and a theoretical analysis similar to the one conducted here is therefore not
possible. Nevertheless, we show, by means of simulation, that the same scaling
as in rule (3.2) leads to similar asymptotic results for several vehicle-actuated
strategies in the next chapter, Chapter 4.

Appendix

3.A Remaining proofs

We now provide the proofs of Proposition 3.2 and Theorem 3.4 in Subsec-
tions 3.A.1 and 3.A.2, respectively.

3.A.1 Proof of the heavy-traffic approximation for the mean
queue length

We start the proof with an expression for E[Xg]. Equation (2.11) reads

E[Xg] = 1

2πi

∮
|z|=1+ε

Y (z)− zY ′(1)

Y (z)− z

(
zg −Y (z)c

)′
zg −Y (z)c dz,

for some ε> 0. We define, as before,

h(z) =− ln z + c

g
lnY (z).

Then we are able to derive (following the same steps as in the proof of Lemma
1 in [101])

E[Xg] = 1

2πi

∮
|z|=1+ε

Y (z)− zY ′(1)

Y (z)− z

g zg−1 − cY (z)c−1Y ′(z)

zg −Y (z)c dz

= 1

2πi

∮
|z|=1+ε

[
Y (z)− zY ′(1)

Y (z)− z

(
g

z
− g

z

(
c

g

zY ′(z)

Y (z)
−1

)
z−g Y (z)c

1− z−g Y (z)c

)]
dz

90 3.A Remaining proofs

= g

2πi

∮
|z|=1+ε

h′(z)
Y (z)− zY ′(1)

z −Y (z)

exp(g h(z))

1−exp(g h(z))
dz,

where in the last step we use that

h′(z) = c

g

Y ′(z)

Y (z)
− 1

z
,∮

|z|=1+ε
Y (z)− zY ′(1)

Y (z)− z

g

z
dz = 0.

We let zsp denote the unique minimum of h(z) with z ≥ 1 and we let

z(x) = zsp + i x +
∞∑

k=2
ck (i x)k

solve the equation

h(z(x)) = h(zsp)− 1

2
x2h′′(zsp) =: q(x).

Then, following the same steps as are taken in Section 3 of [101], we get that
with exponentially small error

E[Xg] =− g h′′(zsp)

2πi

∫ 1/2δ

−1/2δ
x

Y (z(x))− z(x)Y ′(1)

z(x)−Y (z(x))

exp(g q(x))

1−exp(g q(x))
dx (3.52)

for some δ> 0.
Proceeding as in the proof of Theorem 3 of [101], we obtain, since z(−x) =

z(x) for real x, where a denotes the complex conjugate of a, that

x
Y (z(x))− z(x)Y ′(1)

z(x)−Y (z(x))
−x

Y (z(−x))− z(−x)Y ′(1)

z(−x)−Y (z(−x))
=

−2i x2
(
1+O(zsp −1)+x2

)
(zsp −1)2 +x2 −2c2(zsp −1)x2 ,

for |x| ≤ 1/(2δ) and where c2 ∈ R. This implies that we get, with exponentially
small error, using the previous result together with Equation (3.52) and extend-
ing the integration range to (−∞,∞) while using symmetry of q(x), that

E[Xg] = g h′′(zsp)

π

∫ ∞

0

[
x2

(
1+O(zsp −1)+x2

)
(zsp −1)2 +x2 −2c2(zsp −1)x2

exp(g q(x))

1−exp(g q(x))

]
dx,

Chapter 3. Optimal allocation for heavy-traffic FCTL queues 91

so we are now exactly in the same situation as that of Sections 4 and 5.1
of [101]. Here it should be noted that the FCTL relation g = cµ+βσpc, see
Equation (3.2), can be written in the bulk-service queue form of [101], c/g =
(1−γ/

p
g)/µ with

γ= βσp
µ

(
1+ βσ

µ
p

c

)−1/2

. (3.53)

Hence, letting

b2
0 = b(β)2 = γ2µ

2σ2 = 1

2
β2

(
1+ βσ

µ
p

c

)−1

, (3.54)

see Equation (4.12) of [101], we get with an absolute error of order 1/
p

c,

E[Xg] =σ
π

√
2g

µ
G0(b0)+

σ

π

√
2

µ

(
(C1 +C3)G0(b0)− (C2 +b2

0C3)G3(b0)+C4G4(b0)
)

,

according to Equation (5.14) of [101], with

G3(b) =
∫ ∞

0

t 2

(b2 + t 2)2

e−b2−t 2

1−e−b2−t 2 dt

G4(b) =
∫ ∞

0

t 2

b2 + t 2

e−b2−t 2

(1−e−b2−t 2)2
dt .

We proceed by computing the Ci explicitly. From [101], Equations (5.2-5.5),
(5.8), and (5.9), we get

C1 =−γ(σ2 −µ)

2σ2 ,

C2 = γ(σ2 −µ)

σ2 b2
0.

Furthermore, from [101], Equations (5.2-3), (5.5-6), and (5.10), we get

C3 =−1

3
γa

µ2

σ4 , (3.55)

92 3.A Remaining proofs

while from [101], Equations (5.2-3), (5.7), and (5.11), we get

C4 =−γσ
2 −µ
σ2 b2

0 +
1

3
γa

µ2

σ4 b2
0. (3.56)

In Equations (3.55) and (3.56), a is given by, see [101], Equation (5.3),

a =−2+ Y ′′′(1)

Y ′(1)
−3Y ′′(1)+2

(
Y ′(1)

)2

= 1

µ

(
µ3 −µ3 −3(1+µ)σ2) ,

where µ3 = E[Y 3], as in Equation (3.10).
It follows that

C1 +C3 = 1

2b2
0

C4,

C2 +b2
0C3 =−C4.

When we also use Equations (5.17) and (4.27) from [101], we get

G3(b0)+G4(b0) = 1

2b2
0

G2(b0),

G0(b0)+G2(b0) =G1(b0),

with

G2(b) =
∫ ∞

0

b2

b2 + t 2

e−b2−t 2

1−e−b2−t 2 dt ,

and find

(C1 +C3)G0(b0)− (C2 +b2
0C3)G3(b0)+C4G4(b0) = (C1 +C3)G1(b0).

Therefore we get, with an absolute error of order 1/
p

c,

E[Xg] = σ

π

√
2g

µ
G0(b0)+ σ

π

√
2

µ
(C1 +C3)G1(b0).

Finally, we have from g = cµ+βσpc and Equations (3.55) and (3.56), that

σ

π

√
2g

µ
=

p
2

π
σ
p

c

(
1+ βσ

µ
p

c

)1/2

Chapter 3. Optimal allocation for heavy-traffic FCTL queues 93

and

σ

π

√
2

µ
(C1 +C3) =

p
2

π

γσ

2
p
µ

(
−σ

2 −µ
σ2 + 1

3
a
µ2

σ4

)
= σ2b(β)

πµ

(
µ

σ2 + 1

3
a
µ2

σ4 −1

)
, (3.57)

where in Equation (3.57) also Equations (3.53) and (3.54) have been used.
Therefore, with θ as given in Equation (3.11), we get

E[Xg] =
p

2

π
σ

(
1+ βσ

µ
p

c

)1/2

G0(b(β))+
p

2

π
θb(β)G1(b(β))+O

(
1p
c

)
.

The expression in Equation (3.9) is then obtained by noting that(
1+ βσ

µ
p

c

)1/2

= 1+ βσ

2µ
p

c
+O

(
1

c

)
,

b(β) = βp
2
+O

(
1p
c

)
,

finishing the proof of Proposition 3.2.

3.A.2 Proof of optimal green-time allocation using Equation
(3.9)

We use the Lagrange multiplier technique to prove Theorem 3.4. To start, we
differentiate Equation (3.17)

∂

∂β j

n∑
i=1

(p
2

π

(
σi

p
c + 1

2
βi
σ2

i

µi

)
G0

(
bi (βi)

)+ θiβi

π
G1

(
βip

2

))
=

1

π
p

2

σ2
j

µ j
G0(b j (β j))+

p
2

π

(
σ j

p
c +

β jσ
2
j

2µ j

)
b′

j (β j)G ′
0(b j (β j))+

θ j

π
G1

(
β jp

2

)
+ θ jβ j

π
p

2
G ′

1

(
β jp

2

)
=

σ j
p

c

π
G ′

0

(
β jp

2

)
+ 1

π

{
σ2

jp
2µ j

G0

(
β jp

2

)
−
β jσ

2
j

2µ j
G ′

0

(
β jp

2

)
−

β2
jσ

2
j

2
p

2µ j
G ′′

0

(
β jp

2

)
+θ j G1

(
β jp

2

)
+ θ jβ jp

2
G ′

1

(
β jp

2

)}
+O

(
1p
c

)
,

94 3.A Remaining proofs

where we have used/approximated that

b(β j) = β jp
2
−

β2
jσ j

2
p

2µ j
p

c
+O

(
1

c

)
,

G0
(
b j (β j)

)=G0

(
β jp

2

)
+O

(
1p
c

)
,(

σ j
p

c +
β jσ

2
j

2µ j

)
b′

j (β j) = σ j
p

cp
2

−
β jσ

2
j

2
p

2µ j
+O

(
1p
c

)
,

G ′
0

(
b j (β j)

)=G ′
0

(
β jp

2

)
−

β2
jσ j

2
p

2µ j
p

c
G ′′

0

(
β jp

2

)
+O

(
1

c

)
.

So, introducing a Lagrange multiplier λ1 ∈ R and ignoring the O-terms, we
need to solve

λ1σ j
p

c =σ j
p

c

π
G ′

0

(
β jp

2

)
+ 1

π

{
σ2

jp
2µ j

G0

(
β jp

2

)
−
β jσ

2
j

2µ j
G ′

0

(
β jp

2

)

−
β2

jσ
2
j

2
p

2µ j
G ′′

0

(
β jp

2

)
+θ j G1

(
β jp

2

)
+ θ jβ jp

2
G ′

1

(
β jp

2

)}
,

for j = 1, . . . ,n. The second term on the right-hand side of the former equation is
O(1) and it is fair to expect that the optimal β j in Theorem 3.4 are close to the
optimal solution in Theorem 3.3 in the sense that β j =β∗+O(1/

p
c). Therefore,

we approximate K j as in Equation (3.19). After rewriting, we then get

1

π
G ′

0

(
β jp

2

)
=λ1 −

K j

πσ j
p

c
.

We develop, using Equation (3.16),

1

π
G ′

0

(
β jp

2

)
= 1

π
G ′

0

(
β∗p

2

)
+ 1

π
p

2
(β j −β∗)G ′′

0

(
β∗p

2

)
+O

(
1

c

)
=λ0 + 1

π
p

2
(β j −β∗)G ′′

0

(
β∗p

2

)
+O

(
1

c

)
.

Combining the last two results, we get

1

π
p

2
(β j −β∗)G ′′

0

(
β∗p

2

)
=λ1 −λ0 −

K j

πσ j
p

c
+O

(
1

c

)
.

Chapter 3. Optimal allocation for heavy-traffic FCTL queues 95

Deleting the O(1/c) term, we find that

β j =β∗+
λ1 −λ0 − K j

πσ j
p

c

1
π
p

2
G ′′

0

(
β∗p

2

) .

Using the equality constraint, we readily see that the following should hold

n∑
j=1

σ j

(
λ1 −λ0 −

K j

πσ j
p

c

)
= 0,

implying that

λ1 −λ0 = 1

π
p

c

∑n
j=1 K j∑n
j=1σ j

.

We thus obtain

βi =β∗+
√

2

c

1

G ′′
0

(
β∗p

2

) (∑n
j=1 K j∑n
j=1σ j

− Ki

σi

)
,

concluding the proof.

Chapter 4
Heavy-traffic scaling of
vehicle-actuated traffic lights

4.1 Introduction

The heavy-traffic results in the previous chapter point towards several gener-
alizations. There is a large set of models that allow for a similar heavy-traffic
scaling as the green-time allocation rule for the FCTL queue, see Equation (3.2).
Heavy-traffic results for the models contained in the general set of queueing
models described in Theorem 2.2 can be derived from the results in Chapter 3
and Theorem 2.2. However, in this chapter we look beyond this set of models
and consider vehicle-actuated access control of intersections.

Control mechanisms such as semi-actuated or fully vehicle-actuated control
are able to adapt to (time-)varying circumstances. Commonly, as a control pa-
rameter, a maximum length of the cycle is introduced and hence each lane
receives a limited amount of time for vehicle crossing, reducing the probability
of excessive waiting times for e.g. lanes on which only few vehicles drive. How-
ever, the queueing models for such traffic-light settings are not well understood
even in the most basic case of an isolated intersection. Indeed, an example of
the type of queueing models that we are dealing with, are polling models with a
k-limited type of service discipline which seem mathematically intractable, see
also Subsections 1.2.2 and 1.3.2.

We take an approach to find good settings for vehicle-actuated controlled
traffic lights where we gain inspiration from the established heavy-traffic re-

98 4.1 Introduction

sults for the FCTL queue in Chapter 3. For the FCTL queue, we have e.g. proven
that if the capacity and demand are balanced (or scaled) in the right way, there
exists an allocation of the access times for each of the lanes such that the proba-
bility of facing an empty queue at the end of the green period is strictly positive
even when the vehicle-to-capacity ratio approaches 1. The heavy-traffic scaling
is based on the Central Limit Theorem (CLT), see e.g. [86, Section 5.10], intu-
itively meaning that the capacity for each lane should be chosen as the mean
amount of “work” arriving during a cycle (time needed for all arriving vehicles
to cross the intersection), where a variability hedge based on the square root
of the variance of the amount of “work” is added. This approach has been ap-
plied in various settings and has proven its merits there, for more details see
Section 4.3.

In this chapter, we extend the results for the FCTL queue to a fully actuated
setting for traffic lights, where the length of the green period or access period
is random instead of being fixed as in the FCTL queue. We use the same scaling
as for the FCTL queue in Chapter 3 with appropriate modifications and show
that the same set of properties holds for more general settings of the access
period. This enables us to gain insight in close-to-optimal settings for adaptive
traffic lights. Moreover, it is easy to compute those settings and to explain why
they are performing well. From a mathematical point of view, those results for
k-limited polling models and, more generally, models with multiple queues and
multiple servers are very scarce and our results thus aid in the understanding
of such complicated systems. The gained insights might also pave the way to
obtain similar results for networks of intersections with an adaptive control,
although such an extension is not straightforward.

In summary, our main contributions are as follows:

(i) We propose a new way of finding a good length of the access periods at
intersections. We extend the results of Chapter 3 to a more general distri-
bution of the length of the access period. Instead of a fixed length of the
access period, we allow for an actuated control, thus having randomness
and dependencies among different cycles in the access period.

(ii) Our approach enables us to gain insights into close-to-optimal settings for
adaptive traffic lights. Instead of the need for e.g. difficult optimization
schemes or computationally expensive simulations, we are able to find
the close-to-optimal settings on the basis of one-line calculations. Another
advantage is that our scheme is easy to explain, which adds to its practical
value.

Chapter 4. Heavy-traffic scaling of vehicle-actuated traffic lights 99

Chapter outline

This chapter is organized as follows. In Section 4.2 we present a detailed de-
scription of the model under consideration in this chapter. Section 4.3 is devoted
to sketching the theoretical background from which we take our inspiration. In
Section 4.4 we present simulation results that provide valuable insights and we
wrap up in Section 4.5 with a conclusion.

4.2 Model description

As mentioned before, we focus on isolated intersections, with a certain number
of lanes, N , leading towards it, which we number from i = 1, . . . , N . We number
the phases from j = 1, . . . , M and each phase J j , representing a subset of all lanes
that always receives the same color of the traffic light, satisfies J j ⊆ {1, . . . , N }.
We assume that each phase consists of one or more non-conflicting traffic flows,
so that each lane in the same phase can receive access to the intersection at the
same time. We also assume that each lane belongs to at least one phase.

We will model such an intersection as a queueing model in order to apply
and extend the machinery developed in Chapter 3. For each lane we divide time
into slots of fixed length, as in Chapter 3, but instead of assuming a fixed length
for the access period (or green time) for each lane as in the FCTL queue, we
assume a vehicle-actuated control for each of the access periods in a cycle. The
actuation mechanism is as follows: when all lanes in the current phase do not
have any vehicles in the queue anymore, the cycle immediately continues with
the next phase, or we switch to the next phase after a fixed maximum time if
the queue(s) is (are) not yet dissolved. We thus have a limited type of vehicle-
actuated control. We assume that a lane remains empty as soon as a lane gets
empty, as is for example also done in [17]. This makes sense as, when the
queue is dissolved during the access period, a new queue does not build during
the remaining access period. We choose the access times as follows: initially, we
start with the maximum length of the cycle, denoted with c, based on which we
allocate the access times to each of the lanes in a similar way as we did in the
FCTL queue in Chapter 3. Any remaining part of c is assumed to correspond to
clearance times which results in a red traffic light for all phases (scaling linearly
with c), see also Remark 4.1. For completeness, we mention that we incur the
entire red time at the end of the cycle. More details can be found below in
Section 4.3.

We introduce some further notation: µi is the arrival rate of vehicles at lane

100 4.3 Theoretical background

i in a single slot and the standard deviation of the number of arrivals at lane i
in each slot is denoted with σi . We assume that the numbers of arrivals during
any slot for any lane are identically distributed and behave independently of
one another. Further, with gi ,c we denote the access period allocated to lane
i when the cycle length is c and with βi we denote a positive number, which
might depend on the lane i . One could use these βi as a control parameter (as
we did in Chapter 3), with which we are able to steer the performance of the
lanes: a higher βi implies a longer access period.

Remark 4.1 In most settings, the sum of times during which no vehicles are al-
lowed to cross the intersection, the all-red time, will be fixed in length. However,
in our model we assume that the all-red time scales linearly with the total cycle
length. We do so to show the type of properties we are after, such as the probability
of an empty queue at the end of the green period converging to a value strictly
between 0 and 1. When the red time is fixed, the performance will improve, while
already having very good performance under our assumptions, as we will show in
Section 4.4. There we also briefly comment on the implications when the all-red
time is fixed.

Remark 4.2 The inspiration for this model is current-day traffic. However, exactly
analogous results hold for vehicles that are autonomous. Different examples of such
intersection access algorithms are discussed in Chapter 7. The vehicle-actuated
strategy described in this chapter might also be applied there.

4.3 Theoretical background

As indicated before, we apply the ideas developed in Chapter 3. First of all,
we require stability of the underlying queueing model that we study, or equiva-
lently, the vehicle-to-capacity ratio should be less than 1. This boils down to

µi c < gi ,c ,

which intuitively makes sense: the capacity at lane i (the right-hand side)
should be higher than the average number of arrivals during a cycle (the left-
hand side). This is a necessary and sufficient condition as it also is for the FCTL
queue, see e.g. [206]: when heavily loaded, the actuated control will behave
similarly to the FCTL queue and therefore the stability condition is the same.

The stochastic process that we consider is as follows: we study a k-limited
type of polling model with deterministic service times and switchover times. We

Chapter 4. Heavy-traffic scaling of vehicle-actuated traffic lights 101

then propose a new way to allocate the service limits at queue i , or the access
times to lane i , where we exploit the heavy-traffic scaling result obtained in
Chapter 3,

gi ,c =µi c +βiσi
p

c, (4.1)

where we note that gi ,c might have to be rounded up if gi ,c is non-integer (to
ensure stability), as gi ,c is a number of slots. The scaling thus relates to finding
the right access time or scale of the capacity for lane i , based on the maximum
cycle length c. We can choose βi > 0 arbitrarily to steer the performance of the
system as we did in Chapter 3: a low βi means that the vehicle-to-capacity ratio
for lane i is close to 1 which e.g. implies a relatively high mean queue length
for lane i . If βi is higher, then we are further away from criticality and the
queue length for lane i tends to be smaller. As a last note on the model that we
consider, we incur the entire all-red time, or the switchover time, at the end of
the cycle.

Even though the scaling rule as in Equation (4.1) is meant for the case when
c gets large and when the intersection is close to oversaturation, we stress that
also for small c good performance is obtained, see Section 4.4. In this sense, the
model considered in this chapter is comparable to the FCTL queue studied in
Chapter 3, even though the underlying stochastic processes are fundamentally
different: we are studying a multidimensional queueing model in the present
chapter rather than the one-dimensional FCTL queue.

The scaling rule as in (4.1) has been applied in many settings and in var-
ious guises. It yields very desirable properties in many respects: the limiting
process, when c grows large, is generally a well-understood process with good
system performance. Examples (in our setting) are that the probability of an
empty queue at the end of the access period is strictly between 0 and 1, instead
of converging to 0 or 1, and that the mean queue length for each lane (which
we measure in number of vehicles) at the end of the access period scales with
the cycle length c as

p
c. Note that the additional capacity needed, compared

to the minimum of µi c required for stability, is only of order
p

c, so it increases
very slowly compared to the leading order term. In [197, Chapter 6], a similar
type of green-time allocation is proposed for vehicle-actuated traffic lights, but
the allocation is based on some optimization function which contains approxi-
mations for the mean delay at each lane. Using Lagrange multiplier techniques,
the optimal green-time allocation is found and yields a similar scaling rule, as
the additional capacity is also of the order

p
c multiplied with the standard de-

viation of the number of arrivals per slot, see e.g. [197, Section 6.4.2].

102 4.3 Theoretical background

Moreover, the limiting process, when known, usually yields good and easy-
to-use approximations, which can then be used for further purposes like op-
timization of certain performance characteristics. Examples of the latter can
be found in e.g. call centers [25], communication systems [186], and traffic
engineering, see Chapter 3. In [25], it is shown that an approximation based
on the limiting process yields very good results even when “far from the limit”
(this relates to small c in actuated-access control): an optimization based on the
approximation, yields an optimal allocation for many parameter settings. More-
over, when the parameter settings are not the optimal ones, they are only off
by a small amount [25]. In Chapter 3 a similar approach is taken and qualita-
tively similar results are obtained. Based on these observations, we expect that
the scaling that we propose results in similar optimality results for the actuated
access control, yet we do not study this in-depth. For further background on the
scaling rule, we refer to the tutorial and review paper [208].

The scaling in Equation (4.1) is inspired by the CLT, a fundamental tool in
probability theory. A sum of random variables (under some conditions on inde-
pendence and similarity) can be scaled by subtracting the mean and dividing by
the standard deviation after which the distribution of the sum can be approx-
imated by a normal distribution. Even though we scale the capacity for each
queue (the length of the access period) and the demand (the cars aiming to
pass the intersection), we have the same structure as in the CLT. Indeed, the
demand is a sum of random variables and the capacity is the appropriate scal-
ing: the mean of the demand is µi c and to ensure stability, we add a small term,
namely βiσi

p
c. Then, after multiplying with a factor 1/(σi

p
c), and letting c

tend to infinity, we see that the right approximation is a normal distribution
with mean −βi (ensuring stability) and standard deviation 1. We also take this
approach in Chapter 3, where this intuition is shown to be the exact outcome of
the scaling for the FCTL queue.

Due to the vehicle-actuated control considered in this chapter, we are not
able to show analytical results. In contrast with the FCTL queue considered in
Chapter 3, we do not have an expression for the PGF of the steady-state overflow
queue. We are thus not able to study the model in this chapter analytically. One
of the difficulties when considering actuated-access control is that dependencies
between queues carry over: when a queue empties early in this cycle, the other
queues are likely to be short as well. For this dependence we cannot account
in exact computations. From the literature on (k-limited) polling systems, it is
known that these types of vehicle-control strategies offer little or no hope on an
exact solution, see e.g. [24]. However, our simulation results indicate that our
scaling rule is achieving what we desire: the probability of an empty queue at

Chapter 4. Heavy-traffic scaling of vehicle-actuated traffic lights 103

the end of the access period is strictly between 0 and 1 and the queue length
just before switching to the next queue is of order

p
c.

4.4 Simulation results

In this section, we show the desirable properties of an actuated traffic control
with a scaling rule between demand and capacity as in Equation (4.1). We em-
ploy (discrete-event) simulations in order to gain those insights. We consider
various settings and discuss the differences and similarities with the results for
the FCTL queue obtained in Chapter 3. We also validate (part of) our results
with the microscopic traffic simulator SUMO [129], which captures more real-
istic features such as interactions between vehicles.

4.4.1 Single-lane access control

Example 1a

(a) (b)

Figure 4.1: Graphical representations of (a) the single-lane access control examples con-
sidered in Subsection 4.4.1 and (b) the multiple-lane access control examples in Subsec-
tion 4.4.2.

This example consists of four lanes, so N = 4, where each lane has its own
dedicated phase, i.e. cars from only one lane are allowed to cross the inter-
section, so J j = { j } for j = 1, . . . ,4, see Figure 4.1(a) for a graphical represen-

104 4.4 Simulation results

tation. We assume that all vehicles are going straight and that the number of
arrivals per time slot is Poisson distributed, with means µi = i /11, for lane i
with i = 1, . . . ,4. In this way, we are able to assign appropriate gi ,c for any c suf-
ficiently big (ensuring stability). We choose βi = 0.1, so the βi are the same for
each lane, to study the behavior of the system when each lane is receiving the
same amount of additional capacity (scaled with the standard deviation of the
number of arrivals per cycle). Further, choosing βi = 0.1 in this example, turns
out to yield clearly non-degenerate behavior as opposed to the cases where β ↓ 0
and β→∞. If Equation (4.1) results in non-integer values for gi ,c , we round
them up to the nearest integer.

To investigate the influence of the cycle length c (given in the number of
slots unless otherwise specified) on the mean queue length at the end of the
access period, E[Xgi ,c], and on the probability of having an empty queue at the
end of the access period, P(Xgi ,c = 0), we perform discrete-event simulations.
We perform 8 independent runs with a length of 107 cycles in order to reduce
simulation variability and obtain accurate simulation results (we also take this
number of cycles and runs for the other examples we present unless otherwise
specified). The results are shown in Figures 4.2(a) and 4.2(b). Note that the
dashed black line (as in the other figures) represents the weighted sum of the
vehicle-to-capacity ratios of each individual lane, ρ, with its value on the right
axis.

The mean queue length at the end of the access period scales with
p

c, which
is shown by the results in Figure 4.2(a). The mean queue length grows as a
constant times

p
c, as after dividing by

p
c, the mean queue length seems to

converge to a constant (modulo the rounding effect of the gi ,c and the simula-
tion uncertainty). The higher the arrival rate on a lane, the higher the limiting
constant seems to be, as can be observed in Figure 4.2(a). There is no influence
of βi visible in this example, as the value of βi is the same for all lanes. The
vehicle-to-capacity ratio in Figure 4.2(a) is well above 0.9 for all values of c and
often above 0.99, which makes the relative low mean queue lengths at the end
of the access period for all lanes quite remarkable.

The predicted behavior of the probability that a queue is empty at the end
of the access period is observed in Figure 4.2(b): the probability converges to a
value between 0 and 1. This value depends on the βi only and not on the arrival
rate at the lane, as is the case for the FCTL queue under the same type of scaling
as in Chapter 3.

The actuated access control mechanism clearly outperforms the fixed con-
trol mechanism. This is visible in Figure 4.2(b), as the limiting probability for
the fixed control scheme is below 0.2 (this value is in accordance with Theo-

Chapter 4. Heavy-traffic scaling of vehicle-actuated traffic lights 105

■■■
■■■

■■■
■
■
■
■■■■

■
■■

■■
■■
■
■
■
■
■

■■
■
■
■
■■

■■
■
■■
■■
■■

■

■■
■■
■
■

■

■
■■■■■

■■

■■

■

■■
■■

■

■

■

■

■
■■■■

■

■
■

●●
●●●

●●●●●
●
●
●●
●●●●●

●

●
●●●●

●

●
●●
●●●

●

●
●
●

●

●
●
●

●
●
●
●

●

●
●

●
●
●●

●

●

●

●
●

●
●

●
●
●
●

●

●
●

●
●
●●

●

●

●

●
●

●
●

●

●

●

▲▲▲
▲▲
▲▲▲▲▲

▲
▲

▲▲▲▲▲▲▲

▲

▲▲▲▲▲

▲

▲▲

▲▲▲▲

▲

▲▲▲

▲
▲
▲▲
▲▲▲▲

▲

▲▲
▲▲▲

▲

▲

▲

▲

▲▲

▲▲

▲
▲▲▲

▲

▲▲
▲
▲▲

▲

▲

▲

▲

▲▲

▲
▲

▲

▲
▲

★★
★★★

★★
★★★

★
★
★★★★

★★★

★

★★★★★

★

★★

★★★★

★

★★★

★

★★★

★★★★

★

★★

★★★

★

★

★

★

★★

★★

★★★★

★

★★

★★★

★

★

★

★

★★

★★

★

★

★

0 500 1000 1500 2000
0

5

10

15

20

c (slots)

[X
g
i,c
]

■ Flow 1
● Flow 2
▲ Flow 3
★ Flow 4
- ρ

0.0

0.2

0.4

0.6

0.8

1.0

ρ

(a)

■■

■
■

■

■
■
■■■

■

■

■■
■■■

■■

■
■
■■■

■
■
■■

■■■
■
■
■■
■
■
■
■■
■■
■■

■

■■
■■
■
■
■

■
■
■■■■

■■
■■

■

■■
■■
■
■
■

■
■■■■■■

■
■

●●

●●
●

●●●●
●

●

●

●●●●
●●●

●

●●●
●●●

●●
●●
●●●

●●●
●
●●
●
●●●

●

●

●●
●●●●

●
●
●
●●●●●●●

●

●

●●●●●●
●
●
●
●●●●●

●
●

▲▲

▲▲
▲

▲▲▲▲▲
▲
▲

▲▲▲▲
▲▲▲

▲

▲▲▲
▲▲
▲
▲▲
▲▲▲▲

▲
▲▲▲

▲
▲▲▲▲▲▲

▲

▲

▲▲▲▲▲
▲
▲
▲
▲
▲▲
▲▲▲▲▲

▲

▲

▲▲▲▲▲▲▲
▲▲
▲▲
▲▲▲

▲▲

★★

★
★
★
★★★★★

★
★
★★★★★★★

★

★★★★★
★
★★

★★★★
★
★★★

★
★★★

★★★★

★

★★
★★★★

★
★
★
★★★★★★★★

★

★★★★★★
★
★
★
★★★★★

★
★

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

c (slots)

[X
g
i,c
=
0] ■ Flow 1

● Flow 2
▲ Flow 3
★ Flow 4
- ρ

0.0

0.2

0.4

0.6

0.8

1.0

ρ

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 4.2: The simulated mean queue length at the end of the access period for the
four traffic flows in Example 1a in (a); and the simulated probability of an empty queue
at the end of the access period for the four traffic flows in Example 1a and the limiting
value of that probability for the FCTL queue (solid lines) in (b). In both subfigures we
added the vehicle-to-capacity ratio ρ on the right axis (dashed line).

rem 3.1), whereas the simulated probabilities for the actuated access control
are well above 0.5. The expected queue length at the end of the green period
for the FCTL queue is different for each of the lanes (see e.g. Table 3.1), as is the
case for the actuated control setting, which can clearly be seen in Figure 4.2(a).
The mean queue length for the FCTL queue would be much higher than the

106 4.4 Simulation results

values in Figure 4.2(a), which is why we did not plot these results.
If we would assume a fixed length for the all-red period and actuated con-

trol, Figures 4.2(a) and 4.2(b) would change considerably. The mean queue
length at the end of the access period converges to 0 and the probability of an
empty queue at that same moment converges to 1. This shows that, as long as
the vehicle-to-capacity ratio is below 1 and under some independence assump-
tions on the arrivals, there exist settings for vehicle-actuated traffic control that
are capable of dealing with all traffic efficiently and that have empty queues at
the end of the green period.

Example 1b

In Figures 4.3(a) and 4.3(b) we have adapted the values of µi and βi . We
choose µi = 5/22 and βi = i /10 for i = 1, ...,4. Qualitatively, we observe the same
behavior, yet some interesting differences are also present. The mean queue
length at the end of the access period depends on the value of βi , which makes
sense: a higher βi results in a longer maximal access period, and thus in a
smaller queue length.

Surprisingly, the probability of an empty queue at the end of the access pe-
riod seems to converge to the same value for each of the lanes, even though the
values of the βi differ, see Figure 4.3(b). In the fixed access control setting there
is a differentiation, see e.g. Tables 3.1 and 3.2 and the limiting probabilities for
the fixed-control case in Figure 4.3(b). It might be that an empty queue implies
an early switch to the next phase. This is then more likely to result in empty
queues at the end of the access period in that phase, because the vehicles had a
shorter time to accumulate on these lanes. This effect seems to strengthen over
cycles and to cause the probability to be the same for each of the lanes.

SUMO Example

As a proof of concept, we also present an example performed in the microscopic
traffic simulator SUMO employing the so-called vehicle-actuated control mech-
anism of SUMO based on time gaps. Our purpose is to show that also in this
simulator, which is generally considered to be excellent in capturing real-world
traffic dynamics, we are able to define an actuated control with the desirable
properties as are obtained in the other examples. For simplicity, we assume that
we have two lanes, so N = 2. As arrival distribution we choose a Bernoulli distri-
bution with parameter µi = 0.15 (these arrivals correspond to a single simulation
step in SUMO) and βi = 0.1 for i = 1,2. We choose to do a single simulation run

Chapter 4. Heavy-traffic scaling of vehicle-actuated traffic lights 107

■■■■
■■
■
■■■

■
■
■
■

■
■

■
■

■■

■
■■

■

■
■■■

■■

■■

■■■
■

■

■

■

■

■

■

■

■

■
■■■

■

■■■

■■■
■■■

■

■■

■

■

■
■

■

■

■

■

■

■

■

■

■

■

■
■

■

●●●●
●●
●●●●

●●
●
●

●●
●
●

●●
●●
●
●

●●
●●
●
●

●●
●
●●●

●

●
●

●

●

●
●

●

●●●
●
●

●●
●
●●
●●●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

▲▲▲▲▲
▲▲▲

▲▲
▲▲
▲▲

▲▲
▲
▲

▲▲
▲▲▲

▲
▲▲▲

▲
▲▲
▲▲
▲▲
▲▲
▲

▲

▲

▲
▲

▲

▲

▲
▲▲
▲▲
▲

▲
▲▲
▲
▲▲▲▲

▲
▲

▲▲

▲

▲

▲

▲
▲

▲

▲

▲

▲

▲
▲

▲

▲

▲

▲▲

▲

★★★★★
★★★

★★
★★★★

★★
★★

★
★
★★★

★
★★★★

★★
★★
★★★★

★
★
★
★

★
★
★
★

★★★★

★
★★★

★★★★
★★
★
★★

★

★
★

★
★
★
★

★

★
★
★

★

★
★

★★

★

0 500 1000 1500 2000
0.0

0.5

1.0

1.5

2.0

2.5

c (slots)

[X
g
i,c
]

■ Flow 1
● Flow 2
▲ Flow 3
★ Flow 4
- ρ

0.0

0.2

0.4

0.6

0.8

1.0

ρ

(a)

■■■■■■■■■■■■■
■
■■■

■
■■■

■■■■
■
■■
■■■■■■■■

●●●●●●●●●●●●●●●●●
●
●●●

●
●●●●●●

●●●●

▲▲
★★

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

c (slots)

[X
g
i,c
=
0] ■ Flow 1

● Flow 2
▲ Flow 3
★ Flow 4
- ρ

0.0

0.2

0.4

0.6

0.8

1.0

ρ

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 4.3: The simulated mean queue length at the end of the access period for the
four traffic flows in Example 1b in (a); and the simulated probability of an empty queue
at the end of the access period for the four traffic flows in Example 1b and the limiting
value of that probability for the FCTL queue (solid lines) in (b). In both subfigures we
added the vehicle-to-capacity ratio ρ on the right axis (dashed line).

of 3,600,000 steps, because this gives results that are (more than) sufficiently
accurate for our purposes.

One of the main difficulties in this example is to define a slot as the period
between departures is not constant in SUMO. Partly because of this, it is also
difficult to compute the vehicle-to-capacity ratio and to determine whether we

108 4.4 Simulation results

are close to oversaturation. We obtain a measure for this ratio by dividing the
average effective vehicle access time per cycle by the maximum specified access
period. This ratio is close to one, because we are close to oversaturation.

■ ■

■

■
■

■
■ ■ ■ ■

■

■

■

■ ■ ■

■
■

■
■

● ●

●

●
●

● ● ● ● ●

●

●

●

● ● ●

●

●
●

●

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

c (seconds)

[X
g
i,c
=
0]

■ Flow 1
● Flow 2
○ ρ

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Figure 4.4: The simulated probability of an empty queue at the end of the access period
for each of the two traffic flows. The black circles represent the vehicle-to-capacity ratio
ρ as displayed on the right axis.

In Figure 4.4 we see the probability of an empty queue at the end of the
access period (as determined by the actuated control mechanism in SUMO) and
the vehicle-to-capacity ratio. Qualitatively, we observe similar behavior as in
Examples 1a and 1b. The vehicle-to-capacity ratio approaches 1 quickly, yet the
probability of an empty queue remains between 0 and 1, which shows that our
discrete-event simulations are able to capture the essential queueing behavior
of vehicles at intersections with an actuated control sufficiently well.

In Example 1b we saw that the empty-queue probabilities seem to converge
to the same value for each of the lanes. We clarified this by arguing that an
empty queue implies an early switch to the next queue which in turn results in
a relatively large probability of that queue being empty at the end of the phase
too. This seems to be confirmed by the SUMO simulation. When looking in de-
tail at the moments that an early switch occurs in this example, those moments
seem to be clustered. This points in the same direction as the argument that we
gave for the observed behavior of the probability that a queue at the end of the
access period is empty.

Chapter 4. Heavy-traffic scaling of vehicle-actuated traffic lights 109

4.4.2 Multiple-lane access control

Example 2a

■■
■■■■

■
■

■
■■■■

■
■
■■
■
■■
■■
■■

■

■
■■

■

■
■■
■

■■

■

■
■■

■

■
■■

■

■

■■

■

■■

■

■
■■

■

■

■■

■

■

■■

■

■

■■

■■

■■

■■
■

■

■

■■

■

■

●●
●●
●●

●
●

●

●●
●●

●
●
●
●
●
●
●

●
●
●
●

●

●

●
●

●

●

●
●
●
●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

▲▲▲★★★
0 500 1000 1500 2000
0

20

40

60

80

c (slots)

[X
g
i,c
]

■ Flow 1
● Flow 2
▲ Flow 3
★ Flow 4
- ρ

0.0

0.2

0.4

0.6

0.8

1.0

ρ
(a)

■

■

■
■

■
■

■■

■

■■
■■

■■
■■■

■■
■■
■■
■

■
■■
■

■
■■■

■■
■

■
■■
■

■
■■
■

■
■■
■

■■
■
■
■■
■
■
■■
■
■
■■
■
■
■■
■■
■■
■■■

■
■
■■
■
■

●

●

●●●●

●
●

●

●●●
●

●
●●●

●●●
●●●

●
●

●
●●
●
●
●●
●●●

●
●
●●●

●
●●●

●
●●●

●●●
●
●●●

●
●●●

●
●●●

●
●●●

●
●●●●

●
●
●
●●●

●

▲▲▲▲
▲▲▲★★★

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

c (slots)

[X
g
i,c
=
0] ■ Flow 1

● Flow 2
▲ Flow 3
★ Flow 4
- ρ

0.0

0.2

0.4

0.6

0.8

1.0

ρ

(b)

Figure 4.5: The simulated mean queue length at the end of the access period for the
four traffic flows in Example 2a in (a); and the simulated probability of an empty queue
at the end of the access period for the four traffic flows in Example 2a in (b). In both
subfigures we added the vehicle-to-capacity ratio ρ on the right axis (dashed line).

Also in this example we assume that the intersection has four lanes and only
straight-going traffic, yet here we combine the two opposing non-conflicting
lanes in a single phase, i.e. J1 = {1,3} and J2 = {2,4}, see Figure 4.1(b) for a

110 4.4 Simulation results

graphical representation. This allows for a higher load on the intersection, as
twice as many vehicles are allowed to depart at the same time in comparison
with the Examples 1a and 1b. We choose µ1 = 0.25, µ2 = 0.5, µ3 = 0.15, µ4 = 0.3,
all arrival distributions to be Poisson, and βi = 0.1. We present results for the
mean queue length and the probability of an empty queue, both at the end of
the access period, see Figures 4.5(a) and 4.5(b).

Lanes 1 and 2, the lanes with the highest load, show similar behavior as in
Examples 1a and 1b. However, different behavior is observed for lanes 3 and
4. The access period is too long, because the length of the access period is
dominated by lanes 1 and 2 that face more traffic. This implies that the queue is
(very often) empty at the end of the access period for both lanes 3 and 4, as can
be observed in Figures 4.5(a) and 4.5(b) (the purple stars are on top of the blue
triangles). This stresses the fact that the additional part of the access period,
compared to what is needed to ensure stability, is of the wrong order. Indeed,
the additional part is of order c, whereas the right order is

p
c.

Example 2b

This example is the same as Example 2a, except that µ3 = 0.25 and µ4 = 0.5.
In this example, the load on the lanes in each of the phases is the same. In
Figures 4.6(a) and 4.6(b) we see that both lanes inside a phase behave similarly
and we observe the same desirable properties as in the other examples. From
a mathematical point of view, this is an interesting result, because the model
at hand is notoriously difficult to study. Already the queueing model in case of
single-lane access control is intractable, but the case of a queueing model with
multiple-lane access control is possibly even more complex, as it relates to a
polling model with multiple servers [24].

When comparing Figures 4.5(a) and 4.6(a), we see that the limiting value
of the mean queue length is considerably higher in Example 2b. This is the
result of having longer access periods (on average) for both phases, as we only
switch to the next phase when both queues are empty, while both queues are
on average equal in length. So, usually we switch later to the next phase in
Example 2b, which causes the queues at other lanes to be longer, resulting in a
higher mean queue length. The same intuition seems to hold for the decrease
in the probability of an empty queue, see Figure 4.5(b) and 4.6(b).

Examples 2a and 2b do not immediately indicate that a convenient setup
of each phase is one in which each of the lanes has more or less the same
load. The lane with the highest load is dominating the length of the phase in
Example 2a (which is favorable), but some capacity is “lost” for the lanes with

Chapter 4. Heavy-traffic scaling of vehicle-actuated traffic lights 111

■■
■
■
■■
■
■

■
■
■

■
■
■
■

■
■
■

■
■
■
■

■
■

■

■
■
■

■

■
■
■
■

■
■

■

■
■
■

■

■
■
■

■

■
■
■

■

■
■

■

■
■
■

■

■
■
■

■

■
■
■

■

■
■
■

■
■
■
■

■
■
■

■

■
■
■

■

■

●●
●●

●
●

●
●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

▲▲
▲
▲
▲▲
▲
▲

▲
▲
▲

▲
▲
▲
▲

▲
▲
▲

▲
▲
▲
▲

▲
▲
▲

▲
▲
▲

▲

▲
▲
▲
▲

▲
▲

▲

▲
▲
▲

▲

▲
▲
▲

▲

▲
▲
▲

▲

▲
▲

▲

▲
▲
▲

▲

▲
▲
▲

▲

▲
▲
▲

▲

▲
▲
▲

▲
▲
▲
▲

▲
▲
▲

▲

▲
▲
▲

▲

▲

★★
★★

★★

★
★
★

★
★

★
★

★

★

★

★
★

★
★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

0 500 1000 1500 2000
0

20

40

60

80

100

120

140

c (slots)

[X
g
i,c
]

■ Flow 1
● Flow 2
▲ Flow 3
★ Flow 4
- ρ

0.0

0.2

0.4

0.6

0.8

1.0

ρ

(a)

■

■

■

■

■
■

■
■

■
■
■

■
■
■
■

■
■
■

■■
■■

■■
■

■
■■
■

■
■■■

■■
■
■■■■

■■■■
■■■■

■■■
■■■■

■■■■
■■■■

■■■
■■■■

■■■■
■■■■

■

●
●

●
●

●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●

●
●●●

●
●●●

●
●●●

●●●
●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●

▲

▲

▲

▲

▲
▲

▲
▲

▲
▲
▲

▲
▲
▲
▲

▲
▲
▲

▲
▲
▲▲

▲▲
▲

▲
▲▲
▲

▲
▲▲▲

▲▲
▲
▲▲▲▲

▲▲▲▲
▲▲▲▲

▲▲▲
▲▲▲▲

▲▲▲▲
▲▲▲▲

▲▲▲
▲▲▲▲

▲▲▲▲
▲▲▲▲

▲

★
★

★
★

★
★

★
★
★

★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★★★★★

★
★★★

★
★★★

★
★★★

★★★
★
★★★

★★★★★★★★★★★★★★★★★
★★★★★★★

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

c (slots)

[X
g
i,c
=
0] ■ Flow 1

● Flow 2
▲ Flow 3
★ Flow 4
- ρ

0.0

0.2

0.4

0.6

0.8

1.0

ρ

(b)

Figure 4.6: The simulated mean queue length at the end of the access period for the
four traffic flows in Example 2b in (a) and the simulated probability of an empty queue
at the end of the access period for the four traffic flows in Example 2b in (b). In both
subfigures we added the vehicle-to-capacity ratio ρ on the right axis (dashed line).

a lower load in that phase. When there is a queue, the outflow is a single car
per slot. However, if there is no queue at a lane, we have a lower outflow
equal to the arrival rate, which is strictly smaller than a single car per slot. On
the other hand, the longer access periods in Example 2b cause some negative
effects as well, due to longer time periods in which the queues at other lanes
can accumulate. Based on this, it is not clear which is the best option. Note that

112 4.4 Simulation results

a direct comparison of the mean queue lengths in Examples 2a and 2b is not
fair, as the total load on the intersection is not the same in the two examples.

SUMO Example

We also perform a SUMO simulation for the double-lane access control strategy
considered in this subsection. We do so for the same reasons as in the single-lane
access control setting: to serve as a proof of concept that an actuated control
with the desirable properties, as seen in Examples 2a and 2b, is achievable.
We choose N = 4, the arrival distributions to be Bernoulli distributions with
parameters µ1 =µ2 = 0.15, µ3 =µ4 = 0.1, and βi = 0.1. We take the same approach
as in Subsection 4.4.1, e.g. performing a single simulation run of 3,600,000
steps. We note that the maximum load on phases 1 and 2 in this example is the
same as the load on each lane in the example studied in Subsection 4.4.1. We
obtain Figure 4.7.

■
■

■

■
■

■
■ ■ ■ ■

■

■

■

■ ■ ■

■
■

■
■

●
●

●

●
●

●
● ● ● ●

●

●

●

● ● ●

●
●

●

●

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

c (in seconds)

X
g
i,c
=
0

■ Phase 1

● Phase 2

○ ρ

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Figure 4.7: The simulated probability of both queues in the same phase being empty at
the end of the access period for each of the two phases. The black circles represent the
vehicle-to-capacity ratio ρ as displayed on the right axis.

In Figure 4.7, we plot the probability that both lanes at the end of the access
period are empty. We do not distinguish between the individual lanes inside a
phase being empty, because that would be more difficult to simulate in SUMO.
As a result, we display only two probabilities and not four empty-queue prob-
abilities as in Examples 2a and 2b. Nevertheless, we observe a similar pattern
as in Figure 4.4 (this also seems to be in line with the similarities between Ex-
ample 2a and Example 1a). The empty-queue probabilities in Figure 4.7 are

Chapter 4. Heavy-traffic scaling of vehicle-actuated traffic lights 113

(slightly) below the probabilities in Figure 4.4, which makes sense: the proba-
bility that both lanes are empty in the double-lane access control setting is lower
than the probability of a single queue being empty in the single-lane access con-
trol scenario studied in Figure 4.4. This is more prominent in case of smaller
cycle lengths, because the within-cycle variability is relatively large. This causes
the probability that the lane with the lower load is non-empty at the end of the
access period to be relatively high when compared with larger cycle lengths.

We also studied a double-lance access example where the loads on both
queues in a phase are the same (mimicking the setting in Example 2b) and we
obtained qualitatively similar results as in Figure 4.7. The probabilities that the
green periods terminate early are lower than the corresponding probabilities in
Figure 4.7, similarly to the differences observed between Examples 2a and 2b.

4.5 Conclusion

We have shown, with the aid of simulation, that desirable properties are achiev-
able for actuated traffic control of isolated intersections when using a scaling
rule such as Equation (4.1). Those properties are similar to the ones established
for the FCTL queue in Chapter 3. We have investigated several setups and in
each of those, we have observed those desirable properties. One such property
is that the limiting probability of an empty queue at the end of the access period
is strictly between 0 and 1. We also observed this in the simulation experiments
that we performed in SUMO, indicating that our results seem to be qualitatively
reliable for real traffic (remember that the other simulations are discrete-event
simulations). Another desirable property is that the mean queue length at the
end of the access period grows only with order

p
c.

Based on our experiments, it is not clear whether lanes with the same load
should be combined into the same phase, something which was already ob-
served by Newell and Osuna in 1969 [143]. If lanes in the same phase have
different loads, the lane with the highest load dominates the length of the ac-
cess period. This is favorable, because vehicles at other lanes accumulate over a
relatively short amount of time when compared to a case where lanes with the
same load are combined into a single phase (as such a setup results in longer
access periods, which in turn increases the queue length at other lanes). On the
other hand, when lanes with different loads are combined into a single phase,
the lanes with a lower load structurally receive an access period that is too long,
which results in a drop of the average outflow for those lanes after they become
empty.

114 4.5 Conclusion

A possible extension is to obtain an exact limiting process as is obtained in
Chapter 3 for the FCTL queue. It would add to the understanding of the model
at hand and would be very interesting from a mathematical point of view: the
models that we consider relate to notoriously hard types of polling models,
for which hardly any exact results (being in heavy traffic or not) have been
obtained. A clear path to achieve this is absent, unfortunately. In Chapter 3,
we used a counter-integral expression for the PGF of the overflow queue, for
which we do not have an alternative in the case of vehicle-actuated traffic-light
control.

Chapter 5
Fixed-Cycle Traffic-Light queue
with multiple lanes and
blockages

5.1 Introduction

The FCTL queue studied in Chapters 2 and 3 cannot always be applied as an ac-
curate model to study the queue-length distribution in front of a traffic light.
Take, for example, an intersection where vehicles from a single stream are
spread onto two lanes which are both heading straight and where both lanes are
governed by the same traffic light. Then one could analyze each lane separately
as in the FCTL queue, but that is not entirely realistic, see also Figure 5.1(a).
Indeed, since there are two parallel lanes in each direction, two vehicles can
cross the intersection simultaneously and vehicles will in general switch lanes
(if needed) to join the lane with the shorter queue. Moreover, it might be the
case that the vehicles are blocked during the green period, e.g. because of a
pedestrian crossing the intersection (receiving a green light at the same time
as the stream of vehicles that we model), see Figure 5.1(b) for a visualization.
Such blockages also occur in a multi-lane scenario (where all lanes are going
in the same direction) as visualized in Figure 5.1(c). The study in this chapter
provides an extension of the FCTL queue, which we call the blocked Fixed-Cycle
Traffic-Light (bFCTL) queue with multiple lanes, to account for such situations.

116 5.1 Introduction

(a) (b) (c)

Figure 5.1: A visualization of three intersections that can be modeled by the bFCTL queue
with multiple lanes. In (a), the blue rectangle indicates a combination of lanes which
can be analyzed as a bFCTL queue with two lanes. The other lanes at the intersection,
the complement of the blue rectangle, can be considered separately because of the fixed
settings. In (b), the blue rectangle indicates a lane that can be modeled as a bFCTL
queue with a single lane with blockages that mimics the setting with pedestrians in [96].
In (c), the blue rectangle indicates two lanes that we can model as a bFCTL queue with
two lanes where vehicles are potentially blocked by pedestrians.

A shared right-turn lane as in Figure 5.1(b), that is a lane with vehicles
that are either turning right or are heading straight, has been studied before.
However, to the best of our knowledge, there are no papers with a rigorous
analysis taking stochastic effects into account to compute e.g. the mean queue
length for such lanes. Shared right-turn lanes where vehicles are blocked by
pedestrians crossing immediately after the right turn have been considered in
e.g. [8, 44–46, 135, 171, 172]. Several case studies, such as [45, 171] indicate
that there is a potentially severe impact by pedestrians blocking vehicles. This
is for example also reflected in the Highway Capacity Manual (HCM) [192],
where the focus is on capacity estimation. Most papers have also focused on
the estimation of the so-called saturation flow rate, or capacity, of shared lanes
where turning vehicles are possibly blocked by pedestrians, see e.g. [46, 135,
172]. In [44], it is stated that the used functions for the capacity estimation for
turning lanes (such as those in the HCM) might have to be extended to account

Chapter 5. FCTL queue with multiple lanes and blockages 117

for stochastic behavior. In a small case study, the authors in [44] confirm that
the capacity estimation by the HCM [192] yields an overestimation in various
cases. The overestimation of the capacity by the HCM is also observed in several
other papers, such as in [45,46,96], and is probably due to random/stochastic
effects.

As mentioned before, we call the model that we consider in this chapter
the bFCTL queue with multiple lanes. On the one hand we thus allow for the
modeling of vehicle streams that are spread over multiple lanes and on the
other hand we allow for vehicles to be (temporarily) blocked during the green
phase. The key observation to constructing the mathematical model is that we
can model multiple parallel (say m) lanes as one single queue where batches
of (up to) m delayed vehicles can depart in one time slot, for more details
see Section 5.2. The resulting queueing model is one-dimensional just like the
standard FCTL queue, which allows us to obtain the PGF of the steady-state
queue-length distribution of the bFCTL queue with multiple lanes. A slightly
different version of the bFCTL queue with a single lane has been studied by
means of simulation in a recent paper by Huang et al. [96], which has been the
inspiration for the study in the present chapter.

The model that is studied in [96] is thus a potential application of the bFCTL
queue with a single lane as depicted in Figure 5.1(b). A description of the model
in [96] is as follows, where we replace the left-turn assumption for left-driving
traffic to a right-turn assumption for the more standard case of right-driving
traffic. We have a shared lane with straight-going and right-turning traffic con-
trolled by a traffic light, where immediately after the right turn there is a cross-
ing for pedestrians. The pedestrians may block the right-turning vehicles as the
vehicles and pedestrians may receive a green light simultaneously. The right-
turning vehicles that are blocked, immediately block all vehicles behind them.

In most traffic-light models (such as the FCTL queue), such situations are
not considered at all, which makes them less suitable for intersection modeling
where conflicts may arise due to multiple traffic flows receiving a green light
simultaneously. Another potential application of the bFCTL queue is to account
for bike lanes. Bikes might make use of a dedicated lane or mix with other traffic
and in both cases a turning vehicle might be (temporarily) blocked by bicycles
because the bicycles happen to be in between the vehicle and the direction that
the vehicle is going. As such, blockages have an influence on the performance
measures of the traffic light. It is important to take such influences into account
in order to find good traffic-light settings. Several papers studying the impact of
bikes can be found in [9, 42, 47, 87]. Also other types of blocking might occur,
such as by a shared-left turn lane and opposing traffic receiving a green light

118 5.1 Introduction

simultaneously, see e.g. [38, 122, 127, 128, 131, 224–226]. As such, the bFCTL
queue (either with multiple lanes or not) is a relevant addition to the literature
because it enables a more suitable modeling of traffic lights at intersections with
crossing pedestrians and bikes, which leads to traffic-light control strategies for
more realistic situations. In order to model a situation where two opposing
streams of vehicles potentially block one another as in e.g. [225], the bFCTL
queue would have to be extended. For more references on the topics discussed
in this paragraph see also the review paper [49].

One of the studies that is close to ours is Oblakova et al. [146]. In Section 4.4
of [146], the standard FCTL model is supplemented with the possibility that
drivers are “distracted”. At each moment that a driver is allowed to depart from
the queue, it departs with a probability p. If the vehicle does not depart from
the queue while it is actually allowed to do so, we might view this as the vehicle
being blocked. The difference between the bFCTL queue with a single lane and
the model of Oblakova et al. is that every blockage at a departure moment
in [146] occurs independently. This is not the case in the bFCTL queue as once
a right-turning vehicle is blocked, it will (most likely) be blocked for a longer
period than a single departure moment. This introduces subtle dependencies
in the model which lead to an additional dimension in the state space of the
underlying Markov chain.

The study by Huang et al. in [96] is closely related to ours although the used
techniques are different. The bFCTL queue is based on the model described in
Huang et al. and the models are quite similar. A contribution compared to
their study lies in the possibility for exact computations instead of the need to
rely on simulation experiments. We alleviate some of the assumptions in [96].
For example, in the model studied by Huang et al. it is assumed that there are
always pedestrians crossing if the pedestrians have a green light. We allow for
the random presence of pedestrians if the pedestrians have a green light. On the
other hand, we put some additional constraints on the bFCTL queue compared
to the model studied in [96]. We e.g. do not consider start-up delays.

In summary, our main contributions are as follows:

(i) We extend the general applicability of the FCTL queue. We allow for traf-
fic streams with multiple lanes and for vehicles to be blocked during the
green phase. We refer to this model variation as the blocked Fixed-Cycle
Traffic-Light (bFCTL) queue with multiple lanes.

(ii) We provide a way to compute the PGF of the steady-state queue-length
distribution of the bFCTL queue and show that it can be used to obtain
several performance measures of interest.

Chapter 5. FCTL queue with multiple lanes and blockages 119

(iii) We provide a queueing-theoretic framework for the study of shared lanes
with potential blockages by pedestrians. This e.g. allows for the study
of several performance measures and allows us to model the impact of
randomness on the performance measures.

Chapter outline

The remainder of this chapter is organized as follows. In Section 5.2, we give
a detailed model description. This is followed by a derivation of the PGF of
the steady-state queue-length distribution and a derivation of some of the main
performance measures in Section 5.3. In Section 5.4, we provide an overview
of relevant performance measures for some numerical examples and point out
various interesting results. We wrap up with a conclusion and some suggestions
for future research in Section 5.5.

5.2 Detailed model description

In this section we provide a detailed model description of the bFCTL queue with
multiple lanes.

m

m

m

(a) (b)

Figure 5.2: Visualization of (a) the bFCTL model in terms of an intersection with a
traffic stream spread over m lanes and (b) the corresponding queueing model, where
the server takes batches of m vehicles into service simultaneously unless there are less
than m vehicles present: in that case all vehicles are taken into service.

We assume that there are multiple lanes for a traffic stream, that is a group
of vehicles coming from the same road and heading into one (or several) di-

120 5.2 Detailed model description

rection(s), governed by a single traffic light. A visualization can be found in
Figure 5.2(a). As can be seen in Figure 5.2(a), we assume that there are m
lanes and that vehicles spread themselves among the available lanes in such
a way that m vehicles can depart if there are at least m vehicles. In practice,
this assumption makes sense as drivers gladly minimize their delay by choosing
free lanes. The traffic-light model is then turned into a queueing model with
a single queue with batch services of vehicles, see Figure 5.2(b). The batches
generally consist of m delayed vehicles (we consider delayed vehicles as we
did in the FCTL queue), except if less than m delayed vehicles are present at
the moment that a batch is taken into service: then all vehicles are taken into
service. We further assume that the time axis is divided into time intervals of
constant length, where each interval corresponds to the time it takes for a batch
of delayed vehicles to depart from the queue. We will refer to these intervals as
slots.

We now turn to discuss two concrete examples that fit the framework of the
bFCTL queue with multiple lanes. After that, we describe the assumptions of
the bFCTL queue more formally.

Example 5.1 (Shared right-turn lane) In this example we consider the scenario
as in Figure 5.1(b). We have batches of vehicles of size 1, i.e. batches are individual
vehicles.

We distinguish between vehicles that are going straight ahead and vehicles that
turn right. We do so because only right-turning vehicles can be blocked by crossing
pedestrians. The probability that an arbitrary vehicle at the head of the queue is
a turning vehicle is p. Such a turning vehicle is blocked by a pedestrian in slot
i with probability qi , i.e. a pedestrian is present on the crossing with probability
qi . If a turning vehicle is blocked, all vehicles behind it are also blocked. Then, we
proceed to the next slot, i +1, and check whether there are any pedestrians crossing
(with probability qi+1): if there are pedestrians crossing, all vehicles in the queue
keep being blocked and otherwise, the turning vehicle at the head of the queue may
depart and the blockage of all other vehicles is removed.

Moreover, if the queue becomes empty during the green period, it will in general
not start building again (cf. the FCTL assumption, see Assumption 1.1), except
if there arrives a turning vehicle and there is a crossing pedestrian. The turning
vehicle is then blocked and any vehicles arriving in the same slot behind this vehicle
are also blocked.

Example 5.2 (Two turning lanes) In this example we consider the scenario as
in Figure 5.1(c). We have batches of vehicles of size 2.

Chapter 5. FCTL queue with multiple lanes and blockages 121

In this example, there is no need to make a distinction between vehicles: each
vehicle is a turning vehicle with probability 1, i.e. p = 1. During each slot i , there
are pedestrians on the crossing with probability qi and if there is a pedestrian, all
vehicles in the batch are blocked, as are all other vehicles in the queue: there are
no vehicles that can complete the right turn. All vehicles in the queue keep being
blocked until there are no pedestrians crossing anymore.

Also in this example, the queue of vehicles might dissolve entirely during the
green period. If that happens, it only starts building again if there are vehicles
arriving and if there are pedestrians crossing. In such cases, all arriving vehicles
get blocked and remain blocked until there are no pedestrians anymore.

We are now set to formalize the assumptions for the bFCTL queue with mul-
tiple lanes. We number them for clarity and provide additional remarks if nec-
essary. We start with a standard assumption for FCTL queues and a standard
assumption on the independence of arriving vehicles, see, e.g., [206].

Assumption 5.1 (Discrete-time assumption) We divide time into discrete slots.
The red and green times, r and g respectively, are fixed multiples of those discrete
slots and the total cycle length, c = g +r , thus consists of an integer number of slots.
Each slot corresponds to the duration of the departure of a batch of maximally m
delayed vehicles, where m is the maximum number of vehicles that can cross the
intersection simultaneously. Any arriving vehicle that finds at least m other vehicles
waiting in front of the traffic light is delayed and joins the queue.

Assumption 5.2 (Independence of arrivals) All arrivals are assumed to be in-
dependent. In particular, the arrivals during slot i do not affect the arrivals in slot
j when i 6= j .

The next three assumptions, Assumptions 5.3, 5.4, and 5.5, relate to the
blockages and are a generalization of the assumptions discussed in Section
III.B.1 of [96].

Assumption 5.3 (Green period division) For the green period we distinguish
between two parts, g1 and g2, with g = g1 + g2. During the first part of the green
period, blockages might occur (see also Assumption 5.4 below). During the second
part of the green period there are no blockages at all. We further assume that
g2 > 0 for technical reasons.

We make a division of the green period into two parts, because such a di-
vision is often present in reality and because it slightly eases the computations
later on. We note that if g1 = 0 (and m = 1), we obtain the standard FCTL queue.

122 5.2 Detailed model description

Further, we assume that the second part of the green period is strictly posi-
tive, mainly for technical reasons. This basically implies that at least one batch
of vehicles can depart from the queue during each cycle and that there is no
batch of vehicles in the queue at the end of the cycle that has caused a blockage
before. If g2 would be zero and if a batch of vehicles is blocked at the end of
slot g1, this would allow for a blockage to carry over to the next cycle, leading
to a slightly more complex model.

Next, we make an assumption about the blocking of batches of vehicles dur-
ing the first part of the green period. We take into account that (i) not all
batches of vehicles at the head of the queue are potentially blocked (e.g. be-
cause only turning batches of vehicles can be blocked); that (ii) if a batch of
vehicles is blocked, all vehicles behind it are blocked as well; that (iii) once a
blockage occurs, it carries over to the next slot; and that (iv) blockages occur
only in the combined event of having a right-turning batch at the head of the
queue and pedestrians crossing the road.

Assumption 5.4 (Potential blocking of batches) A batch of vehicles, arriving
at the head of the queue in time slot i , turns right with probability pi . Inde-
pendently, in time slot j , pedestrians cross the road with probability q j , blocking
right-turning traffic from the main road. As a consequence, whenever a new batch
arrives at the head of the queue, this batch will be served in that particular time
slot if (i) the batch goes straight ahead, or (ii) the batch turns right but there are
no crossing pedestrians. Once a batch (of right-turning vehicles) is blocked, it will
remain blocked until the next time slot when no pedestrians cross the road. Note
that this will be time slot g1 +1 at the latest. If the batch at the head of the queue
is blocked, it will also block all the other batches in the queue, including those that
would go straight.

Remark 5.1 We make a couple of remarks on the values of the pi . First, whether
a batch of vehicles is a right-turning batch or not, in general does not depend on
the slot in which the batch gets to the head of the queue. This would imply that
pi = p (see, e.g., Example 5.2) and that we could drop the subscript i . However,
we are able to let pi depend on the slot in the derivation of the formulas and opt
to provide the general case where pi is allowed to depend on i .

Moreover, in the case that m > 1, we will in practice often have that either
pi = 0, as is the case in Figure 5.1(a), or pi = 1, as is the case in Figure 5.1(c). This
is mainly due to the fact that all vehicles in a batch have to be treated similarly:
the framework of the bFCTL queue does not allow for batches consisting of one
right-turning vehicle that is blocked and one straight-going vehicle that is allowed

Chapter 5. FCTL queue with multiple lanes and blockages 123

to depart because it is not blocked. I.e. a case with mixed traffic and multiple
lanes, such as the shared right-turn lane example in Figure 5.1(b) but with m > 1,
is not modeled by the bFCTL queue.

Remark 5.2 We would like to stress that the blockage of a batch of vehicles carries
over to the next slot. E.g. if a vehicle is a right-turning vehicle in Figure 5.1(b)
and is blocked, it is still at the head of the queue in the next slot. So, as soon as
a blockage actually takes place, we are essentially in a different state of the system
than in the case where there is no blockage: if there is a blockage in time slot i then
we are sure that there is a right-turning batch at the head of the queue in time slot
i +1. This is why we have two mechanisms for the blocking: on the one hand we
have the pi to check whether batches are right turning and on the other hand we
have the pedestrians crossing in slot i accounted for by the qi .

We need one final assumption which is a slightly adapted version of the
standard FCTL assumption. We require a slight change because of the potential
blocking of vehicles during the first part of the green phase and because of the
possibility that there is more than one delayed vehicle departing in a single slot
during the green period because of the batch-service structure.

Assumption 5.5 (bFCTL assumption) We assume that any vehicle arriving dur-
ing a slot where m−1 or less vehicles are in the queue, may depart from the queue
immediately together with the m − 1 or less delayed vehicles. There are two ex-
ceptions: (i) if this batch of m − 1 or less vehicles is blocked or (ii) if the queue
was empty and there is an arriving vehicle that gets blocked, then that vehicle
gets blocked together with any arriving vehicles after that vehicle. In the former
case, all arriving vehicles together with the delayed vehicles remain at the queue,
whereas in the latter case, the first blocked vehicle is delayed and any arriving ve-
hicles behind it (if any) are also delayed and blocked. For the latter case we restrict
ourselves to the situation where the queue is empty: if the queue was not empty,
then we assume that either all arriving vehicles in that slot are blocked and delayed
(because the batch at the head of the queue is blocked) or that all arriving vehicles
are allowed to depart along with the batch of delayed vehicles (because the batch
at the head of the queue is not blocked).

Remark 5.3 The bFCTL assumption allows one to model a situation where arriv-
ing vehicles get blocked if the queue was already empty before the start of the slot.
Although, in principle, one can use any distribution for the number of arriving
vehicles that are blocked, there are only few logical choices in practice. For exam-
ple, in the case of Figure 5.1(b), the number of (potentially) blocked vehicles that

124 5.3 PGFs and performance measures for the bFCTL queue

arrive at the queue during slot i would correspond to the number of vehicles count-
ing from the first right-turning vehicle among all vehicles arriving in slot i : these
vehicles will be blocked if there is a crossing pedestrian in slot i . In Figure 5.1(c),
any arriving vehicle is a turning vehicle. So, if there is a crossing pedestrian, all
arriving vehicles in slot i are blocked.

The combination of all the above assumptions enables us to view the process
as a discrete-time Markov chain, which in turn allows us to obtain the PGF of the
steady-state queue-length distribution of the bFCTL queue with multiple lanes.
We derive this PGF implicitly by means of a recursion in the next section.

5.3 PGFs and performance measures for the bFCTL
queue

In this section we provide the derivation of the steady-state queue-length dis-
tribution in terms of PGFs in Subsection 5.3.1, after which we turn to the most
important performance measures in Subsection 5.3.2.

5.3.1 Derivation of the PGFs for the bFCTL queue

First, we need to introduce some further concepts and notation before we con-
tinue our quest to obtain the relevant PGFs of the queue-length distribution.
We introduce two states, one corresponding to a situation where the queue is
blocked and one where this is not the case, cf. Assumption 5.4 and Remark 5.2.
We denote the random variable of being in either of the two states with S and
S takes the values b (blocked) and u (unblocked). By definition, blocked states
only occur during the first part of the green period and if there are vehicles in
the queue. We define S to be equal to u if the queue is empty. We denote the
joint steady-state queue length (measured in number of vehicles) and the state
S at the end of slot i = 1, . . . , g1 with the tuple (Xi ,S) and we denote its PGF with
Xi , j (z) where i = 1, . . . , g1 and j = u,b. We note that Xi ,b(z) and Xi ,u(z) are partial
generating functions: we e.g. have Xi ,b(z) = E[z Xi1{S = b}], where 1{S = b} = 1
if S = b and 0 otherwise. For the slots i = 1, . . . ,c we denote the steady-state
queue length with Xi and its PGF with Xi (z), so for i = 1, . . . , g1 we have that
Xi (z) = Xi ,u(z)+Xi ,b(z).

We note that, as we are looking at the steady-state distribution of the number
of vehicles in the queue, we need to require stability of the queueing model (i.e.
on average there are fewer arrivals in a cycle than delayed vehicles departing

Chapter 5. FCTL queue with multiple lanes and blockages 125

from queue during a cycle). We refrain from giving the stability condition in the
general case because of its complicated expression. However, in Appendix 5.A,
we present an algorithm to check whether the stability condition is satisfied.

We further denote with Yi the number of arrivals during slot i and with Yi ,b

we denote the total number of arrivals of potentially blocked vehicles during
slot i , see also Assumption 5.5. We denote their PGFs respectively with Yi (z)
and Yi ,b(z). Later in this subsection, we provide Yi ,b(z) for several examples.

As a last remark, we note that we will refer to Xg1+g2 , or alternatively Xg ,
as the overflow queue as this is the queue length at the end of the green period
(similar to the overflow queue in the FCTL queue).

In the next part of this subsection, we provide the recursion between the
Xi , j (z), i = 1, . . . , g1 and j = u,b, and the Xi (z), i = g1 +1, . . . ,c. Afterwards, we
wrap up with some technicalities that need to be overcome to obtain a full
characterization of all the PGFs.

Recursion for the Xi , j (z)

We start with the relation between X1,b(z) and Xc (z). We distinguish several
cases while making a transition from slot c to a blocked state in slot 1. We get

X1,b(z) =p1q1E[z Xc+Y11{Xc > 0}]+q1E[zY1,b1{Xc = 0}1{Y1,b > 0}]+
0 ·E[1{Xc = 0}1{Y1,b = 0}]

=p1q1Xc (z)Y1(z)+q1P(Xc = 0)
(
Y1,b(z)−Y1,b(0)−p1Y1(z)

)
.

(5.1)

We explain this relation as follows: if the queue is nonempty at the end of slot c,
we need both a right-turning batch of vehicles and a crossing pedestrian in slot
1 to get a blockage, which happens with probability p1q1. The queue length at
the end of slot 1 is then Xc +Y1. The second term can be understood as follows:
if Xc = 0, the queue at the end of slot c is empty and then we get to a blocked
state if there is a pedestrian crossing (which happens with probability q1) and
if Y1,b > 0, in which case the queue length is Y1,b . Note that we further have that
the case X1,b = 0 cannot occur (by definition) as indicated by the term on the
second line of Equation (5.1).

Similarly, we derive X1,u(z):

X1,u(z) =(1−p1q1)E[z Xc+Y1−m1{Xc ≥ m}]+ (1−p1q1)E[z01{1 ≤ Xc ≤ m −1}]+
(1−q1)E[z01{Xc = 0}]+q1E[z01{Xc = 0}1{Y1,b = 0}] (5.2)

=(1−p1q1)Xc (z)
Y1(z)

zm + (1−p1q1)
m−1∑
l=1

P(Xc = l)

(
1− Y1(z)

zm−l

)
+

126 5.3 PGFs and performance measures for the bFCTL queue

P(Xc = 0)

(
1−q1 +q1Y1,b(0)− (1−p1q1)

Y1(z)

zm

)
.

This relation can be understood in the following way: first, if there are at least
m vehicles at the end of slot c and if there is no blockage (which occurs with
probability 1− p1q1, i.e. the complement of a blockage occurring), then the
queue length at the end of slot 1 is Xc +Y1 −m. Secondly, if there is at least 1
but at most m −1 vehicles at the end of slot c, we have an empty queue at the
end of slot 1 if there is no blockage (which is the case with probability 1−p1q1).
Thirdly, if the queue is empty at the end of slot c, then the queue remains empty
if there are no pedestrians crossing (occurring with probability 1−q1) or if there
is a pedestrian crossing (occurring with probability q1) while Y1,b = 0. This fully
explains Equation (5.2).

In a similar way, we obtain the following relations for slots i = 2, . . . , g1:

Xi ,b(z) =pi qiE[z Xi−1+Yi1{S = u}]+qiE[z Xi−1+Yi1{S = b}]+
qiE[zYi ,b1{Xi−1 = 0}1{S = u}1{Yi ,b > 0}]

=pi qi Xi−1,u(z)Yi (z)+qi Xi−1,b(z)Yi (z)+
qiP(Xi−1 = 0,S = u)

(
Yi ,b(z)−Yi ,b(0)−pi Yi (z)

)
,

(5.3)

where we have to take both transitions from slot i −1 while being blocked (the
case S = b) and not being blocked (the case S = u) into account, and

Xi ,u(z) =(1−pi qi)E[z Xi−1+Yi−m1{Xi−1 ≥ m}1{S = u}]+
(1−qi)E[z Xi−1+Yi−m1{Xi−1 ≥ m}1{S = b}]+
(1−pi qi)E[z01{1 ≤ Xi−1 ≤ m −1}1{S = u}]+
(1−qi)E[z01{1 ≤ Xi−1 ≤ m −1}1{S = b}]+
(1−qi)E[z01{Xi−1 = 0}1{S = u}]+
qiE[z01{Xi−1 = 0}1{S = u}1{Yi−1,b = 0}] (5.4)

=(1−pi qi)Xi−1,u(z)
Yi (z)

zm + (1−qi)Xi−1,b(z)
Yi (z)

zm +

(1−pi qi)
m−1∑
l=1

P(Xi−1 = l ,S = u)

(
1− Yi (z)

zm−l

)
+

(1−qi)
m−1∑
l=1

P(Xi−1 = l ,S = b)

(
1− Yi (z)

zm−l

)
+

P(Xi−1 = 0,S = u)

(
1−qi +qi Yi ,b(0)− (1−pi qi)

Yi (z)

zm

)
.

Chapter 5. FCTL queue with multiple lanes and blockages 127

In order to derive Xg1+1(z), we note that we need to take the cases into account
where the queue was blocked or not during slot g1. We then get

Xg1+1(z) =E[z Xg1+Yg1+1−m1{Xg1 ≥ m}1{S = u}]+
E[z Xg1+Yg1+1−m1{Xg1 ≥ m}1{S = b}]+
E[z01{Xg1 ≤ m −1}1{S = u}]+E[z01{Xg1 ≤ m −1}1{S = b}]

=(
Xg1,u(z)+Xg1,b(z)

) Yg1+1(z)

zm +
m−1∑
l=0

P(Xg1 = l ,S = u)

(
1− Yg1+1(z)

zm−l

)
+

m−1∑
l=1

P(Xg1 = l ,S = b)

(
1− Yg1+1(z)

zm−l

)
.

(5.5)

For i = g1 +2, . . . , g1 + g2, we obtain the following

Xi (z) =E[z Xi−1+Yi−m1{Xi−1 ≥ m}]+E[z01{Xi−1 ≤ m −1}]

=Xi−1(z)
Yi (z)

zm +
m−1∑
l=0

P(Xi−1 = l)

(
1− Yi (z)

zm−l

)
,

(5.6)

while for slots i = g1 + g2 +1, . . . ,c we get

Xi (z) = E[z Xi−1+Yi] = Xi−1(z)Yi (z). (5.7)

The combination of all equations above, provides us with a recursion with
which we can express Xg1+g2 (z) in terms of Yi (z), Yi ,b(z), P(Xi = l ,S = u) and
P(Xi = l ,S = b) for i = 1, . . . , g1 and l = 0, . . . ,m − 1, and P(Xi = l) for i = g1 +
1, . . . , g1 + g2 −1, i = c, and l = 0, . . . ,m −1, with the following general form:

Xg1+g2 (z) = Xn(z)

Xd (z)
, (5.8)

with known Xn(z) and Xd (z). We refrain from giving Xn(z) and Xd (z) in the
general case because of their complexity and only provide them under simpli-
fying assumptions later in this subsection. The Yi (z) are known, but we still
need to obtain the Yi ,b(z), the P(Xi = l ,S = u) and P(Xi = l ,S = b) for i = 1, . . . , g1

and l = 0, . . . ,m − 1, and the P(Xi = l) for i = g1 + 1, . . . , g1 + g2 − 1, i = c, and
l = 0, . . . ,m −1. We start with the Yi ,b(z) and then come back to the unknown
probabilities.

128 5.3 PGFs and performance measures for the bFCTL queue

The occurrence of the PGF Yi ,b(z) directly relates to Assumption 5.5. As men-
tioned before in Remark 5.3, one could, a priori, use any positively distributed,
discrete random variable. However, when we have a specific example in mind,
there is usually one logical definition, see also Remark 5.4 below.

Remark 5.4 In general, we define Yi ,b to be the random variable of the total num-
ber of arrivals of potentially blocked vehicles during slot i , cf. Assumption 5.5. In
case m = 1, such as in Figure 5.1(b), the interpretation of the Yi ,b(z) is straight-
forward. We simply count the number of arriving vehicles starting from the first
vehicle that is a turning vehicle. We get the following expression for Yi ,b(z):

Yi ,b(z) =
∞∑

k=0
P(Yi ,b = k)zk

=
∞∑

j=0
P(Yi = j)(1−pi) j +

∞∑
k=1

∞∑
j=k

P(Yi = j)(1−pi) j−k pi zk

= Yi (1−pi)+
∞∑

j=1
piP(Yi = j)(1−pi) j

j∑
k=1

(
z

1−pi

)k

= Yi (1−pi)+
∞∑

j=1
piP(Yi = j)(1−pi) j z

1−
(

z
1−pi

) j

1−pi − z

= Yi (1−pi)+ pi z

1−pi − z

∞∑
j=1

P(Yi = j)
(
(1−pi) j − z j

)
= Yi (1−pi)+ pi z

1−pi − z

(
Yi (1−pi)−Yi (z)

)
,

where in the second step we condition on the total number of arrivals and take into
account how we can get to k blocked vehicles; in the third step we interchange the
order of the summation; and in the fourth step we compute a geometric series. The
remainder is straightforward bookkeeping.

If m > 1, the interpretation as above for the case m = 1 is not necessarily mean-
ingful. It is more difficult to compute the Yi ,b in a logical and consistent way. This
has to do with the fact that if m > 1 we consider batches of vehicles that are either
all blocked or not, whereas the Yi ,b ’s are about individual vehicles. As mentioned
before in Remark 5.1, if m > 1 we often have that either pi = 0 or pi = 1. If pi = 0,
the general expression for Yi ,b(z) reduces to:

Yi ,b(z) = Yi (1)+0 · (Yi (1)−Yi (z)) = Yi (1) = 1,

Chapter 5. FCTL queue with multiple lanes and blockages 129

which makes sense as there are no turning vehicles in case pi = 0 and indeed Yi ,b = 0
with probability 1. If pi = 1, we have that:

Yi ,b(z) = Yi (0)− (Yi (0)−Yi (z)) = Yi (z),

which is also logical: every arriving vehicle is a turning vehicle if pi = 1, so we have
that Yi ,b(z) = Yi (z).

Except for the constants P(Xi = l ,S = u) and P(Xi = l ,S = b) for i = 1, . . . , g1 and
l = 0, . . . ,m −1, and P(Xi = l) for i = g1 +1, . . . , g1 +g2 −1, i = c, and l = 0, . . . ,m −1,
we are now done. We explain how to find the (so far) unknown constants in
the next part of this subsection. We close this part with several special cases of
the bFCTL queue and a couple of further remarks.

Special cases of the bFCTL queue

We study several special cases of the bFCTL queue, e.g. cases where the
bFCTL queue reduces to the FCTL queue.

If qi = 1, an explicit expression for the PGF of the distribution of the
overflow queue can be written down relatively easily. When it is further
assumed, for the ease of exposition, that all pi = p, Yi

d= Y , Yi ,b
d= Yb and

m = 1, the following expression for Xg1+g2 (z) is obtained:

Xg1+g2 (z) = Xn(z)

Xd (z)
, (5.9)

with

Xn(z) = zg1+g2

g2−1∑
i=0

(
Y (z)

z

)g2−i−1 (
1− Y (z)

z

)
P(Xg1+i = 0)+ zg1 Y (z)g2 ·

g1−1∑
i=0

{
P(Xi = 0,S = u)

[(
Yb(0)− (1−p)

Y (z)

z

)(
(1−p)

Y (z)

z

)g1−i−1

+

(
Yb(z)−Yb(0)−pY (z)

)
Y (z)g1−i−1

]
+pY (z)g1−i ·

i−1∑
j=0

P(X j = 0,S = u)

(
Yb(0)− (1−p)

Y (z)

z

)(
(1−p)

Y (z)

z

)i− j−1 }
,

(5.10)

130 5.3 PGFs and performance measures for the bFCTL queue

where P(X0 = 0,S = u) is to be interpreted as P(Xc = 0), and

Xd (z) = zg1+g2 −
((

1−p
)g1 +pzg1

g1−1∑
i=0

(
1−p

z

)i
)

Y (z)c . (5.11)

The reason that we provide an explicit formula for this particular case
is that this formula is significantly easier than the formula in the case
where qi < 1 for one or more i = 1, . . . , g1. The stability condition (cf.
Algorithm 5.1 in Appendix 5.A) for this example is relatively easy to
derive and reads as follows:

µc < g1 + g2, if p = 0,

µc < g2, if p = 1,

µc < g2 +
(
1− (1−p)g1

) 1−p
p , otherwise,

where µ is the mean arrival rate per slot, i.e. µ = E[Y]. This can be
understood as follows: if p = 0 there are no turning vehicles and we
obtain the regular FCTL queue with green period g1 + g2. If p = 1 all
vehicles are turning vehicles and there are no departures during the first
part of the green period because qi = 1, so we obtain the FCTL queue
with green period g2. The other case can be understood as follows:
on the left-hand side we have the average number of arrivals per cycle
whereas on the right-hand side we have the average number of slots
available for delayed vehicles to depart. Indeed, on the right-hand side
we have g2, the number of green slots during the second part of the green
period which are all available for vehicles to depart, and the number of
green slots available for departures during the first green period:

g1∑
i=1

(1−p)i = (
1− (1−p)g1

) 1−p

p
.

If pi = 0 for all i , i.e. there are no blockages occurring at all (regard-
less of the qi), the FCTL queue with multiple lanes (with green period
g = g1 + g2) is obtained. Note that we do not have to include the state S,
because there are no blockages of batches of vehicles. The established
recursion reduces to the recursion as in Subsection 1.3.1 if m = 1 and
therefore the steady-state distributions and the PGFs coincide. This can
e.g. be observed when putting pi = 0 and m = 1 in Equations (5.9),

Chapter 5. FCTL queue with multiple lanes and blockages 131

(5.10), and (5.11). The expression for Xg1+g2 (z) or, alternatively, Xg (z)
is (after rewriting):

Xg (z) =
(z −Y (z))zg−1 ∑g−1

i=0 P(Xi = 0)
(

Y (z)
z

)g−i−1

zg −Y (z)c , (5.12)

where P(X0 = 0) is to be interpreted as P(Xc = 0). For general m, we have
the following formula:

Xg (z) =
zmg ∑g−1

i=0

∑m−1
l=0 P(Xi = l)

(
1− Y (z)

zm−l

)(
Y (z)

z

)g−i−1

zmg −Y (z)c , (5.13)

where the P(X0 = l), l = 0, . . . ,m−1, are to be interpreted as P(Xc = l). The
stability condition for this case can be verified to be

µc < mg

which is in accordance with Algorithm 5.1 described in Appendix 5.A.
It can also be verified that the bFCTL queue reduces to the regular

FCTL queue with green time g = g2 and red time r + g1, if pi = 1 and
qi = 1.

Remark 5.5 For the FCTL queue with a single lane and no blockages (i.e. pi = 0
or pi = 1 and qi = 1) there is an alternative characterization of the PGF in terms
of a complex contour integral, see Chapter 2. It remains an open question whether
such a contour-integral representation exists for the bFCTL with multiple lanes, as
the polynomial structure in terms of Y (z)/z as present in Equation (5.12) is not
present in the general bFCTL queue. This feature of the FCTL queue seems essential
to obtain a contour-integral expression as is done in Chapter 2.

Remark 5.6 In Chapter 2, a decomposition result is presented in Theorem 2.2.
It shows that several related queueing processes can in fact be decomposed in the
independent sum of the FCTL queue and some other queueing process. It is likely
that the bFCTL queue with multiple lanes allows for some of those generalizations
as well (for more details on those models see Subsection 2.3.2). We mention ran-
domness in the green and red time distributions as a relevant potential extension.

132 5.3 PGFs and performance measures for the bFCTL queue

Finding the unknowns in Xg1+g2 (z)

As mentioned before, we still need to find several unknowns before the expres-
sion for Xg1+g2 (z) is complete. How this is done for the standard FCTL model,
is explained in Subsection 1.3.1. The standard framework for the FCTL queue
as described before is also applicable to the bFCTL queue with multiple lanes
with some minor differences. Although we are dealing with more complex for-
mulas, the key ideas are identical. We have m(g1 + g2)+ (m −1)g1 unknowns in
the numerator Xn(z) of Xg1+g2 (z) in Equation (5.8) and we have m(g1+g2) roots
with |z| ≤ 1 for the denominator Xd (z) of Xg1+g2 (z), assuming stability of the
queueing model. For more details on how to compute the stability condition,
we refer the reader to Appendix 5.A. An application of Rouché’s theorem, see
e.g. [6], shows that Xd (z) indeed has m(g1+g2) roots on or within the unit circle
assuming stability. One root is z = 1, which leads to a trivial equation and as a
substitute for this root, we put in the additional requirement that Xg1+g2 (1) = 1.
The remaining (m −1)g1 equations are implicitly given in Equations (5.1) and
(5.3). We give them here separately for completeness. We have for k = 1, ...,m−1

P(X1 = k,S = b) = p1q1

k∑
l=1

P(Xc = l)P(Y1 = k − l)+q1P(Xc = 0)P(Y1,b = k),

and for i = 2, . . . , g1 and k = 1, . . . ,m −1

P(Xi = k,S = b) =
k∑

l=1

{
pi qiP(Xi−1 = l ,S = u)+qiP(Xi−1 = l ,S = b)

}
P(Yi = k − l)

+qiP(Xi−1 = 0,S = u)P(Yi ,b = k),

which provides us with the (m−1)g1 additional equations. In total, we obtain a
set of m(g1+g2)+(m−1)g1 linear equations with m(g1+g2)+(m−1)g1 unknowns,
which we can solve to find the unknown P(Xi = l ,S = u), for i = 1, . . . , g1 and l =
0, . . . ,m −1, the unknown P(Xi = l ,S = b), for i = 1, . . . , g1 and l = 1, . . . ,m −1, and
the unknown P(Xi = l), for i = g1 +1, . . . , g1 +g2 −1, i = c, and l = 0, . . . ,m−1. Due
to the complicated structure of our formulas, we do not obtain a similar, easy-
to-compute Vandermonde system as for the standard FCTL queue (see [206]),
but a linear solver is in general able to find the unknowns (we did not encounter
any numerical issues/problems in the examples that we studied).

There are several ways to obtain the roots of Xd (z) in Equation (5.8). Be-
cause those roots are subsequently used in solving a system of linear equations,
we need to find the required roots with a sufficiently high precision, certainly if

Chapter 5. FCTL queue with multiple lanes and blockages 133

m(g1 + g2)+ (m −1)g1 is large. In some cases, Mathematica [221] is able to find
the roots analytically (using the function Solve), e.g. in case the number of ar-
rivals per slot has a Poisson or geometric distribution. In other cases, one could
use the function NSolve in Mathematica, which is able to compute roots with
any precision. There are several alternatives to using functions of Mathematica:
such root-finding procedures have in fact attracted quite some attention in the
research on similar queueing models. We also discussed an algorithm to find
roots of certain equations, see Algorithm 2.1 described in Appendix 2.A, while
two other methods, one based on a Fourier series representation and one based
on a fixed point iteration, are described in [98].

5.3.2 Performance measures

Now that we have a complete characterization of Xg1+g2 (z), we can find the
PGFs of the queue-length distribution at the end of the other slots by employing
Equations (5.1) up to (5.7). This basically implies that we can find any type of
performance measure related to the queue-length distribution. As an example
we find the PGF of the queue-length distribution at the end of an arbitrary slot.
We denote this PGF with X (z) and obtain the following expression:

X (z) = 1

c

c∑
i=1

Xi (z).

Another important performance measure is the delay distribution. The mean
of the delay distribution, E[D], can easily be derived from the mean queue length
at the end of an arbitrary slot by means of Little’s law with a time-varying arrival
rate (for a proof of Little’s law in this setting see e.g. [180]):

E[D] = X ′(1)
1
c

∑c
i=1 Y ′

i (1)
.

The PGF of the delay distribution can be derived (as is done for the FCTL queue
in [206]), but such a derivation is more difficult. In the regular FCTL queue, the
number of slots an arriving car has to wait is deterministic when conditioned on
the number of cars in the queue and the time slot in which the car arrives. This
is not the case for the bFCTL queue as the occurrence of blockages is random.
By proper conditioning on the various blocked slots and queue lengths, one
should be able to directly obtain the delay distribution from the distribution of
the queue length. We do not pursue this here.

134 5.4 Examples

If we want to obtain probabilities and moments from a PGF, we need to dif-
ferentiate the PGF and respectively put z = 0 or z = 1. In our experience, this has
not proven to be a problem. However, differentiation might become prohibitive
in various settings, e.g. when m(g1+g2)+ (m−1)g1 becomes large or if we want
to obtain tail probabilities. There are ways to circumvent such problems. If we
are pursuing probabilities and do not want to rely on differentiation, we might
use the algorithm developed by Abate and Whitt in [2] to numerically obtain
probabilities from a PGF. For obtaining moments of random variables from a
PGF, an algorithm was developed in [51] which finds the first N moments of a
PGF numerically. Essentially, this shows that, from the PGF, we can obtain any
type of quantity related to the steady-state distribution of the queue length, in
the form of a numerical approximation.

5.4 Examples

We investigate the influence of several parameters on the performance mea-
sures. We consider performance measures like the mean and variance of the
steady-state queue-length distribution, both at specific moments and at the end
of an arbitrary slot, the mean delay, and several interesting queue-length proba-
bilities. We start with studying the influence of the pi and qi in Subsection 5.4.1.
In Subsection 5.4.2, we compare the case of turning and straight-going traffic
on a single lane, as present in the bFCTL queue where blockages of all vehicles
might occur, and cases where we have dedicated lanes for the right-turning and
straight-going traffic where only turning vehicles are blocked. Note that we will
consider each lane separately in those examples. Afterwards, we investigate the
bFCTL queue with multiple lanes without any blockages, so we study a direct
extension of the regular FCTL queue to a model with multiple lanes. We do this
in Subsection 5.4.3.

5.4.1 The bFCTL queue with turning vehicles and pedestrians

In this subsection, we study the bFCTL queue with a single lane, so m = 1. The
setting in this subsection is as depicted in Figure 5.1(b). We mainly focus on
the distribution of Xg1+g2 , the overflow queue, as this is the distribution from
which some interesting performance measures can be derived. This distribution
reflects the probability distribution of the queue size at the moment that the
green light switches to a red light. We also briefly consider some other perfor-
mance measures.

Chapter 5. FCTL queue with multiple lanes and blockages 135

Influence of the number of turning vehicles

First, we vary the fraction of right-turning vehicles pi and study its influence on
Xg1+g2 . We choose the pi to be the same for each i , so we have pi = p, and we
vary p. We choose the value of the qi = q to be 1, so there are always pedestrians
on the pedestrian crossing during the first part of the green period with length
g1. In this way, we can effectuate the influence of the fraction of turning vehicles
on the performance measures. Further, we choose g1 to be either 2 or 10 and we
choose g2 = r = 2g1. The arrival process is taken to be Poisson with mean 0.395.
We display results for P(Xg1+g2 ≤ j) for j = 0, . . . ,10 in Figure 5.3.

2 4 6 8 10
j

0.2

0.4

0.6

0.8

1.0

ℙ(Xg1+g2≤ j)

p=0

p=0.2

p=0.4

p=0.6

p=0.8

p=1

2 4 6 8 10
j

0.2

0.4

0.6

0.8

1.0

ℙ(Xg1+g2≤ j)

p=0

p=0.2

p=0.4

p=0.6

p=0.8

p=1

(a) (b)

Figure 5.3: Cumulative Distribution Function (CDF) of the overflow queue for various
values of pi = p, qi = q = 1, and Poisson arrivals with mean 0.395. In (a) we have
g2 = r = 2g1 = 4 and in (b) we have g2 = r = 2g1 = 20.

As can be observed from Figure 5.3, the fraction of turning vehicles may
dramatically influence the number of queueing vehicles. There is virtually no
queue at the end of the green period when there are no turning vehicles (p = 0),
whereas in more than 70% of the cases there is a queue of at least 10 vehicles
at the end of the green period when all vehicles are turning vehicles (p = 1).
The blockages of the turning vehicles in the latter case effectively reduce the
green period by a factor 1/3 in our examples (as q = 1), which causes the huge
difference in performance. We note that the distribution of Xg1+g2 coincides
with the overflow queue distribution in the FCTL queue when p = 0 (when we
take g1 +g2 as the green period and r as the red period in the FCTL queue) and
when p = 1 and q = 1 (with g2 the green period and r + g1 the red period).

When comparing Figures 5.3(a) and 5.3(b), we see that the influence of p is
not uniform across the two examples. In case p = 0 or p = 1, the probability of a
large overflow queue is larger for the case where g1 = 2. This might be clarified
by noting that a larger cycle reduces the amount of within-cycle variance which

136 5.4 Examples

reduces the probabilities of a large queue length. If 0 < p < 1 this does not seem
to be the case. This might be due to the fact that a relatively big part of the first
green period is eaten away by turning vehicles that are blocked when g1 = 10.
For example, when p > 0 and the first vehicle is a turning vehicle, immediately
the entire period g1 is wasted because q = 1. This is of course also the case
when g1 = 2, but the blockage is resolved sooner and during the second part of
the green period the blocked vehicle may depart relatively soon in comparison
with the case where g1 = 10.

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

i

ℙ
(X
i=
0)

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

i

[X
i]

(a) (b)

Figure 5.4: In (a) P(Xi = 0) for slot number i = 1, . . . ,10 is displayed for two different
values of pi , where orange corresponds to pi = p = 0 and blue to pi = p = 0.6, with
2g1 = g2 = r = 4, qi = q = 1, and with Poisson arrivals with mean 0.395. In (b) the same
two examples are studied, but the mean queue length E[Xi] at the end of slot i is shown.

In Figure 5.4(a), we see the probability of an empty queue after slot i , where
i = 1,2, . . . ,c, for two different values of p. For the case p = 0 (in orange) we have
a monotone increasing sequence of probabilities during the green period as one
would expect: this setup corresponds to a regular FCTL queue and once the
queue empties during the green period, it stays empty. We see that for the case
p = 0.6 (in blue) the probabilities of an empty queue after slot i are much lower
(as there are more turning vehicles which might be blocked and hence cause
the queue to be non-empty). In fact, the probability of an empty queue even
decreases when going from slot 2 to slot 3. This can be clarified by the fact that
the queue might start building again even when the queue is (almost) empty:
e.g. if the queue is empty during the first green period and there is an arrival of
a turning vehicle, that vehicle will be blocked as q = 1 in which case the queue
is no longer empty.

Chapter 5. FCTL queue with multiple lanes and blockages 137

The same type of behavior is reflected in the mean queue length at the end
of a slot, as can be observed in Figure 5.4(b). Even though the green period
already started, the queue in the example with p = 0.6 still grows (in expected
value) during the first part of the green period. This is caused by the fact that
vehicles might be blocked, which demonstrates the possibly severe impact of
blocked vehicles on the performance of the system.

Influence of the pedestrians

Secondly, we investigate the influence of the presence of pedestrians by studying
various values for the qi . A high value of the qi corresponds to a high density
of pedestrians as qi corresponds to the probability that a turning vehicle is not
allowed to depart during the first green period. Conversely, a low value of the
qi corresponds to a low density of pedestrians and a relatively high probability
of a turning vehicle departing during the first green period. We choose pi =
p = 0.5 and take g1 = g2 = r = 10. We take Poisson arrivals with mean 0.36. We
study one set of examples where the qi are constant over the various slots, see
Figure 5.5(a). We also study the influence of the dependence of the qi on i by
investigating two cases with all parameters as before in Figure 5.5(b). In one
case we take qi = 0.5 for all i , but in the other case we take qi = 1− (i −1)/g1.
The latter case reflects a decreasing number of pedestrians blocking the turning
flow of vehicles during the first part of the green period.

We note that it is important to get the right qi if one wants to investigate
the queue-length distribution in front of the traffic light, as the qi have an im-
pact on the performance measures. In Figure 5.5(a), we clearly see that the
more pedestrians, the longer the queue length at the end of the green period
is. Indeed, if there are more pedestrians, there are relatively many blockages of
vehicles which subsequently causes the queue to be relatively large.

Moreover, it is important to capture the dependence of the qi on the slot i
in the right way, see Figure 5.5(b). Even though, on average over all slots, the
mean number of pedestrians present is similar in the two cases, we see a clear
difference between the two examples. In the case with decreasing qi (in blue),
we see an initial increase of the mean queue length during the first green slots of
the cycle, caused by a relatively large fraction of turning vehicles (p = 0.5) and
a high value of qi . This is not the case in the other example where qi = 0.5 for
all i . After some slots of the first green period, the decrease in the mean queue
length is quicker for the example where the qi decrease when i increases, which
can (at least partly) be explained by the decreasing qi . There might thus be an
influence of the qi when focusing on the first part of the green period. During

138 5.4 Examples

2 4 6 8 10
j

0.2

0.4

0.6

0.8

1.0

ℙ(Xg1+g2≤ j)

q=0

q=0.25

q=0.5

q=0.75

q=1

1 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

i

[X
i]

(a) (b)

Figure 5.5: In (a) the CDF of the overflow queue is displayed for various values of the qi
with all qi = q the same, pi = p = 0.5, Poisson arrivals with mean 0.36, and g1 = g2 = r =
10. In (b) the E[Xi] are compared for slot number i = 1, . . . ,30 with in orange qi = 0.5 and
in blue qi = 1− (i −1)/g1 for i = 1, . . . , g1. Further, it is assumed that pi = p = 0.5, that the
number of arrivals in each slot follows a Poisson distribution with mean 0.36, and that
g1 = g2 = r = 10.

the remaining part of the cycle, the queue in front of the traffic light behaves
more or less the same in both examples and even the mean overflow queue,
E[Xg1+g2], is not that much different for the two examples. This implies, as can
also be observed in Figure 5.5(b), that the mean queue length during the red
period is comparable as well for our setting. This does not hold for the mean
queue length at the end of an arbitrary slot and the mean delay, because of the
differences in the queue length during the first part of the green period.

5.4.2 Shared right-turn lanes and dedicated lanes

We continue with a study of several numerical examples that focus on the differ-
ences between shared right-turn lanes and dedicated lanes for turning traffic.
We do so in order to provide relevant insights in the benefit of splitting the
vehicles in different streams. Firstly, we study the difference between a single
shared right-turn lane (as visualized in Figure 5.6(a)) and a case where the
straight-going and turning vehicles are spread over two different lanes. In the
latter case, we thus have two lanes, one for the straight-going traffic and one
for the turning traffic (as visualized in Figure 5.6(b)) which we can analyze as
two separate bFCTL queues.

Secondly, we compare two two-lane settings. The first is visualized in Fig-

Chapter 5. FCTL queue with multiple lanes and blockages 139

(a) (b) (c)

Figure 5.6: The various lane configurations considered in Subsection 5.4.2. In (a) we
have a single lane with a shared right-turn lane. In (b) we have two dedicated lanes:
one for straight-going vehicles and one for right-turning traffic, whereas in (c) we have
a two-lane setup with one lane for straight-going vehicles only and a shared right turn.

ure 5.6(b), while the other is a two-lane scenario where one lane is a dedicated
lane for straight-going traffic and the other is a shared right-turn lane as de-
picted in Figure 5.6(c). We thus allow for straight-going traffic to mix with the
right-turning vehicles in the latter case. We do so in order to make sure that the
shared right-turn lane together with the lane for vehicles heading straight has
the same capacity as the two lanes where the two streams of vehicles are split
(as opposed to the first example in this subsection, where there is a difference in
capacity between the two cases). In both two-lane scenarios we, again, analyze
the two lanes as two separate bFCTL queues.

One lane for the shared right-turn

We start with comparing the traffic performance of a single shared right-turn
lane as in Figure 5.6(a), case (1), and a two-lane scenario where the turning
vehicles and the straight-going vehicles are split as in Figure 5.6(b), case (2).
We refer in the latter case to the lane which has right-turning vehicles as lane
1 and to the other lane we refer as lane 2. We assume that the arrival process

140 5.4 Examples

is Poisson and that the arrival rate of turning vehicles, µ1, and straight-going
vehicles, µ2, are the same in both cases. The total arrival rate of vehicles is
µ=µ1+µ2 in case (1). We choose pi = 0.3 for the shared right-turn lane, whereas
in the two-lane case we have pi = 1 for lane 1 and pi = 0 for lane 2 and arrival
rates µ1 = 0.3µ at lane 1 and µ2 = 0.7µ at lane 2. Further, we choose qi = 1,
g1 = 8, g2 = 20, and r = 20. We compute the mean queue length at the end of an
arbitrary time slot for both lanes in case (2), denoted with E[X (i)] for lane i , and
the total mean queue length at the end of an arbitrary time slot, denoted with
E[X t], and which equals E[X (1)]+E[X (2)]. For case (1) we denote the mean queue
length at the end of an arbitrary time slot with E[X t]. The delay of an arbitrary
car is denoted with E[D] for both cases (1) and (2). We study various values of
µ in Table 5.1.

Table 5.1: The total Poisson arrival rate, µ, the mean queue length at the end of an
arbitrary time slot, E[X t], and the mean delay, E[D], for case (1), and for case (2) the
mean queue length at the end of an arbitrary time slot at lanes 1 and 2, E[X (1)] and
E[X (2)] respectively, the total mean queue length at the end of an arbitrary time slot,
E[X t], and the mean delay of an arbitrary car, E[D].

Case (1) Case (2)
µ E[X t] E[D] E[X (1)] E[X (2)] E[X t] E[D]

0.08 0.542 6.771 0.208 0.260 0.468 5.855
0.16 1.262 7.889 0.427 0.555 0.982 6.140
0.24 2.179 9.080 0.658 0.892 1.550 6.458
0.32 3.451 10.79 0.902 1.280 2.182 6.818
0.40 6.496 16.23 1.159 1.733 2.892 7.230

In Table 5.1, we can clearly see that the total mean queue length at the two
lanes in case (2) is lower than the mean queue length at the single lane in case
(1). This makes sense from various points of view: in case (2), we have twice
as much capacity as in case (1), so we would expect a smaller total mean queue
length in case (2). Moreover, in case (1), it might happen that straight-going
vehicles are blocked. Such blockages cannot occur in case (2), as all turning
traffic is on lane 1 and all vehicles that go straight are on lane 2. These two
reasons are the main drivers for the performance difference between cases (1)
and (2). From the point of view of the traffic performance, it thus makes sense to
split the traffic on a shared right-turn lane into two separate streams of vehicles
on two lanes. Note that this holds while assuming that the capacity for the two

Chapter 5. FCTL queue with multiple lanes and blockages 141

separate lanes is twice as large as for the single-lane case. We observe similar
results when looking at the mean delay and comparing cases (1) and (2).

Two lanes for the shared right-turn

Now we turn to an example where we still have two dedicated lanes as in case
(2) of the previous example, one for turning traffic and one for straight-going
traffic, see Figure 5.6(b), but we compare it with a two-lane example where
the vehicles mix, see Figure 5.6(c). All turning vehicles will be on lane 1, but
we also allow some straight-going traffic to be present on lane 1 too. Lane 1 is
thus a shared right-turn lane. On lane 2, we only have vehicles that are heading
straight. In order to make a comparison that is as fair as possible we assume
the following: the total arrival rate and the fraction of turning vehicles are the
same.

We assume that the probability that an arbitrary vehicle is a turning vehicle
is 0.3 and we vary the total Poisson arrival rate µ to study the influence of the
strict splitting of the turning vehicles. In case (1), we thus have an arrival rate at
the right-turning lane that satisfies µ1 = 0.3µ, whereas on the other lane we have
an arrival rate µ2 = 0.7µ. At lane 1 we have pi = 1 and at lane 2 we have pi = 0.
In case (2) we distinguish between two subcases. In subcase (2a) we assume
that the total arrival rate at both lanes is the same and thus µ1 = µ2 = 0.5µ. In
subcase (2b), we assume that the arrival rate is split in the ratio 2 : 3, so µ1 = 0.4µ
and µ2 = 0.6µ. This implies that in subcase (2a) we choose pi = 0.6 (the fraction
of turning vehicles is then pµ1 = 0.6 ·0.5µ= 0.3µ) and in subcase (2b) we choose
pi = 0.75 (the fraction of turning vehicles is then pµ1 = 0.75 · 0.4µ = 0.3µ), to
make sure that we match the number of turning vehicles in case (1). Further,
we choose qi = 1, g1 = 8, g2 = 16, and r = 16. Then, we study the mean queue
length at the end of an arbitrary time slot of both lanes, E[X (1)] and E[X (2)],
and the total average mean queue length at the end of an arbitrary time slot,
denoted with E[X t]. We obtain Table 5.2.

In Table 5.2, we see only small differences in the total mean queue lengths
at the end of an arbitrary time slot for low arrival rates. At both lanes, there are
few vehicles in the queue. This is different for the examples in Table 5.2 with
a higher arrival rate. In all examples for case (1) we see that the mean queue
length at lane 2, the straight-going traffic lane, is higher than for lane 1. This is
due to the relatively high fraction of vehicles that have to use lane 2 due to the
strict splitting between turning and straight-going vehicles. In some sense, lane
1, which only has turning vehicles, has overcapacity that cannot be used for the
busier lane 2 with only straight-going traffic. This is different for the other two

142 5.4 Examples

Table 5.2: The total Poisson arrival rate, µ, the mean queue length at the end of an
arbitrary time slot at lanes 1 and 2, E[X (1)] and E[X (2)], and the total mean queue length
at the end of an arbitrary time slot, E[X t], for cases (1), (2a) and (2b).

Case (1) Case (2a) Case (2b)
µ E[X (1)] E[X (2)] E[X t] E[X (1)] E[X (2)] E[X t] E[X (1)] E[X (2)] E[X t]

0.08 0.185 0.202 0.387 0.258 0.142 0.400 0.221 0.172 0.393
0.16 0.379 0.432 0.811 0.558 0.297 0.855 0.467 0.363 0.831
0.24 0.584 0.695 1.278 0.899 0.467 1.367 0.738 0.578 1.315
0.32 0.800 0.998 1.798 1.281 0.655 1.936 1.033 0.819 1.852
0.40 1.028 1.353 2.381 1.711 0.863 2.573 1.353 1.094 2.447
0.48 1.270 1.775 3.045 2.206 1.094 3.299 1.704 1.408 3.113
0.56 1.527 2.301 3.829 2.821 1.353 4.173 2.094 1.775 3.869
0.64 1.802 3.037 4.839 3.718 1.646 5.364 2.546 2.217 4.763
0.72 2.100 4.366 6.465 5.541 1.984 7.525 3.112 2.793 5.905
0.80 2.430 8.878 11.31 15.13 2.390 17.52 3.928 3.669 7.597

cases, where the traffic is split more evenly across the two lanes. As one would
expect, the longest queue in subcase (2a) is present at lane 1, as the arrival
rate at both lanes is the same and because vehicles are only blocked at lane 1,
the shared right-turn lane. This points towards another potential improvement
and this is found in subcase (2b) where we balance the arrival rate differently,
which leads to a more economic use of both lanes and, hence, also the best
performance in this example when looking at E[X t].

The results in Tables 5.1 and 5.2 might seem conflicting at a first glance,
but they are not. In the case of a single, shared right-turn lane as in Table 5.1,
we see a higher mean queue length than for the two dedicated lanes case in
Table 5.1. This is the other way around in Table 5.2 (considering case (2b)).
This is mainly explained by the fact that in case (2b) in Table 5.2, we have two
lanes and thus twice as much capacity as in case (1) in Table 5.1. This is one of
the main factors in the explanation of the differences in the mean performance
between the examples studied in Tables 5.1 and 5.2.

The two examples in this subsection tell us that a separate or dedicated lane
for turning traffic does not necessarily improve the traffic flow. An in-depth
study is needed to obtain the best layout of the intersection and the best traffic-
light control. As a side-remark, we surpass the possibility here that in Table 5.2,
case (1), we might control the two lanes in a different way, e.g. by prolonging
the green period for one of the lanes. This is not possible in cases (2a) and

Chapter 5. FCTL queue with multiple lanes and blockages 143

(2b). This is also something one should take into account when looking for
good traffic-light settings.

5.4.3 FCTL queue with multiple lanes

The regular FCTL queue has only a single lane from which vehicles might de-
part, yet at bigger intersections, this is not realistic. There might be several
lanes for, e.g., straight-going traffic which all receive green simultaneously. For
a visualization, see Figure 5.1(a). Our framework for the bFCTL queue with
multiple lanes allows us to model such examples, which we demonstrate in this
subsection. We study both the case of a Poisson distributed number of arrivals
and the case of a geometrically distributed number of arrivals studied in [206].
We thus study a case where g = g1+g2 = 5, pi = 0 for all i , r = 5, and with Poisson
or geometrically distributed arrivals in each slot with mean µ. We study various
cases of µ and analyze the overflow queue, denoted with Xg , the mean queue
length at the end of an arbitrary time slot E[X t], and the mean delay E[D]. We
also vary m to study the influence of having multiple lanes in the FCTL queue.
In order to make a comparison between the various cases with different m,
we scale the arrival rate proportionally with m so that the load or vehicle-to-
capacity ratio, ρ = (cµ)/(mg), is fixed for different values of m. Then, we obtain
Tables 5.3 (for Poisson arrivals) and 5.4 (for geometrically distributed arrivals).

We note that there is a difference between analyzing m FCTL queues sepa-
rately and the joint analysis of the m lanes as presented here. It is thus impor-
tant to perform an analysis that accounts for the number of lanes that vehicles
from a single stream can use. This can most prominently be observed by fixing
ρ and considering various values of m: the mean and variance of the overflow
queue (measured in number of vehicles) then decrease if we have Poisson ar-
rivals in each slot. This is not the case for some examples with geometrically
distributed arrivals if ρ is sufficiently high. However, when taking into account
that vehicles are spread out over the different lanes, the physical length of the
queue still decreases. The different behavior probably relates to the geometric
distribution being more variable than the Poisson distribution. When m in-
creases, the squared coefficient of variation for the number of arrivals per slot
is decreasing for the Poisson case and increasing for the geometric case, which
probably is (part of) the explanation for the observed behavior. Indeed, a larger
variability in the number of arrivals in general tends to lead to an increase in the
mean steady-state queue length in queueing models. This indicates that having
more lanes at a single intersection while ρ is fixed, is not necessarily beneficial
when looking at the total number of vehicles in the queue: a high variability

144 5.4 Examples

Table 5.3: The bFCTL queue with m lanes, g = 5, r = 5, Poisson arrivals, and no blockages.
The load ρ, the number of lanes m, the mean arrival rate µ, and several performance
measures are displayed.

ρ m µ E[Xg] Var[Xg] P(Xg ≥ 10) E[X t] E[D]
0.2 1 0.1 0.000583 0.000788 < 0.00001 0.170 1.701

2 0.2 < 0.00001 0.000010 < 0.00001 0.317 1.587
5 0.5 < 0.00001 < 0.00001 < 0.00001 0.762 1.523

10 1.0 < 0.00001 < 0.00001 < 0.00001 1.505 1.505
15 1.5 < 0.00001 < 0.00001 < 0.00001 2.252 1.502
20 2.0 < 0.00001 < 0.00001 < 0.00001 3.001 1.500

0.4 1 0.2 0.0217 0.0384 < 0.00001 0.404 2.021
2 0.4 0.00324 0.00663 < 0.00001 0.711 1.778
5 1.0 0.000013 0.000033 < 0.00001 1.661 1.661

10 2.0 < 0.00001 < 0.00001 < 0.00001 3.240 1.620
15 3.0 < 0.00001 < 0.00001 < 0.00001 4.816 1.605
20 4.0 < 0.00001 < 0.00001 < 0.00001 6.390 1.598

0.6 1 0.3 0.180 0.429 0.000029 0.817 2.724
2 0.6 0.0770 0.215 0.000019 1.279 2.131
5 1.5 0.00788 0.0298 < 0.00001 2.834 1.890

10 3.0 0.00019 0.00101 < 0.00001 5.505 1.835
15 4.5 < 0.00001 0.000030 < 0.00001 8.181 1.818
20 6.0 < 0.00001 < 0.00001 < 0.00001 10.85 1.809

0.8 1 0.4 1.097 4.181 0.00842 2.025 5.063
2 0.8 0.795 3.465 0.00662 2.598 3.247
5 2.0 0.359 2.038 0.00417 4.707 2.354

10 4.0 0.109 0.836 0.00242 8.621 2.155
15 6.0 0.0343 0.332 0.00130 12.68 2.113
20 8.0 0.0109 0.127 0.00057 16.79 2.099

0.98 1 0.49 23.22 614.8 0.638 24.44 49.88
2 0.98 22.59 613.1 0.621 25.02 25.53
5 2.45 21.02 606.9 0.580 27.06 11.04

10 4.90 18.47 589.0 0.517 30.51 6.227
15 7.35 15.90 558.9 0.451 33.93 4.616
20 9.80 13.45 517.4 0.381 37.44 3.820

Chapter 5. FCTL queue with multiple lanes and blockages 145

Table 5.4: The bFCTL queue with m lanes, g = 5, r = 5, geometrically distributed arrivals,
and no blockages. The load ρ, the number of lanes m, the mean arrival rate µ, and
several performance measures are displayed.

ρ m µ E[Xg] Var[Xg] P(Xg ≥ 10) E[X t] E[D]
0.2 1 0.1 0.00135 0.00210 < 0.00001 0.174 1.736

2 0.2 0.000098 0.00019 < 0.00001 0.323 1.614
5 0.5 < 0.00001 < 0.00001 < 0.00001 0.773 1.547

10 1.0 < 0.00001 < 0.00001 < 0.00001 1.526 1.526
15 1.5 < 0.00001 < 0.00001 < 0.00001 2.279 1.519
20 2.0 < 0.00001 < 0.00001 < 0.00001 3.032 1.516

0.4 1 0.2 0.0407 0.0903 < 0.00001 0.432 2.158
2 0.4 0.0176 0.0532 < 0.00001 0.749 1.874
5 1.0 0.00551 0.0292 0.000049 1.736 1.736

10 2.0 0.00292 0.0263 0.000085 3.388 1.694
15 3.0 0.00239 0.0305 0.000096 5.040 1.680
20 4.0 0.00226 0.0371 0.000098 6.691 1.673

0.6 1 0.3 0.300 0.951 0.000469 0.949 3.163
2 0.6 0.245 1.100 0.00147 1.486 2.477
5 1.5 0.224 1.859 0.00602 3.200 2.133

10 3.0 0.261 3.812 0.0111 6.106 2.035
15 4.5 0.313 6.544 0.0134 9.022 2.005
20 6.0 0.369 10.04 0.0144 11.94 1.990

0.8 1 0.4 1.709 9.176 0.0323 2.646 6.615
2 0.8 1.890 14.40 0.0549 3.726 4.657
5 2.0 2.633 37.43 0.109 7.129 3.564

10 4.0 3.982 100.1 0.151 12.89 3.223
15 6.0 5.358 193.2 0.167 18.68 3.113
20 8.0 6.741 316.7 0.174 24.47 3.059

0.98 1 0.49 34.93 1.38 ·104 0.728 36.15 73.78
2 0.98 45.83 2.44 ·104 0.765 48.26 49.24
5 2.45 78.64 7.44 ·104 0.814 84.71 34.57

10 4.90 133.4 2.18 ·105 0.839 145.5 29.70
15 7.35 188.2 4.37 ·105 0.846 206.3 28.07
20 9.80 242.9 7.31 ·105 0.849 267.1 27.26

146 5.5 Conclusion

in the number of arrivals per slot might result in an increase of the number of
vehicles in the queue when the number of lanes is increased. However, in all
cases the mean delay decreases if ρ is fixed and m increases.

5.5 Conclusion

In this chapter, we have established a recursion for the PGFs of the queue-length
distribution at the end of each slot which can be used to provide a full queue-
length analysis of the bFCTL queue with multiple lanes. This is an extension
of the regular FCTL queue so that we can account for temporal blockages of
vehicles receiving a green light, for example because of a crossing pedestrian
at the turning lane or because of a (separate) bike lane, and to account for a
vehicle stream that is spread over multiple lanes. These features might impact
the traffic-light performance as we have shown by means of various numerical
examples. The blocking of turning vehicles and the number of lanes correspond-
ing to a vehicle stream therefore has to be taken into account when choosing
the settings for a traffic light.

We briefly touched upon how one should design the layout of an intersec-
tion. Interestingly, it might be suboptimal to have a dedicated lane for turning
traffic. It seems that mixing turning and straight-going traffic has benefits over
a strict separation of those two traffic streams when there are two lanes for this
turning and straight-going traffic. We advocate a further investigation into the
influence of separating or mixing different streams of vehicles in front of traffic
lights. It might be possible to find the optimal division of straight-going and
turning vehicles over the various lanes, e.g. by enumerating several possibil-
ities. A more structured optimization seems difficult because of the intricate
expressions involved, but would definitely be worthwhile to investigate. Some
research on the splitting of different traffic streams has already been done in
e.g. [109, 187, 223, 229] and the present study can be seen as an alternative
way of modeling the situation at hand.

The work in [96], in which a simulation study of a similar model is per-
formed, has been our source of inspiration for the study in this chapter. There
are some extensions possible when comparing our work with [96]. We e.g. did
not study the influence of start-up delays as is done in [96]. Investigating such
start-up delays at the beginning of the green period is easily done in our frame-
work: we simply need to adjust the Yi for the first few slots. Another approach
to deal with start-up delays is presented in [132]. Start-up delays which depend
on the blocking of vehicles and different slot lengths for different combinations

Chapter 5. FCTL queue with multiple lanes and blockages 147

of turning/straight going vehicles, are harder to tackle. One could e.g. intro-
duce additional states (besides states u and b) to deal with this. Although the
developed recursion does not directly allow for such a generalization, it seems
possible to account for this at the expense of a more complex recursion. For the
ease of exposition, we have refrained from doing so and we leave a full study
on this topic for future research.

We are able to provide an exact calculation for numerous performance mea-
sures by means of our queueing-theoretic approach, which before often either
had to be approximated or simulated. The authors in [44] indicate that the
stochastic behavior of the model needs to be taken into account and our frame-
work allows us to do so. Our results indicate that the stochastic behavior indeed
plays a role in various performance measures.

A possible extension of the results on the bFCTL queue is a study of (the
PGF of) the delay distribution. We have refrained from deriving the delay dis-
tribution because of its (notational) complexity. Using proper conditioning, one
should be able to obtain (the PGF of) the delay distribution for the bFCTL queue.

The bFCTL queue calls for further generalizations. For example, instead
of two full lanes, e.g. one for straight-going and one for turning traffic, we
could also consider a single lane which splits into two lanes just before the
intersection in such a way that some, say N , turning vehicles may accumulate
on a separate lane. Such a small separate lane is often referred to as a turning
bay. The N vehicles on the turning bay would not block straight-going traffic in
any way (because they are on a separate lane), but if there would be N vehicles
at the turning bay and another turning vehicle arrives, also the vehicles heading
straight will be blocked. It would be interesting to study such a model and gain
insight into the benefits of such a turning bay.

Another topic for future research is to modify the bFCTL queue in such a
way that it enables a joint analysis of two lanes with one dedicated lane for
vehicles heading straight and one shared lane with both turning and straight-
going vehicles. Such a case is not covered by the bFCTL with multiple lanes, as it
seems that in this extension one needs to take into account how many vehicles
of both types (i.e. turning and straight-going vehicles) there are. This might
lead to a two-dimensional queueing model rather than the one-dimensional one
considered in the current chapter.

A further possible extension of the bFCTL queue would be to consider more
realistic blocking behaviors: instead of e.g. a fixed probability qi for each slot
i , a more general blocking process might be considered. For example, if there
are no pedestrians during slot i for the model depicted in Figure 5.1(b), then
the probability that there are also no pedestrians in slot i + 1, might be rela-

148 5.5 Conclusion

tively high. In other words, there might be dependence between the various
slots when considering the presence of pedestrians. It is worthwhile to inves-
tigate generalizations of the blocking process in order to further increase the
general applicability of the bFCTL queue with multiple lanes.

Another generalization for the blocking mechanism, is to block only a part of
the m vehicles that are at the head of the queue. Indeed, we restrict ourselves to
the cases where either all vehicles in a batch of size m are blocked (or not). In
various real-life examples, it might be the case that only part of the m vehicles
are blocked. It would be interesting to investigate whether such a model can be
analyzed.

Finally, we also advocate an investigation whether the bFCTL queue with
a vehicle-actuated mechanism (rather than the fixed green and red times that
we consider) results in a tractable model. Although perhaps not directly visi-
ble in the derivation, we use the fact that the traffic lights have a fixed setting
to our advantage. This namely implies that we can study each queue in isola-
tion, which then enables us to turn the bFCTL queue with multiple lanes into
a model with one dimension. This does not seem to be possible in an actuated
setting, because the green time in this cycle depends on all queue lengths in
the previous cycle and if we have n vehicle streams, we would have to study an
n-dimensional PGF. Currently, a fully exact analysis seems to be beyond reach.
If we could find the PGF for an actuated bFCTL type of model, it would per-
haps provide a way to study other n-dimensional queueing models as well. A
study whether this extension is tractable is therefore interesting, both in view
of the bFCTL queue with multiple lanes and in view of queueing theory more
generally.

Appendix

5.A Stability condition for the bFCTL queue

In this section, we formulate an algorithm to check whether the bFCTL queue
renders a stable queueing model. In order to derive the stability condition, we
note that the mean number of departures of delayed vehicles per cycle should
be larger than the mean number of arriving vehicles per cycle. The latter is easy
to compute: it is simply

∑c
i=1E[Yi], the sum of the mean number of arrivals per

slot. It is more difficult to derive the mean number of delayed vehicles departing
from the queue during a cycle. A Markov reward model is one way to obtain
this mean number. The Markov chain with the associated transition probabilities
that we use is depicted in Figure 5.7. The states and transitions of this Markov
chain are similar to those of the Markov chain in Section 5.3, but now we are
no longer interested in the queue length. Instead, we are interested in the
number of departures of delayed vehicles in each time slot. For this reason,
this Markov chain only has states (i , s) for i = 1, . . . , g1 and s = u,b, and states i
for i = g1 +1, . . . , g1 + g2 + r . Finally, we create an artificial state 0 to gather the
rewards from states (1,b) and (1,u). The long-term mean number of departures
of delayed vehicles can now be determined through a reward structure.

The rewards that we assign to each transition are as follows: if we make a
transition to a state (i ,u) for i = 1, . . . , g1, we receive a reward m reflecting the
maximum of m delayed vehicles departing from the queue. We also get a reward
m if we make a transition from state g1 + i to state g1 + i +1 for i = 1, . . . , g2 −1.
For all other transitions, we receive no reward. We denote the received reward
up to state (i , s) with ri ,s with i = 1, . . . , g1 and s = u,b and the received reward

150 5.A Stability condition for the bFCTL queue

0

(1,u)

(1,b)

(2,u)

(2,b)

. . .

. . .

(g1,u)

(g1,b)

g1 +1

g1 +2. . .g1+
g2

g1+
g2 +1

. . .g1+
g2 + r

1−p1q1

p1q1

1−p2q2

p2q2

1−q2

q2

1−p3q3

p3q3

1−q3

q3

1−pg1 qg1

pg1 qg1

1−qg1

qg1

1

1

1

11111

Figure 5.7: Markov chain used to study the stability condition.

up to state i with ri for i = 0 and i = g1+1, . . . , g1+g2+r . Then, if we traverse the
Markov chain once, we get the following relations between the rewards in the
various states. We work backwards from state g1 + g2 + r to obtain the reward
in state 0 (as usual in Markov reward theory). We start with defining the total
reward in state g1 + g2 + r to be 0 (there are no vehicle departures while being
in state g1 + g2 + r), i.e.

rg1+g2+r = 0. (5.14)

For states i = g1 + g2, . . . , g1 + g2 + r −1, we obtain

ri = ri+1, (5.15)

as there are no departures during the red period. However, for states i = g1 +
1, . . . , g1 + g2 −1, we have

ri = m + ri+1 (5.16)

as there are (potentially) m departures of delayed vehicles. For state (g1,b) we
have that

rg1,b = rg1+1, (5.17)

Chapter 5. FCTL queue with multiple lanes and blockages 151

as there are no departures when the vehicles are blocked. For state (g1,u) we
obtain

rg1,u = m + rg1+1 (5.18)

as there are, at most, m delayed vehicles departing from the queue when we
make a transition from state (g1,u) to g1 + 1. Similarly, for states (i ,b) with
i = 1, . . . , g1 −1, we get

ri ,b = qi+1ri+1,b + (1−qi+1)ri+1,u (5.19)

and for states (i ,u) with i = 1, . . . , g1 −1, we get

ri ,u = m +pi+1qi+1ri+1,b + (1−pi+1qi+1)ri+1,u . (5.20)

Finally, for state 0, we get

r0 = p1q1r1,b + (1−p1q1)r1,u . (5.21)

Then we have that r0 is the average reward received when traversing the
Markov chain as depicted in Figure 5.7, where the average reward translates
to the mean number of delayed vehicles that are able to depart from the queue
during a cycle. Together with the mean number of vehicles arriving per cycle,
we can check whether or not a specific choice of input parameters results in a
stable bFCTL queue. The procedure is summarized in Algorithm 5.1.

Algorithm 5.1 Algorithm to check for stability of the bFCTL queue.

1: Input: µ, g1, g2, c, pi for i = 1, . . . , g1, and qi for i = 1, . . . , g1.
2: Use Equations (5.14) up to (5.21) to determine r0.
3: if

∑c
i=1E[Yi] < r0 then

4: The bFCTL queue is stable.
5: else
6: The bFCTL queue is not stable.
7: end if

Chapter 6
A novel approximation scheme
for multidimensional queueing
models

6.1 Introduction

Traffic lights with a vehicle-actuated control strategy relate to queueing models
with multiple queues, as we argued in Subsections 1.2.2 and 1.3.2. Such queue-
ing models with multiple dimensions are notoriously difficult to analyze. The
complicated interactions within such queueing models typically do not allow
for a general approach to obtain exact results for performance measures. Even
approximation schemes that apply to a large set of multidimensional queueing
models are often difficult to establish. The need to obtain performance mea-
sures for traffic lights with a vehicle-actuated control strategy has motivated us
to develop an approximation procedure. This procedure appears to be applica-
ble to a quite large class of multidimensional queueing models. This chapter is
devoted to that procedure.

Multidimensional queueing models arise in many situations and applica-
tions. Canonical examples include queues that can be modeled as a random
walk in the positive quadrant (for two dimensions), fork-join queues, polling
models, and queueing networks. The area of application of such models is very
wide and ranges from e.g. production systems, applications in the medical area,

154 6.1 Introduction

traffic engineering, and numerous applications in communication and computer
(supporting) systems, see e.g. the review paper [18]. A sound understanding
of the underlying queueing models for each of the aforementioned application
areas could lead to service level improvements and/or cost reductions. The
method in this chapter contributes to this.

In recent years, only few papers have appeared with an exact analysis for
multidimensional queueing models. Of course, there have been some advances
in the realm of methodological and computational aspects, but those are mostly
for quite specific queueing models. Explicit results for performance measures
are still mostly lacking. One exception is formed by so-called product-form net-
works, which allow for an explicit characterization of the joint queue-length
distribution, like Jackson and Kelly networks [97, 104]. For a general treat-
ment see [26, Chapters 1-7], and for recent advances in the general applicabil-
ity of product forms for multidimensional queueing networks, see e.g. [7, 59].
Another exact method is the boundary value method, which focuses on two-
dimensional queueing models. This method heavily relies on complex analysis,
see e.g. [56, 57, 73]. Another class of multidimensional queueing models for
which explicit results have been obtained, are polling models which satisfy the
branching property. Besides these methods, there are some numerical-analytical
methods such as the matrix-geometric and matrix-analytic techniques, the com-
pensation method, and the power-series algorithm, see e.g. [4]. Next to this, a
few exceptional models with specific characteristics exist that make it possible
to find explicit results, oftentimes only for two-queue models (see e.g. [4]).

Some new approximation and numerical-analytical methods have been de-
veloped over the years (for a brief overview of the state-of-the-art, see Subsec-
tion 6.1.1). In this chapter, we introduce a new approximation scheme that may
be used to obtain approximations for a far larger set of queueing models and
we continue with the idea behind our approximation scheme.

Our method is designed around the PGF for the joint steady-state queue-
length distribution. Typically, a functional equation for this PGF as in Equa-
tion (6.1) below is relatively easy to derive for a queueing model and a more
general version of Equation (6.1) in fact holds for a broad set of multidimen-
sional queueing models. For now, let P (x, y) be the PGF of the joint steady-state
queue-length distribution for a two-dimensional queueing model (higher di-
mensions will be discussed later). Then we typically have a relation like the
following:

K (x, y)P (x, y) = f1(x, y)P (0, y)+ f2(x, y)P (x,0)+ f3(x, y)P (0,0), (6.1)

Chapter 6. Approximation scheme for multidimensional queueing models 155

or alternatively

P (x, y) = f1(x, y)P (0, y)+ f2(x, y)P (x,0)+ f3(x, y)P (0,0)

K (x, y)
, (6.2)

for certain known functions f1(x, y), f2(x, y), f3(x, y), and K (x, y). We refer to
K (x, y) as the kernel. The function P (x, y) is unknown (and hence P (0,0), P (0, y),
and P (x,0) are unknown as well). The difficulty in finding an exact expression
for P (x, y) lies in these latter, unknown functions P (0, y) and P (x,0). In some
particular queueing models these unknown functions can be found (such as the
model with two M/M/1 queues in series discussed below). Another approach is
to use e.g. the boundary-value technique, see [57,73]. This technique relies on
zeros of the function K (x, y) on and within the unit circle and the fact that P (x, y)
is analytic within and continuous up to the unit circle (as it is a PGF). Indeed,
if K (x, y) = 0, the numerator on the right-hand side of Equation (6.2) has to be
zero as well. This typically leads to some kind of boundary value problem, which
can then sometimes be used to obtain (complicated) expressions for P (0, y) and
P (x,0). We discuss in Example 6.1 a concrete example where P (x, y) is derived
(and for which we happen to have an explicit expression).

Example 6.1 (Two M/M/1 queues in series) In this example a model with two
M/M/1 queues in series is considered. We have an arrival rate µ at the first queue,
a service rate ν1 at queue 1, and a service rate ν2 at queue 2. Customers arrive at
queue 1 and upon service completion move to queue 2. After completing a service
at queue 2, a customer leaves the system. We assume the interarrival times and
service times to be independent of one another and we assume that ρ1 := µ/ν1 < 1
and ρ2 := µ/ν2 < 1. Then we have the following balance equations, where pn1,n2

denotes the steady-state probability that there are n1 customers at queue 1 and n2

at queue 2:

(µ+ν11{n1 > 0}+ν21{n2 > 0})pn1,n2 =
µ1{n1 > 0}pn1−1,n2 +ν11{n2 > 0}pn1+1,n2−1 +ν2pn1,n2+1,

where 1{ni > 0} = 1 if ni > 0 and 0 otherwise. Then, the PGF of the joint steady-
state queue-length distribution, P (x, y) = ∑∞

n1=0
∑∞

n2=0 pn1,n2 xn1 yn2 , can be shown
to satisfy:

K (x, y)P (x, y) = ν1(x y − y2)P (0, y)+ν2(x y −x)P (x,0), (6.3)

where

K (x, y) = x y
(
µ(1−x)+ν1(1− y/x)+ν2(1−1/y)

)
.

156 6.1 Introduction

One can easily verify that the following equation for P (x, y) satisfies Equa-
tion (6.3):

P (x, y) = 1

1−ρ1x

1

1−ρ2 y
. (6.4)

One way to verify this is by substituting Equation (6.4) into Equation (6.3).
However, finding Equation (6.4) is, in general, not an easy task. In the cur-
rent example, one can use the concept of detailed balance to, directly, derive that
pn1,n2 = (1 − ρ1)ρn1

1 (1 − ρ2)ρn2
2 , from which Equation (6.4) readily follows (see

e.g. [103]). Another example where this is possible, is the M/M/1 queue in se-
ries with an M/G/1 queue (one can use Burke’s theorem [36] to show that the
output process of an M/M/1 is, in equilibrium, a Poisson process with rate µ).
In case of an M/G/1 queue followed by an M/M/1 queue, the analysis already
complicates severely as is shown in e.g. [14, 27]. In general, however, solving an
equation like Equation (6.3) is often not possible, so we are left with the question
of how to obtain Equation (6.4) from an equation like Equation (6.3).

Instead of the intricate boundary value problem analysis or other methods
to obtain P (x, y) explicitly, we propose an approximation based upon an idea
stemming from one-dimensional queueing models. In several one-dimensional
queueing models, the queue-length PGF has a finite number of unknowns,
which can be found using certain zeros of a one-dimensional kernel K (x) and
a normalization, which together lead to a finite-sized system of linear equa-
tions. Examples are the bulk-service queue [98], the FCTL queue (see e.g. Sub-
section 1.3.1), and a single-server vacation queue with customer-limited ser-
vice [120]. In multidimensional settings, this is often not possible, because we
would be dealing with a system of linear equations of infinite size as the num-
ber of unknowns in the functions P (0, y) and P (x,0) is often infinite. Therefore,
we propose, as an approximation, to replace the functions P (0, y) and P (x,0)
with Taylor series, P̃ (0, y) and P̃ (x,0), with only a finite number of coefficients.
Then, using some roots of K (x, y) and a normalization equation, we are able to
approximate P (x, y). This allows us to derive performance measures from the
approximated PGF. For more details on the procedure, we refer to Section 6.2.

Although our method can be used to obtain approximations for queueing
models in any dimension, it slows down when approximating models with an
increasing dimension, because of an increasing number of unknowns that needs
to be estimated. This relates to the curse of dimensionality which appears of-
ten in multidimensional (queueing) models and which for example relates to
quickly increasing computation times because of an exploding state space. In

Chapter 6. Approximation scheme for multidimensional queueing models 157

our examples, we see an increase in the size of the system of linear equations
that we need to solve, which in turn implies an increase in computation time.
Our method therefore works best for two-dimensional models, but can be used
for higher-dimensional queueing models as well which we also demonstrate in
this chapter.

Our method enables one to study models that can be described by a func-
tional equation like Equation (6.1). An example of such a class of models is the
class of k-limited polling models. In the beginning, we developed our method
specifically for k-limited polling models (e.g. because they directly relate to
vehicle-actuated controlled traffic lights). For k-limited polling models, the joint
distribution of the queue length at service and switchover beginnings can be
described by (a generalization of) Equation (6.1) and our method can be lever-
aged to find approximations for various performance measures. Other models
that we have successfully approximated, include a two queue model with an al-
ternating service discipline [68] (see Section 6.4), a tandem queue model with
coupled processors [209], a fork-join queue [74, 75], and the 2x2 switch [31]
(this is by no means an exhaustive list). Our method also allows us to obtain
approximations for several models which can be considered to be variants of
k-limited polling models, such as a polling model with multiple servers. Those
might be used to model a slightly different version of vehicle-actuated con-
trolled traffic lights than the standard approach using k-limited polling models,
see also Section 6.5.

The general applicability of our method is a definite and clear advantage
of our approximation scheme: we are able to obtain approximations for many
more queueing models (in a practical way) than the currently existing methods
are capable of. We describe some of the existing methods and provide some pros
and cons of them in the next subsection after giving the main contributions of
this chapter.

Our main contributions can be summarized as follows:

(i) We develop a novel approximation scheme for multidimensional queueing
models that focuses on approximations for PGFs.

(ii) We demonstrate the use of our approximation scheme by studying various
multidimensional queueing models showing that our scheme in general
leads to qualitatively good approximations.

158 6.1 Introduction

6.1.1 Some numerical-analytical and approximation schemes

In the last 60 to 70 years many approximation schemes have been developed
for queueing models. They range from specific formulas like Kingman’s ap-
proximation for the mean waiting time in a G/G/1 queue to complex methods
involving e.g. linear optimization. We provide an overview of the most relevant
numerical-analytical and approximation methods that can be used for (part of
the) models to which our novel scheme can be applied as well. We focus on
methods for two-dimensional queueing models, although most approximations
below can be used for queueing models with three dimensions or more as well.

Balance equations and state-space truncation. A standard approximation
scheme is the use of balance equations and an appropriate truncation of the
state space, i.e. the probabilities for the states that have a larger queue (in any
direction of the two dimensions) than a certain bound are estimated to be zero.
This bound should be sufficiently high. Then, the transition probabilities from
one state to another can be found, which leads to a set of linear equations which
(together with a normalization equation) can be solved to find an estimation
of the probabilities in the original queueing model. Examples can be found
in [184, Supporting Information, Section 1.7.2] and [137].

It might be possible (depending on the exact model) to formulate error
bounds for the performance measures of interest, which is a benefit of this ap-
proach. On the other hand, a disadvantage is that the number of probabilities
that needs to be estimated is quadratic in the truncation parameter. Moreover,
the balance equations are typically easy to derive when the service times are
exponential. Generalizations to phase-type distributions are possible, which
slightly complicates the derivation of the balance equations. As the phase-type
distributions are dense in the space of all distributions of non-negative random
variables (see e.g. [174]), approximations for any service-time distribution are
possible. However, such approximations typically tend to lead to a relatively
quick increase in the number of states.

The matrix-geometric and matrix-analytic approach. The matrix-geometric
method [5, 117] and the matrix-analytic method [5, 140] are methods that are
used to study Quasi Birth-and-Death (QBD) processes. These methods use the
transition rates directly together with a truncation of the state-space in a sin-
gle dimension. The states are then ordered in such a way that they represent
levels and phases. There are infinitely many levels (which correspond to the

Chapter 6. Approximation scheme for multidimensional queueing models 159

queue for which there is no truncation) and there is a finite number of phases
in each level (corresponding to the queue with the truncation). Except for level
zero, the number of phases in each level should be the same and the transition
probabilities between phases in each level should be the same. On top of that,
the outgoing transitions from level m are restricted to the neighboring levels
m−1 or m+1. Then, the transition matrix has a block tri-diagonal structure. In
both the matrix-geometric and the matrix-analytic method, this structure can be
leveraged to find a recursion for the steady-state probabilities. In both methods,
a solution for a matrix-quadratic equation has to be found, which can then be
exploited to find the steady-state probabilities. In Chapter 6 of [5] a recursion
is given to solve this matrix-quadratic equation.

There exist several extensions compared to the standard formulation de-
scribed above. There are ways to allow for an infinite number of phases, see
e.g. [185], and specific structures within the process might allow for an easy so-
lution of the aforementioned matrix-quadratic equation, see e.g. [161]. More-
over, there are extensions that allow for transitions between non-neighboring
levels, which relate to so-called Quasi Skip-Free processes, see e.g. [5].

When the truncation parameter increases, these methods tend to be quicker
than the previously discussed method that makes direct use of the balance equa-
tions. Matrix-geometric and matrix-analytic methods are most easy to apply to
queueing models if the service times are exponential. Phase-type service-time
distributions can also be handled, but that is at the expense of an increase in
the state space.

The compensation approach. The compensation approach has been devel-
oped in a series of papers by Adan et al., see e.g. the PhD thesis of Adan and
references therein [3]. Originally, the compensation approach was designed to
tackle random walks in the positive quarter plane with homogeneous nearest-
neighbor transitions in the interior of the positive quarter plane and homoge-
neous transitions along the boundary of the quarter plane. With some restric-
tions on the transitions (in the interior there should be none to the north, north-
east and east), one can show that the steady-state probabilities can be computed
as a sum of product-form terms. The product-form terms can be found as fol-
lows: start with a product-form solution for the steady-state probabilities in the
interior of the quarter plane, and then add, alternately, compensation terms
to account for the different transitions on the two boundaries. Extensions of
the original compensation approach to higher dimensions exist (with additional
constraints on the allowed transitions), see e.g. [204], and to queueing models

160 6.1 Introduction

with transitions to non-nearest-neighbor states, see e.g. [173].
The explicit expressions obtained from this method are a clear advantage.

However, its applicability is limited by the restrictions on the transitions be-
tween various states.

The power series algorithm. The next method to study multidimensional
queueing processes that we discuss, is the power series algorithm, see e.g. [13,
94]. The power series algorithm requires a Markov representation of the queue-
ing process and then a power-series expansion of the steady-state probabilities
is formed, often in terms of the load on the system. This power-series expan-
sion is recursively computed on the basis of global balance equations [13] until
a desired level of precision is achieved (and there is, thus, a truncation of the
state space). The radius of convergence and the convergence rate of the al-
gorithm are limiting factors in the original implementation of the power-series
algorithm. Several enhancements are available, see e.g. [199].

A positive element of this approach is its general applicability as there are
no strict requirements on the transitions between the various states as in the
previously discussed methods.

Markov reward approach. The Markov reward approach is an approximation
scheme with a different approach than the ones discussed so far. Instead of
a direct approximation, error bounds for performance measures are obtained.
If these error bounds are sufficiently tight, we might see those bounds as an
approximation. One of the first works in this line of research is by Van Dijk,
see e.g. [201]. In this approach, one often seeks for a slight modification of
the original queueing model, where the modified version allows for an exact
analysis (often in terms of a product-form solution). Then, using Markov reward
analysis techniques, bounds for the original queueing model can be obtained,
see e.g. [26, Chapter 9]. Recently, this line of research has been extended with
a linear programming approach [85], which has been further developed in [11,
48].

The latter method is quite flexible and alleviates some of the technical ver-
ification steps, but remains mainly limited to exponential service-time distribu-
tions, as is noted in [26, Section 9.7.1]. Moreover, Boucherie and Van Dijk state
in [26, Section 9.7.3] that further developments of the approximation scheme
are of substantial interest. One of the reasons is that the verification steps in the
approach become more difficult in case of discrete-time queueing models and

Chapter 6. Approximation scheme for multidimensional queueing models 161

another one is that it would be more difficult to find analytic expressions for the
modified system.

Precedence relations. In a similar spirit, using a Markov reward structure,
the precedence-relation method has been developed by Van Houtum et al., see
e.g. the PhD thesis of Van Houtum [203, Chapters 5 to 7] and [205]. Also in this
approach, error bounds for performance measures are constructed, but now by
means of so-called precedence relations. Precedence relations between states
m and n are formulated using the cost incurred over a period t , denoted with
vt (m) and vt (n). Then state m has precedence over state n if vt (m) ≤ vt (n) for
all t ≥ 0. Such precedence relations can then be used to obtain lower or upper
bounds for performance measures for the original queueing model by modifying
the original queueing model to an alternative queueing model (which is usually
easier to analyze, either explicitly or numerically).

The precedence-relation method is especially useful in cases where the mod-
ified queueing model is easy to analyze. Random walks with only nearest-
neighbor transitions, like shortest-queue systems as studied in [203, Chapters 5
and 6], seem to be among the easiest models to which the method can be ap-
plied. For other types of models it is usually more difficult to find useful modi-
fications to obtain lower and upper bounds for the original model.

Light- and heavy-traffic approximations. This approach obtains a closed-
form approximating formula for several performance measures of interest, like
the mean queue length or the mean waiting time. This idea was developed
in [166] for a single-queue model with Poisson input and was generalized later
on, see [22] for an application to polling models. The idea is that, e.g., the
mean waiting time can be described as a function of the load, ρ, which is ap-
proximated by a relatively simple function. Such a function could be a polyno-
mial in terms of ρ divided by 1−ρ. The light- and heavy-traffic limits (ρ going
to 0 and 1 respectively) of the mean waiting time are then used to obtain the
coefficients in the aforementioned polynomial to form an interpolation for the
other values of ρ. Even if one of the limits is unknown, such an approximation
can be constructed (which is then usually less accurate).

A definite advantage is that a closed-form expression is obtained, because
such expressions e.g. allow for optimization purposes. A disadvantage is that a
clear understanding of the model at hand is needed, in particular the light- and
heavy-traffic limit of the model need to be known. Sometimes those are known,
but quite often it is not straightforward to find such results (in particular the

162 6.2 Approximation scheme

heavy-traffic limit seems to be difficult to obtain in general). Next to this, we
remark that the approximation works especially well in light- and heavy-traffic
conditions, because the method ensures that the light- and heavy-traffic limits
are met. As a consequence, approximations for examples with a medium load
are typically most off under this scheme.

Chapter outline

We give a brief overview of the remainder of this chapter. In Section 6.2 we give
a detailed description of our approximation scheme. We discuss several exam-
ples of queueing models to which we apply our method in Sections 6.3, 6.4, and
6.5. In those three sections we discuss the specific model at hand and demon-
strate our method by means of studying one or more numerical examples. In
Section 6.6 we wrap up with a general conclusion.

6.2 Approximation scheme

We start this section with Subsection 6.2.1 where we describe our novel approx-
imation scheme in detail. For the ease of exposition we present the approach for
two-dimensional queueing models. We also provide a list of sufficient assump-
tions that ensure that our approximation scheme can be used. Subsequently, in
Subsection 6.2.2, we give the algorithm which we generally use to obtain root
pairs of the kernel function as present in Equation (6.1), which we need for our
approximation scheme. In Subsection 6.2.3, we give some further intuition and
background on the root pairs. We also show that there might be a significant
influence of the used roots pairs on the quality of the obtained approximation.

6.2.1 Detailed description of approximation scheme

We start the description of our approximation scheme with defining the queue-
ing process under consideration. We provide the description in two dimensions,
which can easily be generalized in several ways (upon which we briefly return
at the end of this subsection). Let (Q1,Q2) be the joint steady-state queue length
with N2 as underlying state space and let pi , j = P

(
(Q1,Q2) = (i , j)

)
. Define the

PGF of the joint steady-state queue-length distribution as P (x, y) = E[xQ1 yQ2].
In general we have a functional equation like Equation (6.1). The functions

K (x, y), f1(x, y), f2(x, y), and f3(x, y) are known and are generally non-zero. As

Chapter 6. Approximation scheme for multidimensional queueing models 163

can be seen from the definitions, we have that

P (x,0) = E[xQ11{Q2 = 0}] =
∞∑

i=0
pi ,0xi ,

P (0, y) = E[yQ21{Q1 = 0}] =
∞∑

j=0
p0, j y j ,

P (0,0) =P(Q1 = 0,Q2 = 0) = p0,0,

where 1{Qi = 0} = 1 if Qi = 0 and 0 otherwise. As mentioned before, the difficulty
lies in obtaining P (x,0) and P (0, y).

Instead of an exact computation scheme, we replace P (x,0) and P (0, y) by
functions P̃ (x,0) and P̃ (0, y), which are defined as follows:

P̃ (x,0) =
M1∑
i=0

p̃i ,0xi ,

P̃ (0, y) =
M2∑
j=0

p̃0, j y j ,

where the p̃i , j are approximations for the pi , j . To obtain the p̃i , j we require
that the p̃i , j satisfy,

f1(xi , yi)P̃ (0, yi)+ f2(xi , yi)P̃ (xi ,0)+ f3(xi , yi)p̃0,0 = 0, (6.5)

for a root pair (xi , yi) with |xi | < 1, |yi | < 1, and K (xi , yi) = 0. This resembles the
requirement that P (x, y) should be zero if K (x, y) = 0 and x and y are within the
unit circle, because P (x, y) is analytic within the unit circle.

If we have sufficiently many root pairs, we can form a set of linear equations
in terms of the p̃i ,0, i = 0, . . . , M1, and the p̃0, j , j = 1, . . . , M2. We supplement those
equations with a normalization equation. We e.g. require

lim
x→1

f1(x,1)P̃ (0,1)+ f2(x,1)P̃ (x,0)+ f3(x,1)p̃0,0

K (x,1)
= 1, (6.6)

reflecting that P (1,1) = 1 is a property that any PGF should satisfy. Then, we can
form a system of M1+M2+1 linear equations, which we can solve for the various
p̃i ,0 and p̃0, j . Those can then be used to approximate P (x, y).We summarize the
approximation scheme in pseudocode in Algorithm 6.1.

This completes our approximation scheme. The only thing left to do, is to
obtain (at least) M1 +M2 roots of K (x, y). This is the topic of Subsection 6.2.2.

164 6.2 Approximation scheme

Algorithm 6.1 Approximation scheme for P (x, y).

1: Find (the implicit function for) the PGF of the joint steady-state queue-
length distribution as in Equation (6.1).

2: Choose M1 and M2 and find M1 + M2 root pairs of K (x, y) within the unit
circle, see also Subsection 6.2.2, in particular Algorithm 6.2.

3: Form a set of linear equations based upon Equation (6.5) and a normaliza-
tion equation like Equation (6.6).

4: Solve the resulting set of equations and plug in the p̃i ,0 and p̃0, j to obtain
an approximation for P (x, y).

We remark that several variants of Algorithm 6.1 are possible. Obviously, in-
stead of using the normalization as in Equation (6.6), we might opt for different
normalization equations or use several normalization equations (in which case
we should leave out some of the other equations as we need a system of linear
equations with size M1+M2+1). Based on numerical experiments, using several
normalization equations could be beneficial for the quality of the approximation
scheme.

For completeness, we provide a list of sufficient assumptions for the basic ver-
sion of our approximation scheme that ensures that we can use Algorithm 6.1.

• A functional equation for the PGF of the joint queue-length distribution,
P (x, y), like in Equation (6.1) needs to be available. We require P (x, y) to
be analytical for |x| < 1 and |y | < 1. Moreover, P (x, y) should be continuous
for |x| ≤ 1 and |y | ≤ 1.

• We require the model to be stable, i.e. E[Q1] <∞ and E[Q2] <∞.

• We need to be able to obtain sufficiently many root pairs (xi , yi) of the
function K (x, y) in Equation (6.1) for which both |xi | < 1 and |yi | < 1, e.g.
using Algorithm 6.2 introduced below in Subsection 6.2.2.

Generalizations. There are several generalizations to other types of queueing
models. One generalization is that we can approximate n-dimensional queue-
ing models. Instead of Equation (6.1), we are then dealing with an implicit
n-dimensional function for P (x1, x2, . . . , xn) on the left-hand side which is multi-
plied with an n-dimensional kernel K (x1, x2, . . . , xn). On the right-hand side we
have 2n −1 unknown functions which all relate to P (x1, x2, . . . , xn), where one or
several of the xi are zero. This means that we have the following general form.

Chapter 6. Approximation scheme for multidimensional queueing models 165

Let n ∈ {0,1}n , i.e. let n be a vector of length n with zeros and ones, and let N

be the set of all such vectors of length n. Then

P (x1, x2, . . . , xn)K (x1, x2, . . . , xn) = ∑
n∈N \{1,...,1}

fn(x1, x2, . . . , xn)P (x1n1, x2n2, . . . , xn nn),

(6.7)

where ni denotes the i -th element of n. Then, under appropriate cut-offs of the
unknown functions on the right-hand side, we might use several n-dimensional
roots of the kernel and one (or several) normalization equation(s) to find an
approximation for P (x1, x2, . . . , xn). We demonstrate this in Subsections 6.3.4
and 6.5.2.

Further, we might consider another generalization. Looking closely at Equa-
tion (6.1), we assume that the only special conditions for the transition rates
can be found along the boundaries where Qi = 0 for i = 1,2. We can general-
ize our scheme at the expense of additional unknown functions that we have
to approximate to also allow for e.g. special transition rates when Qi = 1 for
i = 1,2. We are thus not restricted to queueing models where the only special
conditions occur along the boundary. In essence, k-limited polling models could
also be modeled in this way.

6.2.2 Finding suitable roots of the kernel

A practical challenge that comes with our approximation scheme is the fact that
we require roots of the kernel. In some cases, like 1-limited polling models with
2 queues, explicit expressions for the roots can be found [29]. However, roots of
the kernel are typically not easy to find explicitly. We propose a generic scheme
to find roots of the kernel (in two dimensions, a generalization to n dimensions
is possible), which we describe in more detail in pseudocode in Algorithm 6.2.
We first give a short explanation.

We start with choosing a grid structure for the y-variable, i.e. we choose a
step size, δ, and obtain the points y = k/δ+l/δ·i , for k =−δ, . . . ,−1,1, . . . ,δ and l =
−δ, . . . ,−1, where i 2 =−1. We exclude y-variables with a real or imaginary part
equal to zero to prevent numerical problems. Subsequently, we check whether
the obtained y is within the unit circle and if so, we find an accompanying x by
means of a numerical procedure such that the kernel is zero for the combination
(x, y). We check whether the obtained x is within the unit circle and if so, we
add the pair (x, y) to a list of suitable root pairs. Moreover, we employ the fact
that if (x, y) is a root for the kernel, then the complex conjugate (x̄, ȳ) is a root

166 6.2 Approximation scheme

as well. This reduces the computational cost to obtain sufficiently many root
pairs. Another benefit is that this stabilizes the numerical procedure later on: a
polynomial with real coefficients, such as a PGF, which has complex root r , also
has r̄ as a root. Moreover, we construct a while loop among increasing values
of δ to ensure that we obtain sufficiently many root pairs. Summarizing, we
obtain the procedure as in Algorithm 6.2.

Algorithm 6.2 Obtaining roots of the kernel.

1: Set δ= 1 and initialize the set of root pairs Z =;.
2: while |Z | < M1 +M2 do
3: Put Z =; and put δ= δ+1.
4: Compute a list of y ’s with y = k/δ+ l/δ · i , with k =−δ, . . . ,−1,1, . . . ,δ and

l =−δ, . . . ,−1. Pick only those y that satisfy |y | < 1.
5: for each y do
6: Find, numerically, an x such that K (x, y) = 0.
7: If |x| < 1, store the combination (x, y) and (x̄, ȳ) in Z .
8: end for
9: end while

10: Return δ and Z .

Whether or not we are able to find sufficiently many root pairs (xi , yi) such
that both xi and yi are located within the unit circle depends on the kernel
K (x, y). A priori it is not clear if there are any root pairs of K (x, y) within the
unit circle and if so how many there are. We thus need to either assume or
prove that there are sufficiently many zero pairs within the unit circle in order
to employ our algorithm. We will prove that there are infinitely many of such
root pairs for each of the models that we consider in the remainder of this
chapter.

Example 6.1 (Two M/M/1 queues in series: roots of the kernel) We derived
that the kernel equation for the model with two M/M/1 queues in series is:

K (x, y) = x y
(
µ(1−x)+ν1(1− y/x)+ν2(1−1/y)

)
.

We first state Rouché’s theorem (see e.g. [6]), which we will use in the proof of
Lemma 6.2 which is formulated below.

Theorem 6.1 (Rouché’s theorem) Let the bounded region D have a simple closed
contour, C , as its boundary. Let f (z) and g (z) be analytic both in D and on C .

Chapter 6. Approximation scheme for multidimensional queueing models 167

Assume that | f (z)| < |g (z)| on C . Then g (z)− f (z) has in D the same number of
zeros as g (z), all zeros counted according to their multiplicity.

Then, we have the following lemma.

Lemma 6.2 The kernel equation for the model with two M/M/1 queues in series,
K (x, y), has infinitely many root pairs (xi , yi) with |xi | = 1 and |yi | < 1.

Proof. We adapt the proof of Lemma 8.2 in [209] to our setting. We employ
Rouché’s theorem. To this end, we define

f (y) =−
(
ν1

µ
x̄ y2 + ν2

µ

)
,

g (y) =
(
1+ ν1

µ
+ ν2

µ
−x

)
y.

Then we have, if |x| = 1, that

µx(f (y)+ g (y)) = K (x, y).

Moreover, f (y) and g (y) are analytic inside and on the unit disk.
We have that, if |x| = 1 and x 6= 1,

| f (y)| ≤ ν1

µ
|x̄||y |2 + ν2

µ
= ν1

µ
|y |2 + ν2

µ

and

|g (y)| =
∣∣∣∣1+ ν1

µ
+ ν2

µ
−x

∣∣∣∣ |y | > (
ν1

µ
+ ν2

µ

)
|y |.

Then we have for all |y | = 1 that

| f (y)| ≤ ν1

µ
+ ν2

µ
,

|g (y)| > ν1

µ
+ ν2

µ
.

Rouché’s theorem then tells us that f (y)+g (y) has the same number of roots inside
|y | = 1 as g (y). g (y) has one root with |y | < 1 (g (0) = 0). So K (x, y) has one solution
satisfying |y | < 1 for all x with |x| = 1 and x 6= 1. K (x, y) thus has infinitely many
root pairs satisfying |x| = 1 and |y | < 1. ä

168 6.2 Approximation scheme

6.2.3 Choice of the roots

The choice for the root pairs of the kernel may have a significant influence on the
accuracy of our approximation scheme. This also seems to play a role in other
approximation schemes, such as in [68], where approximations for a two-class
queue with an alternating service discipline are provided and some examples
show numerical instabilities. The choice of the root pairs seems to cause these
problems (see also Section 6.4). Although we have been unable to detect a clear
relation between the choice of the roots and the outcome of the approximation,
we see some general patterns and we have gathered some intuition, which we
share here.

In order to better understand the relation between the choices for the root
pairs and the approximation, we start with a simple example. Consider an
unknown function p(x) and its Taylor series around x = 0: p(x) =∑∞

i=0 pi xi with
pi unknown. Let us assume that we might sample p(x) for various values of x.
Then, if we want to approximate the pi for i = 0,1. . . ,n (as we essentially do in
our approximation scheme), which x should we choose to sample? Theory on
numerical analysis tells us that it is generally best to sample p(x) for values of x
close to 0 as p(x) is a Taylor series around x = 0, see e.g. [35]. We probably also
want to sample p(x) for some positive and some negative values of x.

Based on this intuition for a one-dimensional function, we might expect that
root pairs close to (0,0) work well when approximating P (x,0) and P (0, y) in
Equation (6.1), as P̃ (x,0) and P̃ (0, y) are essentially Taylor series around x = 0
and y = 0 respectively. This is indeed something that we generally observe: if
all root pairs are close to (0,0), we tend to get better approximations than in the
case where we choose all root pairs far from (0,0).

Also the observation that we would like to know p(x) for both positive and
negative values of x in the one-dimensional setting, finds its analogy in the set-
ting with approximating P (x,0) and P (0, y) in Equation (6.1). E.g. if every root
pair (xi , yi) of K (x, y) has the property that Re(xi) < 0, the quality of the approx-
imation is generally worse than in the case where there are xi with positive and
negative real part. The same holds for the yi .

The above considerations have, partly, led to the general approach to obtain
root pairs of K (x, y) as described in Algorithm 6.2. Using Algorithm 6.2, we at
least get some root pairs (relatively) close to (0,0) and we span the entire unit
circle, at least for y . Occasionally, it might happen that using Algorithm 6.2,
all root pairs satisfy a property like Re(x) < 0, which tends to lead to relatively
bad approximations. In such cases, we usually opt for a combination of Algo-
rithm 6.2 as above and Algorithm 6.2 with x and y interchanged to make sure

Chapter 6. Approximation scheme for multidimensional queueing models 169

that a property like “all x satisfy Re(x) < 0” cannot occur. In general, this ap-
proach to find root pairs works well and gives rise to useful approximations,
which is the main reason to work with Algorithm 6.2 in this chapter.

Example 6.1 (Two M/M/1 queues in series: influence of the roots) We com-
pare two different choices for the set of root pairs used in our method to approxi-
mate the PGF of the joint steady-state queue-length distribution of the model with
two M/M/1 queues in series. One set has root pairs close to zero, while the other
set is obtained with Algorithm 6.2 and we study the difference in the quality of the
approximation (which is easy, because we know an explicit formula for P (x, y), see
Equation (6.4)).

We choose µ= 1, ν1 = 10 and ν2 = 2.5. We further choose M1 = M2 = 10. Using
Algorithm 6.2, we continue until δ= 4 and we use the first 20 root pairs obtained
by Algorithm 6.2 in Approximation 1. For Approximation 2 we also use Algo-
rithm 6.2, but we continue until δ = 30 and then use the 20 root pairs with the
smallest total absolute value, i.e. the (xi , yi) such that |xi |+|yi | is minimal. We ap-
proximate pn1,n2 in both cases for n1,n2 = 0,1,2,3, and obtain Tables 6.1 and 6.2.
We give the approximation and the absolute relative error defined as |a−e|/e ·100%
where a is the approximation and e the exact value.

Table 6.1: The approximation obtained using Approximation 1 with various values of n1
displayed in the columns and n2 displayed in the rows. Between brackets we display the
absolute relative error in %.

pn1,n2 n1 = 0 n1 = 1 n1 = 2 n1 = 3
n2 = 0 0.54 (0.0082) 0.22 (0.0079) 0.086 (0.019) 0.035 (0.21)
n2 = 1 0.054 (0.0033) 0.022 (0.11) 0.088 (1.3) 0.0031 (11)
n2 = 2 0.0053 (1.1) 0.0024 (12) 0.00014 (84) 0.0017 (389)
n2 = 3 0.00106 (97) −0.0011 (612) 0.0023 (2580) −0.0023 (6710)

We see in Table 6.1 that the approximation for higher values of n1 and n2

quickly drops in quality, whereas in Table 6.2 we see that the absolute relative
errors remain quite small. In general, Approximation 2, with the root pairs close
to zero, is more accurate than Approximation 1 where we use root pairs further
away from zero. The quality of the approximation thus depends on the used root
pairs and root pairs close to zero seem to work better (at least in this example).

We note that increasing M1 and M2 further, e.g. to 100, leads to more accurate
approximations. The difference in the quality of the approximation between the
two sets of root pairs seems to decrease when the values of M1 and M2 are increased.

170 6.3 k-limited polling models

Table 6.2: The approximation obtained using Approximation 2 with various values of n1
displayed in the columns and n2 displayed in the rows. Between brackets we display the
absolute relative error in %.

pn1,n2 n1 = 0 n1 = 1 n1 = 2 n1 = 3
n2 = 0 0.54 (0.015) 0.22 (0.015) 0.086 (0.015) 0.035 (0.014)
n2 = 1 0.054 (0.015) 0.022 (0.015) 0.0086 (0.016) 0.0035 (0.021)
n2 = 2 0.0054 (0.015) 0.0022 (0.017) 0.00086 (0.035) 0.00035 (0.16)
n2 = 3 0.00054 (0.020) 0.00022 (0.067) 0.000087 (0.43) 0.000036 (2.7)

In a few rare cases, specific additional information about the kernel is known
that can be used to find root pairs. E.g. in the case of a 1-limited polling model
with two queues, a curve, named F in [29], describing root pairs of K (x, y) can
be identified. This function is used to formulate and solve a boundary value
problem to obtain P (x, y) in [29]. Points on F can also be used as root pairs
in our approximation scheme and it turns out that the quality of the approx-
imation increases when compared with the case where we have root pairs as
chosen in Algorithm 6.2. Apparently, root pairs on a curve like F have a positive
impact, although we do not have a clear understanding why. For general mod-
els, however, it is hard to find such curves and as such we do not advocate the
use of curves like the curve F in [29] due to limited applicability. Even though
root pairs based on Algorithm 6.2 yield (slightly) worse results for a 1-limited
polling model with two queues, our approach to find root pairs can be used
more generally.

A further investigation of the relation between the root pairs and the quality
of the approximation is beyond the scope of this chapter.

6.3 k-limited polling models

k-limited polling models form a set of queueing models that have sparked a
lot of interest in the literature, that are so far considered to be analytically in-
tractable except for some specific cases, and that fall in the class of systems
that our novel approximation scheme can be applied to. In general, a k-limited
polling model consists of N queues and one single server. The server alter-
nates between the various queues and when the server starts serving queue i , it
serves at most ki customers during that visit, after which the server switches to
the next queue. We will focus on examples where the server visits the queues

Chapter 6. Approximation scheme for multidimensional queueing models 171

sequentially in a cyclic and predetermined order. These k-limited polling mod-
els might be employed to model certain types of vehicle-actuated traffic-light
control strategies, which is another reason for us to study them.

There are some approximation schemes that are specifically tailored towards
k-limited polling models, besides the ones that we already discussed in Subsec-
tion 6.1.1. An example is [211], using a decomposition of the entire system
into one-dimensional k-limited queues with state-dependent vacations. These
queues are then iteratively approximated. Another example is [21], which em-
ploys a light- and heavy-traffic approximation. Van Houdt relies on the power
series algorithm, Kronecker matrix representations, and the shuffle algorithm
in [202]. As a last possible approximation we name the pseudo-conservation
law, first formulated in [28]. The results can in some cases be leveraged to ob-
tain exact results, for example in case of a symmetric 1-limited polling model
with an arbitrary number of queues. We will use this to determine the quality
of our approximation in the case of symmetric 1-limited polling models. Typi-
cally we are able to outperform and/or obtain more general results than existing
approximation methods.

In the remainder of this section, we first give a brief and general description
of k-limited polling models and provide the various functions that we need to
execute our approximation algorithm. We also prove that there are sufficiently
many zeros of the kernel equation. After that we study various examples, start-
ing in Subsection 6.3.2 with a symmetric 1-limited polling model with 2 queues.
For this example, we are able to calculate various performance measures an-
alytically, which allows us to validate our approximation scheme. In Subsec-
tion 6.3.3 we study a large test bed of two-queue k-limited polling models in
order to assess the general quality of our approximation scheme. Finally, in
Subsection 6.3.4, we show that our approximation scheme can also be used to
approximate k-limited polling models with more than two queues.

6.3.1 Joint steady-state queue-length analysis

We provide a high-level derivation of the relevant functions for the k-limited
polling model that we need for our method. We also slightly generalize the
method described in Section 6.2. We do so in order to be able to account for
being in various states, as we want to take into account in which part of the
cycle we are.

We have a k-limited polling model with N queues. We denote with ki the
maximum number of customers served at queue i per cycle. We divide the
cycle into N +∑N

i=1 ki states. We denote the states with the pair (i , j), where

172 6.3 k-limited polling models

i = 1, . . . ,k j +1 and j = 1, . . . , N . The index i corresponds for i = 1, . . . ,k j to the start
of the k j service epochs at queue j = 1, . . . , N and the index i = k j +1 corresponds
to the start of the switchover period from queue j to queue j +1 (where queue
N + 1 is to be understood as queue 1). We define

(
Q(i , j)

1 , . . . ,Q(i , j)
N

)
to be the

random vector with the joint steady-state queue-length distribution at the start
of state (i , j) and accordingly we define

Pi , j (x) = E[
N∏

l=1
x

Q
(i , j)
l

l]

with x = (x1, . . . , xN). We further denote with Q j the random variable of the
steady-state queue-length distribution at an arbitrary moment for queue j . We
also introduce µi , the Poisson arrival rate at queue i ; Bi , the generally dis-
tributed service time at queue i , i = 1, . . . , N , with mean bi and Laplace-Stieltjes
Transform (LST) βi (.); and Si , the generally distributed switchover time from
queue i to queue i +1 mod N , with mean si and LST σi (.). We assume that all
arrival processes, service times, and switchover times are independent. Further,
we define z(x) =∑N

i=1µi (1−xi). Then, we have that

P1,1(x)K (x) =
N∑

j=1

k j∑
i=1

(
Pi , j (x1, . . . , x j−1,0, x j+1, . . . , xn)xi−1

j (x j −β j (z(x)))

β j (z(x))k j −iσ j (z(x))
N∏

l= j+1

(
βl (z(x))klσl (z(x))

) j−1∏
l=1

xkl
l

)
,

(6.8)

where

K (x) :=
N∏

j=1
x

k j

j −
N∏

j=1
β j (z(x))k jσ j (z(x)). (6.9)

A derivation of these functions can be found in Appendix 6.A where also the
PGF for the joint steady-state queue-length distribution at an arbitrary moment
is given. Expressions for the other Pi , j (x) can also be derived. We note that
compared to the general form of the functional equation presented in Equa-
tion (6.7), we only have functions where only one of the x j is replaced with 0
as can be seen in Equation (6.8). As such, we have

∑N
j=1 k j unknown functions,

rather than the two in Equation (6.1) or the 2N −1 in Equation (6.7). This is not
a problem as we show in the coming numerical examples.

Chapter 6. Approximation scheme for multidimensional queueing models 173

Finally, we require that the load,

ρ =
N∑

j=1
µ j b j ,

is less than 1 and that the utilization for queue i , which reads

ui = ρ+µi

∑N
j=1 s j

ki
,

is less than 1 to ensure stability for queue i , see e.g. [78].
As a last remark before turning to the number of zeros of K (x) within the

unit circle, we note that we have to generalize the notation slightly. For the
remainder of this section, we denote the cut-off of the function Pi , j (x) for i =
1, . . . ,k j and j = 1, . . . , N with Mi , j .

Number of zeros of the kernel

In this subsection, we prove that there are infinitely many zeros within the unit
circle for Equation (6.9). This implies that we are able to find sufficiently many
zeros which we need for our approximation scheme. We prove that the number
of zeros within the unit circle for the kernel is infinite by means of applying
Rouché’s theorem, as detailed in Lemma 6.3.

Lemma 6.3 The equation

K (x) =
N∏

j=1
x

k j

j −
N∏

j=1
β j (z(x))k jσ j (z(x)) = 0 (6.10)

has infinitely many solutions x = (x1, . . . , xN) with |x j | < 1 for j = 1, . . . , N .

Proof. We want to employ Rouché’s theorem. With the notation as in Theo-
rem 6.1, we choose D to be the unit disk and C to be the unit circle. We prove
that

| f (z(x∗))| =
∣∣∣∣∣ N∏

j=1
β j (z(x∗))k jσ j (z(x∗))

∣∣∣∣∣< 1,

where x∗ = (hse2πi 1/N ,hse2πi 2/N , . . . ,hse2πi N /N), with |h| = 1 and a fixed s with
|s| = 1 and s 6= 1.

174 6.3 k-limited polling models

We start with noting that∣∣∣∣∣ N∏
j=1

β j (z(x))k jσ j (z(x))

∣∣∣∣∣= N∏
j=1

∣∣β j (z(x))
∣∣k j

∣∣σ j (z(x))
∣∣ . (6.11)

We prove that |β1(z(x∗))| < 1 and similarly the other terms on the right-hand side
of Equation (6.11) can be shown to be less than 1.

As β1(x) is an LST, we have

|β1(z(x∗)| =
∣∣∣∣∣
∫ ∞

0
exp

(
−

N∑
j=1

µ j

{
1−hse2πi j /N

}
t

)
dP(B1 < t)

∣∣∣∣∣
≤

∫ ∞

0

∣∣∣∣∣exp

(
−

N∑
j=1

µ j

{
1−hse2πi j /N

}
t

)∣∣∣∣∣dP(B1 < t)

=
∫ ∞

0
exp

(
−

N∑
j=1

µ j

{
1−Re

(
hse2πi j /N

)}
t

)
dP(B1 < t)

<
∫ ∞

0
1dP(B1 < t) = 1,

where in the first inequality we use the triangle inequality for integrals and in
the last inequality we use that

∑N
j=1µ j {1−Re(hse2πi j /N)}t > 0. The latter is the

case because
∣∣e2πi j /N

∣∣= 1, |h| = 1, and |s| = 1, so

Re
(
hse2πi j /N

)
≤ 1

for all j . We moreover have that at least one hse2πi j /N 6= 1 since s 6= 1, implying
that

N∑
j=1

µ j

{
1−Re

(
hse2πi j /N

)}
t > 0.

Using Equation (6.11), we thus have that∣∣∣∣∣ N∏
j=1

β j (z(x∗))k jσ j (z(x∗))

∣∣∣∣∣< N∏
j=1

1k j ·1 = 1.

Moreover, we have that

|g (x∗)| =
∣∣∣∣∣ N∏

j=1

(
hse2πi j /N

)k j

∣∣∣∣∣= |(hs)|
∑N

j=1 k j
∣∣∣e∑N

j=1 2πi j k j /N
∣∣∣= 1

Chapter 6. Approximation scheme for multidimensional queueing models 175

as |h| = 1 and |s| = 1.
As f (z(x∗)) and g (x∗) are analytic on and within the unit circle, we can em-

ploy Rouché’s theorem to conclude that K (x∗) has
∑N

j=1 k j roots for |h| < 1 for a
fixed s with |s| = 1, s 6= 1, and x∗ as defined before. This implies that there are
infinitely many roots within the unit circle of Equation (6.10). ä

We are now set to continue with the numerical examples.

6.3.2 1-limited symmetric polling example

We start with an example for which several exact results are known so that
we can validate our approximation scheme. We focus on a 1-limited polling
model which is symmetric in the arrival rate and the service and switchover time
distributions. We choose to vary the arrival rate and keep the other parameters
of the model fixed. We choose the service-time distribution to be deterministic
with value 1/3 and the switchover time distribution to be exponential with rate
7. Then, using the pseudo-conservation law [28], we can compute the mean
waiting time exactly. We can compare this exact value with an approximation
of the mean waiting time based on our approximation for P1,1(x1, x2), see also
Appendix 6.A where we show how to derive the joint steady-state queue-length
distribution at an arbitrary time from the Pi , j (x1, x2). Then, we can compute the
mean queue length at an arbitrary time and employ Little’s law to obtain the
mean waiting time.

In Table 6.3 below, we show for varying arrival rates the load on the queues,
the approximation of the mean waiting time, the exact value of the mean wait-
ing time, and two parameters of our algorithm, namely δ, the final step size in
Algorithm 6.2, and the value of M1,1 (which is equal to the value of M1,2). As a
last remark before turning to Table 6.3, we note that we employ the symmetry
of the queueing system at hand in our approximation scheme, as we know that
pi , j = p j ,i , so we also require symmetry in our approximation scheme: we en-
force p̃i ,0 = p̃0,i . This reduces the computation time and seems to yield (slightly)
more accurate approximations.

As can be seen from Table 6.3, our approximation scheme performs well for
all arrival rates. Among others, we display the absolute relative error, defined
as |a − e|/e · 100% where a is the approximation and e the exact value. The
maximum absolute relative error is 0.24%. The quality of the approximation
can be further improved if the values of Mi , j are increased further (and if δ is
adjusted accordingly), see also Figure 6.1 below.

The maximal relative error is attained for an instance with a very high load

176 6.3 k-limited polling models

Table 6.3: Mean waiting time for a symmetric 1-limited polling model with 2 queues,
deterministic service times with value 1/3 and exponential switchover time distributions
with rate 7. We have chosen M1,1 = M1,2 and various arrival rates, µ, leading to various
utilizations, u. We further display the step size δ, the approximation, the exact result,
and the absolute relative error in %.

µ u M1,1 δ Approximation Exact result Abs. relative error
0.05 0.05 10 7 0.23083 0.23083 < 0.001%
0.15 0.14 20 7 0.26944 0.26944 < 0.001%
0.25 0.24 40 7 0.31771 0.31771 < 0.001%
0.35 0.33 60 7 0.37976 0.37976 < 0.001%
0.45 0.43 80 8 0.46250 0.46250 < 0.001%
0.55 0.52 100 8 0.57833 0.57833 < 0.001%
0.65 0.62 100 8 0.75208 0.75208 < 0.001%
0.75 0.71 150 9 1.04167 1.04167 < 0.001%
0.85 0.81 150 9 1.62083 1.62083 < 0.001%
0.95 0.91 200 9 3.35833 3.35833 < 0.001%
1.00 0.95 300 11 6.83336 6.83333 < 0.001%
1.01 0.96 375 12 8.57084 8.57083 < 0.001%
1.02 0.97 450 13 11.4668 11.4667 0.001%
1.03 0.98 600 15 17.2620 17.2583 0.021%
1.04 0.99 900 18 34.7157 34.6333 0.238%

(above 0.99). This points to a challenge in our algorithm: high loads require
high values of Mi , j , as we essentially need to estimate more probabilities to
obtain a good approximation (and the caveat is that higher Mi , j imply a larger
computation time). To investigate the influence of the parameter Mi , j , we take a
closer look at the case where the arrival rate is 1.04 and where we vary the Mi , j .
We obtain Figure 6.1, where we have the value of Mi , j on the horizontal axis
and the approximation on the vertical axis. We see that there is a dependence
between the values of the Mi , j and the quality of the approximation. Figure 6.1
indicates that Mi , j should be sufficiently high in order to obtain good approx-
imations and depending on the error that one is willing to accept, Mi , j ≈ 700
probably suffices in this particular example. A general rule-of-thumb for the
height of Mi , j is difficult to establish. However, we generally see that a higher
load requires a higher Mi , j .

Our approximation scheme is thus capable of providing satisfactory approxi-
mations for the mean waiting time. Moreover, we readily obtain approximations

Chapter 6. Approximation scheme for multidimensional queueing models 177

0 200 400 600 800 1000
M10

10

20

30

40

50

Mean waiting time

Figure 6.1: Mean waiting time estimation for various values of M1,1 for a 1-limited
polling model with 2 queues, a Poisson arrival rate of 1.04, deterministic service times
with value 1/3, and exponential switchover times with rate 7. The dashed line represents
the exact value.

for the PGF of the joint steady-state queue-length distribution, which also allows
us to obtain higher moments and variances of e.g. the queue-length distribu-
tion.

6.3.3 Test bed for two-queue k-limited polling models

In this subsection, we create a test bed in order to assess the general quality of
our approximation scheme when applied to k-limited polling models. To this
end, we set up a test bed with a large variety of examples and we compare
the results of our approximation scheme with extensive simulation results. An
overview of the various parameter settings can be found in Table 6.4. We have
varied the squared coefficient of variation (SCV) between 0, 1, and 2 for the ser-
vice time distribution and between 0 and 1 for the switchover time distribution.
In case the SCV is equal to 2, we fit a so-called hyperexponential distribution
with balanced means as described in Example 2 of [22]. If the imbalance in the
arrival rate is equal to a, then the total arrival rate at the two queues is equal to
µtot such that µ1 +µ2 = µtot, aµ1 = µ2, and such that the maximal load on either
of the queues is equal to the load listed in Table 6.4.

In total, the number of cases in our test bed is equal to 2880. There are
some symmetric cases for which we can take all Mi , j the same as we did in

178 6.3 k-limited polling models

Table 6.4: Test bed used to compare the approximation to simulation results.

Parameters Values
(k1, k2) (1,1), (1,3), (3,3), (5,5)
Load 0.1, 0.3, 0.5, 0.7, 0.9
B1 0.1, 1
B2 0.1, 1
S1 0.1, 1
S2 1
SCV service times 0, 1, 2
SCV switchover times 0, 1
Imbalance arrival rates 1/3, 2/3, 1

Subsection 6.3.2, but there are also many asymmetric cases for which the ap-
proximation with all Mi , j the same does not yield good approximations. We
devise a general rule-of-thumb to obtain good values for the Mi , j . If we de-
note the total number of root pairs with t and the load on queue i with ui ,
we choose the Mi ,1 as bt/k1 · (u2 + 1/2)/(u1 + u2 + 1)c − 1 and for the Mi ,2 as
bt/k2 · (u1 + 1/2)/(u1 +u2 + 1)c − 1, if k1 = k2. If k1 6= k2, we need to adjust for
this and we choose the Mi ,1 to be bt/k1 · (u2 +1/2+k1)/(u1 +u2 +1+k1 +k2)c−1
and bt/k2 ·(u1+1/2+k2)/(u1+u2+1+k1+k2)c−1 for the Mi ,2. In this way we can
account for differences in the load and the ki in both queues. The idea behind
this general rule is that we need to account for differences in the loads and ser-
vice limits in each queue. The higher the load on queue 1 (2), the longer the tails
of the Pi ,2(x1,0), i = 1, . . . ,k2 (Pi ,1(0, x2), i = 1, . . . ,k1) are. This in turn implies that
we need (relatively) high values for the corresponding Mi , j and indeed, in our
rule-of-thumb, Mi , j depends proportionally on the loads u1 and u2. Similarly,
we need to take differences in k1 and k2 into account when k1 6= k2 and also here
we choose for a proportional dependence between the Mi , j and the k j . The de-
vised rule-of-thumb generally seems to yield reasonably good approximations.
Further, we provide a minimal average number of the various Mi , j , which we set
to (30,75,100,200,300) for maximal loads of respectively (0.1,0.3,0.5,0.7,0.9). For
each separate example we find an accompanying δ to make sure that we have
sufficiently many root pairs.

In Tables 6.5 and 6.6 we focus on mean waiting times. In Table 6.5, we
display the absolute relative error made by our approximation scheme when
compared with extensive simulation results. When a is the approximation for
the mean waiting time and s the mean waiting time obtained from extensive

Chapter 6. Approximation scheme for multidimensional queueing models 179

simulations, we display the absolute relative error, |a − s|/s ·100%, categorized
in bins of various sizes.

Table 6.5: Absolute relative error for the mean waiting time at queue i , denoted with
E[Wi], expressed in % and categorized in bins for all cases in the test bed.

0−0.1% 0.1−1% 1−5% 5−10% 10−15% 15−20% > 20%
E[W1] 90.9 4.76 2.12 0.76 0.31 0.10 1.08
E[W2] 90.8 4.27 1.91 0.59 0.28 0.17 1.97

Table 6.6: Average absolute relative error for the mean waiting times at queues 1 and 2,
expressed in % and categorized in bins. Under (a) we distinguish between the various
combinations of the k j and under (b) between various loads.

(a)
(k1,k2) 0−0.1% 0.1−1% 1−5% 5−10% 10−15% 15−20% > 20%
(1,1) 99.7 0.28 0 0 0 0 0
(1,3) 86.5 7.50 4.58 0.69 0.42 0 0.28
(3,3) 87.5 6.53 2.64 0.83 0.56 0.28 1.67
(5,5) 79.7 8.89 4.03 1.25 0.69 0.14 5.28

(b)
Load 0−0.1% 0.1−1% 1−5% 5−10% 10−15% 15−20% > 20%
0.1 98.8 1.04 0.17 0 0 0 0
0.3 97.7 1.91 0 0.17 0.17 0 0
0.5 93.8 4.34 1.04 0.17 0.17 0 0.52
0.7 88.9 4.69 3.12 0.69 0.35 0.17 2.08
0.9 62.7 17.0 9.72 2.43 1.39 0.35 6.42

We see that we obtain accurate approximations for the mean waiting times
in many instances. In Table 6.5, we see that for more than 95% of all examples
in the test bed we have an absolute relative error below 1% (and in many cases
even below 0.1%) for both the mean waiting time in queue 1 and in queue 2
when we compare our approximations with extensive simulation results. Espe-
cially for the “easy” cases with a low load and/or low values of the k j , we have
accurate approximations as can be observed in Table 6.6. This is explained by
the fact that in those cases we can choose the values of the Mi , j to be relatively
low, which still yields a qualitatively good approximation. Also when either the
load or the values of the k j are increased, we often obtain good approximations

180 6.3 k-limited polling models

for the mean waiting time, but those are at the expense of (slightly) larger ap-
proximation errors and/or longer computation times. Nevertheless, we would
like to argue that, also in those cases, our approximation scheme is performing
quite well.

In a few cases, our approximation scheme deviates more than 20% from the
simulation results for at least one of the estimated mean waiting times. This
amounts to 64 cases (out of 2880 cases). We investigated some of those cases
separately and we were able to find a better approximation when increasing the
values of the Mi , j and/or slightly changing the ratio between the values of the
Mi , j . This points towards a difficulty of our algorithm: how should the Mi , j be
chosen? Although we have a general rule-of-thumb, it does not work well in
every single case and (a bit of) experimentation is sometimes required to find
the right values. Especially when the load increases and/or the values of the
k j increase, the choice of the Mi , j becomes more critical. However, in every
separately investigated case we have been able to find better approximations
than the ones displayed in Table 6.6 by adapting the various Mi , j .

We conclude with a few remarks. The total computation time for all approx-
imations in the test bed is considerable (several days) on a high performance
computing cluster. In many cases however, we could have chosen lower values
for the Mi , j leading to qualitatively similar approximations which would have
decreased the computation time. We choose relatively large values for the Mi , j

due to the wide range of cases that we study in the test bed. Often, we could
thus have performed our approximation with a lower computation time while
maintaining the quality of the approximation. Moreover, our implementation of
the approximation scheme is (probably) not the most efficient one. This could
decrease the computation time further.

6.3.4 1-limited polling with three queues

As mentioned before, our method is also capable of approximating queueing
models with more than two queues. We illustrate this by looking at an asym-
metric k-limited polling model with three queues. We choose k j = 1 for j = 1,2,3.
We assume Poisson arrivals as before and we choose µ j = 0.25. The service-time
distribution at queue j is chosen to be deterministic with value 1/ j and all
switchover time distributions are exponential with parameter 5. This implies
that the utilization for each queue is 73/120 ≈ 0.608.

A difference with two-queue models is that we need a root triplet rather
than a root pair. One has to be careful when selecting the root triplets that are
used, as linear dependencies within the set of linear equations that we need

Chapter 6. Approximation scheme for multidimensional queueing models 181

to solve might lead to numerical problems/instabilities. One could work with
a structure like in Algorithm 6.2 for the two-queue scenario, but we opt for a
different approach here (that also works in two dimensions). We generate a
random list of x2 and x3 that are located within the unit circle and then find
an accompanying x1 such that K (x1, x2, x3) = 0. We use a numerical root-finding
procedure to obtain such an x1. We cannot guarantee that such an x1 exists, but
in our algorithm we are almost always able to find such an x1. If the obtained x1

is within the unit circle, we add the triplet to a list of root triplets for K (x1, x2, x3)
which are subsequently used to build the system of linear equations. Together
with one or more normalization equations, we are then able to find the finite
number of unknowns which we are looking for. We choose all cut-offs to be 15
and we work with the normalization equation

lim
x1→1

P1(x1,1,1) = 1.

In Table 6.7 we see that we obtain approximations with a quite small abso-
lute error when we compare our results with simulation results: the absolute
relative error is maximally 0.51%. We are not always within the 95% confidence
interval obtained from extensive simulation runs, but we are always close to the
simulated value.

Table 6.7: Various approximation and simulation results for performance measures of
the three-queue k-limited polling model. Sim. stands for simulation and the lower and
upper bound correspond to a 95% confidence interval. E[Wi] stands for the mean waiting
time at queue i .

Approximation Sim. lower bound Sim. upper bound
E[Q1] 0.6450 0.6448 0.6451
E[Q2] 0.4714 0.4713 0.4716
E[Q3] 0.4146 0.4148 0.4151
E[W1] 1.5801 1.5793 1.5803
E[W2] 1.3857 1.3856 1.3864
E[W3] 1.3251 1.3260 1.3267
Var(Q1) 0.8333 0.8330 0.8341
Var(Q2) 0.6023 0.6023 0.6030
Var(Q3) 0.5270 0.5294 0.5300

This example clearly illustrates that our method can be applied for queueing
models with more than two queues. Even though the number of unknowns that

182 6.4 A two-class queue with alternating service discipline

we need to find, quickly grows in this example (we already need to estimate 768
unknowns in this example), we are still capable of finding accurate approxima-
tions in a reasonable amount of time (about half an hour for the entire table).
We note that our approximation scheme is quite sensitive to the values of the
cut-offs in this example. For example, a small change in the Mi , j might lead to
a relatively big change in the approximation. A further investigation of this is
beyond the scope of this chapter.

6.4 A two-class queue with alternating service
discipline

The model that we discuss in this section is the same model as presented in [68]
and its description is as follows. We have a time-slotted model with two queues
and one server. There are two types of customers, where the type of the cus-
tomer corresponds to a specific queue. During each time slot and for each type
of customer, there are independent arrivals. Each customer has a service time
of a single slot. In each time slot, the server flips a coin and with probability α
it serves a customer at queue 1 and with probability 1−α it serves a customer at
queue 2. If a queue happens to be empty at the moment that the server wants
to perform a service in that queue, the server idles until the next time slot.

In [68] the functional equation for the joint PGF of the queue-length distri-
bution is derived but not solved. The authors in [68] rather study the dominant
poles of this PGF and use the obtained information in approximation schemes
for the joint steady-state queue-length distribution. The dominant poles are
used to estimate the tail probabilities and for the remaining probabilities a set
of linear equations is formed based on certain roots of the kernel. This strongly
reminds of our method, yet our approach is more general; our method is based
on PGFs and does not need the information coming from a dominant pole; and
we use different roots, which seems to play a major role in the accuracy of the
approximation, see Subsection 6.4.1 below. We continue with the functions that
we need as input for our approximation scheme.

We define pi , j to be the joint probability that there are i customers in queue
1 and j customers in queue 2. The functional equation for the joint PGF of
the queue lengths at the start of a slot, P (x, y) = ∑

i , j pi , j xi y j , is given in Equa-
tion (14) in [68]. If we define Ai (z) to be the PGF of the number of arrivals in
a single slot at queue i , we get:

K (x, y)P (x, y) = A1(x)A2(y)
(
(1−α)(y −1)xP (x,0)+α(x −1)yP (0, y)

)
,

Chapter 6. Approximation scheme for multidimensional queueing models 183

where

K (x, y) = x y − (
(1−α)x +αy

)
A1(x)A2(y).

We have the following lemma:

Lemma 6.4 The equation

K (x, y) = x y − (
(1−α)x +αy

)
A1(x)A2(y) = 0 (6.12)

has infinitely many solutions with |x| < 1 and |y | < 1.

Proof. See Theorem 1 in [68]. ä
The authors in [68] derive the dominant singularities of P (x, y), P (x,0), and

P (0, y). The residues of those functions at the dominant singularities are also
derived. As is shown in e.g. [188, Subsection 2.3.3], [190], and [191], these
might be used to approximate the tail probabilities of the (in our case) joint
steady-state queue-length distribution. The idea to approximate tail probabili-
ties with a geometric distribution is, thus, not new. We are in particular inter-
ested in the dominant singularities of P (x,0) and P (0, y), which are derived in
Lemmas 3 and 4 of [68]. The corresponding residues are given in Theorems 2
and 3 in [68], which we provide here for further reference. We denote with
τi the dominant pole for queue i , i = 1,2, and with Bi the residue at that pole.
The τi are given implicitly (which can be found using a numerical solver) and
are the unique solution to the equations below satisfying 1 < τi < σi where σi

denotes the radius of convergence of Ai (z); for more details see [68]. We have
that

τ1 = ((1−α)τ1 +α) A1(τ1),

τ2 = (1−α+ατ2) A2(τ2),

B1 =
(1−α)A1(τ1)− A′

2(1)

(1−α)A1(τ1)+ ((1−α)τ1 +α) A′
1(τ1)−1

· (α− A′
1(1))(τ1 −1)

1−α ,

B2 =
αA2(τ2)− A′

1(1)

αA2(τ2)+ (ατ2 +1−α)A′
2(τ2)−1

· (1−α− A′
2(1))(τ2 −1)

α
.

The knowledge of those poles and residues enables one to provide approxima-
tions for the tail probabilities present in P (x,0) and P (0, y), as we have that

p̃i ,0 ∼ B1

τi+1
1

, (6.13)

p̃0, j ∼ B2

τ
j+1
2

.

184 6.4 A two-class queue with alternating service discipline

Dominant pole approximation

The dominant pole approximation provides tail-probability approxima-
tions for the steady-state queue-length distribution (most often used for
single-server queueing models; an example of the dominant pole ap-
proximation applied to a two-dimensional queue can be found in [68]).
Under appropriate conditions, we might approximate the tail probabili-
ties, pn as follows:

pn ≈ s

t n+1 , (6.14)

for some constants s and t , implying that the tail probabilities decay
geometrically. The constants s and t can often be derived from the PGF
of the queue-length distribution. For more information, we refer the
interested reader to [210] and [188, Subsection 2.3.3].

0 2 4 6 8 10
n0.00

0.02

0.04

0.06

0.08

0.10

ℙ(Xi=n)

2 4 6 8 10
n

-4.0

-3.5

-3.0

-2.5

-2.0
Log(ℙ(Xi=n))

(a) (b)

Figure 6.2: The dominant pole approximation for the overflow queue for
the FCTL queue with g = r = 5 and Poisson arrivals in each slot with rate
0.45. In (a) we plot the probabilities (dots) for a specific queue length
and the approximation (line). In the graph, the probabilities and the
approximation are almost indistinguishable when the queue length is at
least 5. In (b) we plot the same probabilities on a log-scale.

We demonstrate the dominant pole approximation for the overflow
queue in the FCTL queue. The PGF of the overflow queue, Xg (z), is (cf.
Equation (1.5))

Xg (z) =
zg ∑g−1

i=0 Xi (0)
(
1− Y (z)

z

)(
Y (z)

z

)g−i−1

zg −Y (z)c .

Chapter 6. Approximation scheme for multidimensional queueing models 185

We might obtain t and s for the FCTL queue as follows. t is the root of
zg −Y (z)c outside the unit circle with smallest absolute value (such a root
exists because of Pringsheim’s theorem, see e.g. [167, page 235]) and s
is the residue of Xg (z) at t , i.e. s = lim

z→t
(z−t)Xg (z). Then, we approximate

the probability that Xg is equal to n as in Equation (6.14).
The quality of the approximation is usually very acceptable, even

for probabilities that are not in the tail as can be seen in Figure 6.2.
Figure 6.2(b) confirms that the probabilities indeed decay geometrically,
so that the geometric form as in Equation (6.14) is indeed right.

6.4.1 Example with high and asymmetric load

The model described in Devos et al. [68] is a hard model to analyze and in gen-
eral good approximations for the joint steady-state queue-length distribution
are obtained. For most examples studied by Devos et al. the devised approxi-
mation method indeed works well, but for some it yields relatively poor results.
We studied all examples discussed in [68] and our approximations have a sim-
ilar or a higher quality than the ones obtained by Devos et al. For Examples 1
and 2, the quality of the approximation in [68] is similar, whereas we obtain
a (slightly) better approximation for Examples 3, 4, and 5. We study Exam-
ple 5 in more detail as this example seems to cause the biggest problem for the
approximation scheme in Devos et al.

In Example 5 in [68], it is assumed that the arrival distribution at queue
1 is geometric with parameter 0.164818 and the arrival distribution at queue 2
is Poisson with parameter 0.762360 (these input values are randomly generated
by Devos et al.). Moreover, we have α = 0.214682. We compare four differ-
ent approximations: the one obtained by Devos et al. (the case with M = 15
in Figure 6 in [68]); our approximation method with M1 = M2 = 16, with M1

the cut-off for P (x,0) and M2 the cut-off for P (0, y), and root pairs obtained
with Algorithm 6.2 and with Algorithm 6.2 with x and y interchanged; our
approximation method with M1 = 286 and M2 = 247 (in accordance with the
rule-of-thumb introduced in Subsection 6.3.3 for k-limited polling models) and
root pairs obtained with Algorithm 6.2 and with Algorithm 6.2 with x and y in-
terchanged; and our approximation method with M1 = M2 = 16, and root pairs
obtained with Algorithm 6.2 and with Algorithm 6.2 with x and y interchanged,
and where we approximate the remaining tail probabilities with the dominant
pole approximation as in Equation (6.13). The various approximations can be

186 6.4 A two-class queue with alternating service discipline

found in Table 6.8, where we also display simulation results.

Table 6.8: Various approximation methods for Example 5 in [68]. Each row corresponds
to a probability that is estimated and each column represents an approximation method.
From left to right, we display our approximation scheme with Mi = 16; our approxi-
mation with M1 = 286 and M2 = 247; our approximation with Mi = 16 together with a
dominant pole approximation for the tail probabilities; the approximation from [68] as
in Figure 6 in [68] with M = 15; and simulation results.

Mi = 16 M1 = 286 Dominant pole [68] Sim.
p0,0 0.00953 0.00396 0.00393 0.00417 0.00394
p1,0 0.00988 0.00410 0.00407 0.00435 0.00408
p2,0 0.00912 0.00376 0.00372 0.00403 0.00375
p3,0 0.00802 0.00326 0.00322 0.00358 0.00326
p4,0 0.00692 0.00275 0.00271 0.00311 0.00273
p5,0 0.00517 0.00227 0.00223 0.00268 0.00226
p6,0 0.00391 0.00186 0.00181 0.00230 0.00185
p7,0 0.00334 0.00150 0.00144 0.00196 0.00150
p8,0 0.00335 0.00121 0.00114 0.00166 0.00121
p9,0 0.00101 0.00097 0.00091 0.00139 0.00096
p10,0 −0.00060 0.00077 0.00070 0.00114 0.00077
p0,1 0.0154 0.00642 0.00638 0.00417 0.00641
p0,2 0.0177 0.00740 0.00735 0.00677 0.00738
p0,3 0.0186 0.00780 0.00775 0.00777 0.00778
p0,4 0.0190 0.00795 0.00791 0.00815 0.00795
p0,5 0.0185 0.00797 0.00794 0.00825 0.00798
p0,6 0.0182 0.00789 0.00787 0.00814 0.00791
p0,7 0.0177 0.00775 0.00774 0.00822 0.00777
p0,8 0.0172 0.00756 0.00756 0.00604 0.00756
p0,9 0.0149 0.00734 0.00738 0.01495 0.00734
p0,10 0.0142 0.00711 0.00715 −0.02173 0.00710

Studying Table 6.8, we observe several interesting features. Firstly, we are
able to obtain quite accurate approximations. Further, if we do not use the dom-
inant pole approximation for tail probabilities, we need to take a relatively high
value for Mi to obtain a satisfactory approximation. As can be seen, Mi = 16 is
by no means sufficient to obtain accurate approximations, but when the Mi are
increased, we obtain more accurate approximations. This is at the expense of a
longer computation time. However, if we use the dominant pole approximation,

Chapter 6. Approximation scheme for multidimensional queueing models 187

choosing Mi = 16 seems to be sufficient to obtain accurate approximations. This
reduces the required computation time compared to the case where M1 = 286
and M2 = 247, while the quality of the approximation is similar in both cases.

It seems that the choice of the roots causes the difference in quality between
our approach and the approximation in [68]. Currently, we do not see a clear
relation between the choice of the roots and the quality of the approximation
(see also the discussion in Subsection 6.2.3). We note that the roots that we
obtain more or less span the entire unit circle, whereas this does not seem to be
the case for the roots used in [68].

This example shows that our method might benefit from knowledge of the
tail behavior of the steady-state probabilities. It potentially leads to a reduction
in the Mi , which then leads to a significant reduction in the computation time.
If information about the tail behavior is available, we recommend to use it as
it improves the quality of the approximation and reduces the computational
complexity. Our method can then more easily be used for queueing models
with high loads and/or queueing models with more than two queues.

6.5 Traffic lights with double-lane access control

In this section we consider an extension of the k-limited polling model/vehicle-
actuated control strategy considered in Section 6.3. In this section, we allow
the server to serve two customers from two different queues simultaneously. In
a traffic setting, this would correspond to a vehicle-actuated strategy where two
opposing and non-conflicting streams of vehicles receive a green time simulta-
neously. This model has rarely been studied (as far as we are aware), probably
because of its complicated nature. An exception is the study in Chapter 4, which
investigates, by means of simulation, a heavy-traffic scaling of this model (see
Subsection 4.4.2). For a graphical representation of the intersection and the
control strategy we refer the reader to Figure 4.1(b).

We continue with a detailed description of the model in Subsection 6.5.1. We
focus on a queueing model with 4 queues where 2 queues might be served simul-
taneously. In Subsection 6.5.2 we continue with an example with deterministic
service and switchover times that mimics the setting in Subsection 4.4.2.

6.5.1 Joint steady-state queue-length analysis

As mentioned before, we focus on a model with 4 queues, where some queues
are served simultaneously. For the ease of exposition, we assume that queues 1

188 6.5 Traffic lights with double-lane access control

and 2 are served simultaneously and we will refer to queues 1 and 2 as queues
in group 1. This means that queues 3 and 4 are served simultaneously as well
and we will refer to those queues as queues in group 2. We assume that a
maximum of k j customers are served at each queue in group j , j = 1,2, during a
visit period to group j . The arrival process of customers at queue i is a Poisson
process with rate µi , i = 1,2,3,4, and the service times at queue i are assumed
to be random variables with distribution Bi with mean bi and LST βi (.). After a
service period at group j , a random switchover time to group j +1 is initiated
(where group 3 is to be understood as group 1). This random time is denoted
with S j , and the first moment and the LST of the length of the switchover times
are denoted with s j and σ j (.). The various arrival processes, service times, and
switchover times are assumed to be independent.

Figure 6.3: Queueing process for the vehicle-actuated traffic-light control strategy with
double-lane access. Note that the servers switch at the same time and only switch if
either both queues they are serving are empty or the maximum number of customers to
be served during the current visit period is reached.

The service process at all groups of queues is as follows. If we take customers
into service, we wait with taking the next set of customers into service until all
customers of the previous set have completed their service. Then, if both queues
in a group are non-empty, one customer of each queue is getting service; if one
queue is empty, only a single customer from the other queue is taken into ser-
vice; if both queues in group j are empty, we immediately initiate a switchover
to group j +1. We also initiate a switchover if the maximum number of services

Chapter 6. Approximation scheme for multidimensional queueing models 189

for a group of queues, denoted with k j for group j , is reached. Moreover, we
assume that once a queue empties, it stays empty for the remainder of the ser-
vice visit of the server to group j (as in the FCTL queue, see Assumption 1.1).
A visualization of the considered polling model can be found in Figure 6.3.

We divide the cycle into k1 + k2 + 2 states. We denote the states with the
pair (i , j) where i = 1, . . . ,k j + 1 and j = 1,2. The index i corresponds for i =
1, . . . ,k j to the start of the k j service epochs for group j and the index i = k j +1
corresponds to the start of a switchover from group j to group j + 1. Then,
we define

(
Q(i , j)

1 , . . . ,Q(i , j)
4

)
to be the random vector with the joint steady-state

queue-length distribution at the start of state (i , j) and accordingly we define

Pi , j (x) := E[
4∏

l=1
x

Q
(i , j)
l

l],

with x = (x1, . . . , x4). Further, we define z(x) =∑4
i=1µi (1−xi). Then, we get that

K (x)P1,1(x) =
k1∑

i=1
β3,4(z(x))k2σ1(z(x))σ2(z(x))β1,2(z(x))k1−i (x1x2)i ·{

Pi ,1(0, x2, x3, x4)

(
β2(z(1, x2, x3, x4))

x2
− β1,2(z(x))

x1x2

)
+

Pi ,1(x1,0, x3, x4)

(
β1(z(x1,1, x3, x4))

x1
− β1,2(z(x))

x1x2

)
+

Pi ,1(0,0, x3, x4)·(
1− β1(z(x1,1, x3, x4))

x1
− β2(z(1, x2, x3, x4))

x2
+ β1,2(z(x))

x1x2

)}
+

(x1x2)k1
k2∑

i=1
β3,4(z(x))k2−i (x3x4)iσ2(z(x))·{

Pi ,2(x1, x2,0, x4)

(
β4(z(x1, x2,1, x4))

x4
− β3,4(z(x))

x3x4

)
+

Pi ,2(x1, x2, x3,0)

(
β3(z(x1, x2, x3,1))

x3
− β3,4(z(x))

x3x4

)
+

Pi ,2(x1, x2,0,0)·(
1− β3(z(x1, x2, x3,1))

x3
− β4(z(x1, x2,1, x4))

x4
+ β3,4(z(x))

x3x4

)}
,

(6.15)

where βi , j (.) is the LST of the maximum of the random variables Bi and B j and

190 6.5 Traffic lights with double-lane access control

with

K (x) = (x1x2)k1 (x3x4)k2 −β1,2(z(x))k1β3,4(z(x))k2σ1(z(x))σ2(z(x)). (6.16)

For a derivation of these expressions, we refer the interested reader to Ap-
pendix 6.B. We have the following lemma:

Lemma 6.5 The equation

K (x) = (x1x2)k1 (x3x4)k2 −β1,2(z(x))k1β3,4(z(x))k2σ1(z(x))σ2(z(x)) = 0 (6.17)

has infinitely many solutions x = (x1, . . . , x4) with |x j | < 1 for j = 1, . . . ,4.

Proof. An application of Rouché’s theorem yields the result in a similar way as
in the proof of Lemma 6.3. The proof is therefore omitted. ä

6.5.2 Four-lane example

In this subsection we study an intersection with four lanes, where the two op-
posing lanes receive a green light simultaneously and with a maximum green
time for each group of two lanes as we did in Subsection 4.4.2. We switch to the
next group of lanes when either both lanes in group j are empty or when the
maximum green time for group j , denoted with k j , has been reached. Further,
we have deterministic service and switchover times to create a slotted structure
(as in the FCTL queue). The total maximum service time per lane is a multiple
of a single slot. We choose to analyze a symmetric model, meaning that the
arrival rates are the same for all four lanes; that the maximum green time for
both groups is the same; that the length of each slot is the same; and that the
switchover time between both groups is the same. This enables us to exploit
symmetry between the various queues, which reduces the computational com-
plexity of our approximation scheme. We choose the arrival rate at all lanes
to be Poisson with parameter 0.25; we choose the maximum green time for
each group to be 5; we choose deterministic service times with value 1; and we
choose the switchover times to be deterministically equal to 1.

As for the polling model with three queues, we cannot directly rely on Al-
gorithm 6.2 for obtaining roots of the kernel, as we now need a root quadruple
instead of a root pair. Similarly as in the three-dimensional polling model, we
choose x2, x3, and x4 randomly within the unit circle and then find an accom-
panying x1 so that K (x) = 0, with K (x) as in Equation (6.16). As in the three-
dimensional polling model, we cannot guarantee that such an x1 exists, but in

Chapter 6. Approximation scheme for multidimensional queueing models 191

our algorithm we are almost always able to find such an x1. When choosing the
same cut-off for the various Pi , j (x) in Equation (6.15), denoted with Mi , j , we
get the results as in Table 6.9.

Table 6.9: Approximations for various performance measures for the double-lane access
control of traffic lights example with various values for the Mi , j and simulation results
for the performance measures (where sim. res. is an abbreviation of simulation results).
We display results for the mean and variance of the marginal queue length at queue 1 at
the start (Q(1,1)

1) and end of the green period (Q(6,1)
1).

Mi , j E[Q(1,1)
1] Var(Q(1,1)

1) E[Q(6,1)
1] Var(Q(6,1)

1)
7 1.0843 1.2202 0.048028 0.06897
8 1.0617 1.3903 0.065087 0.15453
9 1.1081 1.5463 0.071901 0.23989
10 1.0563 1.4687 0.067741 0.19623
11 1.0676 1.2753 0.051058 0.09694
12 1.0689 1.3239 0.055104 0.12265
sim. res. 1.0773 1.3293 0.055730 0.11970

In Table 6.9 we observe that the various values of the Mi , j do not always
lead to accurate results and there is also no very clear pattern in the size of the
approximation error, or at least not as clear as in Figure 6.1. In general, we see
a decrease in the size of the approximation error when the Mi , j increase and for
the case Mi , j = 12, we think that we have a good approximation.

Even though the differences in the Mi , j are small, they have a rather big
impact on the computation time. E.g., for the case where Mi , j = 7, we have
a linear system of equations with 1440 unknowns, whereas for the case with
Mi , j = 12, we have a linear system of equations with 5915 unknowns. The com-
putation time (with our implementation) in the former case is about 1 hour,
whereas for the latter case this is about 90 hours. This points towards a limi-
tation in our algorithm: when the number of queues increases, there is a quick
and sharp increase in the number of unknowns that needs to be determined to
get a good approximation. Especially in view of the need to solve a non-sparse
system of linear equations which is linear in size of the number of unknowns,
this is a complicating factor. Moreover, we require the solution to have a high
precision (we use a 50 digit precision in this section), because we subsequently
use the solution in further calculations (e.g. to obtain the mean queue length at
the start of a visit period). Future work could be devoted to overcoming these
issues around the computation time by designing a more efficient implementa-

192 6.6 Conclusion

tion. Nevertheless, this model fits our framework and, as far as we know, no
approximations or exact results for this model have been derived. Moreover,
we study this model because of its complexity and because of its application
to road-traffic models. We have shown that our approximation scheme yields
satisfactory approximations for the studied performance measures.

6.6 Conclusion

We have formulated a novel approximation scheme for multidimensional queue-
ing models and demonstrated some of its numerical properties. Based on a
functional equation for the joint steady-state queue-length distribution, we de-
veloped a methodology which uses roots of the kernel and subsequently uses
the solution of a set of linear equations to provide an approximation for the
PGF of the joint steady-state queue-length distribution. As we have shown, our
approximation method yields good results in a plethora of examples, including
the notoriously hard to analyze k-limited polling models.

A point of concern is the computation time that is needed to approximate
queueing models with more than two queues and two-queue systems with a
very high load. In such examples, we need to estimate a relatively large num-
ber of unknowns, causing an increased computation time for our approxima-
tion scheme as the size of the set of linear equations that needs to be solved
increases. Although this is to some extent an artifact of our approximation
scheme, there are various ways to decrease the computational complexity. One
way is to make use of a dominant-pole type of approximation, as we have shown
for the two-class queue with an alternating service discipline in Section 6.4.
Such an extension essentially mitigates the negative effects of estimating cer-
tain tail probabilities to be zero. This causes a decrease in the number of un-
knowns that needs to be estimated by our approximation scheme, which re-
duces the computation time. This is a motivation to find dominant poles for
two-dimensional (or even n-dimensional) queueing models.

We encourage further experimentation with approximating different mod-
els using our scheme, especially models with more than two queues. As we
demonstrated, our approximation scheme is capable of providing accurate ap-
proximations for queueing models with three queues or more as well, but we
did not do an in-depth study on queueing models with more than two queues.

The approximation scheme that we developed is amenable for several im-
provements. One is already elaborated upon in Section 6.4.1: if one has infor-
mation about the tail behavior of the queue-length probabilities, then they can

Chapter 6. Approximation scheme for multidimensional queueing models 193

be incorporated into the method at the benefit of reducing the computational
complexity. We advocate a further investigation of which roots are to be used to
find the best possible approximation given a certain number of roots that one
can use. Although the developed method for finding roots generally seems to
work well, we see that there is a potentially significant influence of the used
roots and as such, we advocate a further study to try to understand what the
relation is between the quality of the approximation and the used roots.

The implementation of the algorithm might also be improved upon in order
to decrease the computation time that is needed to come to the approximations.
There are probably several ways to improve upon our algorithm. For exam-
ple, we have implemented our approximation scheme in Mathematica version
12.2 [221] and we expect that an implementation in C++ would decrease the
computation time considerably.

Also, we did not give any error bounds for our approximation scheme.
Dwelling upon numerous experiments, we expect it to be difficult to come up
with error bounds. Nevertheless, such an investigation on whether error bounds
can be found is of interest, both from the perspective of the error bounds them-
selves and from the perspective of whether it is possible to establish such bounds
at all. The reason for this is twofold: it would help in the understanding of our
algorithm and it would potentially add to the understanding of the underlying
queueing models.

Appendix

6.A PGFs for k-limited polling models

In this appendix, we derive the PGFs that we use in Section 6.3. For the model
description and the notation, we refer to Subsection 6.3.1.

We relate the PGFs of the joint steady-state queue-length distribution at the
start of the various states to one another. We get the following equations:

Pi , j (x) =(
Pi , j (x)−Pi−1, j (x1, . . . , x j−1,0, x j+1, . . . , xN)

) β j (z(x))

x j
+ (6.18)

Pi−1, j (x1, . . . , x j−1,0, x j+1, . . . , xN),

for i = 1, . . . ,k j and j = 1, . . . , N . We also have

P1, j+1(x) = Pk j +1, j (x)σ j (z(x)), (6.19)

for j = 1, . . . , N , where P1,N+1(x) is to be understood as P1,1(x). The cases corre-
sponding to Equation (6.18) can be explained in the following way: first, we
condition on queue j being empty or not. If queue j is non-empty, there is a
customer taken into service in state (i , j) which is in service for a random time
B j . After such a service time, we make a transition to state (i +1, j). The number
of arrivals in between the start of state (i , j) and the start of state (i +1, j) then
has PGF β j (z(x)) and there is one service completion at queue j , which explains
the factor 1/x j . If queue j is empty, we immediately make a transition from
state (i , j) to (i +1, j) and, as this takes no time, there are no arrivals. The cases
corresponding to Equation (6.19) are explained as follows: in between the start

196 6.A PGFs for k-limited polling models

of state (k j +1, j) and the start of state (1, j +1), there are arrivals during a period
S j , which has PGF σ j (z(x)).

Using Equations (6.18) and (6.19), we are able to derive a functional equa-
tion for the Pi , j (x). Repeated substitution yields the following:

P1,1(x) =PkN+1,N (x)σN (z(x))

=
((

PkN ,N (x)−PkN ,N (x1, x2, . . . , xN−1,0)
) βN (z(x))

xN
+

PkN ,N (x1, x2, . . . , xN−1,0)

)
σN (z(x))

=
(
PkN ,N (x)

βN (z(x))

xN
+PkN ,N (x1, x2, . . . , xN−1,0)

(
1− βN (z(x))

xN

))
σN (z(x))

=·· · = P1,1(x)
N∏

j=1

β j (z(x))k j

x
k j

j

σ j (z(x))+

N∑
j=1

k j∑
i=1

(
Pi , j (x1, . . . , x j−1,0, x j+1, . . . , xN)

(
1− β j (z(x))

x j

)
·

(
β j (z(x))

x j

)k j −i

σ j (z(x))
N∏

l= j+1

(
βl (z(x))

xl

)kl

σl (z(x))

)
.

This yields:

P1,1(x)K (x) =
N∑

j=1

k j∑
i=1

(
Pi , j (x1, . . . , x j−1,0, x j+1, . . . , xN)xi−1

j (x j −β j (z(x)))

β j (z(x))k j −iσ j (z(x))
N∏

l= j+1

(
βl (z(x))klσl (z(x))

) j−1∏
l=1

xkl
l

)
,

where

K (x) :=
N∏

j=1
x

k j

j −
N∏

j=1
β j (z(x))k jσ j (z(x)).

Lastly, we derive the PGF of the joint steady-state queue-length distribution
at arbitrary moments using the theory developed in [30]. We define

P (x) = E[
N∏

l=1
xQl

l].

Chapter 6. Approximation scheme for multidimensional queueing models 197

In order to derive an expression for P (x), we need to introduce one more PGF
for each queue: the PGF of the joint steady-state queue-length distribution at
service completions at queue j , denoted with P j (x). Combining Equations (4)
and (5) from [30], we get that

P j (x) = γ jβ j (z(x))

x j −β j (z(x))

(
P1, j (x)−Pk j +1, j (x)

)
,

with

γ j = 1−ρ
µ j

∑N
j=1 s j

.

Theorem 1 in [30] then states that

P (x) =
∑N

j=1µ j (1−x j)P j (x)∑N
j=1µ j (1−x j)

.

This enables us to find the marginal queue-length distribution at arbitrary times
and (together with Little’s law) the mean waiting time of customers at queue i .

6.B PGFs for traffic lights with double-lane access
control

In this appendix, we derive the PGFs that we use in Section 6.5. For the model
description and the notation, we refer to Subsection 6.5.1.

We relate the PGFs of the joint steady-state queue-length distribution at the
start of various states to one another. We leave the derivation of the following
equations to the reader.

Pi ,1(x)

= (
Pi−1,1(x)−Pi−1,1(0, x2, x3, x4)−Pi−1,1(x1,0, x3, x4)+Pi−1,1(0,0, x3, x4)

)
β1,2(z(x))

x1x2
+ (

Pi−1,1(0, x2, x3, x4)−Pi−1,1(0,0, x3, x4)
) β2(z(1, x2, x3, x4))

x2
+

(
Pi−1,1(x1,0, x3, x4)−Pi−1,1(0,0, x3, x4)

) β1(z(x1,1, x3, x4))

x1
+Pi−1,1(0,0, x3, x4)

198 6.B PGFs for traffic lights with double-lane access control

= Pi−1,1(x)
β1,2(z(x))

x1x2
+Pi−1,1(0, x2, x3, x4)

(
β2(z(1, x2, x3, x4))

x2
− β1,2(z(x))

x1x2

)
+

Pi−1,1(x1,0, x3, x4)

(
β1(z(x1,1, x3, x4))

x1
− β1,2(z(x))

x1x2

)
+

Pi−1,1(0,0, x3, x4)

(
1− β1(z(x1,1, x3, x4))

x1
− β2(z(1, x2, x3, x4))

x2
+ β1,2(z(x))

x1x2

)
,

for i = 2, . . . ,k1 +1,

Pi ,2(x) = Pi−1,2(x)
β3,4(z(x))

x3x4
+

Pi−1,2(x1, x2,0, x4)

(
β4(z(x1, x2,1, x4))

x4
− β3,4(z(x))

x3x4

)
+

Pi−1,2(x1, x2, x3,0)

(
β3(z(x1, x2, x3,1))

x3
− β3,4(z(x))

x3x4

)
+

Pi−1,2(x1, x2,0,0)

(
1− β3(z(x1, x2, x3,1))

x3
− β4(z(x1, x2,1, x4))

x4
+ β3,4(z(x))

x3x4

)
,

for i = 2, . . . ,k2 +1,

P1, j+1(x) = Pk j +1, j (x)σ j z(x)), for j = 1,2,

where P1,3(x) is to be understood as P1,1(x).
Using these functions, we get the following expression for P1,1(x) by repeated

substitution:

K (x)P1,1(x) =
k1∑

i=1
β3,4(z(x))k2σ1(z(x))σ2(z(x))β1,2(z(x))k1−i (x1x2)i ·{

Pi ,1(0, x2, x3, x4)

(
β2(z(1, x2, x3, x4))

x2
− β1,2(z(x))

x1x2

)
+

Pi ,1(x1,0, x3, x4)

(
β1(z(x1,1, x3, x4))

x1
− β1,2(z(x))

x1x2

)
+

Pi ,1(0,0, x3, x4)·(
1− β1(z(x1,1, x3, x4))

x1
− β2(z(1, x2, x3, x4))

x2
+ β1,2(z(x))

x1x2

)}
+

(x1x2)k1
k2∑

i=1
β3,4(z(x))k2−i (x3x4)iσ2(z(x))·{

Pi ,2(x1, x2,0, x4)

(
β4(z(x1, x2,1, x4))

x4
− β3,4(z(x))

x3x4

)
+

Chapter 6. Approximation scheme for multidimensional queueing models 199

Pi ,2(x1, x2, x3,0)

(
β3(z(x1, x2, x3,1))

x3
− β3,4(z(x))

x3x4

)
+

Pi ,2(x1, x2,0,0)·(
1− β3(z(x1, x2, x3,1))

x3
− β4(z(x1, x2,1, x4))

x4
+ β3,4(z(x))

x3x4

)}
,

with

K (x) = (x1x2)k1 (x3x4)k2 −β1,2(z(x))k1β3,4(z(x))k2σ1(z(x))σ2(z(x)).

The equations for Pi , j (x) with i = 1, . . . ,k j + 1 and j = 1,2 can be derived in a
similar way.

Chapter 7
Platoon forming algorithms for
intelligent street intersections

7.1 Introduction

In this chapter, we turn our focus to a futuristic setting. In the near future
self-driving or autonomous vehicles might become the standard type of vehicle
occupying the roads. In the US, self-driving vehicles have been driving around
for quite some time already [119]. So, there is a need to study novel control
algorithms for such self-driving vehicles as they allow for different and new
strategies which improve the general traffic performance.

As we will show in this chapter, large time savings can be gained when self-
driving vehicles are present on the roads. We show this by directly comparing a
model with self-driving vehicles and nowadays traffic, for which we obtain sim-
ulation results using SUMO [129]. We provide a comparison by assuming that
the arrival processes of vehicles in SUMO and our self-driving vehicles model
are identical.

However, it is unlikely that the traffic load on intersections will remain the
same if self-driving vehicles are introduced. Self-driving vehicles might cause
induced demand: many more people will have access to “driving” around, think
of elderly people and children. A case-study based on the city of Oslo, Nor-
way, shows that the amount of vehicle kilometers is reduced with 13 percent
in the most favorable scenario, but almost doubles in the worst scenario [61].
Of course there are a lot of ifs and buts, but it clearly demonstrates that not all

202 7.1 Introduction

congestion will simply vanish when self-driving vehicles are present. So, an ef-
ficient way to accommodate the crossing of self-driving vehicles at intersections
is needed, which is the topic of this chapter.

The traditional way of regulating the crossings of vehicles at a busy intersec-
tion is by installing traffic lights, e.g. with static signaling using timers such as is
done in the FCTL queue or by means of vehicle-actuated control, see e.g. [159].
Anticipating the emergence of self-driving vehicles, efficient and fair algorithms
for intersection access should be designed. Platoon Forming Algorithms (PFAs)
provide such alternatives for self-driving vehicles, no longer letting the traffic
lights dictate the switching process and hence batch forming, but letting the
vehicles organize themselves in batches, well in advance of arriving at the inter-
section as in [133, 134, 184]. In this way, platoons of vehicles are formed that
can pass the intersection collectively.

There is a natural tension between capacity and fairness. One of the fairest
switching rules is to let vehicles pass the intersection in order of arrival (on
an intersection wide basis). This rapidly becomes unsustainable, because each
switch requires an additional clearance time, which decreases the capacity of
the intersection. In near-saturation conditions, when the flows together impose
a high volume-to-capacity ratio, the loss of capacity due to switching will have
a dramatic effect on delays. Our PFAs aim to balance capacity and fairness.

In PFAs, vehicles arriving at the intersection arrange themselves in platoons,
not adapting their relative position to other vehicles on the same lane but adapt-
ing their speed. The key feature is that cars, while approaching the intersection,
adjust their speeds and upon arrival at the intersection are at high speed, occu-
pying the conflict area of the intersection as briefly as possible. In this way, time
bans to give way to other traffic flows still exist, but the platoons are processed
in the quickest possible way, because the size and speed of the platoons, of all
directions, are organized by the PFA. This is, to some extent, also the purpose
in e.g. [66], where a small-scale experiment in Helmond is described.

PFAs are one particular example of the “slower is faster” effect, which is
also observed in e.g. [92] and [93], where, perhaps counter-intuitively, slow-
ing down early results in less delay on average in the future. Moreover, this
phenomenon results in environmental advantages as less braking-and-pulling-
up-again is needed and cars reach their destination more quickly.

The importance of intersection access algorithms has been recognized for
several years. Examples of PFAs can be found in [184], which introduces a
batch formation algorithm based on arrival times of vehicles and a maximum
batch size, and in [133, 134], which use an approach based on polling models.
Polling models have a long tradition in communication networks, but the au-

Chapter 7. Platoon forming algorithms for intelligent street intersections 203

thors in [133] have shown that they can be leveraged to organize autonomous
vehicles at intersections as well. One of the key questions in polling models is
how to decide which queue should be served (and how many customers should
be served before advancing to the next queue). This is exactly one of the main
topics of this chapter, where we develop algorithms that determine how to con-
struct platoons of autonomous vehicles and when to give each platoon access to
the intersection. A Speed Profile Algorithm (SPA) provides the key link between
the PFAs and polling models, as we will show in more detail later.

The area of application of PFAs is not restricted to intersections. There are
numerous practical examples where PFAs could be used to achieve a good per-
formance. An example in traffic would be the merging of different streams of
vehicles (discussed in e.g. [170]). Another possible application can be found in
automated guided vehicles (AGVs) systems, where AGVs may have conflicting
routes or have to merge, see e.g. [115] where similar ideas are used.

The main contributions in this chapter can be formulated as follows:

(i) We introduce several new Platoon Forming Algorithms (PFAs), based on
enhanced polling policies, that perform well regarding mean delay.

(ii) We also introduce a new class of Speed Profile Algorithms (SPAs). SPAs
ensure an efficient use of the intersection, by optimizing the trajectory
of (platoons of) vehicles driving towards the intersection, ensuring the
arrival at their designated times.

(iii) Employing those SPAs, a link between polling models and PFAs is estab-
lished, making it possible to conduct a performance analysis. Using in-
terpolation techniques from [22] we develop accurate approximations for
the mean delay for the studied PFAs.

(iv) A notion of fairness of a PFA is introduced in this chapter. Fairness in
queueing models (and therefore PFAs) is important in the perception of
customers (or drivers), see e.g. [165]. We use the definition of fairness as
given in [176] to assess the fairness of the various PFAs.

(v) Furthermore, we provide a comparison between the performance of tra-
ditional traffic technologies and PFAs through simulations in SUMO.

Chapter outline

This chapter is organized in the following way. We start with a description of
the various ingredients of the model and provide an extensive description of the

204 7.2 Model formulation

new PFAs that we introduce in Sections 7.2 and 7.3 respectively. Section 7.4 is
devoted to SPAs. Afterwards, in Section 7.5, we revisit polling models and show
a link between PFAs and polling models that enables us to give a performance
analysis for PFAs based on results for polling models. Subsequently, Section 7.6
provides a comparison between the traditional traffic light (represented by sim-
ulations in SUMO) and our PFAs, focusing on mean delay, and we wrap up with
some conclusions in Section 7.7.

7.2 Model formulation

We will consider models in which autonomous vehicles are crossing an intersec-
tion. We assume the existence of a control region around the intersection with
at the center a centralized controller communicating with all vehicles within the
control region. In fact, this control region can be divided into two sub-regions:
the inner part is called the “SPA control region”. As soon as a vehicle enters
this part of the control region, its trajectory is determined by the speed profiling
algorithm. In the outer part, which we call the “PFA control region”, the ac-
cess time of each of the arriving vehicles to the intersection is determined. The
reason why we need separate control regions for the PFA and the SPA is that
we need the trajectory to be fixed once a vehicle enters the SPA control region.
Inside the PFA control region, vehicle access times may be adjusted due to the
arrival of other vehicles. Indeed, in the PFA control region, the central controller
creates platoons of vehicles by scheduling the crossing times of the vehicles ac-
cording to some policy (the PFA) in such a way that every vehicle is able to cross
the intersection at its designated time. We assume that we can control the speed
of a vehicle and do so in such a way that the intersection is used efficiently. We
make sure that vehicles drive at maximum speed at the moment that they start
crossing the intersection, using ideas introduced in [133]. Instead of stopping
at the stop line and still having to accelerate when crossing the intersection, a
vehicle is already slowed down before it reaches the intersection and starts ac-
celerating again, such that it is driving at full speed when reaching the conflict
area of the intersection. This, among others, implies that the time to cross the
intersection is the same for each vehicle. The last assumption discussed here,
is that we assume that the central controller can look “ahead” for the same
amount of time for each of the lanes, to ease the notation and algorithms.

We clarify how this works in a simple example, depicted in Figure 7.1.
For simplicity, we show vehicles arriving from only two different approaches
(marked red and blue). The central controller uses a PFA to compute the ac-

Chapter 7. Platoon forming algorithms for intelligent street intersections 205

(a) Intersection at time t = 4. (b) Intersection at time t = 8.

0 1 2 3 4 5 6 7 8 9 10 11 12
75

50

25

0

25

50

75

Time

D
is
ta
nc
e
to
in
te
rs
ec
tio
n

P
F
A

S
P
A
co
nt
ro
lr
eg
io
n

P
F
A

(c) Trajectories for the red and blue traffic flows.

Figure 7.1: A schematic representation of the model discussed in this chapter. The
platoon forming algorithms in this chapter determine how the platoons are constructed.
In the next step, a speed profiling algorithm determines how each individual vehicle
approaches the intersection. Figures (a) and (b) correspond, respectively, to the situation
in (c) at times t = 4 and t = 8 seconds.

cess times to (the conflict area of) the intersection for each vehicle entering the
control region. The intersection drawn in Figures 7.1(a) and (b) only depicts
the inner (SPA) part of the control region. Figure 7.1(c) shows the correspond-
ing trajectories. Note that all vehicles drive at full speed in the PFA control
area (from 75 – 50 meters distance) and start their trajectories controlled by the
SPA at 50 meters distance. The two parts of the control region are separated
by a gray line. The blue vehicle entering the SPA control region at time t = 0

206 7.3 Platoon forming algorithms

encounters no hinder from other vehicles and proceeds at full speed, without
delay. The first red vehicle was originally scheduled to arrive at the intersection
directly after the first blue vehicle. When, however, the second blue vehicle
entered the PFA control region at t = 1 (probably arriving in a platoon from an
upstream intersection), this blue vehicle is allowed to join the platoon started
by the previous blue vehicle. This means that the first red vehicle is resched-
uled, being delayed, hence it gets access to the intersection after the second
blue vehicle at a safe distance. Due to this delay, the next two red vehicles are
able (and allowed) to join the red platoon. The actual trajectories towards the
intersection are determined by the SPA, which ensures an efficient usage of the
intersection. Note that all vehicles cross the intersection at full speed.

An advantage of the control region, besides the ability to control the speed
of arriving vehicles, is that we can adjust the scheduling of the vehicles based
on the arriving vehicles that are not yet at the intersection. This specific antic-
ipation is key to the forming of platoons and is up to the central controller at
the intersection and results in a specific PFA. There are many PFAs, yet we will
specifically focus on PFAs that find their origin in polling models, because they
are efficient, well understood, and have proven their value in other application
areas, such as communication systems and production lines.

7.3 Platoon forming algorithms

We present our new PFAs as standalone algorithms, based on service disciplines
for polling models, which are described in a way fit for PFAs. We also briefly dis-
cuss the Batch Algorithm, originating from [184], which serves as a benchmark
for our PFAs. The PFAs we discuss, are all derived from so-called branching-
type disciplines, which find their origin in the polling literature, see e.g. [168].
Branching-type service disciplines include the exhaustive and the gated disci-
pline, which all allow for many analytical results.

Before we start with the description of the PFAs we introduce some concepts
and notation. The PFA determines the crossing time of each of the vehicles in
the control region that have not yet crossed the intersection. We represent this
schedule by entities that we call “vehicles”. A vehicle V has three properties:
a lane dV , an earliest crossing time aV , and the currently scheduled crossing
time cV . We assume that at every point in time we have such a list of vehicles,
ordered on basis of the cV ’s. The PFA updates (some of) the crossing times of
the vehicles upon arrival and departure epochs of vehicles in the PFA control
region. The latter is dealt with in an easy way: if the current time is cV +B ,

Chapter 7. Platoon forming algorithms for intelligent street intersections 207

where B denotes the difference in crossing times between two vehicles on the
same lane, then vehicle V is removed from the ordering because vehicle V just
crossed the intersection. We further assume that there are vehicles arriving at
the intersection from n lanes.

Turning towards arrivals of vehicles within the PFA control region, we need
to consider the crossing times of all vehicles already scheduled in order to sched-
ule V . There are several ways to schedule those vehicles and the first we discuss
is the exhaustive discipline, as described in Algorithm 7.1. An intuitive explana-
tion of the exhaustive discipline is the following: if a vehicle that arrives in the
control region is able to get within B seconds of the vehicle in front of it on the
same lane (which might occur if the vehicle is delayed by its predecessor), it is
allowed to join the same platoon as its predecessor. This would imply that all
vehicles on different lanes have to wait an additional B seconds, the difference
in crossing time between two vehicles. If a vehicle cannot join the platoon in
front of it, it will form a new platoon. If no vehicle (on the current lane) is able
to join the platoon currently crossing the intersection, a platoon of vehicles at
the next lane may cross the intersection. As a result we have a cyclic structure
of departures of platoons, because we, in a fixed order, sequentially check each
lane for vehicles that want to depart. This exhaustive discipline is known for its
low mean delay, which is the main reason for us to consider this discipline. We
further introduce one more constant, S, that represents the time between the
start of crossing of two vehicles on different lanes (similar to clearance times at
intersections nowadays).

Although the exhaustive PFA will have very good delay characteristics, we
will consider the gated PFA (discussed below) as well. The intuitive explana-
tion of the gated algorithm is quite close to that of the exhaustive discipline,
with one exception. It is not always allowed to join a platoon, even if a vehicle
is able to get within B seconds from its predecessor on the same lane. As de-
scribed in more detail below, platoons are finalized at an earlier moment than
with exhaustive service. This moment of finalizing a platoon is, in the polling
literature, compared to putting a gate behind the last customer (corresponding
to the last vehicle in the platoon). Newly arriving customers will have to wait
(behind the virtual gate) for the next server visit, which corresponds to the for-
mation of a new platoon in our setting. An advantage of the gated discipline is
that there is less variation in the size of platoons and, hence, cycle lengths are
less variable as well. It may result in longer delays though, as we will see in the
numerical examples in Section 7.5.

For the implementation of the gated PFA, we need to keep track of a couple
of additional variables for each lane. In this gated discipline we are namely

208 7.3 Platoon forming algorithms

Algorithm 7.1 exhaustive algorithm.

1: Input: current ordering of vehicles, denoted (V1,V2, . . . ,VK), ordered on basis
of cV ; Vlast, defined as VK or the last vehicle that crossed the intersection if
the ordering is empty; and a to be scheduled vehicle V0 with earliest arrival
time at the intersection aV0 in lane dV0 .

2: if cVlast +B < aV0 then . V0 is scheduled last
3: if dV0 = dVlast then
4: Put cV0 ← aV0 . . V0 proceeds without delay
5: else
6: Put cV0 ← max{aV0 ,cVlast +S}. . Check if additional clearance time is needed
7: end if
8: else

9: Put ti ←
{

cLi where Li is last scheduled vehicle in lane i ,

−∞ if lane i is empty and no such vehicle exists.
10: if tdV0

+B > aV0 then . V0 is able to join a platoon
11: Put cV0 ← tdV0

+B .
12: for each vehicle V in the ordering with cV > tdV0

do
13: Put cV ← cV +B . . Delay other vehicles
14: end for
15: else
16: for l in (dV0 −1,dV0 −2, . . . ,1,n,n −1, . . . ,dV0 +1) do
17: if tl +S > aV0 then . V0 starts new platoon after last platoon in lane l
18: Put cV0 ← tl +S.
19: for each vehicle V in the ordering with cV > tl do
20: Put cV ← cV +S. . Delay other vehicles
21: end for
22: break
23: end if
24: end for
25: end if
26: end if
27: Add vehicle V0 to the ordering.
28: Output: the new ordering (V1,V2, . . . ,V0, . . . ,VK)

“putting gates” which can be seen as “fixing the vehicles of a platoon”, meaning
that future arrivals in the same lane cannot join the currently formed platoon
(i.e. they are “behind the gate”). We define two additional, ordered sets for
each lane, fi and ti , representing the set of start times of platoons on lane i and
the end times of platoons at lane i (so the start of service of the last vehicle).

Chapter 7. Platoon forming algorithms for intelligent street intersections 209

Joining a platoon is only allowed if the lane is not the lane from which vehicles
are currently departing (the platoon is not yet fixed). If a car in lane i is able
to reach the intersection (without any other interfering traffic) before one of
the times in fi , then that car is allowed to join that platoon (so the platoon is
enlarged). If such a car is not able to reach the intersection before one of the
times in fi , then it creates a new platoon. In general, departures of vehicles are
dealt with in the same way as in the exhaustive discipline. We again have the
cyclic structure as in the exhaustive discipline. The gated algorithm can then be
described as in Algorithm 7.2.

PFAs in terms of polling models

Algorithms 7.1 and 7.2 are rather complicated and lengthy. However,
the underlying intuition/description in terms of polling models is rather
straightforward as we explain here.

For the exhaustive discipline, we have the following description in
standard polling terminology: as long as a queue is not empty, the server
stays at that queue and keeps serving customers. In terms of PFAs and
self-driving vehicles, this translates to the following: as many vehicles as
possible are added to a platoon. The only reason why the next vehicle
would not be able to join the platoon in front of it is because it is not
able to arrive at the intersection at a time B after its predecessor, even
when that vehicle would drive at full speed. The platoon is thus finalized
as soon as no vehicles can join it anymore, in which case “the queue is
empty” and we switch to the next lane.

We might explain the gated discipline in the following way: if the
server starts working on customers in a queue, the server will stay at
that queue until the moment that all customers that were present at the
start of service of the first customer, have left. I.e., it is as if a gate is put
behind the last customer present in the queue when the server arrives
and only customers in front of this gate are served before the server
switches to the next queue. In PFA terms, this means that a platoon
is finalized at the moment that the first vehicle of the platoon starts
crossing the intersection. Every vehicle that has been able to join the
platoon at that moment is allowed to cross the intersection in the same
platoon. Every vehicle that could not join the platoon at that moment,
needs to wait for a full cycle.

210 7.3 Platoon forming algorithms

Algorithm 7.2 gated algorithm.

1: Input: current ordering of vehicles, denoted (V1,V2, . . . ,VK), ordered on basis
of cV ; Vlast, defined as VK or the last vehicle that crossed the intersection if
the ordering is empty; the sets fi and ti for i = 1, . . . ,n representing the start
of platoons and end of platoons at lane i ; and a to be scheduled vehicle V0

with earliest arrival time at the intersection aV0 in lane dV0 .
2: if cVlast +B < aV0 then . V0 is scheduled last
3: if dV0 = dVlast then
4: Put cV0 ← aV0 . . V0 proceeds without delay
5: else
6: Put cV0 ← max{aV0 ,cVlast +S}. . Check if additional clearance time is needed
7: end if
8: Add time cV0 to fdV0

and time cV0 to tdV0
.. Register cV0 as start of a new platoon

9: else
10: if there is a time in fdV0

> aV0 then . V0 is able to join a platoon
11: Put f ← the lowest time in fdV0

such that f > aV0 .
12: Put t ← the corresponding end of platoon in tdV0

.
13: Put cV0 ← t +B .
14: for each value t∗ in t1, . . . , tn with t∗ > t do . Update t and f
15: Put t∗ ← t∗+B
16: Put the corresponding start of platoon f ∗ ← f ∗+B .
17: end for
18: for each vehicle V in the ordering with cV > cV0 do
19: Put cV ← cV +B . . Delay other vehicles
20: end for
21: else
22: for l in (dV0 −1,dV0 −2, . . . ,1,n,n −1, . . . ,dV0 +1) do
23: if there is a time in tl +S > aV0 then . V forms a new platoon
24: Find the lowest time t in tl such that t +S > aV0 .
25: Put cV0 ← t +S.
26: if there is a time in fl such that t = fl then
27: for each value t∗ in t1, . . . , tn with t∗ > t +S do . Update t and f
28: Put t∗ ← t∗+2S
29: Put the corresponding start of platoon f ∗ ← f ∗+2S.
30: end for
31: for each vehicle V in the ordering with cV > t +S do
32: Put cV ← cV +2S. . Delay other vehicles
33: end for
34: else . V0 is able to join a platoon
35: for each value t∗ in t1, . . . , tn with t∗ > t +S do . Update t and f
36: Put t∗ ← t∗+S
37: Put the corresponding start of platoon f ∗ ← f ∗+S.
38: end for

Chapter 7. Platoon forming algorithms for intelligent street intersections 211

39: for each vehicle V in the ordering with cV > t +S do
40: Put cV ← cV +S. . Delay other vehicles
41: end for
42: end if
43: Add time cV0 to fdV0

and cV0 to tdV0
.

44: break
45: end if
46: end for
47: end if
48: end if
49: if cV0 is undefined then
50: Put cV0 ← cVK +B .
51: Add time cV0 to fdV0

and time cV0 to tdV0
.

52: end if
53: Add vehicle V0 to the ordering.
54: Output: the new ordering (V1,V2, . . . ,V0, . . . ,VK)

As a reference to algorithms so far established in the literature, we also con-
sider the Batch Algorithm from [184]. For the full description we refer to [184,
Supplementary Information, Section 1.5]. The Batch Algorithm consists of a
combination of a gated PFA (also in the Batch Algorithm “gates” are put) and a
maximum number of vehicles that is dealt with in each cycle.

7.4 Speed profile algorithms

Now that we know how to schedule the crossing times of vehicles at the inter-
section, we turn to the other key ingredient of our model, which is the speed
control of arriving vehicles. We start with some requirements that the PFAs have
to satisfy before we can control the speed of the arriving vehicles in a proper
and safe way. The main condition a PFA has to satisfy is regularity.

Definition 7.1 (Regularity [133,134]) A polling policy is regular if an arrival
in a queue does not change the order of service of all currently present vehicles. I.e.
the new arrival is inserted somewhere in the order of service of all waiting vehicles.

A regular PFA ensures that if a vehicle is rescheduled, its crossing time is in-
creased. A decrease would potentially lead to a scheduled crossing time at which
the vehicle cannot be at the intersection (e.g. due to the fact that the vehicle
has decelerated and cannot accelerate quickly enough to reach the intersection

212 7.4 Speed profile algorithms

in time). The exhaustive and gated algorithms discussed in Algorithms 7.1 and
7.2 are examples of regular polling policies, because a new arrival does not
change the order of service of the vehicles that are already scheduled and, as a
consequence, the crossing times of vehicles can only increase.

A regular polling policy, together with assuming a sufficiently big control
region, ensures that the intersection coordination algorithm in [133, 134] and
the speed profile algorithms that we will introduce are solvable. As mentioned
before, these assumptions are necessary with respect to the (possibility of) ve-
hicles being rescheduled. As can be seen in Algorithms 7.1 and 7.2, the access
time of (some of the) vehicles to the intersection might be increased. The above
assumptions ensure that we can find feasible and safe trajectories for every ve-
hicle, also in case of rescheduling, cf. [133,134].

Besides these two assumptions on regularity and the size of the control re-
gion, we also need to make sure that there are not too many vehicles in the
control region at the same time: if there are too many vehicles present in the
control region, it might be the case that a newly arriving vehicle cannot decel-
erate to a complete stop in time. In this case, the distance between entering
the control region and the stopping position of its predecessor is too short. This
phenomenon is called overcrowding, see [134]. A way to deal with this issue is
proposed as well: we assume that a vehicle that cannot enter the control region
safely, does not enter the control region at all cf. [134].

7.4.1 Optimization based speed profile algorithms

In this subsection, we discuss two algorithms that, satisfying the above condi-
tions, result in an efficient use of the intersection, which is our main purpose.
To this end, we require that vehicles drive at maximum speed while crossing the
intersection, so we need to control the speed of arriving vehicles while they are
in the control region. An optimization algorithm can be formulated to achieve
this as is shown in [134, the MotionSynthesize procedure]. In order to solve this
minimization problem, time is discretized. The MotionSynthesize procedure is
then reduced to a linear optimization problem for which efficient solvers exist.

The optimization procedure has several nice properties, among which is that
the algorithm is provably safe. A formal definition of “safe” and the required
conditions (such as “no overcrowding”) are given in [134], but intuitively it
simply means that no collisions will occur in the control region.

Another property of the MotionSynthesize procedure is that the distance be-
tween vehicle and intersection is minimized across the whole time period that
a vehicle is in the control region. This is equivalent with the minimization of

Chapter 7. Platoon forming algorithms for intelligent street intersections 213

the area under the distance-time diagram, where the distance is defined as the
distance between vehicle and intersection. The physical length of the queue of
vehicles is thus also minimized. This is favorable in a network setting, mini-
mizing the amount of spillback to other intersections. Yet, this specific property
of minimizing the distance between vehicle and intersection has a high energy
consumption and may not be very pleasant for passengers.

Below, in Algorithm 7.3, we discuss a slightly different formulation of the
problem where we minimize the total amount of the absolute value of the ac-
celeration instead of the distance between vehicle and intersection. We do this,
because this would result in less energy consumption by vehicles driving to-
wards the intersection and because the ride towards the intersection is more
comfortable in comparison with minimizing the distance between the vehicle
and the intersection. However, assuming regularity of the PFA and a sufficiently
big control region is not sufficient to ensure a feasible optimization problem as
it is for the MotionSynthesize procedure. We formulate a mild additional con-
straint to guarantee feasibility of the optimization problem, which is that one
needs to be sure that when the preceding vehicle is done decelerating, the next
vehicle is able to decelerate to that same speed before the preceding vehicle
is decelerating further (due to rescheduling for example). As will turn out, a
vehicle starts decelerating immediately after entering the control region (see
e.g. Figure 7.3). As a consequence, if a vehicle is entering the control region, it
needs to be sure that it is able to decelerate to the speed of its predecessor while
maintaining a certain distance to its predecessor at the same time, showing that
we need this additional assumption.

Before we turn to the algorithm, we introduce some notation. Each vehicle
has a trajectory that is computed along the lines of the algorithm, given the
current time, t0, and the scheduled crossing time t f (in this section, for con-
sistency with [134], we use the notation t f to denote the scheduled crossing
time, instead of cV). The algorithm will compute x(t), the place of the vehicle
at time t , for t0 ≤ t ≤ t f , the speed v(t) at time t , and the acceleration a(t) at
time t . Furthermore, y(t) denotes the trajectory of the predecessor (if any) for
t0 ≤ t ≤ t f ,y ; t f ,y denotes the final crossing time of the predecessor of the vehicle
we are currently planning; l denotes the minimal distance between the front
part of two successive vehicles; am denotes the maximum acceleration; −am

denotes the maximum deceleration; and vm denotes the maximum speed. The
initial conditions, i.e. the location and speed at the start of the trajectory of the
vehicle, are given by x(t0) = x0 and v(t0) = v0. To put the location x(t) into per-
spective, we measure x(t) as the (negative) distance between the vehicle and
the start of the conflict area of the intersection, i.e. x(t0) = x0 =−X and x(t f) = 0,

214 7.4 Speed profile algorithms

when the vehicle enters the control region at a distance X from the intersection.
Then, we are able to formulate Algorithm 7.3.

Algorithm 7.3 MotionSynthesize procedure with a minimal acceleration

1: Input: x0, v0, t0, t f ,t f ,y , y .
2: Compute

MotionSynthesizeAcc(x0,v0, t0, t f , t f ,y , y) := argmin
x:[t0,t f]→R

∫ t f

t0

|a(t)| dt

subject to

x ′′(t) = a(t), for all t ∈ [t0, t f];

0 ≤ x ′(t) ≤ vm , for all t ∈ [t0, t f];

|a(t)| ≤ am , for all t ∈ [t0, t f];

|x(t)− y(t)| ≥ l , for all t ∈ [t0, t f ,y];

x(t0) = x0; x ′(t0) = v0;

x(t f) = 0; x ′(t f) = vm .

3: Output: x(t).

Algorithm 7.3 can be discretized in order to obtain a linear optimization
problem, just as the MotionSynthesize procedure and has a valid solution under
the set of conditions formulated above, i.e. regularity of the PFA, a sufficiently
big control region, and the assumption on decelerating of the predecessor of a
vehicle. The main difference between Algorithm 7.3 and the MotionSynthesize
procedure from [134] is that instead of minimizing the distance from vehicle
to intersection, we minimize the (absolute value of the) acceleration applied by
the vehicle while being in the control region. This obviously has consequences
for the amount of energy consumption. Disadvantages include that the physical
length of the queue grows and that vehicles cannot enter the control region
as close to each other (as vehicles slow down immediately when entering the
control region).

In the next subsection we present closed-form alternatives to the MotionSyn-
thesize procedure and Algorithm 7.3, similar in spirit as the results in e.g. [69,
118]. So instead of the need to solve a linear optimization problem each time,
we have a set of calculations that we can perform to find the trajectory of a ve-
hicle, which is optimal with respect to minimizing the distance or acceleration.

Chapter 7. Platoon forming algorithms for intelligent street intersections 215

These closed-form expressions immediately imply that Algorithm 7.3 yields a
valid and safe trajectory. In Remark 7.3 we return to this topic.

7.4.2 Closed-form speed profile algorithms

In this subsection, we derive closed-form alternatives to the MotionSynthesize
procedure in [134] and to Algorithm 7.3. We start with the MotionSynthesize
procedure and make two important observations that form the basis for our
closed-form SPA:

(i) The optimization problems formulated in the MotionSynthesize procedure
and Algorithm 7.3 always lead to piece-wise constant acceleration;

(ii) If all vehicles decelerate (and possibly stop) at most once, at most four
changes in the acceleration occur.

These observations imply that if we can find the four points at which the
acceleration changes, we are able to determine the trajectory in closed form.
We note that the exhaustive and gated algorithms indeed have the desirable
property that vehicles need to decelerate at most once. From the polling lit-
erature we know that the exhaustive service discipline ensures that customers
will always be served before the end of the cycle in which they arrive. With
gated service, customers will always be served in the next cycle. Translated to
our traffic model, this means that no vehicle will ever need to stop more than
once. As a consequence, the acceleration changes at most four times. We shortly
describe the corresponding five parts of the arriving trajectory.

• No acceleration or deceleration from t0 until tdec;

• Deceleration at maximum rate from tdec until tstop;

• A stop from tstop until tacc;

• Acceleration at maximum rate from tacc until tfull;

• No acceleration or deceleration from tfull until t f .

We note that some of those time points might coincide with each other. All that
remains is that we have to find tdec, tstop, tacc, and tfull in such a way that we
minimize the average distance between the vehicle and the intersection. This
leads to Algorithm 7.4, where we assume that t0 = 0 to ease the notation and
that v0 = vm . We can allow for general v0, but we show later that this would

216 7.4 Speed profile algorithms

Algorithm 7.4 closed-form alternative to the MotionSynthesize procedure.

1: Input: x0, t f , t f ,y , and y .
2: if t f − t f ,y = B then
3: Consider trajectory y and determine the time at which the vehicle con-

tinues at full speed. Call this time tfull.
4: else
5: Put tfull ← t f .
6: end if
7: Put

L ← vm

(
t f −

vm

am

)
.

. L represents the distance covered if a vehicle stops for 0 seconds
8: if L ≥ |x0| then . The vehicle has to stop
9: Put tacc ← tfull − vm/am .

10: Put tstop ← tacc − (t f − vm/am −|x0|/vm).
11: Put tdec ← tstop − vm/am .
12: else . The vehicle does not have to stop
13: Define

t̃ ←
√

t f vm −|x0|
am

. (7.1)

. t̃ is the deceleration time
14: Put tacc ← tfull − t̃ .
15: Put tstop ← tacc.
16: Put tdec ← tacc − t̃ .
17: end if
18: Then

a(t) = x ′′(t) ←

0 if 0 ≤ t < tdec,

−am if tdec ≤ t < tstop,

0 if tstop ≤ t < tacc,

am if tacc ≤ t < tfull,

0 if tfull ≤ t < t f .

(7.2)

19: Knowing a(t), we can compute x(t) by integrating twice and using the con-
ditions x(0) = x0 and the velocity at time 0 being vm .

20: Output: x(t).

Chapter 7. Platoon forming algorithms for intelligent street intersections 217

always result in a sub-optimal trajectory. The input consists of the (negative)
distance between vehicle and intersection at t = 0, again denoted by x0, the
scheduled crossing time of the vehicle, t f , and the trajectory of the predecessor
of the vehicle for which we are currently planning the trajectory, y , and its cross-
ing time t f ,y . We prove that the MotionSynthesize procedure and Algorithm 7.4
are equivalent, which is the subject of the next lemma.

Lemma 7.1 The MotionSynthesize procedure and Algorithm 7.4 are equivalent in
the sense that both minimize the distance between vehicle and intersection across
the time period t0 to t f .

Proof. We split the proof in two parts. First we prove that the times tdec, tstop,
tacc, and tfull in Algorithm 7.4 indeed result in the trajectory having the minimal
area under the distance-time graph, assuming that the optimal trajectory con-
tains at most one period of deceleration. Then we prove that the obtained form
of the trajectory, with at most one period of deceleration, is indeed optimal.

Part 1. As indicated before, for now, we only consider trajectories that contain
at most one period of deceleration. We allow that v0 < vm (but we will show
now that that is suboptimal), but we do require that v(tfull) = v(t f) = vm . We
distinguish between the case where a vehicle comes to a full stop and the case
where it does not.

Full stop. First we consider the case where the vehicle (denoted by V) comes
to a full stop, from t = tstop to t = tacc. This class of trajectories is visualized as the
black line in Figure 7.2. It turns out that this curve is completely characterized
by two parameters, which we choose to be the initial speed v0 and the moment
when we start driving at full speed again, tfull.

The optimization criterion in the MotionSynthesize algorithm is to minimize
the area below the graph |x(t)| for 0 ≤ t ≤ t f . This is equivalent to minimizing
the average distance to the intersection. First we give an intuitive explanation as
to why it makes sense to continue at full speed as long as possible. In Figure 7.2
we have plotted two alternative trajectories to show that they result in a larger
average distance to the intersection. The red dashed trajectory is equivalent to
the optimal trajectory, but with a lower starting speed (v0 < vm). By starting at
a lower speed, while fixing tfull, we have to continue longer at this lower speed
before we come to a complete stop. This means that tdec and tstop increase,
which immediately increases the area below the graph. Another alternative is
the dashed green trajectory, which starts at full speed, but has a lower value

218 7.4 Speed profile algorithms

tdec tstop tacc tfull tf
t

x(t)

Figure 7.2: Three sample trajectories with one full stop. The optimal trajectory is plotted
in black. The dashed green trajectory has a smaller value of tfull compared to the optimal
trajectory, whereas the dashed red trajectory has a smaller value of v0.

for tfull. Note that tfull is restricted by V ’s predecessor. Without predecessor, it
is optimal to take tfull = t f , but if there is a predecessor (which apparently is
the case for the black trajectory in Figure 7.2), it is optimal to let both vehicles
have the same tfull. This is the only way to ensure that both vehicles cross
the intersection at full speed, with minimum distance between them. Taking a
smaller value of tfull, as in the green trajectory, means that V comes to a stop
further from the intersection, which significantly increases the average distance.

These arguments provide an intuitive explanation, but we will formalize this
now by explicitly computing the area below |x(t)| for our closed-form trajecto-
ries. First we give the closed-form expression for x(t), by considering the five
sub-areas separately, and using the fact that x(t) is linear when the speed is con-
stant and quadratic while decelerating/accelerating. Equation (7.3) is easiest
to understand when starting at t = t f and constructing the trajectory backwards
to t = 0, and using these auxiliary results:

tstop − tdec =
v0

am
,

tfull − tacc = vm

am
,

Chapter 7. Platoon forming algorithms for intelligent street intersections 219

x(tstop)−x(tdec) = v2
0

2am
,

x(tfull)−x(tacc) = v2
m

2am
.

We obtain:

x(t) =

(t − t f)vm for tfull ≤ t ≤ t f ,

(tfull − t f)vm − v2
m

2am
+ am

2 (t − tacc)2 for tacc ≤ t ≤ tfull,

(tfull − t f)vm − v2
m

2am
for tstop ≤ t ≤ tacc,

(tfull − t f)vm − v2
m

2am
− am

2 (t − tstop)2 for tdec ≤ t ≤ tstop,

x0 + v0t for 0 ≤ t ≤ tdec.

(7.3)

Note that tdec follows from continuity of x(t):

tdec =
1

v0

(
|x0|− (t f − tfull)vm − v2

0 + v2
m

2am

)
.

The area below the trajectory, Av :=
∫ t f

0
|x(t)| dt , is equal to:

Av = tdec

2

(
x(tdec)−x0 +

v2
0

am

)
+ v3

0

6a2
m
+

tfull

(
(t f − tfull)vm + v2

m

2am

)
− v3

m

6a2
m

+ vm

2
(t f − tfull)

2

= v4
0 +3

(
v2

m +2am((t f − tfull)vm +x0)
)2

24a2
m v0

+ vm

2

(
t 2

f − t 2
full + tfull

vm

am

)
− v3

m

6a2
m

.

We now exploit that only the first part of the expression for Av depends on the
initial speed v0, as observed before. By taking the derivative with respect to v0

and using v0 ≤ vm it follows that Av is decreasing in v0, under the following
condition:

(t f − tfull)vm +2
v2

m

2am
≤ |x0|.

This is exactly the “no overcrowding” assumption discussed earlier, which now
gets quantified: a vehicle entering the control region at full speed should have

220 7.4 Speed profile algorithms

enough space to come to a full stop and accelerate again in order to reach full
speed at time tfull. The above proves that the initial speed should be taken as
large as possible, i.e. v0 = vm .

Now that we have established that we should choose v0 = vm , we assume
this equality from now on and denote the area as A (to distinguish it from Av).
This significantly simplifies the expression, which now becomes

A = (vm t f +x0)

(
t f − tfull +

vm

2am

)
+ x2

0

2vm
.

It is readily seen that the area A is now linearly decreasing in tfull, which im-
mediately proves that we should take tfull as large as possible to minimize A .
Exactly how large tfull is allowed to be, depends on the predecessor.

No full stop. We now briefly consider the case where V does not come to a full
stop. The analysis is quite similar, so we will mainly focus on the differences.
The first difference is that tstop is removed from the trajectory. Instead, we now
have that the speed at t = tacc is greater than zero. Note that this speed, which
we denote by v1, is less than or equal to v0, because V decelerates between tdec
and tacc. The trajectory x(t) now consists of at most four parts, given by:

x(t) =

(t − t f)vm for tfull ≤ t ≤ t f ,

(t − t f)vm + am
2 (t − tfull)

2 for tacc ≤ t ≤ tfull,

x0 + v0t − am
2 (t − tdec)2 for tdec ≤ t ≤ tacc,

x0 + v0t for 0 ≤ t ≤ tdec.

(7.4)

We can eliminate the unknowns by using the relations

tacc − tdec =
v0 − v1

am
,

tfull − tacc = vm − v1

am
.

The requirement that x(t) is continuous in tacc leads to the last equation that
can be solved to obtain tacc. The area below |x(t)| can now be computed:

Av = vm

2
(t f − tacc)2 + (v0 − v1)3 − (vm − v1)3

6a2
m

−x0tacc − v0

2
t 2
acc.

Eliminating tacc and differentiating with respect to v1 immediately shows that
Av is decreasing in v1. Since we are trying to minimize Av , we should take v1

Chapter 7. Platoon forming algorithms for intelligent street intersections 221

as large as possible, i.e. v1 = v0. After this substitution, all expressions simplify
and it can again be shown that the derivative of A with respect to v0 is always
less than or equal to zero, where equality is only reached when tacc = 0 and
there is no other option for V than to accelerate immediately. This means that
we should take v0 as large as possible, which again implies that we should take
tfull as large as possible, what we also do.

It should be noted that the case v0 = vm needs to be considered separately,
because if the conditions allow a maximal initial speed, v1 is completely fixed:

v1 = vm −
√

am(t f vm −|x0|).

This means that tfull does not follow from v0, but it can be chosen arbitrarily (be-
tween the minimum and maximum allowed values). To minimize the distance
between the vehicle and the intersection, we thus get

tacc = tfull −
vm − v1

am
= tfull −

vm − (
vm −√

am(t f vm −|x0|)
)

am
= tfull − t̃ ,

with t̃ as defined in Equation (7.1).

Implementation. Algorithm 7.4 is an implementation of the optimal trajec-
tory for the general case. The formulation of the algorithm is slightly different,
because we are using the results that v0 and tfull should be as large as possible.
As argued above, an upper bound to the time tfull is determined by the trajec-
tory y of the predecessor of V , and is fixed. If the crossing times differ a time B ,
then the time at which the predecessor starts driving at full speed, t f ,y , should
be equal to tfull (because we want to take it as large as possible), and otherwise
it is simply t f , which is the way we choose tfull in lines 2-6.

Then combining the defined times, we obtain Equation (7.2), which mini-
mizes the area under the distance-time graph. This is exactly the same criterion
as we optimize for in the MotionSynthesize procedure. The only thing left to
show, is that all other trajectories satisfying the required constraints regarding
maximum speed and acceleration, have a larger average distance to the inter-
section than the one we obtain.

Part 2. This part is significantly shorter, proving that the obtained trajectory
is really optimal with respect to the criterion of smallest average distance to the
intersection. We remind the reader that we explicitly exploit the property of the
polling-based PFAs that each vehicle needs to decelerate (and possibly stop) at

222 7.4 Speed profile algorithms

most once. Intuitively, the optimality is quite apparent: in order to minimize
the average distance to the intersection, a vehicle entering the control region
needs to drive at full speed as long as possible. Assume that x(t) is a trajectory
defined by Equation (7.3) with v0 = vm and tfull as large as possible. We now
consider an alternative trajectory x̃(t) 6= x(t). We compare x(t) with x̃(t) on the
five parts of the trajectory.

• For 0 ≤ t ≤ tdec it is completely obvious that |x̃(t)| ≥ |x(t)|, because x̃(0) =
x(0) = x0 and x̃ ′(t) ≤ x ′(t) = vm for 0 ≤ t ≤ tdec.

• We now turn to the last part of the trajectory. For tfull ≤ t ≤ t f , we have
x̃(t) = x(t) because tfull was defined as the largest possible value for t
where V should start driving at full speed.

• Looking at the part before this one, tacc ≤ t ≤ tfull, we see that |x̃(t)| ≥ |x(t)|
because x̃ ′(tfull) = x ′(tfull) = vm and x̃ ′′(t) ≤ x ′′(t) = am .

• The period tstop ≤ t ≤ tacc is also trivial, because ṽ(t) ≥ v(t) = 0 here, mean-
ing that |x̃(t)| ≥ |x(t)|.

• This leaves us with the last part, which is the second period tdec ≤ t ≤ tstop.
We have already established that |x̃(tdec)| ≥ |x(tdec)| and |x̃(tstop)| ≥ |x(tstop)|.
Since x̃ ′(tdec) ≤ x ′(tdec) = vm and x̃ ′′(t) ≤ x ′′(t) = am , it also follows that
|x̃(t)| ≥ |x(t)| in this area.

The conclusion is that for all t ∈ [0, t f] we have |x̃(t)| ≥ |x(t)|, which implies that∫ t f

0
|x̃(t)| dt ≥

∫ t f

0
|x(t)| dt .

This proves that the path x(t) is optimal with respect to the criterion of the
MotionSynthesize procedure. Since it has also been proven in [133] that the
MotionSynthesize algorithm yields an optimal path, both algorithms must re-
turn the same path. ä
Remark 7.1 The astute reader will notice that we do not provide an explicit ex-
pression for x(t) in Algorithm 7.4. Instead, we provide its second derivative, a(t),
and the boundary conditions. This has the advantage that we have one formula-
tion that is valid for both cases (full stop and no full stop). One can easily verify
that Equation (7.3) (full stop) and Equation (7.4) (no full stop) both reduce to
Equation (7.2) after differentiating twice, and that tdec, tstop, tacc, and tfull as com-
puted in Algorithm 7.4 correspond to the values discussed in the first part of the
proof. Note that we choose tstop = tacc in the case of no full stop.

Chapter 7. Platoon forming algorithms for intelligent street intersections 223

Remark 7.2 Although the exhaustive and gated PFAs ensure that there is at most
one period of deceleration, for other disciplines, like the Batch Algorithm or the
k-limited discipline, this might not be the case. The period from t0 until t f might
have to be split in more than five different periods. A similar type of speed profile
algorithm is still possible, but is more involved and therefore omitted in the interest
of space and clarity of the algorithm and argumentation.

0 5 10 15 20 25

0

20

40

60

80

100

t

|x
(t

)|

Figure 7.3: Algorithm 7.4 (solid lines) and Algorithm 7.5 (dashed lines) for several
vehicles with t (sec) on the horizontal axis and |x(t)| (meters) on the vertical axis for
several vehicles.

So, Algorithm 7.4 has the same desirable properties as the MotionSynthe-
size procedure, but is computationally much less expensive and also provides
intuition on the shape of the trajectories. A visualization of such trajectories can
be found in Figure 7.3 (represented by the solid lines).

We can also formulate such an alternative for Algorithm 7.3, where we,
again, put t0 = 0 to ease the notation. We allow for general v0 now. In fact,
this is essential to this algorithm, because a vehicle might start decelerating
immediately upon arrival in the SPA part of the control region. We assume that
a following vehicle has decelerated accordingly, if necessary, in the PFA part of
the control region. In practice, either vehicle-to-vehicle or vehicle-to-controller
communication might be used to ensure this speed adjustment. The general
structure of Algorithm 7.3 is similar to that of Algorithm 7.4. Also in this case,
the acceleration is piece-wise constant, yet there are at most three changes in
the acceleration. We shortly describe those four parts of the arriving trajectory.

• Deceleration at maximum rate from t0 until tcruise;

• No acceleration or deceleration from tcruise until tacc;

224 7.4 Speed profile algorithms

• Acceleration at maximum rate from tacc until tfull;

• No acceleration or deceleration from tfull until t f .

This is also visible in Figure 7.3, where a visualization of some trajectories com-
puted with Algorithm 7.5 is given (represented by the dashed lines). Note that
we start decelerating as soon as possible, because we want to cruise at a rela-
tively low speed. If we would not cruise at a low speed, then we would have
to decelerate more (as we covered a longer distance at a high speed). So we
decelerate maximally for some time, continue at a constant speed for some time
and then accelerate maximally (taking advantage of the lower cruising speed as
long as possible). The resulting algorithm is formulated in Algorithm 7.5 and
equivalence with Algorithm 7.3 is proven.

Lemma 7.2 Algorithm 7.3 and Algorithm 7.5 are equivalent in the sense that
both minimize the absolute value of the applied acceleration across the time period
t0 to t f .

Proof. We again split the proof in two parts, but now we first prove optimality
of the form of the trajectory and then we check the computation of tcruise, tacc,
and tfull in Algorithm 7.5.

Part 1. The optimal trajectory consists of at most four parts. The last part,
from tfull until t f , is determined in the same way as shown in the proof of
Lemma 7.1.

The first three parts of the trajectory are split in the following way: deceler-
ating (until tcruise), cruising at a fixed speed (until tacc), and accelerating (until
tfull), where the first and last period may have zero length. We want to minimize
the area under the absolute value of the acceleration-time graph. We decelerate
as early as possible and accelerate as late as possible, and both at the maximum
rate. If we would not do one of these three things, it means that we would have
to decelerate more as we drive at a high speed longer (and as e.g. the average
speed is fixed, namely x0/t f). So, indeed the first three parts of a trajectory
consist of decelerating at maximum rate, then cruising at a fixed (and relatively
low) speed and then accelerating at maximum rate.

Part 2. As argued in the proof of Lemma 7.1, the time tfull is determined by
the trajectory y of the predecessor of V and is fixed. So tfull is chosen as in
lines 2-6.

Chapter 7. Platoon forming algorithms for intelligent street intersections 225

Algorithm 7.5 closed-form alternative to Algorithm 7.3.

1: Input: x0, v0, t f , t f ,y , and y .
2: if t f − t f ,y = B then
3: Consider trajectory y and determine the time at which the vehicle con-

tinues at full speed. Call this time tfull.
4: else
5: Put tfull ← t f .
6: end if
7: Put

t1 ←
am t f + v0 − vm

2am
−√

4am |x0|+ (am t f − v0)2 −2(am t f vm + v2
0)−4am(t f − tfull)vm +2v0vm − v2

m

2am

(7.5)

8: Put

t2 ←
am t f + v0 − vm

2am
+√

4am |x0|+ (am t f − v0)2 −2(am t f vm + v2
0)−4am(t f − tfull)vm +2v0vm − v2

m

2am

(7.6)

9: Put tcruise = t1 and tacc = t2.
10: Then,

a(t) = x ′′(t) ←

−am if 0 ≤ t < tcruise,

0 if tcruise ≤ t < tacc,

am if tacc ≤ t < tfull,

0 if tfull ≤ t < t f .

(7.7)

11: Knowing a(t), we compute x(t) using the conditions x(0) = x0 and v(0) = v0.
12: Output: x(t).

226 7.5 Performance analysis

Knowing this, we can compute the remainder of the trajectory. We can com-
pute the traversed distance if we immediately decelerate for a time t and accel-
erate as late as possible for a time t + vm/am − v0/am (because it might be that
v0 6= vm), which is

v0t − 1

2
am t 2 +

(
vm −am

(
t + vm

am
− v0

am

))(
t + vm

am
− v0

am

)
+ (t f − tfull)vm+(

vm −am

(
t + vm

am
− v0

am

))(
t f −2t − vm

am
+ v0

am

)
+ 1

2
am

(
t + vm

am
− v0

am

)2

.

(7.8)

Equating Equation (7.8) with |x0| and solving for t , results in two positive val-
ues. The smaller one is given as t1 in Equation (7.5) and the larger one as t2 in
Equation (7.6). So we can put tcruise = t1 and tacc = t2.

Then, when we combine the defined times, we obtain Equation (7.7). With
this choice of times, we see that we minimize the area under the absolute value
of the acceleration-time graph. This is exactly the same criterion as we optimize
for in Algorithm 7.3, so the two algorithms yield the same trajectory. ä

Remark 7.3 Algorithms 7.3 and 7.5 are solvable, if the PFA is regular, the control
region is sufficiently big, and the cars are sufficiently far apart from each other
when entering the control region (as mentioned before). The regularity of the PFA
ensures that the vehicles keep driving behind each other (and, e.g., do not have
to overtake). Our closed-form expressions in Algorithm 7.5 provide immediate
quantitative insight in the conditions required for solvability. In this case, lines 2
to 6 are sufficient to determine the influence of the predecessor of the vehicle that
we are currently planning. The sufficiently big control region ensures that proper
tfull, t1, and t2 can be found, in such a way that vehicles do not collide, which is
also the case for the requirement on the distance between cars when they enter the
control region. A full proof would be similar to the proof of Lemma (IV.4) in [134]
and would follow along the same lines.

7.5 Performance analysis

Having covered the two main ingredients of the model, we turn to the perfor-
mance analysis. The two measures that we consider are the mean delay and the
fairness. In order to obtain results on mean delay and fairness, we first establish
a link between the model we described so far, and polling models.

Chapter 7. Platoon forming algorithms for intelligent street intersections 227

7.5.1 Polling model

We have a slightly different polling model than the one that is usually consid-
ered in the literature. Therefore, we first describe the type of polling model that
we consider.

We face a polling model with n queues, each with a distinct Poisson arrival
process with parameter µi , which are assumed to be independent from each
other. Each queue has its own generally distributed service time from which
is sampled independently. A single server is visiting each of the n queues in a
certain (possibly random) order to serve customers. After a certain period at
a queue, determined by the service discipline, the server switches to the next
queue. We assume that if we switch, a setup time is incurred. This setup time
is nonzero if the queue to which we switch is not empty. However, if the queue
to which we switch is empty, we assume the setup time to be zero. In such a
case, we continue immediately to the next queue where, again, a setup time
is incurred (see e.g. [179] where a similar setup policy is used). We assume,
for simplicity and the ease of exposition, that setup times only depend on the
queue to which the server switches. Moreover, if all queues were empty before
the arrival of a vehicle, we assume that a setup was started at the most recent
departure epoch. This polling with residual setups has not been studied before
in the polling literature as far as we are aware, but naturally represents the
behavior of our PFAs.

We will analyze the performance of our PFAs regarding the mean delay
through the polling models as described above. Although we take a vertical
queueing approach in those polling models (i.e. the vehicles are all stopped at
the stop line at the intersection, occupying no space, see e.g. [113, Section 3.2]),
the SPA provides a one-to-one relation between the vertical queueing model and
the PFAs. We visualize this in Figure 7.4, where the black line represents a self-
driving vehicle, and the red dotted line represents the corresponding “vehicle”
in the vertical queueing model. Both “vehicles” enter the control region at the
same time (so also the earliest possible arrival time at the intersection is the
same for both). They also have the same service time, because as soon as the
vehicles start to cross the intersection they have the same trajectory. So the de-
lay for both vehicles is the same as visualized in Figure 7.4. Alternatively, if an
observer would be able to observe vehicles only when they enter the control re-
gion at a 100 meters distance from the intersection and at the moment that they
cross the intersection, the observer would not be able to distinguish between a
vehicle following the red dotted trajectory and the solid black trajectory in Fig-
ure 7.4.

228 7.5 Performance analysis

0 2 4 6 8 10

−20

0

20

40

60

80

100

t

|x
(t

)|

delay

Figure 7.4: Visualization of the link between the traffic model with PFAs and polling
models. The black line represents a self-driving vehicle and the red dotted line represents
the corresponding “vehicle” in the vertical queueing model.

To make the connection between the traffic model and polling models more
explicit, we argue how the traffic model translates to a polling model. The time
B in between vehicles from the same stream accessing the intersection is the
service time in the polling model, whereas the clearance time S is the setup
time in the polling model. Which queue or lane is to be served is decided upon
by the service discipline and the PFA respectively.

So, our intersection model precisely fits the framework of polling models.
We will use the ideas and results already obtained for polling models to obtain
a performance analysis of the traffic model discussed so far. From now on in
this section, we will be focusing on the polling model and related results, and
therefore use queueing terminology.

7.5.2 Mean delay

The specific assumptions that we made, result in a polling model that does not
fall into the standard framework and a fully analytical solution is difficult (if not
impossible) to derive. So, we aim to develop accurate approximations for the
exhaustive and gated PFA, which are much easier to compute and which are still
quite accurate, and refrain from providing an analytical solution. We focus on
obtaining approximations for the mean delay that still require some analytical
results, but that are easier to derive than the exact value of the mean delay.

We start with a definition of delay. The delay Di at lane i is defined as the
actual time of a car crossing the intersection minus the free-flow time in which

Chapter 7. Platoon forming algorithms for intelligent street intersections 229

a car could cross the intersection (which is the delay in both the polling model
and the intersection model). Further, we denote with Bi the service time at
queue i , whereas Si denotes the setup time when we switch to queue i . We
have Poisson arrivals with rate µi and define ρi = µiE[Bi] and ρ = ∑

i ρi , where
ρ is similar to the vehicle-to-capacity ratio. The approximation that we propose
for the mean delay is of the form,

E[DP
i ,app] =

K P
0,i +K P

1,iρ+K P
2,iρ

2

1−ρ , (7.9)

like in [22], where K P
j ,i are constants that are yet to be determined and P de-

notes the PFA. The constants, that might depend on P and the arrival distribu-
tion (we only consider Poisson arrivals), are derived through requiring Equa-
tion (7.9) to be exact in various limiting cases. These three cases are the follow-
ing: Equation (7.9) should match the mean delay for queue i in the light-traffic
limit, the derivative of the light-traffic limit, and the heavy-traffic limit. Then
we have a system of three equations with three unknowns, which we can solve
to find the constants K P

j ,i . These approximations are based on the framework
described in [22], which is in turn based on ideas developed in [166]. Note
that Equation (7.9) is only valid for ρ < 1, which is the condition for the polling
model (and therefore also for our PFAs) to be stable.

We start with deriving the light-traffic limit for the mean delay for general
service time and setup time distributions. The light-traffic here corresponds to
the case where

P(server not working and not setting up) ↑ 1,

which means that both µiE[Bi] and µ jE[Si], i , j = 1, . . . ,n, should be close to zero.
We denote with X res the residual or overshoot of the random variable X with
mean E[X res] = E[X 2]/(2E[X]). Then we have the following lemma where, as
mentioned before, we restrict the setup times to depend only on the queue to
which we switch.

Lemma 7.3 The light-traffic limit for the mean delay, up to and including first-
order terms, for all discussed PFAs, is

E[DLT
i] = ρiE[B res

i]+ ∑
j 6=i

ρ j (E[B res
j]+E[Si])+ ∑

j 6=i
µ jE[Si]E[Sres

i]. (7.10)

Proof. We first note that cases where we see more than one customer when we
arrive in the system are all of order O(ρ2) or higher, so we do not consider those

230 7.5 Performance analysis

terms. We continue with considering what happens in each phase of the cycle
and argue what the delay is of a customer arriving at queue i .

We have n different visit periods, numbered j = 1, . . . ,n. If j = i , we only have
to wait for a residual service time of the customer that is currently in service
(using the PASTA property of Poisson arrivals). This happens with probability
µiE[Bi] = ρi . The contribution to the waiting time is thus ρiE[B res

i]. If i 6= j ,
we have to wait for the residual service time of the customer that is in service
and for the setup time to our own queue i . This all happens with probability
µ jE[B j] = ρ j , so the contribution to the waiting time is ρ j (E[B res

j]+E[Si]).
If we are currently in a setup period, we might be at queue j = 1, . . . ,n. The

case i = j does not occur, as we do not have a setup time in that case (we take
the customer immediately into service). The cases i 6= j occur with rate µ jE[Si]
(which converges to zero) and if we arrive during such a period, we have to
wait for a residual setup time. So the contribution is µ jE[Si]E[Sres

i].
Summing all separate parts discussed above, we obtain Equation (7.10).

Moreover, the given arguments all hold for both the gated and exhaustive PFA,
finishing the proof. ä

Comparison light-traffic limit of polling models with (residual) setup and
switchover times

In [22], Equation (3.11), the light-traffic limit for a regular polling model
with switchover times (and no setup times) is given. As mentioned be-
fore, setup times are only incurred if the queue to which we switch is
non-empty and are equal to zero otherwise (after which we perform an-
other setup when switching to the next queue). Comparing this with our
light-traffic limit as in Equation (7.10), we do not have a constant term.
This is the result of the behavior of our queueing model when all queues
are empty: in such a case only a residual setup is performed instead of
a full setup time. I.e. in light traffic and assuming residual setups, the
light-traffic limit for the mean delay for each queue is 0, which makes
sense for our traffic model. Rewriting (7.10) to

E[DLT
i] =∑

i
ρiE[B res

i]+ (ρ−ρi)E[Si]+ E[S2
i]

2

∑
j 6=i

µ j ,

reveals that some of the terms in Equation (3.11) from [22] simply can-
cel, because the delays during a switchover time (which corresponds to
a setup in this chapter) are not of O(1), but of order O(ρ).

Chapter 7. Platoon forming algorithms for intelligent street intersections 231

In heavy traffic, the behavior of our PFAs and regular polling models is
the same, as a setup will always be performed and can be seen as a regular
switchover. Consequently, the heavy-traffic limits for the exhaustive and gated
PFAs are the same as the heavy-traffic limits for the exhaustive and gated disci-
plines in e.g. [16], where polling models with switchover times are presented.
Indeed, if the lengths of the setups and switchovers are the same, the polling
model with switchovers (and without setup times) is the same as the polling
model with setup times (but no switchover times), because each setup will be
performed in heavy traffic (as all queues tend to be non-empty when the server
visits them) and a setup time can be seen as an “ordinary” switchover time. This
implies that we can use the results from [16], so

E[D HT,P
i] = ωP

i

1−ρ +o((1−ρ)−1), (7.11)

with P denoting the PFA, so P = exh (for the exhaustive PFA) or P = gat (for the
gated PFA), where, for i = 1,2, . . . ,n,

ωexh
i = 1− ρ̂i

2

(
σ2∑n

j=1 ρ̂ j (1− ρ̂ j)
+

n∑
j=1

E[S j]

)
, (7.12)

with, in case of Poisson arrivals,

σ2 =
∑n

j=1µ jE[B 2
j]∑n

j=1µ jE[B j]

and ρ̂ j = ρ j /ρ. For the gated PFA we have

ω
gat
i = 1+ ρ̂i

2

(
σ2∑n

j=1 ρ̂ j (1+ ρ̂ j)
+

n∑
j=1

E[S j]

)
. (7.13)

The general approximation in Equation (7.9) is now ready to be used. We
obtain the following theorem.

Theorem 7.4 The mean delay experienced for PFA P can be approximated with
Equation (7.9), where

K P
0,i = 0,

K P
1,i = ρ̂iE[B res

i]+ ∑
j 6=i

ρ̂ j (E[B res
j]+E[Si])+ ∑

j 6=i
µ̂ jE[Sres

i]E[Si], (7.14)

232 7.5 Performance analysis

K P
2,i =ωP

i −K P
1,i ,

with µ̂ j = ρ̂ j /E[B j].

Proof. As mentioned before, we put three conditions on the constants K P
j ,i ,

j = 0,1,2. These are the following

E[DP
i ,app]

∣∣∣
ρ=0

= E[DLT
i]

∣∣∣
ρ=0

,

d

dρ
E[DP

i ,app]
∣∣∣
ρ=0

= d

dρ
E[DLT

i]
∣∣∣
ρ=0

,

(1−ρ)E[DP
i ,app]

∣∣∣
ρ↑1

= E[D HT,P
i].

Using Lemma 7.3 and Equation (7.11), we get

K P
0,i = 0,

K P
0,i +K P

1,i = ρ̂iE[B res
i]+ ∑

j 6=i
ρ̂ j (E[B res

j]+E[Si])+ ∑
j 6=i

µ̂ jE[Sres
i]E[Si],

K P
0,i +K P

1,i +K P
2,i = E[D HT,P

i] =ωP
i .

(7.15)

It can easily be seen that Equation (7.15) reduces to Equation (7.14). ä

Remark 7.4 The above mentioned results for the mean delay can readily be ex-
tended to results for the mean number of vehicles in the queue using Little’s law.
Together with the speed regulation algorithm, the physical length of the queue can
be calculated (for example if we define the last vehicle that has already deceler-
ated to be in the queue). This would give information about e.g. spillback of the
intersection to other intersections.

In general, the approximations work fine for all discussed PFAs, as can be
seen in Figure 7.5, comparing the solid lines (the exact results) and the dashed
lines (the approximations). We present examples where we put vm = 15 m/sec,
am = 4 m/sec2, and l = 5 m and where two lanes cross each other. We consider
two cases where the load on both lanes is split differently: one case where
ρ1 = ρ2 (referred to as being symmetric) and one case where ρ1 = 3ρ2 (referred
to as being asymmetric). Following [184], we put Bi = B = 1 second and Si =
S = 2.375 seconds for i = 1,2, . . . ,n. The two discussed PFAs result in Figure 7.5,
where also, as a benchmark, the Batch Algorithm from [184] is considered, with

Chapter 7. Platoon forming algorithms for intelligent street intersections 233

0.2 0.4 0.6 0.8

0

20

40

60

80

100

ρ

E
[D

]

batch

gated

exhaustive

(a)

0.2 0.4 0.6 0.8

0

20

40

60

80

100

ρ

E
[D

]

batch

gated

exhaustive

(b)

Figure 7.5: Mean delay experienced by an arbitrary car for the symmetric case (a) and
asymmetric case (b). The solid lines represent simulation results and the dashed lines
approximations.

a maximum batch size of 100. The approximations are also good for all other
settings we simulated.

We see that the exhaustive PFA performs really well if we focus on mean
delay and make a comparison with the other PFAs. The difference between
the gated and the exhaustive PFA can also be understood from the heavy-traffic
limits in Equations (7.12) and (7.13). The performance of the Batch Algorithm
is similar to that of the gated PFA, except for higher values of ρ, which is due
to the maximum batch size of 100. This maximum batch size causes a lower
maximum capacity for the Batch Algorithm than for the exhaustive and gated
PFA and therefore, the Batch Algorithm has a sharp increase in the mean delay
at a lower value of ρ than the other two PFAs. We expect the exhaustive PFA to

234 7.6 Comparison traditional traffic light and PFAs

be close to the optimum with respect to the mean delay. This optimality was, to
some extent, already observed in e.g. [124,142,222].

7.5.3 Fairness

In order to show that the exhaustive PFA is not the best for all performance
metrics we consider fairness in this subsection. We use the definition of fairness
for polling models, denoted with F , as introduced in [176],

F = E[Nahead]

E[Ntotal]
,

where Nahead denotes the number of cars an arbitrary car sees upon arrival and
that are served ahead of it; and where Ntotal denotes the total number of cars
across the entire intersection an arbitrary car sees upon arrival. A fairness close
to 1 is considered fair (as there are few overtakes) and a fairness close to 0 as
unfair (as there are many overtakes). In words this means that we quantify the
percentage of cars that did not overtake an arbitrary car (on an intersection-
wide basis).

In Figure 7.6 we present simulation results for fairness for the same set of
examples as for the mean delay. Considering fairness, we see once more that the
gated PFA is close to the Batch Algorithm for values of ρ that are not too high.
The increase of fairness for high values of ρ for the Batch Algorithm is due to
the maximum batch size of 100. The exhaustive PFA performs worse on fairness,
but is still above 75%. It seems that a low mean delay results in a relatively low
fairness, showing a potential need to balance the two performance measures,
which is also (to some extent) visible in the increase of fairness for the Batch
Algorithm for high values of ρ.

7.6 Comparison traditional traffic light and PFAs

The goal of this section is to provide a comparison between traditional traffic
lights and PFAs on the basis of mean delay. As a measure for the traditional
traffic light we use the traffic simulator SUMO. We will consider two scenarios
in SUMO: one with fixed control and one with adaptive control (based on the
so-called time loss in the SUMO User Documentation). We will compare these
two scenarios with the exhaustive PFA.

We consider two examples where two lanes cross each other. In the first
example, the vehicle-to-capacity ratio is the same on both lanes, whereas in the

Chapter 7. Platoon forming algorithms for intelligent street intersections 235

0.2 0.4 0.6 0.8

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ρ

F
a
ir

n
e
s
s

batch

gated

exhaustive

(a)

0.2 0.4 0.6 0.8

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ρ

F
a
ir

n
e
s
s

batch

gated

exhaustive

(b)

Figure 7.6: Fairness experienced by an arbitrary car for the symmetric case (a) and
asymmetric case (b).

second example the ratio between the loads on the lanes is 1 : 3. For the exhaus-
tive PFA we again put Bi = B = 1 second and Si = S = 2.375 seconds. For the fixed
control simulation in SUMO and the first example we assume a green period
for both lanes of 22 seconds and an amber period of 3 seconds; for the second
example we pick green periods of 11 and 33 seconds and an amber period of 3
seconds. Note that some of the results for the fixed control in Figure 7.7 could
be improved by adapting the length of the green period. For the adaptive con-
trol in SUMO we assume a maximum green period duration of 45 seconds and
an amber period of 3 seconds for the symmetric example. For the asymmet-
ric example we choose a maximum green period of 22 and 68 seconds and an
amber period of 3 seconds. Note that we do not have to define the variable

236 7.6 Comparison traditional traffic light and PFAs

0.1 0.2 0.3 0.4 0.5

0

10

20

30

40

50

ρ

E
[D

]
SUMO − fixed
SUMO − adaptive
exhaustive

(a)

0.1 0.2 0.3 0.4 0.5

0

10

20

30

40

50

ρ

E
[D

]

SUMO − fixed
SUMO − adaptive
exhaustive

(b)

Figure 7.7: Mean delay for an arbitrary car for traditional traffic lights (represented by
SUMO) and the exhaustive PFA for the symmetric case (a) and the asymmetric case (b).

Bi in SUMO, as the vehicles themselves decide what Bi is, implying that Bi is
random (and usually higher than in the PFA setting). The delay in SUMO for
the fixed and adaptive control is obtained in the following way: we compute
the mean time spent in the system for all vehicles and subtract the mean time
vehicles spend in the system under free-flow conditions (by giving a green light
for a lane all the time). We take exactly the same arrivals for all three control
strategies.

In Figure 7.7 we see that there is quite a difference between the traffic light
with fixed settings and the adaptive traffic light when we compare them with the
exhaustive PFA. To some extent, this was also observed in [184]. The capacity
of the intersection for the latter case is almost twice as high as for the traditional

Chapter 7. Platoon forming algorithms for intelligent street intersections 237

traffic light, showing a huge potential in resolving congestion. This is mainly
due to the speed regulation of vehicles, which increases the speed of vehicles
crossing the intersection, resulting in relatively low Bi . Partly, the reduction is
also due to the alternative scheduling strategy in the exhaustive PFA.

7.7 Conclusion

We have shown that significant gains can be obtained compared to nowadays
traffic when speed regulation and PFAs are employed and have given ways to
decrease the mean delay at intersections. This has been shown through a con-
nection between polling models and PFAs.

It seems that the exhaustive PFA is close to the optimum when minimizing
the mean delay is key. However, the exhaustive PFA exhibits relatively poor
fairness characteristics. It might be worthwhile to find a balance between mean
delay and (e.g.) fairness in order to obtain some kind of optimal setting for the
PFA. A possibility hereto might be the k-limited discipline (as discussed in e.g.
Chapters 4 and 6) and which can be seen as an alternative to the exhaustive
and gated PFA that we considered in this chapter.

In principle our PFAs could be used in nowadays traffic as well. The only
requirement is that it must be known on an intersection wide basis in which
order the vehicles arrive. The requirement that we can control the speed of
arriving vehicles is not needed to execute the PFAs. This assumption only plays
a role in what the variables Bi and Si are. Regardless of the distributions for
Bi and Si , the scheduling part of a PFA might still be used. Using some kind of
speed advisory system for conventional vehicles, it might be possible to come
quite close to the performance of the PFAs based on self-driving vehicles.

We advocate to investigate more realistic intersection scenarios than the
two-lane scenarios considered for PFAs in Chapter 7, yet we expect similar re-
sults in examples with more than two lanes if vehicles from at most one lane
are crossing the intersection. Another extension would be to allow for turning
traffic (introducing different service times for vehicles on the same lane when
a lane has both turning and non-turning vehicles). Accounting for e.g. pedes-
trians seems to be possible as well, e.g. by introducing some specific periods
in each cycle during which no vehicles are allowed to cross the intersection if
there are pedestrians that want to cross.

We have derived approximations for some of the relevant performance mea-
sures in this chapter. We were not able to provide an exact analysis. It would
be worthwhile to make an effort to provide such an analysis for the special case

238 7.7 Conclusion

of branching-type disciplines. As long as such an exact analysis is not available,
it is worthwhile to study further approximations of for example the delay dis-
tribution. It is conceivable that results for higher moments and the variance of
the delay can be derived, e.g. using techniques similar to those in [71].

The framework developed in this chapter can be further extended, e.g. to
model a situation with mixed traffic, meaning that there are both autonomous
and non-autonomous vehicles. Such an extension is important to study, because
there will be a period during which such a mixture of vehicles is present on the
roads. As such, a framework for mixed traffic needs to be developed. Further
extensions that might be considered are different ways of forming platoons and
alternative ways for vehicles to approach the intersection. Especially in the case
of mixed traffic, the latter is important to consider as autonomous and non-
autonomous vehicles will have significantly different driving behavior.

A further investigation on the practical implementation of our PFAs might
be of interest too. We made several simplifying assumptions that need to be
verified. For example, we assume that all messages that need to be exchanged
are received by all relevant entities and that there is no communication delay.
Also a notion like string stability of a platoon of vehicles, i.e. whether oscilla-
tions in e.g. the speed of individual vehicles in a platoon of vehicles amplify or
not across the different vehicles (for more information see e.g. [183]), might be
investigated for our proposed models.

Chapter 8
Automated detection of
unexpectedly high traffic flow
in uncongested traffic states

8.1 Introduction

As we have argued before, traffic jams have become an inevitable part of road
traffic. We have been focusing so far on intersections and finding e.g. good
or even optimal traffic-light settings, while in this chapter we shift our focus to
traffic congestion on motorways.

Reducing traffic congestion, also on motorways, is a challenging problem,
be it only because traffic has a highly complex nature. One could aim to in-
fluence the amount of driving or the drivers’ behavior on motorways. This can
be achieved by, for example, monetary means (such as toll systems or con-
gestion pricing, see e.g. [12, 84]), encouraging drivers to drive outside peak
hours (see [72] for instance), or dynamic road signaling (see e.g. [91]). It is
increasingly important to find the exact effect of these measures, but this is a
complicated problem, which is partly due to the fact that the manifestation of
congestion on motorways is subject to randomness, see for example [10,194].

In this chapter, we approach the problem of reducing traffic congestion
on motorways from a different perspective than the aforementioned papers,
as we look at the absence of traffic jams. Typically, once the traffic flow, i.e.

240 8.1 Introduction

the throughput measured in vehicles per hour, has passed a certain threshold,
congestion could emerge. This phenomenon is referred to as a “breakdown”.
We are interested in days during which relatively many breakdowns were ex-
pected, but did not occur. Such days will be referred to as “high-performance
days”. Specifically, we develop an algorithm to automatically identify these
high-performance days based on historical traffic data and test our method on a
section of the A15 motorway in the Netherlands. In a future study, one could try
to determine the specific characteristics of the resulting high-performance days
using more detailed data. Ultimately, the goal is to find out whether the high-
performance days could be caused by specific behavioral patterns of individual
drivers. However, we focus on the first step, namely the automated detection of
high-performance days.

Our algorithm relies on the shape of the macroscopic fundamental diagram,
the well-known empirical diagram that displays the relationship between the
traffic flow q (vehicles per hour) and the traffic density ρ (vehicles per kilome-
ter) at a specific location. Many studies have shown that the fundamental dia-
gram can be divided into two regions, a region for congestion and a region for
free flow. The empirical fundamental diagram has been studied extensively and
a wide variety of theoretical models has been proposed (see for example [80]
for an overview). A further introduction to the fundamental diagram is given
in Subsection 8.3.1. However, our aim is not a theoretical model for the funda-
mental diagram: we are merely interested in the critical speed, i.e. the speed
which defines congestion and separates the free-flow region from the conges-
tion region in the fundamental diagram. So, we can get around the problem
of modeling the congestion region and exploit the roughly linear flow-density
relationship during free flow. We show that robust regression can be used to
obtain the free-flow speed and subsequently distinguish between free flow and
congestion based on the calculated weights. Utilizing the method proposed
by [10], we subsequently estimate the breakdown probability. This paves the
way to identifying high-performance days, i.e. days with a (relatively) high
flow/breakdown probability while a traffic jam remains absent. Our algorithm
is thus not designed to explain why a traffic jam occurs. Investigating why a
traffic jam occurred, is beyond the scope of this chapter. There may be many
(combinations of) causes: a traffic jams might, e.g., be induced, see e.g. [34],
or the reason may be found in microscopic traffic data such as the influence of
downstream on-ramps or lane-changing behavior, see e.g. [58].

To the best of our knowledge, our approach to obtain the critical speed and
the introduction of the notion of high-performance days are original. Many pa-
pers focus on (real-time) traffic jam estimation using GPS-data and/or trajectory

Chapter 8. Detection of high traffic flow in uncongested traffic states 241

data, see e.g. [149, 162, 213]. This is partly due to the widespread availability
of GPS data. However, we have chosen to use detector data, as traffic detectors
are present on most Dutch motorways and provide a sufficiently high granular-
ity. Detector data is also used in the literature; in [125] detector data is used to
automatically track congestion and in [106] detector data is used to study phase
transitions on German motorways. However, the work that is probably closest
to our study is [67]. Therein, the authors use detector data to estimate motor-
way characteristics such as the free-flow speed and the critical density. These
quantities are then used to calibrate a cell transmission model. We determine
a related motorway characteristic (the critical speed), but in our study this is a
tool to estimate the breakdown probability. Indeed, our main goal is different:
we identify a surprising absence of traffic jams. This could be an important first
step towards a better understanding of the reasons why on certain days the traf-
fic flow is so much better than on other days, although the circumstances seem
to be identical.

Our main contributions can be summarized as follows:

(i) We present a novel algorithm to automatically detect points in time which
have both a high traffic flow and a high speed based on historic loop de-
tector data. Ultimately, this leads to the identification of high-performance
days.

(ii) We apply our algorithm to investigate a case study on a part of the A15
motorway in the Netherlands and we are able to identify high-performance
days and several interesting patterns.

Chapter outline

The remainder of this chapter is organized as follows. In Section 8.2 we provide
information about the location of the experimental region and discuss the data.
We proceed with the theoretical foundation and the three main steps of the al-
gorithm in Section 8.3. The validation of important assumptions and parameter
choices is presented in Section 8.4, as well as the main insights of the case study.
We close with a conclusion in Section 8.5.

8.2 Description of the location and the data

In this section, we discuss the relevant aspects of the part of the A15 motorway
from which the data is obtained. Subsequently, we elaborate on the structure of

242 8.2 Description of the location and the data

the data set and which steps we take in the preprocessing of the data.

8.2.1 Location of the experimental region

The location under consideration is the A15 motorway near Rotterdam, at the
N3 interchange with Papendrecht (see Figure 8.1). Five detectors have been
placed in the eastern direction, with a distance of approximately 300 meters be-
tween consecutive detectors (see Figure 8.1(b)). Between the second and third
detector, an off-ramp to Papendrecht is located. Shortly afterwards, the vehi-
cles on the A15 merge from three to two lanes. The maximum speed along this
whole trajectory of the A15 is 120 km/h (at the time of this study). The traffic
jams on this trajectory belong to the most costly traffic jams in the Netherlands
(see [33]) and the A15 is one of the most congested roads in the Netherlands,
connecting one of the world’s largest ports with the European main land, which
makes this a particularly important and interesting motorway to study.

↓

(a) (b)

Figure 8.1: (a) Overview of the trajectory, marked red and indicated by the red arrow, in
relation to Rotterdam. (b) The location of the five detectors on the trajectory.

8.2.2 Description of the data set

The data is obtained from the Dutch National Data Warehouse for Traffic In-
formation (NDW), a collaboration of 19 public authorities that cooperate on
collecting, storing, and redistributing data. The data is publicly available and
can be requested at the website of the NDW [139]. The data we obtained from

Chapter 8. Detection of high traffic flow in uncongested traffic states 243

the NDW spans a period from January 1, 2018 until December 31, 2018. Ev-
ery minute, the detectors measure, for each lane individually, the number of
vehicles that have passed (i.e. the traffic flow q, in vehicles per hour) and the
average speed v of the passing cars in kilometers per hour, calculated using the
arithmetic mean. We can estimate the average traffic density ρ using ρ = q/v ,
although this formula is known to underestimate the density when the arith-
metic mean is used to obtain the mean speed [114]. We combine the various
lanes as in [193, Chapter 3]. For the sake of reducing the variability in the data,
we aggregate the measurements to a period of 5 minutes, as is done in [10].
The arithmetic mean is used to obtain the average traffic flow and the average
speed is calculated analogously to the average speed over multiple lanes.

The resulting data set can be described as follows. We introduce the set of
locations I := {1,2,3,4,5}, in accordance with Figure 8.1(b). Moreover, we fo-
cused our research on weekdays and thereby excluded all weekend days from
the data, because the traffic flow is oftentimes significantly lower in the week-
end. The set containing all 261 weekdays in 2018 (including e.g. holidays) is
denoted by J . After the aforementioned exclusions, we have one set of mea-
surement dates J (i) ⊆ J for each detector i ∈ I . At each location we have
measurements of the average traffic flow and average vehicle speed, as well as
an estimate for the density, aggregated to 5-minute intervals. Hence, for loca-
tion i ∈I and date j ∈J (i) we have a sequence of measurement times

T (i , j) :=
{

t (i , j)
1 , t (i , j)

2 , . . .
}
⊆T ,

where T is the set containing all 5-minute intervals on a day. The corresponding
set of measurements for detector i on date j is

X (i , j) :=
{(

q (i , j)
t , v (i , j)

t ,ρ(i , j)
t

)
: t ∈T (i , j)

}
.

The data set containing only the flow and the density is denoted by

X̄ (i , j) :=
{(
ρ

(i , j)
t , q (i , j)

t

)
: t ∈T (i , j)

}
.

In total we have |I | = 5 locations and |J | = 261 dates, leading to a total of 5 ·
261 = 1305 instances. However, in the first step of the algorithm (i.e. estimating
the critical speed), we do not include all days/critical speeds:

(i) We exclude the most extreme critical speeds of each location (see Sub-
section 8.3.1 for a motivation in relation to our assumptions and Subsec-
tion 8.3.2 for a further elaboration);

244 8.3 The main algorithm

(ii) We exclude instances where the free-flow and congestion region are not
linearly separable by a straight line through the origin, given the labeling
(see Remark 8.2);

(iii) We exclude days with little or no congestion (see Subsection 8.4.3).

For the remaining steps, we do include all 1305 instances, meaning that no
weekdays are beforehand excluded when identifying the high-performance days.

All the analyses were performed in the statistical software package R.

8.3 The main algorithm

We present the main algorithm in this section and elaborate on the theoreti-
cal foundation using traffic theory, robust regression, and the estimator for the
breakdown probability proposed in [10]. The algorithm consists of three parts:
(i) estimating the critical speed, (ii) estimating the breakdown probability, and
(iii) identifying the high-performance days. In Subsection 8.3.1, we formally
define the relevant notions, such as the critical speed. In Subsection 8.3.2, we
explain how the critical speed is obtained using robust regression as a labeling
tool. Lastly, in Subsection 8.3.3, we discuss the estimator for the breakdown
probability and provide a definition for high-performance days based on “un-
perturbed moments”.

8.3.1 The fundamental diagram and the critical speed

Studying the traffic behavior at a specific location, say location i , one can dis-
tinguish two different traffic states: free flow and congestion. As in [105], we
can define free flow and congestion based on the critical speed.

Definition 8.1 (Free flow, Congestion, and Critical speed) Free (traffic) flow
is a state in which the vehicle density in traffic is small enough for interactions
between vehicles to become negligible. Therefore, vehicles have an opportunity to
move at their desired maximum speeds [105]. When the density increases beyond
a certain threshold in free flow, vehicle interaction cannot be neglected anymore.
Due to this vehicle interaction, the average vehicle speed decreases to a value lower
than the critical speed, which is the minimum average speed that is still possible
in free flow. This new state of traffic is referred to as a state of congested traffic.

We denote the critical speed at location i by v (i)
crit. In the fundamental di-

agram, this critical speed separates the free-flow region from the congestion

Chapter 8. Detection of high traffic flow in uncongested traffic states 245

region. The free-flow set of location i on date j , i.e. the set containing all data
points corresponding to free flow, is defined as

F (i , j) :=
{(

q (i , j)
t , v (i , j)

t ,ρ(i , j)
t

)
∈X (i , j) : v (i , j)

t ≥ v (i)
crit

}
,

i.e. the set of all data points of location i and date j for which the average
speed is equal to or higher than the critical speed of location i . Naturally, the
congestion set is defined as the complement of the free-flow set, i.e.

C (i , j) :=X (i , j) \F (i , j).

Empirical fundamental diagram of traffic flow

The fundamental diagram of traffic flow is an important tool in traffic en-
gineering. We specifically consider the empirical fundamental diagram
where we have traffic measurements, usually from detectors. Depend-
ing on the aim of the diagram/available data any two of the following
three quantities are displayed: the traffic density (in vehicles/kilome-
ter), the average velocity (in kilometers/hour), and the traffic flow (in
vehicles/hour). An example can be found in Figure 8.2, where the traffic
flow is displayed horizontally and the traffic density vertically.

The fundamental diagram of traffic flow is often used to describe a
macroscopic relation between the traffic flow, traffic density, and speed.
It for example sheds light on macroscopic quantities like the capacity
and free-flow speed and as such is an important tool in assessing the
general quality of the traffic performance. Moreover, it is often used to
find and/or predict the (high-level) effect of countermeasures against
congestion, such as (temporary) speed limits.

An easy observation that one could make on basis of a fundamental
diagram as displayed in Figure 8.2, is that there is a sharp distinction
between points that are approximately on a straight line through the
origin and points that clearly deviate from that line. The points on the
left-hand side of Figure 8.2 indeed are all approximately on a straight
line through the origin. Those points correspond to free-flow points, i.e.
there is no (significant amount of) congestion. The points scattered on
the right-hand side of Figure 8.2, usually belong to cases where there is
congestion. This is a particular feature of the fundamental diagram that
we exploit in this chapter to estimate the free-flow speed with which we
are ultimately able to find high-performance days.

246 8.3 The main algorithm

Figure 8.2: Fundamental diagram with on the horizontal axis the traffic density
and on the vertical axis the traffic flow.

During free flow, the flow-density relationship can be modeled by a straight
line (see the orange line in Figure 8.3(a)), which logically must pass through
the origin:

q ≈ ρ · v (i)
free ∀(q, v,ρ) ∈F (i , j). (8.1)

When using the data set X (i , j), we assume the following conditions are met:

(i) The average speed during free flow v (i)
free is constant for all locations i ∈I ;

(ii) The road conditions at location i are homogeneous for all dates j ∈ J (i),
for all locations i ∈I ;

(iii) For each i ∈I and j ∈J (i), the number of free-flow measurements signif-
icantly exceeds the number of congestion measurements.

Whenever at least one of these conditions is violated, for a certain day j at lo-
cation i , day j will not be taken into account when determining v (i)

crit. The first
condition is rarely violated, since a constant free-flow speed follows from the
definition of free flow (see e.g. [105]), given conflict free roads with a fixed

Chapter 8. Detection of high traffic flow in uncongested traffic states 247

●●●●●●●●
●●●
●●●●
●●
●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●
●●●●●
●●●
●●●●●
●

●
●

●
●
●

●
●
●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●
●●

●●
●
●

●

●●●●
●

●●

●

●

●●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●●
●●

●

●
●●
●

●●
●
●●●

●●
●●●

●●●●
●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●●
●

●
●

●
●

●
●●

●
●●

●

●
●●

●

●

●

●
●
●

●

●
●

●
●
●
●●

●
●
●
●

●
●
●●
●●
●

●
●
●
●
●●

●●
●

●
●●●●●

●●●
●
●
●

0 50 100 150

0
10

00
20

00
30

00
40

00

density (vehicles/km)

flo
w

 (
ve

hi
cl

es
/h

)

C (i , j)

F (i , j)

↖
v (i)

crit = 86 km/h

(a)

●●●●●●●●
●●●
●●●●
●●
●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●
●●●●●
●●●
●●●●●
●

●
●

●
●
●

●
●
●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●
●●

●●
●
●

●

●●●●
●

●●

●

●

●●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●●
●●

●

●
●●
●

●●
●
●●●

●●
●●●

●●●●
●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●●
●

●
●

●
●

●
●●

●
●●

●

●
●●

●

●

●

●
●
●

●

●
●

●
●
●
●●

●
●
●
●

●
●
●●
●●
●

●
●
●
●
●●

●●
●

●
●●●●●

●●●
●
●
●

0 50 100 150

0
10

00
20

00
30

00
40

00
density (vehicles/km)

flo
w

 (
ve

hi
cl

es
/h

)

(b)

Figure 8.3: The fundamental diagram with free-flow points (green) and congestion
points (red). In (a), it is shown how the free-flow region and the congestion region
are linearly separable by a straight line through the origin (the black line). The slope of
this line is the critical speed. Additionally, the slope of the orange line through the origin
is the (constant) free-flow speed, which is 95.5 km/h. Note that the free-flow speed is
significantly below the speed limit, as this is an average over both multiple vehicles, vehi-
cle types, and multiple lanes. In (b), it is shown how the critical speed can be estimated
by the line that lies exactly between the boundary line of the free-flow region (blue) and
the boundary line of the congestion region (magenta).

speed limit and homogeneous conditions. Assumptions (ii) and (iii) may be
violated on days where circumstances are completely different from ordinary
days, for example in case of accidents, road works, or extreme weather con-
ditions. These days could be detected using additional data and therefore be
removed from the data set. However, in order to keep the algorithm as simple
and self-contained as possible, we simply choose to exclude the most extreme
critical speeds. We emphasize that in our experimental region the core elements
of the road were fixed throughout the year, i.e. the speed limit is fixed and no
traffic lanes where removed or added. Furthermore, despite the experimental
region being subject to heavy congestion, congestion occurs mainly during the
morning and afternoon rush hour, which means that in general the number of
free-flow measurement well exceeds the number of congestion measurements.
As a result, assumptions (i), (ii), and (iii) are only violated in extreme cases
and removing the most extreme critical speeds will be sufficient to ensure the
assumptions are met. This explains the first point regarding the removal of

248 8.3 The main algorithm

several critical speeds stated in Subsection 8.2.2.

8.3.2 Using robust regression to label data points

The purpose of our algorithm is to find the free-flow set and the congestion
set, for every day and location. More formally, we aim to find a label for each
(q, v,ρ) ∈X (i , j) that indicates whether (q, v,ρ) ∈F (i , j) or (q, v,ρ) ∈C (i , j). A logical
first step is to determine the straight line through the origin that lies exactly
between the free-flow region and the congestion region, as depicted by the
black line in Figure 8.3(b). The slope of this line is the estimate of the critical
speed of location i for each date j ∈J (i), denoted by v (i , j)

crit .
In order to obtain the critical speed and the corresponding labeling from

the fundamental diagram, several methods have been studied in the literature.
Examples are an iterative regression method after performing a change-point
analysis [10], the use of fuzzy logic for clustering [181], and assuming a spe-
cific model for the fundamental diagram, obtaining the critical density and sub-
sequently labeling each point [114]. However, we opt for a more intuitive and
efficient method based on robust regression, that exploits the underlying struc-
ture of the fundamental diagram.

Robust regression

Robust regression essentially is a linear regression that is made (some-
what) robust against violations of the assumptions that are made when
fitting a linear regression model. One of those assumptions is that there
are no outliers, which is a quite strong assumption. This is one of the
reasons why robust regression was developed.

In robust regression, each data point x is assigned a weight w(x) ∈
[0,1] and subsequently a linear model is fitted and a reiterative weighted
least squares fit is performed (where the weights are updated each step
according to the new estimate). Employing such weights ensures that
outliers have a smaller influence on the final estimates due to their lower
weights and the model aims to fit the majority of the data, rather than
the whole data set, see for example [138].

A simple example of the difference between standard linear regres-
sion and robust linear regression can be found in Figure 8.4. We clearly
see that robust regression (Figure 8.4(b)) is more robust against outliers
than a standard linear regression (Figure 8.4(a)).

Chapter 8. Detection of high traffic flow in uncongested traffic states 249

1 2 3 4 5 6 7

1

2

3

4

5

1 2 3 4 5 6 7

1

2

3

4

5

(a) (b)

Figure 8.4: One example of linear regression in (a) and one of robust
regression in (b) on the same data set. We can “clearly” see that the data
point (5,2) is an outlier. Robust regression decreases the weight of this
data point and fits the majority of the data well. This is not the case for
linear regression, where the outlier substantially influences the model,
causing a mismatch between the majority of the data and the model.

We apply robust regression to the flow-density set X̄ (i , j) of each location i
and date j separately. Specifically, we fit the following model:

qt = v (i , j)
free ·ρt +εt ∀(ρt , qt) ∈ X̄ (i , j), (8.2)

where the εt are error terms with expectation zero. In our case, the “outliers”
are the points corresponding to congestion. There are three reasons why this
method works so well for this application:

(i) We exploit the fact that in free flow, the relation between q and ρ is linear;

(ii) We do not have to assume any specific relation between q and ρ in the
congested set, because these points fulfill the role of outliers;

(iii) The method computes weights that are a measure for the contribution of
each point to the final estimate, which can be used for the labeling.

Remark 8.1 Assumption (iii) from Subsection 8.3.1, specifying that we only con-
sider days where the number of points corresponding to congestion is smaller than
the number of free-flow points, is essential. On a day where this assumption is
violated, we have more points belonging to congestion, meaning that the fitted
regression line would no longer pass through the free-flow set. In this case, the esti-
mated free-flow speed v (i , j)

free would be significantly lower than the maximum speed,
which makes these days extremely easy to detect (and remove).

250 8.3 The main algorithm

The robust regression is performed using the function rlm from the MASS-
package in R, with MM-estimation and Tukey’s Bisquare function for the weights
with the default S-estimator as suggested in [214]. Tukey’s Bisquare function
behaves similarly to the squared error function except for larger errors, for
which it decreases the weight (see e.g. [138]). This results in an estimate for
v (i , j)

free and certain weights w(x) for each data point x ∈ X̄ (i , j). Instead of the usual
interest in the model and parameter estimation, we are interested in the weights
associated with each data point. Using the weights, we perform the labeling: if
the weight is low and if the data point corresponds to a speed lower than the
free-flow speed, v (i , j)

free , the data point will be labeled as congestion. All other
points will be labeled as free flow. Hence, for each x = (

ρ, q
) ∈ X̄ (i , j) we de-

termine 1C (x) := 1{x ≡ (
q, v,ρ

) ∈ C (i , j);x ∈ X̄ (i , j)}, i.e. the indicator function for
the event that x corresponds to congestion or not. The critical weight has been
placed at 0.01 (see Subsection 8.4.3 for a justification), hence

1C (x) =
{

1 if w(x) < 0.01 and v = q/ρ < v (i , j)
free ,

0 otherwise.

After we obtain the labels, we estimate v (i , j)
crit (see the black line in Fig-

ure 8.3(b)) by determining the slope of the straight line through the origin
that lies exactly between the free-flow region and the congestion region.

Remark 8.2 It may happen that the boundary line of the congestion region lies
above the boundary line of the free-flow region (i.e. the magenta line has a larger
slope than the blue line in Figure 8.3(b)), since the weights are calculated based
on the Euclidean distance from the free-flow line. In this case, the free-flow region
and the congestion region are not linearly separable by a straight line through
the origin, given the labeling. For such instances, there will exist data points x ≡(
q, v,ρ

) ∈ C (i , j) and x′ ≡ (
q ′, v ′,ρ′) ∈ F (i , j) such that v > v ′. The critical speed for

such instances is indeterminate and therefore we do not include these instances in
the determination of the critical speed of the corresponding location.

In the end, the critical speed of location i is estimated as follows:

v (i)
crit =median{V (i)

crit},

where

V (i)
crit :=

{
v (i , j)

crit

}

Chapter 8. Detection of high traffic flow in uncongested traffic states 251

such that: ∣∣∣v (i , j)
crit −µ{

v (i , j)
crit

}
j∈J (i)

∣∣∣< 2σ
{

v (i , j)
crit

}
j∈J (i) ; (8.3)

v ′ > v ∀x = (q, v,ρ) ∈C (i , j), x′ = (q ′, v ′,ρ′) ∈F (i , j); (8.4)

MAPE
(
X̄ (i , j)

)
≥ 0.1. (8.5)

Here, µ{·} and σ{·} denote the mean and standard deviation of the corresponding
sets respectively and MAPE

(
X̄ (i , j)

)
denotes the mean absolute percentage error

of the regression model presented in Equation (8.2) (for more information on
the MAPE, see the next paragraph).

Equation (8.3) removes the most extreme critical speeds. By excluding days
with a critical speed that lies outside a range of twice the standard deviation
from the average, we prevent potential violations of the assumptions from influ-
encing the estimates (as elaborated upon in Subsection 8.3.1). Equation (8.4)
excludes days where the boundary line of the congestion region lies above the
boundary line of the free-flow region (see Remark 8.2). Lastly, Equation (8.5)
ensures that the critical speed of a location is not based on days with little or no
congestion. As one can imagine, in case of hardly any congestion, a free-flow
point with a relatively slow speed might be incorrectly labeled as congestion.
We therefore impose a minimal level of congestion and use the mean absolute
percentage error (MAPE, see e.g. [182]) of the corresponding model (see Equa-
tion (8.2)) as a surrogate of the average congestion level. The MAPE expresses
the error of the model in terms of a percentage: a low MAPE corresponds to
a very accurate model, implying hardly any congestion, whereas a high MAPE
indicates that various points deviate from the straight line through the origin,
which corresponds to the presence of congestion during that day. The critical
level of the MAPE has been placed at 0.1. In Subsection 8.4.3, this threshold
will be motivated.

The set of critical speeds of location i , corresponding to the instances of
location i which satisfy the three conditions presented in Equations (8.3), (8.4),
and (8.5), is given by V (i)

crit. The critical speed of location i is subsequently
determined by taking the median of this set. We take the median of the critical
speeds among multiple days to provide a solid baseline for comparison among
different days. We emphasize that in the end the critical speed of each location
is estimated as the median of at least 147 critical speeds (out of 261 weekdays)
and that most instances were removed based on Equation (8.4).

252 8.3 The main algorithm

8.3.3 Estimating the breakdown probability and identifying
the high-performance days

Congestion arises as a consequence of a breakdown, which is defined as a tran-
sition from free flow to congestion (see, e.g., [10]). Usually, this happens when
the traffic flow is high and some kind of disruption occurs (e.g. a vehicle chang-
ing lanes or another sudden movement of a driver).

Definition 8.2 (Breakdown) A breakdown, at location i and date j , is a moment
t (i , j)

k ∈T (i , j) such that

v (i , j)

t
(i , j)
k

≥ v (i)
crit > v (i , j)

t
(i , j)
k+1

.

Remark 8.3 Please note that in the definition of a breakdown, we do not consider
why the breakdown occurred. As such, we do not take the mechanisms that cause
the breakdown into account. A breakdown might be caused by the high traffic flow
at that specific position and time or it might, e.g., be the case that a breakdown
is induced by another (downstream) breakdown. Such an induced breakdown is
caused by a drop in the outflow and speed of traffic at the current location because
it meets the tailback of a downstream traffic jam. Certainly in the context of
(stochastic) capacity estimation such a distinction is often taken into account, see
e.g. [34,130,136,157]. The distinction is made because an induced breakdown is
not informative when the capacity is investigated as the breakdown is not caused
by the high traffic flow but by another factor. However, there are also studies that
investigate breakdowns without making a distinction between induced breakdowns
and breakdowns that are not induced such as [10,70].

For our purposes, i.e. detecting whether there is both a high flow and no break-
down, the mechanism that causes a breakdown does not seem to have a major
impact. We are mainly interested in whether there is a breakdown and not in the
cause of the breakdown. Indeed, the purpose of our algorithm is merely to identify
high-performance days, days with both a high traffic flow and no traffic jam.

It is, e.g., possible to check whether a breakdown is induced or not. One could
probably extend the algorithm to make a distinction between those two types of
breakdowns and check whether the algorithm gives a (significantly) different out-
put when e.g. induced breakdowns are excluded. Such a distinction might be
created by a clever preprocessing of the data. It might also be possible to check for
other underlying mechanisms that cause breakdowns in the obtained data and to
take those into account.

Chapter 8. Detection of high traffic flow in uncongested traffic states 253

We assume that breakdowns have a probabilistic nature, see e.g. [10, 194],
meaning that from a macroscopic point of view the occurrence of breakdowns
(given a certain traffic flow) is random. This implies the existence of a break-
down probability (as a function of the traffic flow). To estimate this probability,
we use the non-parametric estimator discussed in Arnesen and Hjelkrem [10].
To calibrate this estimator, the aforementioned classification of each data point
as either free flow or congestion is required. Arnesen and Hjelkrem define two
functions: Q(i)(q), which is the number of breakdowns at location i while the
traffic flow is equal to or lower than q, and R(i)(q), which is the number of times
a breakdown did not occur at location i with a traffic flow of at least q. Sub-
sequently, the breakdown probability P (i)(q), which denotes the probability of a
breakdown at location i when the traffic flow is q, can be estimated by

P (i)(q) = Q(i)(q)

Q(i)(q)+R(i)(q)
. (8.6)

Remark 8.4 To avoid including “fake breakdowns” (e.g. a single vehicle driving
unnecessarily slow at night), we pose the additional constraint on a breakdown
that it does not happen before 5:00 in the morning. Indeed, multiple times we
observed before 5:00, at a minimal traffic flow, a sudden drop of the average speed
to just below the critical speed. We assume that such events are not relevant for
estimating the breakdown distribution as this could, e.g., be a truck driving at its
speed limit of 80 km/h.

To reduce the complexity of the estimation method, we use a surrogate for
the breakdown probabilities, obtained by fitting a cumulative normal distribu-
tion function, as is done in [10].

In Section 8.1, an intuitive description of a high-performance day was given.
In this section we present a criterion to determine a quantitative definition for
high-performance days. To this end, we employ the estimated breakdown prob-
ability in Equation (8.6), to find unperturbed moments. An unperturbed moment
is a moment at which the probability of a breakdown is at least 0.5, but the ex-
pected breakdown did not occur, or more mathematically:

Definition 8.3 (Unperturbed moment) An unperturbed moment, at location i

on date j , is a moment t (i , j)
k ∈ T (i , j) with intensity q (i , j)

t
(i , j)
k

≥ q (i)
upt and speed v (i , j)

t
(i , j)
k

≥
v (i)

crit for which it holds that

P (i)(q (i , j)

t
(i , j)
k

)≥ 1/2 ∧ v (i , j)

t
(i , j)
k+1

≥ v (i)
crit,

254 8.4 Key insights and validation

where q (i)
upt is the smallest value of the traffic flow q such that P (i)(q) ≥ 1/2.

A plausible definition of a high-performance day follows naturally.

Definition 8.4 (High-performance day) A high-performance day is a day with
a large number of consecutive unperturbed moments in both time and space com-
pared to other days.

Note that a high-performance day is thereby a relative measure, as it will
depend on the location how many unperturbed moments are generally present
(some locations experience more variability in terms of breakdowns in rela-
tion to the traffic flow). Indeed, a certain level of freedom in the definition
of high-performance days is required. For example, quantifications such as the
top 0.05 percentile, though plausible in some cases, incorrectly imply the exis-
tence of high-performance days at any location. Furthermore, concretizations
of the definition in terms of the number of unperturbed moments depend on
the experimental region.

8.4 Key insights and validation

In this section, we present the results of our algorithm and validate the esti-
mation methods. In particular, we study the results of the three steps of the
algorithm and present several measures of the top 10 high-performance days.
In addition, we take a closer look at what exactly a high-performance day looks
like and how we can use our macroscopic data to visualize the dynamics of
such days for the whole trajectory. We also provide a further investigation of
the top 10 high-performance days to see whether some special circumstances
might have caused the good traffic performance on those days. We investigate
e.g. traffic accidents in the direct surroundings of the A15 and the weather con-
ditions. Subsequently, we elaborate on several problems one might encounter
when applying the method at a different location and how these problems could
be tackled. Specifically, we state how we dealt with these problems and how we
obtained the critical weight and the critical level of the MAPE.

8.4.1 Results and key insights

In Table 8.1, we present the results of the first two steps of the algorithm (i.e.
estimating the critical speed and the breakdown probabilities respectively). We
observe that the critical speed is roughly equal for the various locations. We

Chapter 8. Detection of high traffic flow in uncongested traffic states 255

see a similar pattern for the estimated free-flow speeds, which are consistently
about 10 km/h above the corresponding estimated critical speeds. We also see
that the smallest value of the traffic flow for which the breakdown probability is
at least 0.5, decreases along the trajectory, meaning that the last two locations
experience breakdowns at a lower traffic flow than the first three locations. This
makes sense considering the merge from 3 to 2 lanes at the fourth location.

Table 8.1: Columns 2-5 from left-to-right: the rounded estimated critical speed of loca-
tion i , the rounded estimated free-flow speed of location i (based on the median of the
free-flow speeds of the instances that were used to estimate the critical speed of location
i), the number of instances used for estimating the critical speed of location i (out of a
total of 261 weekdays), and the smallest traffic flow for which the breakdown probability
is at least 0.5. The speeds are expressed in kilometers per hour and the traffic flows are
expressed in vehicles per hour.

v (i)
crit v (i)

free |V (i)
crit| q (i)

upt
Location 1 95.5 104.5 147 4358
Location 2 93 103 162 4019
Location 3 93 102 175 3901
Location 4 94.5 104.5 180 3195
Location 5 92.5 102.5 175 3164

In Figure 8.5, we present a scatter plot displaying the average number of
unperturbed moments per location for each weekday of 2018. Additionally, the
color of each point corresponds to the average breakdown probability of the
unperturbed moments. We observe that the days can be grouped into roughly
three categories: days with hardly any unperturbed moments, days with some
unperturbed moments, and days with a relatively large number of unperturbed
moments. It turns out that most days in the first group correspond to days
with significantly less traffic, thus implying a low traffic flow and thereby a
lack of unperturbed moments. For example, the gray points in Figure 8.5 often
correspond to (school) holidays. The third group, however, is of major interest
to us, as these are the high-performance days.

In Table 8.2, we present several measures of the top 10 high-performance
days (based on Figure 8.5), corresponding to the fourth location. We choose
to only present results for the fourth location, because averaging the speeds
over the various locations requires a critical speed for the whole trajectory as
a baseline (whose definition is not straightforward). To study the character-
istics of these days, we investigate the average speed and average fraction of

256 8.4 Key insights and validation

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●●●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●●●●●●●

●

●
●
●●
●
●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●●●
●●●

●

●

●●

●

●

●●●●●●0

3

6

9

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
month

av
er

ag
e

un

pe
rt

ur
be

d
m

om
en

ts

0.5
0.6
0.7
0.8
0.9
1.0

Figure 8.5: Plot of the average number of unperturbed moments for each weekday of
2018. The color of each point indicates the average breakdown probability of the unper-
turbed moments. In case no unperturbed moments occurred, the corresponding point is
gray.

free-flow measurements. We look at three time intervals: the morning rush
hour 6.30-9.30, outside peak hours 9.30-15.30 and the afternoon rush hour
15.30-19.00. We observe that, though all days show a relatively large num-
ber of unperturbed moments, the characteristics of the various days can differ
greatly. For example, the top five high-performance days all have an average
speed during the morning rush hour that is below the critical speed of location
4 (i.e. 94.5 km/h) and at least 10% of the measurements during the morning
rush hour correspond to congestion, whereas the last three high-performance
days show hardly any signs of congestion in the morning. We observe a similar
pattern across all high-performance days: the mornings are significantly better
(in terms of the average speed and the fraction free flow) than the afternoons.
In fact, it seems that severe congestion during the afternoon was present during
almost all high-performance days (only February 14 is an exception, see Sub-
section 8.4.2 for a potential explanation). Nevertheless, the mornings of the
top 10 high-performance days are quite extraordinary, in particular when com-
paring the average speed and the fraction free flow with the median over all
weekdays.

We now thoroughly study the traffic behavior during October 17, 2018.
During this day, an average of 9 unperturbed moments was identified (see Ta-
ble 8.2). This day is particularly interesting because of the seemingly large
difference between the morning and afternoon rush hour. In fact, this day is the

Chapter 8. Detection of high traffic flow in uncongested traffic states 257

Table 8.2: Several measures of the top 10 high-performance days, based on Figure 8.5,
corresponding to the fourth location. The average speed is presented during the morn-
ing rush hour 6.30-9.30, outside peak hours 9.30-15.30, and during the afternoon rush
hour 15.30-19.00, as well as the corresponding fraction free flow. The median over all
weekdays of 2018 is presented as well.

Average

number

unperturbed

moments

(per location)

Average

speed

morning

rush hour

Average

speed

outside

peak hours

Average

speed

afternoon

rush hour

Fraction

free flow

morning

rush hour

Fraction

free flow

outside

peak hours

Fraction

free flow

afternoon

rush hour

Average

speed

legend

Fraction

free flow

legend

12-Jun 11.4 88.5 99.3 33.2 0.76 0.96 0.12 0.0 0.00

14-Feb 11.2 92.9 99.8 75.3 0.86 0.94 0.60 10.0 0.10

13-Sep 11.2 93.4 99.2 32.1 0.83 0.94 0.07 20.0 0.20

7-Mar 11 82.9 104.2 41.9 0.72 1.00 0.36 30.0 0.30

20-Feb 10.6 58.5 97.7 52.9 0.39 0.88 0.36 40.0 0.40

4-Sep 10 95.2 104.4 41.2 0.86 1.00 0.21 50.0 0.50

21-Jun 9.6 90.3 99.2 18.3 0.81 0.96 0.00 60.0 0.60

3-Oct 9.6 99.7 103.5 30.9 0.94 1.00 0.05 70.0 0.70

20-Dec 9.2 100.8 92.2 30.8 0.97 0.86 0.12 80.0 0.80

17-Oct 9 103.1 99.5 39.3 1.00 0.96 0.19 90.0 0.90

>94.5 1.00

Median 2.2 71.2 99.4 44.0 0.51 0.94 0.21

only day in the top 10 high-performance days which does not show any conges-
tion during the entire morning rush hour. In Figure 8.6, a joint time series of
the average flow and average speed at the fourth location during this day is pre-
sented. As expected, we have a large number of unperturbed moments, mostly
during the morning. The contrast between the morning and the afternoon is
indeed interesting, as the breakdown, which remained absent in the morning,
manifested in the afternoon at a lower traffic flow. This is in line with our prob-
abilistic view on the occurrence of a breakdown (at least from a macroscopic
point of view) and confirms that this morning was indeed extraordinary.

Additionally, one could employ visualizations to investigate the whole trajec-
tory simultaneously, see Figure 8.7. We verified that the morning of October 17,
2018 was extraordinary at the fourth location and Figure 8.7 shows that this
was the case for the whole trajectory. Indeed, we observe multiple unperturbed
moments during the morning rush hour at each of the five locations. In partic-
ular, despite the high traffic flow (recall that unperturbed moments only occur
at a traffic flow of at least 3164 vehicles per hour, see Table 8.1), we observe no
significant speed decrease. Furthermore, as we expect based on Figure 8.6, a
breakdown along the whole trajectory can clearly be seen around 15.20-15.30
(see Figure 8.7).

258 8.4 Key insights and validation

00:00 05:00 10:00 15:00 20:00

20
40

60
80

12
0

time

sp
ee

d
(k

m
/h

)

0
10

00
20

00
30

00

flo
w

 (
ve

hi
cl

es
/h

)

flow
speed

●● ●●●●●● ● ●●

● ●

Figure 8.6: Time series of the average speed (black) and average flow (red) during
October 17, 2018 at location 4. Unperturbed moments are indicated by a green dot and
breakdowns are indicated by a red dot. The horizontal black line is the estimated critical
speed and the horizontal red line is the smallest traffic flow for which the breakdown
probability is at least 0.5.

morning afternoon

06:00 07:00 08:00 15:00 16:00 17:00

1

2

3

4

5

time

lo
ca

tio
n

nu
m

be
r

0
25
50
75
100

Figure 8.7: A space-time diagram of the morning rush hour and the afternoon of October
17, 2018. The average speed is displayed along the whole trajectory. Furthermore,
breakdowns are marked with a black marker and unperturbed moments are marked
with a red dot.

Chapter 8. Detection of high traffic flow in uncongested traffic states 259

8.4.2 Further investigation of the high-performance days

A natural follow-up question would be in the direction of causality. Indeed,
one could wonder why certain days exhibit extraordinary behavior in terms of
an unexpected absence of traffic jams. We give some further details about the
relevant circumstances during the 10 high-performance days in Table 8.2.

Among the 10 high-performance days are only three weekdays, namely Tues-
day (3 times), Wednesday (4 times), and Thursday (3 times). Statistically, it is
unlikely that there are no Mondays and Fridays, so it might be that there is a
difference between different days. Oftentimes, on Fridays, the total traffic flow
is relatively low during the morning rush hour and the traffic flow is not high
enough to get to a 50% breakdown probability, implying the absence of unper-
turbed moments in the morning. Mondays do not exhibit the same low traffic
flow, but, likely, there is a different explanation for the absence of Mondays in
the top 10.

Table 8.3: Weather conditions at each of the top 10 days as recorded by
Weerverleden.nl [195] for the city of Rotterdam, focusing on weather during day time,
where cond. abbreviates condition. The sight conditions moderate (sight below 2 but
above 1 kilometer) and bad (sight below 1 kilometer) in the table below occurred during
the early morning and generally improved (considerably) during the day.

Weather cond. Sun % Wind cond. Sight cond.
14 Feb. Dry 79% Moderate breeze Good
20 Feb. Dry 15% Light breeze Good
7 Mar. Dry 18% Light breeze Moderate
12 Jun. Dry 16% Gentle breeze Good
21 Jun. Dry 42% Moderate breeze Good
4 Sep. Dry 24% Light breeze Moderate
13 Sep. Dry 80% Light breeze Good
3 Oct. Dry 73% Gentle breeze Good
17 Oct. Dry 61% Light breeze Bad
20 Dec. Dry, showery afternoon 3% Moderate breeze Good

Another, seemingly, important factor in the occurrence of high-performance
days is the weather. Although we do not have access to weather measurements
at the specific site, we have access to historical weather data of the city of Rotter-
dam (about 20 kilometers away) by means of the website Weerverleden.nl [195].
Although weather conditions may vary substantially over a 20 kilometer dis-
tance, we use the information from Rotterdam to get an indication of the weather

260 8.4 Key insights and validation

at the A15. We focus on weather aspects that potentially influence the traffic
flow and give an overview in Table 8.3.

As can be observed in Table 8.3, the weather could generally be described
as “fair” during each of the top 10 high-performance days. No strong winds,
good sight, and dry conditions seem to be a common feature for each high-
performance day/morning, even though during parts of some days the sight
was not good (but this might also vary considerably over a 20 kilometer dis-
tance). The amount of sunshine does not seem to play an important role in the
occurrence of high-performance days.

Other factors that might influence the traffic-flow performance are traffic in-
cidents, maintenance, and holiday periods. We have investigated each of those
aspects (as far as reasonably possible). It seems that there is only one traffic
incident that might have influenced the traffic flow on the studied part of the
A15 at any of the top 10 high-performance days. On February 14, there was
a traffic incident at the nearby A16 which could have reduced the traffic flow
on the A15 during the second part of the afternoon [169]. This, perhaps, clar-
ifies the good traffic conditions during the afternoon of February 14, think e.g.
of more homogeneity in the traffic flow, a relatively low inflow of traffic, or a
different mixture of vehicle types. During 2018, there were several more in-
cidents in the vicinity of the area of study, but those occurred at a relatively
large distance and/or occurred well outside peak hours. It does not seem that
maintenance activities had any effects (at least not during peak hours) where
also road works on motorways in the vicinity have been considered. Also the
effects of holiday periods seem relatively small. Only February 14 relates to a
public holiday in the southern part of the Netherlands (carnival). Unfortunately,
this day coincides with the aforementioned traffic incident on the A16, so it is
difficult to pinpoint which of those effects is responsible for the observed traffic
performance on February 14.

Summarizing, this investigation reveals some patterns, but it is difficult to
state hard conclusions. It seems that particular days of the week are more prone
to give rise to high-performance days and the weather also seems to have an
influence. Upfront, one would also expect those features to have an influence
on the quality of the traffic flow, so this is no surprise. Apart from that, it might
be that traffic incidents and particular holidays have a (slight) impact on the
traffic performance, but we would need more data/measurements to be sure.

Chapter 8. Detection of high traffic flow in uncongested traffic states 261

8.4.3 Validation

The critical speeds are estimated based on a labeling of the data points result-
ing from the robust regression method discussed in Subsection 8.3.2. As the
exact shape of the fundamental diagram depends on the location, it is difficult
to make general statements about the accuracy of the critical speed estimation.
However, we can identify three possible issues: (i) little or no congestion oc-
curred during a day; (ii) extreme congestion occurred during a day; and (iii)
the free-flow speed was not (approximately) constant. We also present a way
to determine whether or not those problems did arise (besides additional infor-
mation about the experimental region). Finally, we conclude this section with
a discussion on how to choose the critical weight, which is used to determine
whether observations belong to the congestion set or the free-flow set.

Little or no congestion. In this case, robust regression might interpret a free-
flow point with a relatively low speed as an outlier and therefore cause a free-
flow point to be labeled as a congestion point. This leads to a higher estimate
of the critical speed during that day. Though in our case it is not likely that the
final estimate of the critical speed will be strongly influenced by several overes-
timates (considering that our experimental region is generally subject to heavy
congestion), we still exclude days with little or no congestion. As mentioned in
Subsection 8.3.2, we use the MAPE of the robust regression model presented in
Equation (8.2) as a surrogate for the average congestion level. In Figure 8.8(a),
a plot of the MAPE for the various days of location 1 is shown. We observe
that, for example, during holiday periods, e.g. the beginning of January/end
of December and the summer break, the MAPE is close to zero. Indeed, during
those days the traffic flow was significantly lower and hardly any congestion
occurred. Based on Figure 8.8(a) (and similar figures for the other locations),
we decided to place the threshold at 0.1; instances with a MAPE of less than 0.1
are excluded when determining the critical speed, as in Equation (8.5).

Extreme congestion. Extreme congestion may lead to severe underestima-
tions of the critical speed. One can imagine that if the number of congestion
measurements becomes too large, not all congestion points will be observed
as outliers by the robust regression method. In particular, what may happen
is that robust regression fits a model through the congestion region, see also
Remark 8.1. For MM-estimators, it is known that if more than half of the data
points lie on a straight line through the origin, the final model will fit that line,

262 8.4 Key insights and validation

at least asymptotically (i.e. when the number of data points increases) [228].
This means that, if we assume a constant flow-density relation in free flow, the
free-flow speed should be accurately estimated if more than half of the mea-
surements correspond to free flow. However, because Equation (8.1) is only
an approximate relation, the algorithm will be even more sensitive to a larger
congestion set. In our case study, the fraction of free flow was generally well
above 0.5. However, before employing robust regression to determine the crit-
ical speed, it is recommended one verifies that the average free-flow level is
above 0.5. In case the congestion level is around 0.5 one should cautiously ver-
ify that the critical speed is correctly estimated (e.g. by studying the distribution
of the estimated critical speed for the various days).

0.0

0.5

1.0

1.5

2.0

2.5

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

month

M
A

P
E

0

50

100

150

0.00 0.25 0.50 0.75 1.00

weight

s
p

e
e

d

(a) (b)

Figure 8.8: A plot of the MAPE of the robust regression model for all days in (a) and a
plot of the weights and corresponding speeds for location 1 in (b).

Non-constant free-flow speed. In case the free-flow speed is not constant,
the structure of the fundamental diagram will change drastically. One exam-
ple would be a decrease of the speed limit when the rush-hour lane is opened
during peak hours. This could result in a free-flow speed curve, rather than a
straight line, displaying an average speed decrease at high traffic flows. Such
a scenario could be problematic for our algorithm, as the approximate flow-
density relationship, presented in Equation (8.1), no longer holds. We suggest
that one beforehand verifies that the free-flow speed is constant, either by us-
ing information about the experimental region or by studying the fundamental

Chapter 8. Detection of high traffic flow in uncongested traffic states 263

diagram. In our case there was no dynamic speed limit and the fundamental
diagrams showed no indication of a non-constant free-flow speed.

Critical weights. In Subsection 8.3.2, we introduced the critical weight,
which is used to distinguish between congestion and free flow. The critical
weight has been placed at 0.01, meaning that points with a weight below 0.01
are labeled as congestion. This value is determined using Figure 8.8(b), which
shows a scatter plot of all speeds and corresponding weights of the first loca-
tion. We observe that almost all low speeds (say speeds below 70 km/h), have
a weight which is either zero or very close to zero. Speed-weight plots of the
other four locations showed a similar pattern. Therefore, we conclude that a
critical weight of 0.01 generally allows for a sensible labeling.

8.5 Conclusion

We have developed an algorithm to identify high-performance days based on an
estimation of the critical speed and the breakdown probability. The algorithm is
relatively straightforward and only requires two quantities: the average traffic
flow and the average speed. The algorithm relies on the shape of the funda-
mental diagram. Each observation is classified as either free flow or congestion
using robust regression. The critical speed is estimated as the line that separates
these two sets. Using a non-parametric estimator for the breakdown probability,
we are able to quantify both characteristics of a high-performance day (roughly
speaking, high speed and high flow). The algorithm has been applied in a case
study where we identify high-performance days on the A15 near Papendrecht.

A natural follow-up question would be in the direction of causality. Indeed,
one could wonder why certain days exhibit extraordinary behavior, in terms
of an unexpected absence of traffic jams. We have taken a look at some po-
tential clarifications such as day of the week and the weather conditions in
Subsection 8.4.2 and it seems that those two features have an influence on
the high-performance days. At the same time, there are many more potential
reasons why some days are high-performance days and others are not. A possi-
ble explanation could be traffic homogeneity: perhaps there were fewer trucks
during the high-performance days, leading to fewer speed differences between
vehicles. Alternatively, the answer may lie hidden in microscopic data: cer-
tain (desirable) behavioral characteristics of drivers might be over-represented
during high-performance days. Other potentially influencing factors are the

264 8.5 Conclusion

occurrence of downstream traffic jams [34] or merging and/or lane changing
actions [58]. Our algorithm perhaps provides a way towards reducing traffic
jams from a different perspective and may lead to new insights as well as an
easier investigation of countermeasures against traffic jams. This non-trivial ex-
tension is, however, beyond the scope of this chapter. Instead, we present this
tool to facilitate further research into countermeasures against traffic jams, as
the algorithm is able to identify which days need to be studied in more detail.

We must be critical of our approach as well, in particular in terms of gener-
ality. This mainly relates to the two (subjective) thresholds: the critical weight
(to distinguish between congestion measurements and free-flow measurements)
and the critical level of the MAPE of the regression model (to identify a lack of
congestion). Both values were determined based on the five locations of the
A15 Papendrecht 2018 data set. However, when testing the algorithm on other
data sets, we still observed both a sensible labeling of the data points as well as
a plausible recognition of days with little or no congestion. In fact, we tested
the algorithm on data sets which violated the assumption of a constant free-
flow speed and the algorithm still identified days with a high traffic flow and a
striking absence of traffic jams. However, it is likely that at other locations, the
critical weight and the critical level of the MAPE need to be adjusted.

Also, there is still room for improvement in terms of methodological aspects
for the algorithm designed in the current chapter. In particular, one may want
to employ more advanced estimators for the breakdown probability. The cur-
rent non-parametric estimator is fully generic which, despite contributing to the
generality of the method, may lack precision as certain road-specific parameters
(e.g. the number of lanes or the speed limit) are not accounted for.

Chapter 9
Conclusions and future work

In this chapter we briefly reflect on the obtained results in this thesis and how
they contribute to the existing literature in Section 9.1. We also discuss some
topics for future research that we did not cover in the preceding chapters. Those
topics for example relate to themes which link to multiple chapters and/or do
not have a direct application in road-traffic engineering. We do this in Sec-
tion 9.2.

9.1 Summary of contributions in this thesis

We have presented novel results for several models, but most of the contribu-
tions in this thesis relate directly or indirectly to the FCTL queue. Focusing on
the FCTL queue and its extensions for now, we have extended the available
methodologies to analyze the FCTL queue; we have obtained a Halfin-Whitt
type of scaling for the FCTL queue; and we studied several generalizations of
the FCTL queue.

We started this thesis with various chapters about the FCTL queue, a traffic-
light model with fixed settings. This remains an important topic of study as
we argued in Subsections 1.2.1 and 1.2.3: it is e.g. still applied in practice ac-
cording to [152]. In Chapter 2, we derived a contour-integral expression for
the PGF of the overflow queue for the FCTL queue which is a novel way to ob-
tain the PGF of the overflow queue in the FCTL queue. The FCTL queue and
its generalizations, for which we derived contour-integral expressions in Theo-
rem 2.2, seem to be part of the more general framework presented in [147]. A

266 9.1 Summary of contributions in this thesis

benefit of these contour-integral expressions is that they avoid the need to find
roots, which, until recently, seemed to be unavoidable in the analysis of many
queueing systems like the FCTL queue.

Another benefit of the contour-integral expression for the FCTL queue which
we derived in Chapter 2, is that it allows for an asymptotic analysis. It would
be much more difficult to obtain the convergence results with the root-based
expression. We present the asymptotic analysis in Chapter 3. We introduce a
scaling which is reminiscent of the traditional Halfin-Whitt scaling [89]. It leads
to a Quality-and-Efficiency-Driven type of regime when the cycle length grows
to infinity, as we demonstrate in Theorem 3.1. We e.g. have that the probability
that the overflow queue is empty, is strictly between 0 and 1. This implies that,
even though the load on the queue increases to 1 with increasing cycle lengths
(i.e. we do not have overcapacity), we still manage to have an empty overflow
queue. It is conceivable that similar asymptotic results can be derived for (part
of) the more general set of models considered in e.g. [147]. In fact, they may
hold for an even larger set of models, as we demonstrate by means of simulation
in Chapter 4. We show that similar empty-queue results hold for several types
of polling models, among which is the standard k-limited polling model, which
do not seem to belong to the set of models discussed in [147].

The asymptotic results for the FCTL queue derived in Chapter 3 also give rise
to new, accurate approximations for e.g. the mean overflow queue, even when
the cycle length for the traffic light is as small as one minute. The developed
asymptotic theory thus in turn allows us to give general insights into practi-
cally relevant scenarios and to find a general rule-of-thumb of how to choose
the green times. Moreover, instead of a complicated expression in terms of an
involved contour-integral expression or in terms of roots, we are able to give a
relatively simple, approximating formula for the mean overflow queue. As a last
bonus, we note that the approximating formulas can be used to find (approxi-
mately) optimal traffic-light settings. We have demonstrated this in Chapter 3
and we have shown that the approximations and optimization strategies seem
to yield accurate and close-to-optimal results.

Another practically relevant result is the generalization of the FCTL queue
which is introduced in Chapter 5. In practice, a right-turning and straight-going
flow of vehicles might share a lane and receive a green light simultaneously. If,
moreover, there is a crossing for pedestrians on the turning flow that receives a
green light at the same moment, there might be pedestrians that block a turning
vehicle, which would, in turn, block other vehicles. Especially if there are many
pedestrians crossing and many turning vehicles, the effect on the queueing pro-
cess could be quite substantial. The capacity of the intersection decreases and

Chapter 9. Conclusions and future work 267

the mean overflow queue might increase, as is also demonstrated in Chapter 5.
The extension of the FCTL queue that we formulated in Chapter 5 is thus of
practical relevance as it allows us to take the influence of pedestrians into ac-
count if they directly interact with vehicles. We also studied this model with
a general number of lanes (which might be blocked all at once). In particular,
we are also able to study the FCTL queue with multiple lanes, which is another
extension of the FCTL queue.

Even though the FCTL queue is an important traffic-light control strategy as
argued above, there are also benefits of vehicle-actuated traffic lights. Unfortu-
nately, the queueing models which describe such strategies, such as a k-limited
polling model, are mostly intractable. Although several approximation schemes
for such queueing models have already been developed, we designed a novel
approximation scheme which is presented in Chapter 6. Our method gener-
ally seems to yield accurate approximations for a large set of queueing models
which is useful for applying, e.g., k-limited polling models in road-traffic mod-
els and in other application areas. Our method might for example assist in
choosing the ki . We mainly focused on models with two queues, yet we also
studied two models with more than two queues. The approximation scheme
slows down when more queues have to be considered simultaneously and/or
if the load/vehicle-to-capacity on the queues approaches 1. The former relates
to the often-encountered curse-of-dimensionality, which translates (at least in
our case) to a quickly increasing computational complexity when the number
of queues increases.

The difficulty of studying queueing models with a dimension of two or
higher, also pops up in our investigation of future traffic-light strategies in Chap-
ter 7. Also in this chapter, we need to resort to an approximation scheme to
obtain a performance analysis which is not solely based on simulation. The
approximation scheme in Chapter 7 is different in nature than the one devel-
oped in Chapter 6 and, e.g., performs well when the vehicle-to-capacity ratio is
close to 1. We specifically study a model with solely autonomous vehicles. We
have developed a framework in which the autonomous vehicles create platoons
among themselves; drive to the intersection in a coordinated manner, such that
they cross the intersection close to one another; and such that they cross at high
speed. We both present algorithms for the platoon formation of the autonomous
vehicles and derive closed-form expressions for the trajectories that the vehicles
might drive. Moreover, we have developed a framework to assess some of the
performance characteristics of the model. We demonstrate that, under several
natural assumptions like the headway being smaller for autonomous vehicles
than for conventional vehicles, significant performance gains can be obtained.

268 9.2 Suggestions for extensions and future research

Chapter 8 has a more practical orientation than the other chapters. The
conducted research was inspired by a question from De Verkeersonderneming
and has led to insights into the behavior of traffic on highways. We have de-
veloped an algorithm to automatically identify high-performance days during
which there was both a high traffic volume and no traffic jam, which is a de-
sirable combination. Unfortunately, at this moment we do not know why there
are large differences between various days. Seemingly, the traffic conditions
are similar in the sense that there is a high traffic volume, yet at some days a
breakdown occurs while at others such a breakdown does not occur. It would
be very interesting to see whether there are structural differences between high-
performance and regular days that we are not (yet) aware of.

More topics for future research are discussed in the next section.

9.2 Suggestions for extensions and future research

Having described our main contributions, we note that there is plenty of room
for further research, both in the realm of queueing theory and transportation
research as we indicated in the previous chapters. Here, we give a further list of
directions in which research can be developed, especially focusing on the topics
that relate to multiple chapters or to topics outside of road-traffic engineering.

• Cyclic queueing models. The FCTL queue belongs to a much larger class
of cyclic queueing models related to vehicle dispatching with uncertain
arrivals and bulk services [163, 164, 207]. A broad variety of transporta-
tion and manufacturing systems can be modeled in this way, including
batch production systems, bulk movements of goods in a factory, truck
shipments, and bus transportation. Within this class, many different rules
can be considered that apply to customer arrivals and vehicle departures
within a cycle. One could think of vehicle-cancellation policies that hold a
vehicle until the queue length reaches a specified threshold. The FCTL as-
sumption can also be viewed as a special rule that influences the dynamics
within a cycle and it seems that a contour-integral type of expression for
the PGF of relevant steady-state queue-length distributions can be derived
for many of the models in the class of cyclic queueing models with e.g.
vehicle dispatching, uncertain arrivals, and bulk services. It might also be
possible to find a Halfin-Whitt type of scaling for this more general set of
models and optimal allocation schemes are then probably within reach.

Chapter 9. Conclusions and future work 269

• SELSPs. Potential application areas of cyclic queueing models are traffic
related, as we demonstrated, but the general set of models may have a
much broader applicability. One example is in the logistic area, such as for
special cases of the Stochastic Economic Lot Scheduling Problem (SELSP),
see e.g. [220] for an overview of SELSPs. We would then specifically
think about the case with a fixed production sequence, a cycle with a fixed
length, and a global lot sizing policy, i.e. lot-sizing decisions may depend
on the complete state of the system. This is an underexposed strategy
according to [220].

• Models with a Halfin-Whitt scaling. As is demonstrated in Chapter 4, the
Halfin-Whitt type of scaling rule as introduced in Chapter 3 for the FCTL
queue yields favorable asymptotic properties. Using the same scaling rule,
the same type of properties can probably be obtained for the set of cyclic
queueing models considered in the first extension described in this sub-
section. All those models are essentially one-dimensional queueing mod-
els. The queueing models considered in Chapter 4 are more-dimensional
instead and thus behave in a fundamentally different way, but exhibit sim-
ilar Halfin-Whitt type of properties when applying a similar scaling as in
the FCTL queue. It would be very interesting to find a more general, po-
tentially overarching, set of queueing models for which Halfin-Whitt type
of asymptotic results can be derived. The asymptotic properties for this
more general set of models might be shown by means of simulation, but
obtaining the exact limiting process (as we did for the FCTL queue) is also
of interest.

• Networks of intersections. Extending the results that we obtained for iso-
lated intersections to a setting with a network of intersections, is an in-
teresting topic for future research. Networks of intersections/queueing
models are usually difficult to analyze, although they are practically very
relevant as is also indicated in e.g. [152]. We advocate to investigate con-
trol strategies for networks of traffic lights, using ideas stemming from
both Chapters 3 and 4, especially because such an investigation might
lead to structural insights besides the work that has already been done in
this direction. Examples are the use of aggregation-disaggregation and de-
composition techniques (see e.g. [155]) and the use of simulation-based
optimization methods (see e.g. [50]).

Another example where we need additional research to go from isolated
intersections to a network of intersections is the PFA setting studied in

270 9.2 Suggestions for extensions and future research

Chapter 7. In a network of intersections there are several complications.
Firstly, the arrival processes of vehicles become dependent. Moreover,
the interplay between various intersections is non-trivial (think e.g. of
spillback effects). As such, a specific study on how our PFAs perform in a
network scenario is of interest.

• Multiple streams of vehicles receiving a green light. We have mostly studied
traffic-light strategies where one stream of vehicles receives a green light.
In practice, multiple non-conflicting streams of vehicles often receive a
green light simultaneously and our models would have to be adjusted to
account for this.

For example, the PFAs that we considered in Chapter 7 do not directly
allow for such a scenario, but our algorithms can probably be extended to
account for this. However, the delay characteristics change when multiple
streams of vehicles receive a green light at the same time and we would
need to adjust the approximation scheme that we devised in Chapter 7.

The methods developed for the bFCTL queue in Chapter 5 can still be used
if multiple streams of vehicles receive a green light at the same time, as
long as the streams are non-conflicting. However, this is not the case if
we consider a scenario where two opposing streams of vehicles receive a
green traffic light simultaneously and if there is a mixture of vehicles turn-
ing left and heading straight. The left-turning traffic might be blocked by
vehicles which receive a green light from the opposing stream. Depend-
ing on the exact characteristics, like both streams of vehicles having some
left-turning vehicles or not, the model will probably prove to be more com-
plex than the model in Chapter 5. Probably, a two-dimensional analysis
of the queue-length distribution is unavoidable if two opposing streams
both receive a green light and vehicles in both streams might be blocked
by vehicles from the other stream. This would lead to a more involved
analysis.

Concluding, traffic-light models significantly change and get more com-
plicated if there are multiple, potentially conflicting streams of vehicles
receiving a green light at the same time. Further research is needed to
deal with such situations appropriately.

As such, there are many relevant extensions/generalizations, both in- and
outside road-traffic models, of the models that we studied in this thesis. There
is thus ample room for future research.

Bibliography

[1] J. Abate, G. L. Choudhury, and W. Whitt. Calculation of the G I /G/1
waiting time distribution and its cumulants from Pollaczek’s formulas.
Archiv für Elektronik und Übertragungstechnik, 47(5/6):311–321, 1993.

[2] J. Abate and W. Whitt. Numerical inversion of probability generating
functions. Operations Research Letters, 12(4):245–251, 1992.

[3] I. J. B. F. Adan. A Compensation Approach for Queueing Problems. PhD
thesis, Eindhoven Unversity of Technology, 1991.

[4] I. J. B. F. Adan, O. J. Boxma, and J. A. C. Resing. Queueing models with
multiple waiting lines. Queueing Systems, 37(1-3):65–98, 2001.

[5] I. J. B. F. Adan, J. S. H. van Leeuwaarden, and J. Selen. Analysis of
structured Markov processes. arXiv preprint arXiv:1709.09060, 2017.

[6] I. J. B. F. Adan, J. S. H. van Leeuwaarden, and E. M. M. Winands. On the
application of Rouché’s theorem in queueing theory. Operations Research
Letters, 34(3):355–360, 2006.

[7] I. J. B. F. Adan and G. Weiss. A skill based parallel service system un-
der FCFS-ALIS—steady state, overloads, and abandonments. Stochastic
Systems, 4(1):250–299, 2014.

[8] W. K. M. Alhajyaseen, M. Asano, and H. Nakamura. Left-turn gap accep-
tance models considering pedestrian movement characteristics. Accident
Analysis and Prevention, 50:175–185, 2013.

272 Bibliography

[9] D. P. Allen, J. E. Hummer, N. M. Rouphail, and J. S. Milazzo. Effect of
bicycles on capacity of signalized intersections. Transportation Research
Record, 1646(1):87–95, 1998.

[10] P. Arnesen and O. A. Hjelkrem. An estimator for traffic breakdown prob-
ability based on classification of transitional breakdown events. Trans-
portation Science, 52(3):593–602, 2017.

[11] X. Bai. Performance Bounds for Random Walks in the Positive Orthant.
PhD thesis, University of Twente, 2018.

[12] P. Bergendorff, D. W. Hearn, and M. V. Ramana. Congestion toll pric-
ing of traffic networks. In Network Optimization, pages 51–71. Springer,
1997.

[13] J. P. C. Blanc. Performance analysis and optimization with the power-
series algorithm. In Performance Evaluation of Computer and Communi-
cation Systems, pages 53–80. Springer, 1993.

[14] J. P. C. Blanc, R. Iasnogorodski, and P. Nain. Analysis of the M/G I /1 →
./M/1 queueing model. Queueing Systems, 3(2):129–156, 1988.

[15] J. H. Blanchet and P. W. Glynn. Complete corrected diffusion approx-
imations for the maximum of a random walk. The Annals of Applied
Probability, 16(2):951–983, 2006.

[16] M. A. A. Boon. Polling Models: From Theory to Traffic Intersections. PhD
thesis, Eindhoven University of Technology, 2011.

[17] M. A. A. Boon, I. J. B. F. Adan, E. M. M. Winands, and D. G. Down. Delays
at signalized intersections with exhaustive traffic control. Probability in
the Engineering and Informational Sciences, 26(3):337–373, 2012.

[18] M. A. A. Boon, R. D. van der Mei, and E. M. M. Winands. Applications of
polling systems. Surveys in Operations Research and Management Science,
16(2):67–82, 2011.

[19] M. A. A. Boon and J. S. H. van Leeuwaarden. Networks of fixed-cycle
intersections. Transportation Research Part B: Methodological, 117:254–
271, 2018.

Bibliography 273

[20] M. A. A. Boon and E. M. M. Winands. Heavy-traffic analysis of k-limited
polling systems. Probability in the Engineering and Informational Sciences,
28(4):451–471, 2014.

[21] M. A. A. Boon and E. M. M. Winands. Critically loaded k-limited polling
systems. In Proceedings of the 9th EAI International Conference on Perfor-
mance Evaluation Methodologies and Tools, pages 95–102. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications En-
gineering), 2016.

[22] M. A. A. Boon, E. M. M. Winands, I. J. B. F. Adan, and A. C. C. van
Wijk. Closed-form waiting time approximations for polling systems. Per-
formance Evaluation, 68(3):290–306, 2011.

[23] M. A. M. W. Borm, B. Patch, T. Taimre, and I. J. B. F. Adan. Evaluation
of a self-organized traffic light policy. In Proceedings of the 9th EAI Inter-
national Conference on Performance Evaluation Methodologies and Tools,
pages 135–136, 2016.

[24] S. C. Borst and O. J. Boxma. Polling: past, present, and perspective. TOP,
26(3):335–369, 2018.

[25] S. C. Borst, A. Mandelbaum, and M. I. Reiman. Dimensioning large call
centers. Operations Research, 52(1):17–34, 2004.

[26] R. J. Boucherie and N. M. van Dijk. Queueing Networks: A Fundamental
Approach, volume 154. Springer US, 2011.

[27] O. J. Boxma and H. Daduna. The cyclic queue and the tandem queue.
Queueing Systems, 77(3):275–295, 2014.

[28] O. J. Boxma and W. P. Groenendijk. Pseudo-conservation laws in cyclic-
service systems. Journal of Applied Probability, 24(4):949–964, 1987.

[29] O. J. Boxma and W. P. Groenendijk. Two queues with alternating service
and switching times, pages 261–282. Queueing theory and its applica-
tions (Liber amicorum for J.W. Cohen). North-Holland Publishing Com-
pany, 1988.

[30] O. J. Boxma, O. Kella, and K. M. Kosiński. Queue lengths and workloads
in polling systems. Operations Research Letters, 39(6):401–405, 2011.

274 Bibliography

[31] O. J. Boxma and G. J. J. A. N. van Houtum. The compensation approach
applied to a 2×2 switch. Probability in the Engineering and Informational
Sciences, 7(4):471–493, 1993.

[32] D. Braess. Über ein Paradoxon aus der Verkehrsplanung. Un-
ternehmensforschung, 12(1):258–268, 1968, in German.

[33] D. Bremmer. Dit zijn de 20 duurste files van Nederland. https://www.
ad.nl/economie/dit-zijn-de-20-duurste-files-van-nederland~
a4803756/, 2019. Date accessed: 2019-08-01, in Dutch.

[34] W. Brilon, J. Geistefeldt, and M. Regler. Reliability of freeway traffic
flow: a stochastic concept of capacity. In Proceedings of the 16th Interna-
tional Symposium on Transportation and Traffic Theory, pages 125–144.
Citeseer, 2005.

[35] R. L. Burden and J. D. Faires. Numerical Analysis. Cengage Learning, 9th
edition, 2010.

[36] P. J. Burke. The output process of a stationary M/M/s queueing system.
The Annals of Mathematical Statistics, 39(4):1144–1152, 1968.

[37] G. F. Carrier, M. Krook, and C. E. Pearson. Functions of a Complex Vari-
able: Theory and Technique, volume 49. SIAM, 2005.

[38] C. Chai and Y. D. Wong. Traffic performance of shared lanes at signalized
intersections based on cellular automata modeling. Journal of Advanced
Transportation, 48(8):1051–1065, 2014.

[39] J. T. Chang and Y. Peres. Ladder heights, Gaussian random walks and
the Riemann zeta function. The Annals of Probability, 25(2):787–802,
1997.

[40] N. A. Chaudhary, V. G. Kovvali, and S. M. M. Alam. Guidelines for se-
lecting signal timing software. Technical report, Texas Transportation
Institute, Texas A&M University System, 2002.

[41] B. Chen and H. H. Cheng. A review of the applications of agent technol-
ogy in traffic and transportation systems. IEEE Transactions on Intelligent
Transportation Systems, 11(2):485–497, 2010.

https://www.ad.nl/economie/dit-zijn-de-20-duurste-files-van-nederland~a4803756/
https://www.ad.nl/economie/dit-zijn-de-20-duurste-files-van-nederland~a4803756/
https://www.ad.nl/economie/dit-zijn-de-20-duurste-files-van-nederland~a4803756/

Bibliography 275

[42] J. Chen, Z. Li, W. Wang, and H. Jiang. Evaluating bicycle–vehicle con-
flicts and delays on urban streets with bike lane and on-street parking.
Transportation Letters, 10(1):1–11, 2018.

[43] L. Chen and C. Englund. Cooperative intersection management: a survey.
IEEE Transactions on Intelligent Transportation Systems, 17(2):570–586,
2015.

[44] P. Chen, H. Nakamura, and M. Asano. Saturation flow rate analysis for
shared left-turn lane at signalized intersections in Japan. Procedia-Social
and Behavioral Sciences, 16:548–559, 2011.

[45] P. Chen, H. Qi, and J. Sun. Investigation of saturation flow on shared
right-turn lane at signalized intersections. Transportation Research
Record, 2461(1):66–75, 2014.

[46] X. Chen, C. Shao, and Y. Hao. Influence of pedestrian traffic on capacity
of right-turning movements at signalized intersections. Transportation
Research Record, 2073(1):114–124, 2008.

[47] X. Chen, C. Shao, and H. Yue. Influence of bicycle traffic on capac-
ity of typical signalized intersection. Tsinghua Science and Technology,
12(2):198–203, 2007.

[48] Y. Chen. Random Walks in the Quarter-Plane: Invariant Measures and
Performance Bounds. PhD thesis, University of Twente, 2015.

[49] C. Cheng, Y. Du, L. Sun, and Y. Ji. Review on theoretical delay estimation
model for signalized intersections. Transport Reviews, 36(4):479–499,
2016.

[50] L. Chong and C. Osorio. A simulation-based optimization algorithm for
dynamic large-scale urban transportation problems. Transportation Sci-
ence, 52(3):637–656, 2018.

[51] G. L. Choudhury and D. M. Lucantoni. Numerical computation of the
moments of a probability distribution from its transform. Operations Re-
search, 44(2):368–381, 1996.

[52] G. L. Choudhury and W. Whitt. Computing distributions and moments
in polling models by numerical transform inversion. Performance Evalu-
ation, 25:267–292, 1996.

276 Bibliography

[53] A. J. H. Clayton. Road traffic calculations. Journal of the Institution of
Civil Engineers, 16:247–264, 1941.

[54] E. G. Coffman Jr, A. A. Puhalskii, and M. I. Reiman. Polling systems in
heavy traffic: a Bessel process limit. Mathematics of Operations Research,
23(2):257–304, 1998.

[55] J. W. Cohen. The Single Server Queue. Elsevier Science Publishers B.V.,
1982.

[56] J. W. Cohen. Analysis of Random Walks. IOS Press (Amsterdam), 1992.

[57] J. W. Cohen and O. J. Boxma. Boundary Value Problems in Queueing
System Analysis. North-Holland Publishing Company, 1983.

[58] B. Coifman and S. Kim. Extended bottlenecks, the fundamental rela-
tionship, and capacity drop on freeways. Procedia-Social and Behavioral
Sciences, 17:44–57, 2011.

[59] C. Comte and J. L. Dorsman. Pass-and-swap queues. Queueing Systems,
pages 275–331, 2021.

[60] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth.
On the Lambert W function. Advances in Computational Mathematics,
5(1):329–359, 1996.

[61] COWI and PTV Group. The Oslo study - how autonomous cars may
change transport in cities. https://www.ovmagazine.nl/wp-content
/uploads/2019/05/NO_Report_RUTER_Frokostmoede-410-gecompri
meerd.pdf, 2019. Date accessed: 2020-03-25.

[62] CROW. Microsoft Word - Stappenplan iVRI_bewerkt.docx. https://ww
w.crow.nl/downloads/pdf/verkeer-en-vervoer/verkeersmanagem
ent/verkeersregelinstallaties/stappenplan-ivri, 2020. Date
accessed: 2020-08-20, in Dutch.

[63] C. F. Daganzo. Some properties of polling systems. Queueing Systems,
6(1):137–154, 1990.

[64] J. N. Darroch. On the traffic-light queue. The Annals of Mathematical
Statistics, 35:380–388, 1964.

https://www.ovmagazine.nl/wp-content/uploads/2019/05/NO_Report_RUTER_Frokostmoede-410-gecomprimeerd.pdf
https://www.ovmagazine.nl/wp-content/uploads/2019/05/NO_Report_RUTER_Frokostmoede-410-gecomprimeerd.pdf
https://www.ovmagazine.nl/wp-content/uploads/2019/05/NO_Report_RUTER_Frokostmoede-410-gecomprimeerd.pdf
https://www.crow.nl/downloads/pdf/verkeer-en-vervoer/verkeersmanagement/verkeersregelinstallaties/stappenplan-ivri
https://www.crow.nl/downloads/pdf/verkeer-en-vervoer/verkeersmanagement/verkeersregelinstallaties/stappenplan-ivri
https://www.crow.nl/downloads/pdf/verkeer-en-vervoer/verkeersmanagement/verkeersregelinstallaties/stappenplan-ivri

Bibliography 277

[65] J. N. Darroch, G. F. Newell, and R. W. J. Morris. Queues for a vehicle-
actuated traffic light. Operations Research, 12(6):882–895, 1964.

[66] De Ingenieur. Predictive traffic lights in Helmond | De Ingenieur. https:
//www.deingenieur.nl/artikel/predictive-traffic-lights-in-
helmond, 2018. Date accessed: 2020-08-20.

[67] G. Dervisoglu, G. Gomes, J. Kwon, R. Horowitz, and P. Varaiya. Au-
tomatic calibration of the fundamental diagram and empirical observa-
tions on capacity. In Transportation Research Board 88th Annual Meeting,
volume 15, pages 31–59, 2009.

[68] A. Devos, J. Walraevens, D. Fiems, and H. Bruneel. Approximations for
the performance evaluation of a discrete-time two-class queue with an
alternating service discipline. Annals of Operations Research, pages 1–27,
2020.

[69] W. Dib, A. Chasse, P. Moulin, A. Sciarretta, and G. Corde. Optimal energy
management for an electric vehicle in eco-driving applications. Control
Engineering Practice, 29:299–307, 2014.

[70] J. Dong and H. S. Mahmassani. Flow breakdown and travel time relia-
bility. Transportation Research Record, 2124(1):203–212, 2009.

[71] J. L. Dorsman, R. D. Van der Mei, and E. M. M. Winands. A new
method for deriving waiting-time approximations in polling systems with
renewal arrivals. Stochastic Models, 27(2):318–332, 2011.

[72] D. Ettema, J. Knockaert, and E. T. Verhoef. Using incentives as traffic
management tool: empirical results of the “peak avoidance” experiment.
Transportation Letters, 2(1):39–51, 2010.

[73] G. Fayolle, R. Iasnogorodski, and V. Malyshev. Random Walks in the
Quarter Plane: Algebraic Methods, Boundary Value Problems, Applications
to Queueing Systems and Analytic Combinatorics, volume 40. Springer,
2017.

[74] L. Flatto. Two parallel queues created by arrivals with two demands II.
SIAM Journal on Applied Mathematics, 45(5):861–878, 1985.

[75] L. Flatto and S. Hahn. Two parallel queues created by arrivals with two
demands I. SIAM Journal on Applied Mathematics, 44(5):1041–1053,
1984.

https://www.deingenieur.nl/artikel/predictive-traffic-lights-in-helmond
https://www.deingenieur.nl/artikel/predictive-traffic-lights-in-helmond
https://www.deingenieur.nl/artikel/predictive-traffic-lights-in-helmond

278 Bibliography

[76] S. T. G. Fleuren. Optimizing Pre-Timed Control at Isolated Intersections.
PhD thesis, Eindhoven University of Technology, 2017.

[77] S. T. G. Fleuren and A. A. J. Lefeber. Optimizing fixed-time control at iso-
lated intersections: part I: a single green interval per traffic light. Tech-
nical report, Eindhoven University of Technology, 2016.

[78] C. Fricker and M. R. Jaibi. Monotonicity and stability of periodic polling
models. Queueing Systems, 15(1-4):211–238, 1994.

[79] S. W. Fuhrmann. Performance analysis of a class of cyclic schedules.
Technical report, Bell Laboratories, 1981.

[80] H. K. Gaddam and K. R. Rao. Speed-density functional relationship for
heterogeneous traffic data: a statistical and theoretical investigation.
Journal of Modern Transportation, 27(1):61–74, 2019.

[81] F. Garwood. An application of the theory of probability to the operation
of vehicular-controlled traffic signals. Supplement to the Journal of the
Royal Statistical Society, 7(1):65–77, 1940.

[82] German Aerospace Center (DLR) and others. Visualization - SUMO Docu-
mentation. https://sumo.dlr.de/docs/Tools/Visualization.html,
2021. Date accessed: 2021-06-05.

[83] P. W. Glynn. Diffusion approximations. Handbooks in Operations Research
and Management Science, 2:145–198, 1990.

[84] M. Goh. Congestion management and electronic road pricing in Singa-
pore. Journal of Transport Geography, 10(1):29–38, 2002.

[85] J. Goseling, R. J. Boucherie, and J. C. W. van Ommeren. A linear pro-
gramming approach to error bounds for random walks in the quarter-
plane. Kybernetika, 52(5):757–784, 2016.

[86] G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford
University Press, 2001.

[87] Y. Guo, Q. Yu, Y. Zhang, and J. Rong. Effect of bicycles on the satura-
tion flow rate of turning vehicles at signalized intersections. Journal of
Transportation Engineering, 138(1):21–30, 2012.

https://sumo.dlr.de/docs/Tools/Visualization.html

Bibliography 279

[88] R. Haijema. Solving Large Structured Markov Decision Problems for Per-
ishable Inventory Management and Traffic Control. PhD thesis, University
of Amsterdam, 2008.

[89] S. Halfin and W. Whitt. Heavy-traffic limits for queues with many expo-
nential servers. Operations Research, 29(3):567–588, 1981.

[90] A. Hamilton, B. Waterson, T. Cherrett, A. Robinson, and I. Snell. The
evolution of urban traffic control: changing policy and technology. Trans-
portation Planning and Technology, 36(1):24–43, 2013.

[91] A. Hegyi, S. P. Hoogendoorn, M. Schreuder, H. Stoelhorst, and F. Viti.
SPECIALIST: a dynamic speed limit control algorithm based on shock
wave theory. In 2008 11th International IEEE Conference on Intelligent
Transportation Systems, pages 827–832. IEEE, 2008.

[92] D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical features of
escape panic. Nature, 407:487–490, 2000.

[93] D. Helbing and A. Mazloumian. Operation regimes and slower-is-faster
effect in the control of traffic intersections. The European Physical Journal
B-Condensed Matter and Complex Systems, 70(2):257–274, 2009.

[94] G. Hooghiemstra, M. Keane, and S. van de Ree. Power series for station-
ary distributions of coupled processor models. SIAM Journal on Applied
Mathematics, 48(5):1159–1166, 1988.

[95] N. B. Hounsell and M. McDonald. Urban network traffic control. Proceed-
ings of the Institution of Mechanical Engineers, Part I: Journal of Systems
and Control Engineering, 215(4):325–334, 2001.

[96] S. Huang, A. Toriumi, and T. Oguchi. Random nature of shared left-turn
lanes at signalized intersections. In 2020 IEEE Intelligent Transportation
Systems Conference (ITSC), pages 3159–3166. IEEE, 2020.

[97] J. R. Jackson. Networks of waiting lines. Operations Research, 5(4):518–
521, 1957.

[98] A. J. E. M. Janssen and J. S. H. van Leeuwaarden. Analytic computa-
tion schemes for the discrete-time bulk service queue. Queueing Systems,
50(2-3):141–163, 2005.

280 Bibliography

[99] A. J. E. M. Janssen and J. S. H. van Leeuwaarden. On Lerch’s transcen-
dent and the Gaussian random walk. The Annals of Applied Probability,
17(2):421–439, 2007.

[100] A. J. E. M. Janssen and J. S. H. van Leeuwaarden. Back to the roots of
the M/D/s queue and the works of Erlang, Crommelin and Pollaczek.
Statistica Neerlandica, 62(3):299–313, 2008.

[101] A. J. E. M. Janssen, J. S. H. van Leeuwaarden, and B. W. J. Mathijsen.
Novel heavy-traffic regimes for large-scale service systems. SIAM Journal
on Applied Mathematics, 75(2):787–812, 2015.

[102] S. Karlin and H. M. Taylor. A First Course in Stochastic Processes. Academic
Press, 1975.

[103] F. P. Kelly. Reversibility and Stochastic Networks, volume 85. John Wiley,
1979.

[104] F. P. Kelly and J. Walrand. Networks of quasi-reversible nodes. In Ap-
plied Probability-Computer Science: The Interface Volume 1, pages 3–29.
Birkhäuser Boston, 1982.

[105] B. S. Kerner. Introduction to Modern Traffic Flow Theory and Control: The
Long Road to Three-Phase Traffic Theory. Springer Science and Business
Media, 2009.

[106] B. S. Kerner and H. Rehborn. Experimental properties of phase transi-
tions in traffic flow. Physical Review Letters, 79(20):4030–4033, 1997.

[107] K. B. Kesur. Optimization of mixed cycle length traffic signals. Journal of
Advanced Transportation, 48(5):431–442, 2014.

[108] M. Khayatian, M. Mehrabian, E. Andert, R. Dedinsky, S. Choudhary,
Y. Lou, and A. Shirvastava. A survey on intersection management of
connected autonomous vehicles. ACM Transactions on Cyber-Physical Sys-
tems, 4(4):1–27, 2020.

[109] S. Kikuchi, N. Kronprasert, and M. Kii. Lengths of turn lanes on inter-
section approaches: three-branch fork lanes – left-turn, through, and
right-turn lanes. Transportation Research Record, 2023(1):92–101, 2007.

[110] J. F. C. Kingman. On queues in heavy traffic. Journal of the Royal Statis-
tical Society: Series B (Methodological), 24(2):383–392, 1962.

Bibliography 281

[111] L. Kleinrock. Message Delay in Communication Nets with Storage. PhD
thesis, Massachusetts Institute of Technology, 1963.

[112] L. Kleinrock. Queueing Systems, Volume 2: Computer Applications, vol-
ume 66. Wiley New York, 1976.

[113] V. L. Knoop. Traffic Flow Theory: An introduction with exercises, 2021.

[114] V. L. Knoop and W. Daamen. Automatic fitting procedure for the funda-
mental diagram. Transportmetrica B: Transport Dynamics, 5(2):129–144,
2017.

[115] L. M. C. Kockelkoren. Centralized merge control for FLEET, a material
handling AGV system. Master’s thesis, Eindhoven University of Technol-
ogy, 2018.

[116] S. Lämmer and D. Helbing. Self-control of traffic lights and vehicle flows
in urban road networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(04):P04019, 2008.

[117] G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods
in Stochastic Modeling. SIAM, 1999.

[118] A. Lawitzky, D. Wollherr, and M. Buss. Energy optimal control to ap-
proach traffic lights. In 2013 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 4382–4387. IEEE, 2013.

[119] T. B. Lee. Waymo finally launches an actual public, driverless taxi service.
https://arstechnica.com/cars/2020/10/waymo-finally-launc
hes-an-actual-public-driverless-taxi-service/, 2020. Date
accessed: 2021-01-18.

[120] T. T. Lee. M/G/1/N queue with vacation time and limited service disci-
pline. Performance Evaluation, 9(3):181–190, 1989.

[121] J. P. Lehoczky. Traffic intersection control and zero-switch queues un-
der conditions of Markov chain dependence input. Journal of Applied
Probability, 9(2):382–395, 1972.

[122] H. S. Levinson. Capacity of shared left-turn lanes – a simplified approach.
Transportation Research Record, (1225), 1989.

https://arstechnica.com/cars/2020/10/waymo-finally-launches-an-actual-public-driverless-taxi-service/
https://arstechnica.com/cars/2020/10/waymo-finally-launches-an-actual-public-driverless-taxi-service/

282 Bibliography

[123] H. Levy and M. Sidi. Polling systems: applications, modeling, and op-
timization. IEEE Transactions on Communications, 38(10):1750–1760,
1990.

[124] H. Levy, M. Sidi, and O. J. Boxma. Dominance relations in polling sys-
tems. Queueing Systems, 6(1):155–171, 1990.

[125] H. Li and R. L. Bertini. Comparison of algorithms for systematic tracking
of patterns of traffic congestion on freeways in Portland, Oregon. Trans-
portation Research Record, 2178(1):101–110, 2010.

[126] M. Liu, M. Wang, and S. P. Hoogendoorn. Optimal platoon trajec-
tory planning approach at arterials. Transportation Research Record,
2673(9):214–226, 2019.

[127] Y. Liu and G. Chang. An arterial signal optimization model for inter-
sections experiencing queue spillback and lane blockage. Transportation
Research Part C: Emerging Technologies, 19(1):130–144, 2011.

[128] Y. Liu, J. Yu, G. Chang, and S. Rahwanji. A lane-group based macroscopic
model for signalized intersections account for shared lanes and block-
ages. In 2008 11th International IEEE Conference on Intelligent Trans-
portation Systems, pages 639–644. IEEE, 2008.

[129] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner. Micro-
scopic traffic simulation using SUMO. In 2018 21st International Con-
ference on Intelligent Transportation Systems (ITSC), pages 2575–2582.
IEEE, 2018.

[130] M. R. Lorenz and L. Elefteriadou. Defining freeway capacity as function
of breakdown probability. Transportation Research Record, 1776(1):43–
51, 2001.

[131] Z. Ma, J. Sun, and Y. Wang. A two-dimensional simulation model for
modelling turning vehicles at mixed-flow intersections. Transportation
Research Part C: Emerging Technologies, 75:103–119, 2017.

[132] K. J. Maes. Networks of fixed-cycle traffic-lights. Master’s thesis, Eind-
hoven University of Technology, 2015.

Bibliography 283

[133] D. Miculescu and S. Karaman. Polling-systems-based control of high-
performance provably-safe autonomous intersections. In IEEE 53rd An-
nual Conference on Decision and Control (CDC), pages 1417–1423. IEEE,
2014.

[134] D. Miculescu and S. Karaman. Polling-systems-based autonomous ve-
hicle coordination in traffic intersections with no traffic signals. IEEE
Transactions on Automatic Control, 65(2):680–694, 2019.

[135] J. S. Milazzo, N. M. Rouphail, J. E. Hummer, and D. P. Allen. Effect of
pedestrians on capacity of signalized intersections. Transportation Re-
search Record, 1646(1):37–46, 1998.

[136] M. M. Minderhoud, H. Botma, and P. H. L. Bovy. Assessment of
roadway capacity estimation methods. Transportation Research Record,
1572(1):59–67, 1997.

[137] P. B. Mirchandani and N. Zou. Queuing models for analysis of traffic
adaptive signal control. IEEE Transactions on Intelligent Transportation
Systems, 8(1):50–59, 2007.

[138] D. C. Montgomery, E. A. Peck, and G. G. Vining. Introduction to Linear
Regression Analysis. John Wiley and Sons, 2012.

[139] NDW. Home - Nationale Databank Wegverkeersgegevens. https://en
glish.ndw.nu/, 2019. Date accessed: 2021-09-30.

[140] M. F. Neuts. Matrix-Geometric Solutions in Stochastic Models: An Algo-
rithmic Approach. The Johns Hopkins University Press, 1981.

[141] G. F. Newell. Queues for a fixed-cycle traffic light. The Annals of Mathe-
matical Statistics, 31(3):589–597, 1960.

[142] G. F. Newell. Properties of vehicle-actuated signals: I. one-way streets.
Transportation Science, 3(1):30–52, 1969.

[143] G. F. Newell and E. E. Osuna. Properties of vehicle-actuated signals: II.
two-way streets. Transportation Science, 3(2):99–125, 1969.

[144] A. Oblakova, A. Al Hanbali, R. J. Boucherie, and J. C. W. van Ommeren.
Green wave analysis in a tandem of traffic-light intersections. Memoran-
dum Faculty of Mathematical Sciences, (2062), 2017.

https://english.ndw.nu/
https://english.ndw.nu/

284 Bibliography

[145] A. Oblakova, A. Al Hanbali, R. J. Boucherie, J. C. W. van Ommeren, and
W. H. M. Zijm. Comparing semi-actuated and fixed control for a tandem
of intersections. Memorandum Faculty of Mathematical Sciences, (2061),
2017.

[146] A. Oblakova, A. Al Hanbali, R. J. Boucherie, J. C. W. van Ommeren, and
W. H. M. Zijm. An exact root-free method for the expected queue length
for a class of discrete-time queueing systems. Queueing Systems, 92(3-
4):257–292, 2019.

[147] A. Oblakova, A. Al Hanbali, R. J. Boucherie, J. C. W. van Ommeren,
and W. H. M. Zijm. Roots, symmetry and contour integrals in queueing
systems. Memorandum Faculty of Mathematical Sciences, (2067), 2019.

[148] K. Ohno. Computational algorithm for a fixed cycle traffic signal and
new approximate expressions for average delay. Transportation Science,
12(1):29–47, 1978.

[149] R. Ong, F. Pinelli, R. Trasarti, M. Nanni, C. Renso, S. Rinzivillo, and
F. Giannotti. Traffic jams detection using flock mining. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases,
pages 650–653. Springer, 2011.

[150] C. Osorio and M. Bierlaire. An analytic finite capacity queueing network
model capturing the propagation of congestion and blocking. European
Journal of Operational Research, 196(3):996–1007, 2009.

[151] C. Osorio and M. Bierlaire. A simulation-based optimization framework
for urban transportation problems. Operations Research, 61(6):1333–
1345, 2013.

[152] C. Osorio, X. Chen, J. Gao, M. Talas, and M. Marsico. A scalable algo-
rithm for the control of congested urban networks with intricate traffic
patterns: New York City case studies. Technical report, Massachusetts
Institute of Technology, 2015. Date accessed: 2021-08-11.

[153] C. Osorio and L. Chong. A computationally efficient simulation-based
optimization algorithm for large-scale urban transportation problems.
Transportation Science, 49(3):623–636, 2015.

[154] C. Osorio and G. Flötteröd. Capturing dependency among link bound-
aries in a stochastic dynamic network loading model. Transportation
Science, 49(2):420–431, 2015.

Bibliography 285

[155] C. Osorio and C. Wang. On the analytical approximation of joint aggre-
gate queue-length distributions for traffic networks: a stationary finite
capacity Markovian network approach. Transportation Research Part B:
Methodological, 95:305–339, 2017.

[156] C. Osorio and J. Yamani. Analytical and scalable analysis of transient
tandem Markovian finite capacity queueing networks. Transportation
Science, 51(3):823–840, 2017.

[157] K. Ozbay and E. E. Ozguven. A comparative methodology for estimating
the capacity of a freeway section. In Proceedings of the 2007 IEEE Intelli-
gent Transportation Systems Conference, pages 1034–1039. IEEE, 2007.

[158] A. Pacheco, M. L. Simões, and P. Milheiro-Oliveira. Queues with server
vacations as a model for pretimed signalized urban traffic. Transportation
Science, 51(3):841–851, 2017.

[159] M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialos, and Y. Wang.
Review of road traffic control strategies. Proceedings of the IEEE,
91(12):2043–2067, 2003.

[160] A. Pell, A. Meingast, and O. Schauer. Trends in real-time traffic simula-
tion. Transportation Research Procedia, 25:1477–1484, 2017.

[161] E. Perel, N. Perel, and U. Yechiali. A polling system with ‘join the shortest-
serve the longest’ policy. Computers and Operations Research, 114:1–10,
2020.

[162] N. Petrovska and A. Stevanovic. Traffic congestion analysis visualisation
tool. In 2015 IEEE 18th International Conference on Intelligent Transporta-
tion Systems, pages 1489–1494. IEEE, 2015.

[163] W. B. Powell. Analysis of vehicle holding and cancellation strategies in
bulk arrival, bulk service queues. Transportation Science, 19(4):352–377,
1985.

[164] W. B. Powell and P. Humblet. The bulk service queue with a general con-
trol strategy: theoretical analysis and a new computational procedure.
Operations Research, 34(2):267–275, 1986.

[165] A. Rafaeli, G. Barron, and K. Haber. The effects of queue structure on
attitudes. Journal of Service Research, 5(2):125–139, 2002.

286 Bibliography

[166] M. I. Reiman and B. Simon. An interpolation approximation for queueing
systems with Poisson input. Operations Research, 36(3):454–469, 1988.

[167] R. Remmert. Theory of Complex Functions, volume 122. Springer Science
and Business Media, 1991.

[168] J. A. C. Resing. Polling systems and multitype branching processes.
Queueing Systems, 13(4):409–426, 1993.

[169] rijnmond.nl. A16 weer vrij na ongeluk met vrachtwagens – Rijnmond.
https://www.rijnmond.nl/nieuws/164881/A16-weer-vrij-na-ong
eluk-met-vrachtwagens, 2018. Date accessed: 2021-04-12, in Dutch.

[170] J. Rios-Torres and A. A. Malikopoulos. A survey on the coordination of
connected and automated vehicles at intersections and merging at high-
way on-ramps. IEEE Transactions on Intelligent Transportation Systems,
18(5):1066–1077, 2017.

[171] M. Roshani and I. Bargegol. Effect of pedestrians on the saturation flow
rate of right turn movements at signalized intersection – case study from
Rasht city. In IOP Conference Series: Materials Science and Engineering,
volume 245, page 042032. IOP Publishing, 2017.

[172] N. M. Rouphail and B. S. Eads. Pedestrian impedance of turning-
movement saturation flow rates: comparison of simulation, analytical,
and field observations. Transportation Research Record, 1578(1):56–63,
1997.

[173] M. Saxena, I. Dimitriou, and S. Kapodistria. Analysis of the shortest relay
queue policy in a cooperative random access network with collisions.
Queueing Systems, 94(1-2):39–75, 2020.

[174] R. Schassberger. On the waiting time in the queuing system G I /G/1. The
Annals of Mathematical Statistics, 41:182–187, 1970.

[175] P. J. Schweitzer. A Survey of Aggregation-Disaggregation in Large Markov
Chains, pages 63–89. CRC Press, 1991.

[176] G. Shapira and H. Levy. On fairness in polling systems. Annals of Opera-
tions Research, pages 1–33, 2016.

[177] K. Sigman and W. Whitt. Heavy-traffic limits for nearly deterministic
queues. Journal of Applied Probability, 48(3):657–678, 2011.

https://www.rijnmond.nl/nieuws/164881/A16-weer-vrij-na-ongeluk-met-vrachtwagens
https://www.rijnmond.nl/nieuws/164881/A16-weer-vrij-na-ongeluk-met-vrachtwagens

Bibliography 287

[178] K. Sigman and W. Whitt. Heavy-traffic limits for nearly determinis-
tic queues: stationary distributions. Queueing Systems, 69(2):145–173,
2011.

[179] M. P. Singh and M. M. Srinivasan. Exact analysis of the state-dependent
polling model. Queueing Systems, 41(4):371–399, 2002.

[180] S. Stidham Jr. L = λW : a discounted analogue and a new proof. Opera-
tions Research, 20(6):1115–1126, 1972.

[181] C. Stutz and T. A. Runkler. Classification and prediction of road traffic
using application-specific fuzzy clustering. IEEE Transactions on Fuzzy
Systems, 10(3):297–308, 2002.

[182] P. M. Swamidass. Encyclopedia of Production and Manufacturing Manage-
ment. Springer US, Boston, MA, 2000.

[183] D. Swaroop and J. K. Hedrick. String stability of interconnected systems.
IEEE Transactions on Automatic Control, 41(3):349–357, 1996.

[184] R. Tachet, P. Santi, S. Sobolevsky, L. I. Reyes-Castro, E. Frazzoli, D. Hel-
bing, and C. Ratti. Revisiting street intersections using slot-based sys-
tems. PloS ONE, 11(3):e0149607, 2016.

[185] Y. Takahashi, K. Fujimoto, and N. Makimoto. Geometric decay of
the steady-state probabilities in a quasi-birth-and-death process with a
countable number of phases. Stochastic Models, 17(1):1–24, 2001.

[186] J. Tan, H. Feng, X. Meng, and L. Zhang. Heavy-traffic analysis of cloud
provisioning. In 2012 24th International Teletraffic Congress (ITC 24),
pages 1–8. IEEE, 2012.

[187] Z. Z. Tian and N. Wu. Probabilistic model for signalized intersection ca-
pacity with a short right-turn lane. Journal of Transportation Engineering,
132(3):205–212, 2006.

[188] H. C. Tijms. Stochastic Models: An Algorithmic Approach, volume 303.
Wiley New York, 1994.

[189] H. C. Tijms. A First Course in Stochastic Models. John Wiley and Sons,
2003.

288 Bibliography

[190] H. C. Tijms and M. C. T. van de Coevering. A simple numerical approach
for infinite-state Markov chains. Probability in the Engineering and Infor-
mational Sciences, 5(3):285–295, 1991.

[191] H. C. Tijms and D. J. van Vuuren. Markov processes on a semi-infinite
strip and the geometric tail algorithm. Annals of Operations Research,
113(1-4):133–140, 2002.

[192] Transportation Research Board. Highway Capacity Manual 5th Edition
HCM2010. Transportation Research Board, Washington D.C., 2010.

[193] M. Treiber and A. Kesting. Traffic Flow Dynamics: Data, Models and Sim-
ulation. Springer Berlin Heidelberg, 2013.

[194] H. Tu. Monitoring Travel Time Reliability on Freeways. PhD thesis, Delft
University of Technology, 2008.

[195] u0192. Wat was het weer? – Weerverleden.nl. https://weerverleden
.nl/, 2021. Date accessed: 2021-04-12, in Dutch.

[196] M. van den Berg, J. Francke, M. de Haas, M. Hamersma, O. Huibregtse,
O. Jonkeren, P. Jorritsma, M. Knoope, S. Moorman, F. Savelberg,
J. Visser, and H. Wüst. Mobiliteitsbeeld 2019. Technical report, KiM
Netherlands Institute for Transport Policy Analysis, 2019, in Dutch.

[197] M. S. van den Broek. Traffic signals: optimizing and analyzing traffic
control systems. Master’s thesis, Eindhoven University of Technology,
2004.

[198] M. S. van den Broek, J. S. H. van Leeuwaarden, I. J. B. F. Adan, and
O. J. Boxma. Bounds and approximations for the fixed-cycle traffic-light
queue. Transportation Science, 40(4):484–496, 2006.

[199] W. B. van den Hout. The Power-Series Algorithm. A Numerical Approach
to Markov Processes. PhD thesis, Tilburg University, 1996.

[200] R. D. van der Mei. Towards a unifying theory on branching-type polling
systems in heavy traffic. Queueing Systems, 57(1):29–46, 2007.

[201] N. M. van Dijk. Perturbation theory for unbounded Markov reward pro-
cesses with applications to queueing. Advances in Applied Probability,
20(1):99–111, 1988.

https://weerverleden.nl/
https://weerverleden.nl/

Bibliography 289

[202] B. van Houdt. Numerical solution of polling systems for analyzing net-
works on chips. In Proceedings of NSMC 2010, pages 90 – 93, 2010.

[203] G. J. J. A. N. van Houtum. New Approaches for Multi-Dimensional Queue-
ing Systems. PhD thesis, Eindhoven University of Technology, 1995.

[204] G. J. J. A. N. van Houtum, I. J. B. F. Adan, J. Wessels, and W. H. M.
Zijm. The compensation approach for three or more dimensional random
walks. In DGOR/ÖGOR, pages 342–349. Springer, 1993.

[205] G. J. J. A. N. van Houtum, W. H. M. Zijm, I. J. B. F. Adan, and J. Wessels.
Bounds for performance characteristics: a systematic approach via cost
structures. Stochastic Models, 14(1-2):205–224, 1998.

[206] J. S. H. van Leeuwaarden. Delay analysis for the fixed-cycle traffic-light
queue. Transportation Science, 40(2):189–199, 2006.

[207] J. S. H. van Leeuwaarden, D. Denteneer, and J. A. C. Resing. A discrete-
time queueing model with periodically scheduled arrival and departure
slots. Performance Evaluation, 63(4-5):278–294, 2006.

[208] J. S. H. van Leeuwaarden, B. W. J. Mathijsen, and A. P. Zwart.
Economies-of-scale in many-server queueing systems: tutorial and par-
tial review of the QED Halfin-Whitt heavy-traffic regime. SIAM Review,
61(3):403–440, 2019.

[209] J. S. H. van Leeuwaarden and J. A. C. Resing. A tandem queue with cou-
pled processors: computational issues. Queueing Systems, 51(1-2):29–
52, 2005.

[210] P. van Mieghem. The asymptotic behavior of queueing systems: large
deviations theory and dominant pole approximation. Queueing Systems,
23(1-4):27–55, 1996.

[211] M. van Vuuren and E. M. M. Winands. Iterative approximation of k-
limited polling systems. Queueing Systems, 55(3):161–178, 2007.

[212] D. A. J. van Zwieten. Fluid Flow Switching Servers: Control and Observer
Design. PhD thesis, Technische Universiteit Eindhoven, 2014.

[213] S. A. Vaqar and O. Basir. Traffic pattern detection in a partially deployed
vehicular ad hoc network of vehicles. IEEE Wireless Communications,
16(6):40–46, 2009.

290 Bibliography

[214] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S-PLUS.
Springer Science and Business Media, 2013.

[215] V. M. Vishnevskii and O. V. Semenova. Mathematical methods to study
the polling systems. Automation and Remote Control, 67(2):173–220,
2006.

[216] F. Viti. The Dynamics and the Uncertainty of Delays at Signals. PhD thesis,
Delft University of Technology, 2006.

[217] J. G. Wardrop. Some theoretical aspects of road traffic research. Proceed-
ings of the Institution of Civil Engineers, 1(3):325–362, 1952.

[218] F. V. Webster. Traffic signal settings. Technical report, Road Research
Board, 1958.

[219] L. M. Wein. Capacity allocation in generalized Jackson networks. Opera-
tions Research Letters, 8(3):143–146, 1989.

[220] E. M. M. Winands, I. J. B. F. Adan, and G. J. J. A. N. van Houtum. The
stochastic economic lot scheduling problem: a survey. European Journal
of Operational Research, 210(1):1–9, 2011.

[221] Wolfram Research, Inc., Mathematica, Version 12.2, Champaign, Ilinois,
2020.

[222] J. Wu, F. Yan, and A. Abbas-Turki. Mathematical proof of effectiveness
of platoon-based traffic control at intersections. In 16th International
IEEE Conference on Intelligent Transportation Systems (ITSC 2013), pages
720–725. IEEE, 2013.

[223] N. Wu. Capacity of shared-short lanes at unsignalized intersections.
Transportation Research Part A: Policy and Practice, 33(3-4):255–274,
1999.

[224] N. Wu. Modelling blockage probability and capacity of shared lanes at
signalized intersections. Procedia-Social and Behavioral Sciences, 16:481–
491, 2011.

[225] Q. Yang, Z. Shi, S. Yu, and J. Zhou. Analytical evaluation of the use of
left-turn phasing for single left-turn lane only. Transportation Research
Part B: Methodological, 111:266–303, 2018.

Bibliography 291

[226] R. Yao and H. Michael Zhang. Optimal allocation of lane space and green
splits of isolated signalized intersections with short left-turn lanes. Jour-
nal of Transportation Engineering, 139(7):667–677, 2013.

[227] K.-L. A. Yau, J. Qadir, H. L. Khoo, M. H. Ling, and P. Komisarczuk. A
survey on reinforcement learning models and algorithms for traffic signal
control. ACM Computing Surveys (CSUR), 50(3):1–38, 2017.

[228] V. J. Yohai. High breakdown-point and high efficiency robust estimates
for regression. The Annals of Statistics, 15(2):642–656, 1987.

[229] Y. Zhang and J. Tong. Modeling left-turn blockage and capacity at signal-
ized intersection with short left-turn bay. Transportation Research Record,
2071(1):71–76, 2008.

[230] N. Zou. Queuing Models and Analyses of Traffic Control. PhD thesis, The
University of Arizona, 2007.

List of publications

[231] M. A. A. Boon, A. J. E. M. Janssen, J. S. H. van Leeuwaarden, and R. W.
Timmerman. Pollaczek contour integrals for the fixed-cycle traffic-light
queue. Queueing Systems, 91(1-2):89–111, 2019.

[232] M. A. A. Boon, A. J. E. M. Janssen, J. S. H. van Leeuwaarden, and R. W.
Timmerman. Optimal capacity allocation for heavy-traffic fixed-cycle
traffic-light queues and intersections. In preparation, 2021.

[233] B. Klaasse, R. W. Timmerman, T. van Ballegooijen, M. A. A. Boon, and
G. Eijkelenboom. A novel data-driven algorithm for the automated de-
tection of unexpectedly high traffic flow in uncongested traffic states. In
European Workshop on Performance Engineering, pages 65–83. Springer,
2019.

[234] R. W. Timmerman and M. A. A. Boon. New vehicle-actuated access algo-
rithms for intersections close to oversaturation. In 2020 IEEE Intelligent
Transportation Systems Conference (ITSC), pages 299–304. IEEE, 2020.

[235] R. W. Timmerman and M. A. A. Boon. A novel approximation scheme for
multidimensional queueing models. In preparation, 2021.

[236] R. W. Timmerman and M. A. A. Boon. Platoon forming algorithms for
intelligent street intersections. Transportmetrica A: Transport Science,
17(3):278–307, 2021.

[237] R. W. Timmerman and M. A. A. Boon. The fixed-cycle traffic-light queue
with multiple lanes and temporary blockages. In preparation, 2021.

Summary

Congestion is a common phenomenon in road traffic. Despite all sorts of coun-
termeasures, congestion remains an enormous societal problem, giving rise to
e.g. large costs and a lower quality of living. Mitigating the negative effects
of congestion is a hard task and therefore a substantial body of research has
been devoted to the prevention and reduction of congestion. Common sources
of congestion are intersections, where many vehicles have to share a common
scarce resource. Traffic-light control might be used to reduce some of the con-
gestion if the control is well-adapted to the various traffic streams leading to the
intersection. However, a good traffic-light control is typically difficult to obtain,
e.g. due to stochasticity in the arrival times of vehicles at the intersection. Mo-
tivated by these observations, we (among other things) deepen and extend the
knowledge regarding traffic-light models that aim to represent such stochastic
influences.

In Chapter 2, we study the so-called Fixed-Cycle Traffic-Light (FCTL) queue.
We derive an alternative expression for the Probability Generating Function
(PGF) of the steady-state queue-length distribution at the end of the green
period for the FCTL model. This PGF enables us to derive a plethora of per-
formance measures, such as the mean delay experienced by vehicles and the
queue-length distribution at an arbitrary time. Our alternative expression for
the PGF of the queue-length distribution at the end of the green period has
several advantages compared to the commonly used expression. For example,
for our alternative expression, there is no need to compute roots of a certain
equation and to solve a set of equations, which both have been considered to
be inevitable parts in the performance analysis of the FCTL queue.

In Chapter 3, we use the expression for the PGF of the queue-length distribu-
tion at the end of the green period for the FCTL queue that we derived in Chap-
ter 2 to obtain a Halfin-Whitt type of heavy-traffic scaling. Furthermore, this

heavy-traffic scaling leads to approximations for, e.g., the mean queue length
at the end of the green period, which turns out to be accurate in many circum-
stances. We leverage these approximations to obtain traffic-light settings that
are close to the optimal settings, that are easy to compute, and that allow for
an intuitive interpretation.

In Chapter 4, we study the same type of heavy-traffic scaling as in Chapter 3,
but apply it to different traffic-light control strategies. Instead of the fixed set-
tings which are studied in the FCTL queue, we allow the green periods to end
early, e.g. when the queue in front of the traffic light is dissolved. We lever-
age several simulation techniques to demonstrate that similar behavior can be
observed as for the FCTL queue.

We also study an extension of the FCTL queue in Chapter 5. Here, vehicles
may be blocked, e.g. because of pedestrians that block turning vehicles when
both pedestrians and turning vehicles receive a green light at the same time.
We derive the PGF of the steady-state queue-length distribution at the end of
the green period for this extension of the FCTL queue and study several per-
formance measures. We illustrate the impact of such pedestrian crossings. The
extension that we formulated also allows us to model vehicle streams which are
spread over several lanes. In particular, we can also study the FCTL queue with
several lanes and allow for blockages (if desired).

In Chapter 6, we present another contribution of this thesis, which is an ap-
proximation scheme that allows us to obtain performance measures for several
queueing models for which analytical results are scarce. Some of those models
directly relate to several classical traffic-light control strategies. The key step
taken in the scheme is an approximation for several unknown functions in the
PGF of the joint queue-length distribution for the queueing model at hand. By
using polynomials and roots of a certain equation, we are able to approximate
the unknown functions, which leads to an approximation of the joint queue-
length PGF. From this PGF various performance measures can be derived. The
scheme may be leveraged to study e.g. models for vehicle-actuated traffic lights.

In Chapter 7, we turn our focus to autonomous vehicles, which are expected
to occupy the road in the near future. We demonstrate how significant per-
formance improvements can be obtained when certain criteria are met. We
investigate how vehicles should approach the intersection and what the effect
of platoon forming of arriving vehicles is on several performance measures. We
obtain closed-form expressions for the trajectories that vehicles should drive
such that they either minimize spillback effects or minimize the amount of ac-
celeration (leading to energy-efficient approaches). Moreover, we demonstrate
the benefit of platoon forming for autonomous vehicles compared to current-

day traffic.
Finally, in Chapter 8, we also study congestion at highways. We develop a

data-driven algorithm that enables us to automatically identify so-called high-
performance days, days with both a high traffic flow and no congestion. The
algorithm employs historic loop-detector data, common concepts in traffic engi-
neering, such as the fundamental diagram, and robust regression. The resulting
high-performance days can be investigated further to get a sense for underlying
factors that cause a day to be a high-performance day. Ultimately, this might
lead to countermeasures against congestion on highways.

About the author

Rik Timmerman was born in Drunen, the Netherlands, on August 7, 1994. Af-
ter completing his secondary education at d’Oultremontcollege in Drunen in
2012, he studied Applied Mathematics at Eindhoven University of Technology.
In 2015, he received his Bachelor’s degree with highest honors (cum laude).
Afterwards, he pursued a Master’s degree in Industrial and Applied Mathemat-
ics at Eindhoven University of Technology and obtained his degree with highest
honors (cum laude) in 2017.

On September 1, 2017, he started his PhD research project at the Depart-
ment of Mathematics and Computer Science of Eindhoven University of Tech-
nology under the supervision of Johan van Leeuwaarden, Ivo Adan, and Marko
Boon. Rik’s research has primarily focused on queueing-theoretic models for
road traffic. The results of this research are presented in this dissertation.

During his PhD project, Rik was involved in teaching several courses, both
as instructor and lecturer. He has been a member of the Department Council
of the Department of Mathematics and Computer Science for two years. He
served as a referee for several scientific journals and conferences. Further, he
co-organized the hybrid workshop “Road Traffic Flow: Analysis, Optimization
and Control” hosted at EURANDOM in 2021. Besides attending several work-
shops and seminars at EURANDOM, he also visited and presented his work at
several national and international conferences, such as ECQT 2018 (Jerusalem),
MATTS 2018 (Delft), INFORMS APS 2019 (Brisbane), YEQT XIII (Eindhoven),
EPEW 2019 (Milan), IEEE ITSC 2020 (Rhodes), EURO 2021 (Athens), and the
Beta Symposium 2021 (Soesterberg).

Rik will defend his thesis on January 28, 2022.

	Acknowledgments
	Introduction
	Motivation
	Signalized intersection modeling
	Queueing models for road traffic
	Main contributions and outline of this thesis

	Pollaczek contour integrals for the Fixed-Cycle Traffic-Light queue
	Introduction
	Standard solution for the FCTL queue
	Main results
	Algorithmic methods
	Proof of the Pollaczek contour-integral representation
	Conclusion
	Appendices
	Root-finding algorithm
	Poisson case

	Optimal capacity allocation for heavy-traffic Fixed-Cycle Traffic-Light queues and intersections
	Introduction
	FCTL queue in heavy traffic
	Capacity allocation problems
	Numerical examples of capacity allocation
	Proof of heavy-traffic theorem using the transform method
	Conclusion
	Appendices
	Remaining proofs

	Heavy-traffic scaling of vehicle-actuated traffic lights
	Introduction
	Model description
	Theoretical background
	Simulation results
	Conclusion

	Fixed-Cycle Traffic-Light queue with multiple lanes and blockages
	Introduction
	Detailed model description
	PGFs and performance measures for the bFCTL queue
	Examples
	Conclusion
	Appendices
	Stability condition for the bFCTL queue

	Approximation scheme for multidimensional queueing models
	Introduction
	Approximation scheme
	k-limited polling models
	A two-class queue with alternating service discipline
	Traffic lights with double-lane access control
	Conclusion
	Appendices
	PGFs for k-limited polling models
	PGFs for traffic lights with double-lane access control

	Platoon forming algorithms for intelligent street intersections
	Introduction
	Model formulation
	Platoon forming algorithms
	Speed profile algorithms
	Performance analysis
	Comparison traditional traffic light and PFAs
	Conclusion

	Detection of high traffic flow in uncongested traffic states
	Introduction
	Description of the location and the data
	The main algorithm
	Key insights and validation
	Conclusion

	Conclusions and future work
	Summary of contributions in this thesis
	Suggestions for extensions and future research

	Bibliography
	List of publications
	Summary
	About the author

