4,131 research outputs found

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Applications of satellite technology to broadband ISDN networks

    Get PDF
    Two satellite architectures for delivering broadband integrated services digital network (B-ISDN) service are evaluated. The first is assumed integral to an existing terrestrial network, and provides complementary services such as interconnects to remote nodes as well as high-rate multicast and broadcast service. The interconnects are at a 155 Mbs rate and are shown as being met with a nonregenerative multibeam satellite having 10-1.5 degree spots. The second satellite architecture focuses on providing private B-ISDN networks as well as acting as a gateway to the public network. This is conceived as being provided by a regenerative multibeam satellite with on-board ATM (asynchronous transfer mode) processing payload. With up to 800 Mbs offered, higher satellite EIRP is required. This is accomplished with 12-0.4 degree hopping beams, covering a total of 110 dwell positions. It is estimated the space segment capital cost for architecture one would be about 190Mwhereasthesecondarchitecturewouldbeabout190M whereas the second architecture would be about 250M. The net user cost is given for a variety of scenarios, but the cost for 155 Mbs services is shown to be about $15-22/minute for 25 percent system utilization

    Study of the CAC mechanisms for telecommunications systems with adaptive links according to propagation conditions

    Get PDF
    This paper presents the framework and the activities of a PhD research work in progress supported by Alcatel Alenia Space in collaboration with TeSA and SUPAERO. It deals with Connection Admission Control (CAC) for Telecommunications Systems with adaptive links according to propagation conditions. Indeed, in high frequency bands communications, deep fadings may occur because of atmospheric propagation losses. The mitigation techniques used to counteract fades impacts the system capacity, therefore the CAC mechanism. The CAC which only uses current capacity information may lead to intolerable dropping of admitted connection, and thus breaches the QoS guarantees made upon connection acceptance. New CAC mechanisms shall be studied to take into account the capacity variation and the mitigation techniques (IFMT) developed to compensate the attenuation in Ka and above frequency range

    A robust coding scheme for packet video

    Get PDF
    A layered packet video coding algorithm based on a progressive transmission scheme is presented. The algorithm provides good compression and can handle significant packet loss with graceful degradation in the reconstruction sequence. Simulation results for various conditions are presented

    User-Oriented QoS in Packet Video Delivery

    Get PDF
    We focus on packet video delivery, with an emphasis on the quality of service perceived by the end-user. A video signal passes through several subsystems, such as the source coder, the network and the decoder. Each of these can impair the information, either by data loss or by introducing delay. We describe how each of the subsystems can be tuned to optimize the quality of the delivered signal, for a given available bit rate in the network. The assessment of end-user quality is not trivial. We present recent research results, which rely on a model of the human visual system

    Optimal packetisation of MPEG-4 using RTP over mobile networks

    Get PDF
    The introduction of third-generation wireless networks should result in real-time mobile video communications becoming a reality. Delivery of such video is likely to be facilitated by the realtime transport protocol (RTP). Careful packetisation of the video data is necessary to ensure the optimal trade-off between channel utilisation and error robustness. Theoretical analyses for two basic schemes of MPEG-4 data encapsulation within RTP packets are presented. Simulations over a GPRS (general packet radio service) network are used to validate the analysis of the most efficient scheme. Finally, a motion adaptive system for deriving MPEG-4 video packet sizes is presented. Further simulations demonstrate the benefits of the adaptive system
    • 

    corecore