305 research outputs found

    Polynomial Curve Slope Compensation for Peak-Current-Mode-Controlled Power Converters

    Get PDF
    Linear ramp slope compensation (LRC) and quadratic slope compensation (QSC) are commonly implemented in peak-current-mode-controlled dc-dc converters in order to minimize subharmonic and chaotic oscillations. Both compensating schemes rely on the linearized state-space averaged model (LSSA) of the converter. The LSSA ignores the impact that switching actions have on the stability of converters. In order to include switching events, the nonlinear analysis method based on the Monodromy matrix was introduced to describe a complete-cycle stability. Analyses on analog-controlled dc-dc converters applying this method show that system stability is strongly dependent on the change of the derivative of the slope at the time of switching instant. However, in a mixed-signal-controlled system, the digitalization effect contributes differently to system stability. This paper shows a full complete-cycle stability analysis using this nonlinear analysis method, which is applied to a mixed-signal-controlled converter. Through this analysis, a generalized equation is derived that reveals for the first time the real boundary stability limits for LRC and QSC. Furthermore, this generalized equation allows the design of a new compensating scheme, which is able to increase system stability. The proposed scheme is called polynomial curve slope compensation (PCSC) and it is demonstrated that PCSC increases the stable margin by 30% compared to LRC and 20% to QSC. This outcome is proved experimentally by using an interleaved dc-dc converter that is built for this work

    A review and classification of LED ballasts

    Get PDF
    This paper presents a review on existing ballasts for light-emitting diodes (LED) with considerations to their compliance to regulations, technological challenges, and on meeting various application requirements. All existing LED ballasts, including those proposed in recent literature, have been appropriately classified and systematically organized for the discussion. The dissemination of this information and its understanding is helpful for future R&D pursuits in this area. © 2013 IEEE.published_or_final_versio

    Robust high-accuracy high-speed continuous-time CMOS current comparator

    Get PDF
    The authors present a CMOS current comparator which employs nonlinear negative feedback to obtain high-accuracy (down to 1.5pA) and high-speed for low input currents (8ns at 50nA). The new structure features a speed improvement of more than two orders of magnitude for a 1 nA input current, when compared to the fastest reported to date

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc

    Advances in Control of Power Electronic Converters

    Get PDF
    This book proposes a list of contributions in the field of control of power electronics converters for different topologies: DC-DC, DC-AC and AC-DC. It particularly focuses on the use of different advanced control techniques with the aim of improving the performances, flexibility and efficiency in the context of several operation conditions. Sliding mode control, fuzzy logic based control, dead time compensation and optimal linear control are among the techniques developed in the special issue. Simulation and experimental results are provided by the authors to validate the proposed control strategies

    Three-Phase Reduced Switch Topologies for AC-DC Front-End and Single-Stage Converters

    Get PDF
    Conventional three-phase ac-dc converters have two converter stages. They have a front-end converter that converts the input ac voltage into an intermediate dc bus voltage and a second, back-end converter that converts this dc bus voltage into the desired isolated dc output voltage. The front-end converter also performs power factor correction (PFC) and shapes the three-phase input currents so that they are nearly sinusoidal and in phase with the three-phase input voltages. This allows the ac power source to be used in the most efficient manner. The front-end ac-dc converter is typically implemented with six switches while the back-end dc-dc converter is typically implemented with a four switch dc-dc full-bridge topology. Power electronic researchers have been motivated to try to reduce the number of switches that are used in the conventional two-stage approach in order to reduce cost and simplify the overall ac-dc converter. There are two general approaches to doing this: This first approach is to reduce the number of switches in the front-end ac-dc converter. The second approach is to combine the ac-dc converter and the dc-dc converter in a single converter so that the overall ac-dc converter can be implemented in a single converter stage that can simultaneously perform ac-dc power conversion with PFC and dc-dc power conversion. The main focus of this thesis is on new power converter topologies that convert a three-phase ac input voltage into an isolated dc output voltage with a reduced number of switches. In the thesis, a new family of reduced switch front-end converter topologies is proposed, an example converter from this new family is selected for further study and a modified version of this topology is studied as well. In addition to these front-end converters, two new three-phase ac-dc single-stage converters are proposed and their properties and characteristics are compared. For each new converter that is investigated in detail, its modes of operation are explained, its steady-state characteristics are determined by mathematical analysis, and the results of the analysis are used to develop a design procedure that can be used to select key components. The design procedure of each new converter is demonstrated with an example that was used in the implementation of an experimental prototype that confirmed the feasibility of the converter. The thesis concludes by presenting that have been reached as a result of the work that was performed, stating its main contributions to the power electronics literature and suggesting future research that can be done based on the thesis work

    A Control Scheme for an AC-DC Single-Stage Buck-Boost PFC Converter with Improved Output Ripple Reduction

    Get PDF
    AC-DC power factor correction (PFC) single-stage converters are attractive because of their cost and their simplicity. In these converters, both PFC and power conversion are done at the same time using a single converter that regulates the output. Since they have only a single controller, these converters operate with an intermediate transformer primary-side DC bus voltage that is unregulated and is dependent on the converters’ operating conditions and component values. This means that the DC bus voltage can vary significantly as line and load conditions are changed. Such a variable DC bus voltage makes it difficult to optimally design the converter transformer as well as the DC bus capacitor. One previously proposed single-stage AC-DC converter, the Single-Stage Buck-Boost Direct Energy Transfer (SSBBDET) converter has a clamping mechanism that can clamp the DC bus voltage to a pre-set limit. The clamping mechanism, however, superimposes a low frequency 120 Hz AC component on the output DC voltage so that some means must be taken to reduce this component. These means, however, make the converter transient slow and sluggish. The main objective of this thesis is to minimize the 120 Hz output ripple component and to improve the dynamic response of the SSBBDET converter by using a new control scheme. In the thesis, the operation of the SSBBDET converter is reviewed and the proposed control method is introduced and explained in detail. Key design considerations for the design of the converter controller are discussed and the converter’s ability to operate with fixed DC bus voltage, low output ripple and fast dynamic response is confirmed with experimental results obtained from a prototype converter

    Application of Advanced Model Reference Adaptive Control for Bidirectional AC-DC Converters

    Get PDF
    Bidirectional AC-DC converters are used in many applications such as renewable energy systems, communication systems, and grid connection of electric vehicles. In this paper, a non-linear controller based on the Lyapunov-based model reference adaptive control approach is proposed for single-phase bidirectional AC-DC converters that incorporate active power factor correction circuits. The proposed controller dynamically adjusts the output power according to the grid conditions and user preferences while maintaining a nearly unitary power factor and a constant output DC voltage set as the reference value. The proposed controller also ensures the stability and robustness of the system under various operating conditions and disturbances. The performance of the proposed controller is compared with another Lyapunov-based control proposed in the literature to show that the proposed controller performs at least on par with the other controller in all aspects
    corecore