73 research outputs found

    A new insight into modelling passive suspension real test rig system with consideration of nonlinear friction forces

    Get PDF
    The vital purpose of a vehicle suspension system is to isolate the car body and hence passengers, from roadway unevenness disturbances. Implementation of passive suspension systems has continuously improved disconnection from disturbances through available deflection constraints to provide maximum isolation. In the majority of relevant reported research studies, a quarter car is modelled as moving vertically straight for both a viscous damper and a stiffness spring. The motivation for this study, reported here, is to extend the modelling to take account of the actual configuration of a test rig system. Accordingly, a new passive suspension system model is presented, which includes nonlinear lubricant friction forces that affect the linear support body bearings. The friction model established relies on dynamic system analysis and the fact of slipping body on lubricant bearings; this model captures most of the friction behaviours that have been observed experimentally. The suspension model is composed of a car body and wheel unit, and only vertical motion (bounce mode) is addressed. In addition, an active actuator is used to generate the system inputs as a road simulator. Therefore, a nonlinear hydraulic actuator, including the dynamic of servovalve and proportional–integral controller model, is established. This study is validated by experimental work, with simulations achieving C++compiler. As a result, a good agreement is obtained between the experimental and simulation results, that is, the passive suspension system with considered nonlinear friction and the nonlinear hydraulic actuator with servovalve equation models are entirely accurate and useful. The suggested proportional–integral controller successfully derives the hydraulic actuator to validate the control scheme. The ride comfort and handling response are close to that expected for the passive suspension system with road disturbances

    Line Fluid Actuated Valve Development Program

    Get PDF
    The feasibility of a line-fluid actuated valve design for potential application as a propellant-control valve on the space shuttle was examined. Design and analysis studies of two prototype valve units were conducted and demonstrated performance is reported. It was shown that the line-fluid actuated valve concept offers distinct weight and electrical advantages over alternate valve concepts. Summaries of projected performance and design goals are also included

    Magnetorheological shock absorbers : modelling, design and control.

    Get PDF
    Magnetorheological (MR) fluids enable the rapid and continuous alteration of flow resistance via the application of a magnetic field. This unique characteristic can be utilised to build semi-active dampers for a wide variety of vibration control systems, including structural, automotive, and aeronautical applications. As an example, MR fluids could enhance the performance of aircraft landing gear, which are subject to widely varied and unpredictable impact conditions with conflicting damping requirements. In this thesis, a numerical sizing methodology is developed that enables the impact performance of MR landing gears to be optimised. Using real data provided by landing gear manufacturers, the sizing methodology is applied to both lightweight aircraft, and large-scale commercial jets in order to demonstrate scalability. For both aircraft types, results indicate that the peak force and the severity of fatigue loading can be enhanced over a wide range of impact conditions. However, it is shown that MR landing gears can be heavier than passive systems. To validate the numerical approach, a prototype MR landing gear shock strut is designed, fabricated, and tested. Good correlation between the model and experiment is demonstrated, particularly for low velocity excitations. MR dampers exhibit highly non-linear force-velocity behaviour. For landing gear impacts, it transpires that this behaviour can be used to an advantage, where it is shown that an acceptable performance can be obtained using open-loop control i.e. with a constant magnetic field. However, this non-linear behaviour is highly undesirable for other scenarios (e.g. an aircraft taxiing), and as a consequence, the choice of an effecti\'e control strategy remains an unresolved problem. A further aim of this thesis is therefore to develop effective control techniques for broadband excited MR vibration systems. Through an extensive series of numerical and experimental investigations, case studics representative of the general single-degree-of-freedom and two-degree-of-freedom vibration isolation problem are presented. In the experiments, the hardware-in-the-Ioopsimulation method is adopted, which provides an excellent means to bridge the gap between theory and practice when the behaviour of a specific component is complex. Here, the MR damper is physically tested, whilst the remainder of the structure is simulated in real-time. The results demonstrate that the chosen control strategy can provide significant performance benefits when compared to more commonly used strategies and equivalent passive systems. Furthermore, the control strategy is shown to be insensitive to factors such as the type of input excitation

    An electromechanical valve drive incorporating a nonlinear mechanical transformer

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.Includes bibliographical references (leaves 145-147).In traditional internal combustion engines, a camshaft acts on the valve stems to open and close the valves. Valve timing is fixed relative to piston position. On the other hand, if a valve is flexibly controlled by a variable valve actuation (VVA) system, we can achieve significant improvements in fuel efficiency, engine performance, and emissions. One of the most advanced variable valve actuation systems is the VVA operated by an electromechanical actuator without a camshaft, the so-called bi-positional electromechanical valve drive (EMVD). Existing EMVDs characteristically use a spring to provide the required mechanical power for operating a valve. The use of a spring provides many benefits to the design of the system, but it also results in difficult design challenges. The large holding force against the spring at the ends of the stroke suggests the use of a normal-force electromagnetic actuator, which, from a servomechanical point of view, is considerably inferior to a shear-force actuator. Furthermore, the large holding force generates a large jerk at the beginning and the end of a stroke and makes it difficult to achieve soft valve landing. An innovative electromechanical valve drive (EMVD) design is proposed, which incorporates a nonlinear mechanical transformer and a shear-force actuator. This allows not only fast but also smooth valve motion, almost zero seating velocity, zero holding power, and improved control with acceptable electric power. This proposed concept is modeled, analyzed, simulated, designed, and implemented. Experimental results show the beneficial features of the promising proposed concept.by Woo Sok Chang.Ph.D

    Space Programs Summary No. 37-50, Volume 1 for the Period January 1 to February 29, 1968. Flight Projects

    Get PDF
    Systems analysis and engineering data on Mariner Venus 67, Mariner 4, Mariner Mars 69, and Surveyor projects, and advanced planetary missions technolog

    Third-order robust fuzzy sliding mode tracking control of a double-acting electrohydraulic actuator

    Get PDF
    In the industrial sector, an electrohydraulic actuator (EHA) system is a common technology. This system is often used in applications that demand high force, such as the steel, automotive, and aerospace industries. Furthermore, since most mechanical actuators' performance changes with time, it is considerably more difficult to assure its robustness over time. Therefore, this paper proposed a robust fuzzy sliding mode proportional derivative (FSMCPD) controller. The sliding mode controller (SMC) is accomplished by utilizing the exponential law and the Lyapunov theorem to ensure closed loop stability. By replacing the fuzzy logic control (FLC) function over the signum function, the chattering in the SMC controller has been considerably reduced. By using the sum of absolute errors as the objective function, particle swarm optimization (PSO) was used to optimize the controller parameter gain. The experiment results for trajectory tracking and the robustness test were compared with the sliding mode proportional derivative (SMCPD) controller to demonstrate the performance of the FSMCPD controller. According to the findings of the thorough study, the FSMCPD controller outperforms the SMCPD controller in terms of mean square error (MSE) and robustness index (RI)

    Active control of rotating stall in a three-stage axial compressor with jet actuators

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1997.Includes bibliographical references (leaves 151-152).by Huu Duc Vo.M.S

    Component-based mixed reality environment for the control and design of servo-pneumatic system

    Get PDF
    Synopsis Considerable research efforts have been spent over the last two decades on improving the design, control, and modelling of pneumatic servo drive systems including the development of dedicated controllers and control valves. However, the commercial updates in employing pneumatic servos are still largely limited to laboratory research usage and the initiatives in developing seem to have lost their momentums. Although this situation has some to do with the rapid development and availability of cost effective electric servo technologies, one reason is considered to be a lack of design and simulation tools for employing pneumatic servo drives. This research has therefore been conducted to address these concerns, and to demonstrate how appropriate tools and environments can be developed and used to aid in the design, control and commissioning of pneumatic servo drives. Because of the inherent high nonlinearities associated with pneumatic systems, it would be highly desirable if the simulation environment could be run in time domain so that it can be mixed with the real system. This would make the simulation more accurate and reliable especially when dealing with such nonlinear systems. Unfortunately, the tools that are available in the market such as Propneu (Festo, 2005) and Hypneu (Bardyne, 2006) are dedicated for pneumatic circuit design only. This research is aimed at developing a mixed reality environment for the control and design of servo-pneumatic systems. Working with a mixed reality environment would include both the capability to model the system entirely as a simulation, the so-called "off-line", as well as being able to use real components running against simulations of others "on-line", or in a Mixed Reality (MR) manner. Component-based paradigm has been adopted, and hence the entire pneumatic system is viewed as a series of component modules with standardised linking variables. The mathematical model of each individual component has been implemented in simulation software which produces time domain responses in order to allow for mixing the simulation with the real system. The main outcome of this research can be seen as a successful development and demonstration of the Component-based Mixed Reality Environment (CMRE), which would facilitate the control and design of servo-pneumatic systems. On the one hand, the CMRE facilitates the identification of some nonlinear parameters such as frictional \I ynopsis parameters. These parameters could cause great difficulties in servo-pneumatic modelling and control. Accurate friction parameters would give the ability to attain an accurate model, and therefore provide more flexibility in applying different control and tuning strategies on the real system. On the other hand, the CMRE facilitates the design process by enabling the designer to evaluate the servo-pneumatic system off-line prior to building the system. This would reduce the design time, increase the reliability of the design, and minimize the design cost. The concept of the CMRE was validated by tests carried out on laboratory-based prototype servo-drive. Close agreement between the experimental and simulated responses was obtained showing that the models have represented the real system adequately. Case studies were then conducted to demonstrate the validity of the proposed methodology and environment. In these case studies, PIDVF controller and cascade control structure were successfully implemented, synthesised, and tuned. The results revealed that the CMRE is an easy, accurate and robust way of implementing different control and tuning strategies on servo-pneumatic systems. Furthermore, the research has shown how the CMRE can lead to significant improvements in certain life cycle phases of the system, e.g. commissioning, maintenance, etc. This research has contributed to knowledge in the following: (1) Adopting the mixed reality concept and the component-based approach in order to create a CMRE in facilitating the control and design of servo-pneumatic systems. (2) A method to identify the friction parameters of a single-axis pneumatic machine, (3) Encapsulate existing control methods within the CMRE to be applied on the real system. (4) A scheme for controller tuning, in which the controller is tuned off-line and then applied on the real system, and hence avoided on-line tuning which can be troublesome and time consuming. It is anticipated that the concept of the CMRE can be extended to include multi-axes servo-pneumatic system, servo-hydraulic, and servo-electric drives. Therefore, conceptual model structures have been introduced in this research which can be considered as the foundation for creating similar environments for those systems
    • …
    corecore