150 research outputs found

    Observer-biased bearing condition monitoring: from fault detection to multi-fault classification

    Get PDF
    Bearings are simultaneously a fundamental component and one of the principal causes of failure in rotary machinery. The work focuses on the employment of fuzzy clustering for bearing condition monitoring, i.e., fault detection and classification. The output of a clustering algorithm is a data partition (a set of clusters) which is merely a hypothesis on the structure of the data. This hypothesis requires validation by domain experts. In general, clustering algorithms allow a limited usage of domain knowledge on the cluster formation process. In this study, a novel method allowing for interactive clustering in bearing fault diagnosis is proposed. The method resorts to shrinkage to generalize an otherwise unbiased clustering algorithm into a biased one. In this way, the method provides a natural and intuitive way to control the cluster formation process, allowing for the employment of domain knowledge to guiding it. The domain expert can select a desirable level of granularity ranging from fault detection to classification of a variable number of faults and can select a specific region of the feature space for detailed analysis. Moreover, experimental results under realistic conditions show that the adopted algorithm outperforms the corresponding unbiased algorithm (fuzzy c-means) which is being widely used in this type of problems. (C) 2016 Elsevier Ltd. All rights reserved.Grant number: 145602

    Adaptive learning for event modeling and pattern classification

    Get PDF
    It is crucial to detect, characterize and model events of interest in a new propulsion system. As technology advances, the amount of data being generated increases significantly with respect to time. This increase substantially strains our ability to interpret the data at an equivalent rate. It demands efficient methodologies and algorithms in the development of automated event modeling and pattern recognition to detect and characterize events of interest and correlate them to the system performance. The fact that the information required to properly evaluate system performance and health is seldom known in advance further exacerbates this issue. Event modeling and detection is essentially a discovery problem and involves the use of techniques in the pattern classification domain, specifically the use of cluster analysis if a prior information is unknown. In this dissertation, a framework of Adaptive Learning for Event Modeling and Characterization (ALEC) system is proposed to deal with this problem. Within this framework, a wavelet-based hierarchical fuzzy clustering approach which integrates several advanced technologies and overcomes the disadvantages of traditional clustering algorithms is developed to make the implementation of the system effective and computationally efficient. In another separate but related research, a generalized multi-dimensional Gaussian membership function is constructed and formulated to make the fuzzy classification of blade engine damage modes among a group of engines containing historical flight data after Principal Component Analysis (PCA) is applied to reduce the excessive dimensionality. This approach can be effectively used to deal with classification of patterns with overlapping structures in which some patterns fall into more than one classes or categories

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    Multi-Agent Systems

    Get PDF
    This Special Issue ""Multi-Agent Systems"" gathers original research articles reporting results on the steadily growing area of agent-oriented computing and multi-agent systems technologies. After more than 20 years of academic research on multi-agent systems (MASs), in fact, agent-oriented models and technologies have been promoted as the most suitable candidates for the design and development of distributed and intelligent applications in complex and dynamic environments. With respect to both their quality and range, the papers in this Special Issue already represent a meaningful sample of the most recent advancements in the field of agent-oriented models and technologies. In particular, the 17 contributions cover agent-based modeling and simulation, situated multi-agent systems, socio-technical multi-agent systems, and semantic technologies applied to multi-agent systems. In fact, it is surprising to witness how such a limited portion of MAS research already highlights the most relevant usage of agent-based models and technologies, as well as their most appreciated characteristics. We are thus confident that the readers of Applied Sciences will be able to appreciate the growing role that MASs will play in the design and development of the next generation of complex intelligent systems. This Special Issue has been converted into a yearly series, for which a new call for papers is already available at the Applied Sciences journal’s website: https://www.mdpi.com/journal/applsci/special_issues/Multi-Agent_Systems_2019

    Security Configuration Management in Intrusion Detection and Prevention Systems

    Get PDF
    Intrusion Detection and/or Prevention Systems (IDPS) represent an important line of defense against a variety of attacks that can compromise the security and proper functioning of an enterprise information system. IDPSs can be network or host-based and can collaborate in order to provide better detection of malicious traffic. Although several IDPS systems have been proposed, their appropriate con figuration and control for e effective detection/ prevention of attacks and efficient resource consumption is still far from trivial. Another concern is related to the slowing down of system performance when maximum security is applied, hence the need to trade o between security enforcement levels and the performance and usability of an enterprise information system. In this dissertation, we present a security management framework for the configuration and control of the security enforcement mechanisms of an enterprise information system. The approach leverages the dynamic adaptation of security measures based on the assessment of system vulnerability and threat prediction, and provides several levels of attack containment. Furthermore, we study the impact of security enforcement levels on the performance and usability of an enterprise information system. In particular, we analyze the impact of an IDPS con figuration on the resulting security of the network, and on the network performance. We also analyze the performance of the IDPS for different con figurations and under different traffic characteristics. The analysis can then be used to predict the impact of a given security con figuration on the prediction of the impact on network performance

    METTLE: a METamorphic testing approach to assessing and validating unsupervised machine LEarning systems

    Full text link
    Unsupervised machine learning is the training of an artificial intelligence system using information that is neither classified nor labeled, with a view to modeling the underlying structure or distribution in a dataset. Since unsupervised machine learning systems are widely used in many real-world applications, assessing the appropriateness of these systems and validating their implementations with respect to individual users' requirements and specific application scenarios / \,/\,contexts are indisputably two important tasks. Such assessment and validation tasks, however, are fairly challenging due to the absence of a priori knowledge of the data. In view of this challenge, we develop a MET\textbf{MET}amorphic T\textbf{T}esting approach to assessing and validating unsupervised machine LE\textbf{LE}arning systems, abbreviated as METTLE. Our approach provides a new way to unveil the (possibly latent) characteristics of various machine learning systems, by explicitly considering the specific expectations and requirements of these systems from individual users' perspectives. To support METTLE, we have further formulated 11 generic metamorphic relations (MRs), covering users' generally expected characteristics that should be possessed by machine learning systems. To demonstrate the viability and effectiveness of METTLE we have performed an experiment involving six commonly used clustering systems. Our experiment has shown that, guided by user-defined MR-based adequacy criteria, end users are able to assess, validate, and select appropriate clustering systems in accordance with their own specific needs. Our investigation has also yielded insightful understanding and interpretation of the behavior of the machine learning systems from an end-user software engineering's perspective, rather than a designer's or implementor's perspective, who normally adopts a theoretical approach
    • …
    corecore