1,147 research outputs found

    Hybrid Multiresolution Simulation & Model Checking: Network-On-Chip Systems

    Get PDF
    abstract: Designers employ a variety of modeling theories and methodologies to create functional models of discrete network systems. These dynamical models are evaluated using verification and validation techniques throughout incremental design stages. Models created for these systems should directly represent their growing complexity with respect to composition and heterogeneity. Similar to software engineering practices, incremental model design is required for complex system design. As a result, models at early increments are significantly simpler relative to real systems. While experimenting (verification or validation) on models at early increments are computationally less demanding, the results of these experiments are less trustworthy and less rewarding. At any increment of design, a set of tools and technique are required for controlling the complexity of models and experimentation. A complex system such as Network-on-Chip (NoC) may benefit from incremental design stages. Current design methods for NoC rely on multiple models developed using various modeling frameworks. It is useful to develop frameworks that can formalize the relationships among these models. Fine-grain models are derived using their coarse-grain counterparts. Moreover, validation and verification capability at various design stages enabled through disciplined model conversion is very beneficial. In this research, Multiresolution Modeling (MRM) is used for system level design of NoC. MRM aids in creating a family of models at different levels of scale and complexity with well-formed relationships. In addition, a variant of the Discrete Event System Specification (DEVS) formalism is proposed which supports model checking. Hierarchical models of Network-on-Chip components may be created at different resolutions while each model can be validated using discrete-event simulation and verified via state exploration. System property expressions are defined in the DEVS language and developed as Transducers which can be applied seamlessly for model checking and simulation purposes. Multiresolution Modeling with verification and validation capabilities of this framework complement one another. MRM manages the scale and complexity of models which in turn can reduces V&V time and effort and conversely the V&V helps ensure correctness of models at multiple resolutions. This framework is realized through extending the DEVS-Suite simulator and its applicability demonstrated for exemplar NoC models.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    The Design of a Network-On-Chip Architecture Based On An Avionic Protocol

    Full text link
    When the Network-On-Chip (NoC) paradigm was introduced, many researchers have proposed many novelistic NoC architectures, tools and design strategies. In this paper we introduce a new approach in the field of designing Network-On-Chip (NoC). Our inspiration came from an avionic protocol which is the AFDX protocol. The proposed NoC architecture is a switch centric architecture, with exclusive shortcuts between hosts and utilizes the flexibility, the reliability and the performances offered by AFDX.Comment: 5 pages World Symposium on Computer Applications & Research WSCAR' 2014, 18-20 January, Sousse, Tunisi

    Quarc: an architecture for efficient on-chip communication

    Get PDF
    The exponential downscaling of the feature size has enforced a paradigm shift from computation-based design to communication-based design in system on chip development. Buses, the traditional communication architecture in systems on chip, are incapable of addressing the increasing bandwidth requirements of future large systems. Networks on chip have emerged as an interconnection architecture offering unique solutions to the technological and design issues related to communication in future systems on chip. The transition from buses as a shared medium to networks on chip as a segmented medium has given rise to new challenges in system on chip realm. By leveraging the shared nature of the communication medium, buses have been highly efficient in delivering multicast communication. The segmented nature of networks, however, inhibits the multicast messages to be delivered as efficiently by networks on chip. Relying on extensive research on multicast communication in parallel computers, several network on chip architectures have offered mechanisms to perform the operation, while conforming to resource constraints of the network on chip paradigm. Multicast communication in majority of these networks on chip is implemented by establishing a connection between source and all multicast destinations before the message transmission commences. Establishing the connections incurs an overhead and, therefore, is not desirable; in particular in latency sensitive services such as cache coherence. To address high performance multicast communication, this research presents Quarc, a novel network on chip architecture. The Quarc architecture targets an area-efficient, low power, high performance implementation. The thesis covers a detailed representation of the building blocks of the architecture, including topology, router and network interface. The cost and performance comparison of the Quarc architecture against other network on chip architectures reveals that the Quarc architecture is a highly efficient architecture. Moreover, the thesis introduces novel performance models of complex traffic patterns, including multicast and quality of service-aware communication

    Driving the Network-on-Chip Revolution to Remove the Interconnect Bottleneck in Nanoscale Multi-Processor Systems-on-Chip

    Get PDF
    The sustained demand for faster, more powerful chips has been met by the availability of chip manufacturing processes allowing for the integration of increasing numbers of computation units onto a single die. The resulting outcome, especially in the embedded domain, has often been called SYSTEM-ON-CHIP (SoC) or MULTI-PROCESSOR SYSTEM-ON-CHIP (MP-SoC). MPSoC design brings to the foreground a large number of challenges, one of the most prominent of which is the design of the chip interconnection. With a number of on-chip blocks presently ranging in the tens, and quickly approaching the hundreds, the novel issue of how to best provide on-chip communication resources is clearly felt. NETWORKS-ON-CHIPS (NoCs) are the most comprehensive and scalable answer to this design concern. By bringing large-scale networking concepts to the on-chip domain, they guarantee a structured answer to present and future communication requirements. The point-to-point connection and packet switching paradigms they involve are also of great help in minimizing wiring overhead and physical routing issues. However, as with any technology of recent inception, NoC design is still an evolving discipline. Several main areas of interest require deep investigation for NoCs to become viable solutions: • The design of the NoC architecture needs to strike the best tradeoff among performance, features and the tight area and power constraints of the onchip domain. • Simulation and verification infrastructure must be put in place to explore, validate and optimize the NoC performance. • NoCs offer a huge design space, thanks to their extreme customizability in terms of topology and architectural parameters. Design tools are needed to prune this space and pick the best solutions. • Even more so given their global, distributed nature, it is essential to evaluate the physical implementation of NoCs to evaluate their suitability for next-generation designs and their area and power costs. This dissertation performs a design space exploration of network-on-chip architectures, in order to point-out the trade-offs associated with the design of each individual network building blocks and with the design of network topology overall. The design space exploration is preceded by a comparative analysis of state-of-the-art interconnect fabrics with themselves and with early networkon- chip prototypes. The ultimate objective is to point out the key advantages that NoC realizations provide with respect to state-of-the-art communication infrastructures and to point out the challenges that lie ahead in order to make this new interconnect technology come true. Among these latter, technologyrelated challenges are emerging that call for dedicated design techniques at all levels of the design hierarchy. In particular, leakage power dissipation, containment of process variations and of their effects. The achievement of the above objectives was enabled by means of a NoC simulation environment for cycleaccurate modelling and simulation and by means of a back-end facility for the study of NoC physical implementation effects. Overall, all the results provided by this work have been validated on actual silicon layout

    Deliverable JRA1.1: Evaluation of current network control and management planes for multi-domain network infrastructure

    Get PDF
    This deliverable includes a compilation and evaluation of available control and management architectures and protocols applicable to a multilayer infrastructure in a multi-domain Virtual Network environment.The scope of this deliverable is mainly focused on the virtualisation of the resources within a network and at processing nodes. The virtualization of the FEDERICA infrastructure allows the provisioning of its available resources to users by means of FEDERICA slices. A slice is seen by the user as a real physical network under his/her domain, however it maps to a logical partition (a virtual instance) of the physical FEDERICA resources. A slice is built to exhibit to the highest degree all the principles applicable to a physical network (isolation, reproducibility, manageability, ...). Currently, there are no standard definitions available for network virtualization or its associated architectures. Therefore, this deliverable proposes the Virtual Network layer architecture and evaluates a set of Management- and Control Planes that can be used for the partitioning and virtualization of the FEDERICA network resources. This evaluation has been performed taking into account an initial set of FEDERICA requirements; a possible extension of the selected tools will be evaluated in future deliverables. The studies described in this deliverable define the virtual architecture of the FEDERICA infrastructure. During this activity, the need has been recognised to establish a new set of basic definitions (taxonomy) for the building blocks that compose the so-called slice, i.e. the virtual network instantiation (which is virtual with regard to the abstracted view made of the building blocks of the FEDERICA infrastructure) and its architectural plane representation. These definitions will be established as a common nomenclature for the FEDERICA project. Other important aspects when defining a new architecture are the user requirements. It is crucial that the resulting architecture fits the demands that users may have. Since this deliverable has been produced at the same time as the contact process with users, made by the project activities related to the Use Case definitions, JRA1 has proposed a set of basic Use Cases to be considered as starting point for its internal studies. When researchers want to experiment with their developments, they need not only network resources on their slices, but also a slice of the processing resources. These processing slice resources are understood as virtual machine instances that users can use to make them behave as software routers or end nodes, on which to download the software protocols or applications they have produced and want to assess in a realistic environment. Hence, this deliverable also studies the APIs of several virtual machine management software products in order to identify which best suits FEDERICA’s needs.Postprint (published version

    A Survey of Software-Defined Networks-on-Chip: Motivations, Challenges and Opportunities

    Get PDF
    Current computing platforms encourage the integration of thousands of processing cores, and their interconnections, into a single chip. Mobile smartphones, IoT, embedded devices, desktops, and data centers use Many-Core Systems-on-Chip (SoCs) to exploit their compute power and parallelism to meet the dynamic workload requirements. Networks-on-Chip (NoCs) lead to scalable connectivity for diverse applications with distinct traffic patterns and data dependencies. However, when the system executes various applications in traditional NoCs—optimized and fixed at synthesis time—the interconnection nonconformity with the different applications’ requirements generates limitations in the performance. In the literature, NoC designs embraced the Software-Defined Networking (SDN) strategy to evolve into an adaptable interconnection solution for future chips. However, the works surveyed implement a partial Software-Defined Network-on-Chip (SDNoC) approach, leaving aside the SDN layered architecture that brings interoperability in conventional networking. This paper explores the SDNoC literature and classifies it regarding the desired SDN features that each work presents. Then, we described the challenges and opportunities detected from the literature survey. Moreover, we explain the motivation for an SDNoC approach, and we expose both SDN and SDNoC concepts and architectures. We observe that works in the literature employed an uncomplete layered SDNoC approach. This fact creates various fertile areas in the SDNoC architecture where researchers may contribute to Many-Core SoCs designs.Las plataformas informáticas actuales fomentan la integración de miles de núcleos de procesamiento y sus interconexiones, en un solo chip. Los smartphones móviles, el IoT, los dispositivos embebidos, los ordenadores de sobremesa y los centros de datos utilizan sistemas en chip (SoC) de muchos núcleos para explotar su potencia de cálculo y paralelismo para satisfacer los requisitos de las cargas de trabajo dinámicas. Las redes en chip (NoC) conducen a una conectividad escalable para diversas aplicaciones con distintos patrones de tráfico y dependencias de datos. Sin embargo, cuando el sistema ejecuta varias aplicaciones en las NoC tradicionales -optimizadas y fijadas en el momento de síntesis, la disconformidad de la interconexión con los requisitos de las distintas aplicaciones genera limitaciones en el rendimiento. En la literatura, los diseños de NoC adoptaron la estrategia de redes definidas por software (SDN) para evolucionar hacia una solución de interconexión adaptable para los futuros chips. Sin embargo, los trabajos estudiados implementan un enfoque parcial de red definida por software en el chip (SDNoC) de SDN, dejando de lado la arquitectura en capas de SDN que aporta interoperabilidad en la red convencional. Este artículo explora la literatura sobre SDNoC y la clasifica en función de las características SDN que presenta cada trabajo. A continuación, describimos los retos y oportunidades detectados a partir del estudio de la literatura. Además, explicamos la motivación para un enfoque SDNoC, y exponemos los conceptos y arquitecturas de SDN y SDNoC. Observamos que los trabajos en la literatura emplean un enfoque SDNoC por capas no completo. Este hecho crea varias áreas fértiles en la arquitectura SDNoC en las que los investigadores pueden contribuir a los diseños de SoCs de muchos núcleos

    Energy Saving and Virtualization Technologies in Switching

    Get PDF
    Switching is the key functionality for many devices like electronic Router and Switch, optical Router, Network on Chips (NoCs) and so on. Basically, switching is responsible for moving data unit from one port/location to another (or multiple) port(s)/location(s). In past years, the high capacity, low delay were the main concerns when designing high-end switching unit. As new demands, requests and technologies emerge, flexibility and low power cost switching design become to weight the same as throughput and delay. On one hand, highly flexible (i.e, programming ability) switching can cope with variable needs stem from new applications (i.e, VoIP) and popular user behavior (i.e, p2p downloading); on the other hand, reduce the energy and power dissipation for switching could not only save bills and build echo system but also expand components life time. Many research efforts have been devoted to increase switching flexibility and reduce its power cost. In this thesis work, we consider to exploit virtualization as the main technique to build flexible software router in the first part, then in the second part we draw our attention on energy saving in NoC (i.e, a switching fabric designed to handle the on chip data transmission) and software router. In the first part of the thesis, we consider the virtualization inside Software Routers (SRs). SR, i.e, routers running in commodity Personal Computers (PCs), become an appealing solution compared to traditional Proprietary Routing Devices (PRD) for various reasons such as cost (the multi-vendor hardware used by SRs can be cheap, while the equipment needed by PRDs is more expensive and their training cost is higher), openness (SRs can make use of a large number of open source networking applications, while PRDs are more closed) and flexibility. The forwarding performance provided by SRs has been an obstacle to their deployment in real networks. For this reason, we proposed to aggregate multiple routing units that form an powerful SR known as the Multistage Software Router (MSR) to overcome the performance limitation for a single SR. Our results show that the throughput can increase almost linearly as the number of the internal routing devices. But some other features related to flexibility (such as power saving, programmability, router migration or easy management) have been investigated less than performance previously. We noticed that virtualization techniques become reality thanks to the quick development of the PC architectures, which are now able to easily support several logical PCs running in parallel on the same hardware. Virtualization could provide many flexible features like hardware and software decoupling, encapsulation of virtual machine state, failure recovery and security, to name a few. Virtualization permits to build multiple SRs inside one physical host and a multistage architecture exploiting only logical devices. By doing so, physical resources can be used in a more efficient way, energy savings features (switching on and off device when needed) can be introduced and logical resources could be rented on-demand instead of being owned. Since virtualization techniques are still difficult to deploy, several challenges need to be faced when trying to integrate them into routers. The main aim of the first part in this thesis is to find out the feasibility of the virtualization approach, to build and test virtualized SR (VSR), to implement the MSR exploiting logical, i.e. virtualized, resources, to analyze virtualized routing performance and to propose improvement techniques to VSR and virtual MSR (VMSR). More specifically, we considered different virtualization solutions like VMware, XEN, KVM to build VSR and VMSR, being VMware a closed source solution but with higher performance and XEN/KVM open source solutions. Firstly we built and tested each single component of our multistage architecture (i.e, back-end router, load balancer )inside the virtual infrastructure, then and we extended the performance experiments with more complex scenarios like multiple Back-end Router (BR) or Load Balancer (LB) which cooperate to route packets. Our results show that virtualization could introduce 40~\% performance penalty compare with the hardware only solution. Keep the performance limitation in mind, we developed the whole VMSR and we obtained low throughput with 64B packet flow as expected. To increase the VMSR throughput, two directions could be considered, the first one is to improve the single component ( i.e, VSR) performance and the other is to work from the topology (i.e, best allocation of the VMs into the hardware ) point of view. For the first method, we considered to tune the VSR inside the KVM and we studied closely such as Linux driver, scheduler, interconnect methodology which could impact the performance significantly with proper configuration; then we proposed two ways for the VMs allocation into physical servers to enhance the VMSR performance. Our results show that with good tuning and allocation of VMs, we could minimize the virtualization penalty and get reasonable throughput for running SRs inside virtual infrastructure and add flexibility functionalities into SRs easily. In the second part of the thesis, we consider the energy efficient switching design problem and we focus on two main architecture, the NoC and MSR. As many research works suggest, the energy cost in the Communication Technologies ( ICT ) is constantly increasing. Among the main ICT sectors, a large portion of the energy consumption is contributed by the telecommunication infrastructure and their devices, i.e, router, switch, cell phone, ip TV settle box, storage home gateway etc. More in detail, the linecards, links, System on Chip (SoC) including the transmitter/receiver on these variate devices are the main power consuming units. We firstly present the work on the power reduction of the data transmission in SoC, which is carried out by the NoC. NoC is an approach to design the communication subsystem between different Processing Units (PEs) in a SoC. PEs could be different elements such as CPU, memory, digital signal/analog signal processor etc. Different PEs performs specific tasks depending on the applications running on the chip. Different tasks need to exchange data information among each other, thus flits ( chopped packet with limited header information ) are generated by PEs. The flits are injected into the NoC by the proper interface and routed until reach the destination PEs. For the whole procedure, the NoC behaves as a packet switch network. Studies show that in general the information processing in the PEs only consume 60~\% energy while the remaining 40~\% are consumed by the NoC. More importantly, as the current network designing principle, the NoC capacity is devised to handle the peak load. This is a clear sign for energy saving when the network load is low. In our work, we considered to exploit Dynamic Voltage and Frequency Scaling (DVFS) technique, which can jointly decrease or increase the system voltage and frequency when necessary, i.e, decrease the voltage and frequency at low load scenario to save energy and reduce power dissipation. More precisely, we studied two different NoC architectures for energy saving, namely single plane chip and multi-plane chip architecture. In both cases we have a very strict constraint to be that all the links and transmitter/receivers on the same plane work at the same frequency/voltage to avoid synchronization problem. This is the main difference with many existing works in the literature which usually assume different links can work at different frequency, that is hard to be implemented in reality. For the single plane NoC, we exploited different routing schemas combined with DVFS to reduce the power for the whole chip. Our results haven been compared with the optimal value obtained by modeling the power saving formally as a quadratic programming problem. Results suggest that just by using simple load balancing routing algorithm, we can save considerable energy for the single chip NoC architecture. Furthermore, we noticed that in the single plane NoC architecture, the bottleneck link could limit the DVFS effectiveness. Then we discovered that multiplane NoC architecture is fairly easy to be implemented and it could help with the energy saving. Thus we focus on the multiplane architecture and we found out that DVFS could be more efficient when we concentrate more traffic into one plane and send the remaining flows to other planes. We compared load concentration and load balancing with different power modeling and all simulation results show that load concentration is better compared with load balancing for multiplan NoC architecture. Finally, we also present one of the the energy efficient MSR design technique, which permits the MSR to follow the day-night traffic pattern more efficiently with our on-line energy saving algorithm

    A Control-based Methodology for Power-performance Optimization in NoCs Exploiting DVFS

    Get PDF
    Networks-on-Chip (NoCs) are considered a viable solution to fully exploit the computational power of multi- and many-cores, but their non negligible power consumption requires ad hoc power-performance design methodologies. In this perspective, several proposals exploited the possibility to dynamically tune voltage and frequency for the interconnect, taking steps from traditional CPU-based power management solutions. However, the impact of the actuators, i.e. the limited range of frequencies for a PLL (Phase Locked Loop) or the time to increase voltage and frequency for a Dynamic Voltage and Frequency Scaling (DVFS) modules, are often not carefully accounted for, thus overestimating the benefits. This paper presents a control-based methodology for the NoC power-performance optimization exploiting the Dynamic Frequency Scaling (DFS). Both timing and power overheads of the actuators are considered, thanks to an ad hoc simulation framework. Moreover the proposed methodology eventually allows for user and/or OS interactions to change between different high level power-performance modes, i.e. to trigger performance oriented or power saving system behaviors. Experimental validation considered a 16-core architecture comparing our proposal with different settings of threshold-based policies. We achieved a speedup up to 3 for the timing and a reduction up to 33.17% of the power ∗ time product against the best threshold-based policy. Moreover, our best control-based scheme provides an averaged power-performance product improvement of 16.50% and 34.79% against the best and the second considered threshold-based policy setting
    • …
    corecore