4,843 research outputs found

    JNER at 15 years: analysis of the state of neuroengineering and rehabilitation.

    Get PDF
    On JNER's 15th anniversary, this editorial analyzes the state of the field of neuroengineering and rehabilitation. I first discuss some ways that the nature of neurorehabilitation research has evolved in the past 15 years based on my perspective as editor-in-chief of JNER and a researcher in the field. I highlight increasing reliance on advanced technologies, improved rigor and openness of research, and three, related, new paradigms - wearable devices, the Cybathlon competition, and human augmentation studies - indicators that neurorehabilitation is squarely in the age of wearability. Then, I briefly speculate on how the field might make progress going forward, highlighting the need for new models of training and learning driven by big data, better personalization and targeting, and an increase in the quantity and quality of usability and uptake studies to improve translation

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Personal Autonomy Rehabilitation in Home Environments by a Portable Assistive Robot

    Get PDF
    Increasingly disabled and elderly people with mobility problems want to live autonomously in their home environment. They are motivated to use robotic aids to perform tasks by themselves, avoiding permanent nurse or family assistant supervision. They must find means to rehabilitate their abilities to perform daily life activities (DLAs), such as eating, shaving, or drinking. These means may be provided by robotic aids that incorporate possibilities and methods to accomplish common tasks, aiding the user in recovery of partial or complete autonomy. Results are highly conditioned by the system's usability and potential. The developed portable assistive robot ASIBOT helps users perform most of these tasks in common living environments. Minimum adaptations are needed to provide the robot with mobility throughout the environment. The robot can autonomously climb from one surface to another, fixing itself to the best place to perform each task. When the robot is attached to its wheelchair, it can move along with it as a bundle. This paper presents the work performed with the ASIBOT in the area of rehabilitation robotics. First, a brief description of the ASIBOT system is given. A description of tests that have been performed with the robot and several impaired users is given. Insight into how these experiences have influenced our research efforts, especially, in home environments, is also included. A description of the test bed that has been developed to continue research on performing DLAs by the use of robotic aids, a kitchen environment, is given. Relevant conclusions are also included.This work has been supported by the CAM Project S2009/DPI-1559/ROBOCITY2030 I

    Synopsis of an engineering solution for a painful problem Phantom Limb Pain

    Get PDF
    This paper is synopsis of a recently proposed solution for treating patients who suffer from Phantom Limb Pain (PLP). The underpinning approach of this research and development project is based on an extension of “mirror box” therapy which has had some promising results in pain reduction. An outline of an immersive individually tailored environment giving the patient a virtually realised limb presence, as a means to pain reduction is provided. The virtual 3D holographic environment is meant to produce immersive, engaging and creative environments and tasks to encourage and maintain patients’ interest, an important aspect in two of the more challenging populations under consideration (over-60s and war veterans). The system is hoped to reduce PLP by more than 3 points on an 11 point Visual Analog Scale (VAS), when a score less than 3 could be attributed to distraction alone

    Future bathroom: A study of user-centred design principles affecting usability, safety and satisfaction in bathrooms for people living with disabilities

    Get PDF
    Research and development work relating to assistive technology 2010-11 (Department of Health) Presented to Parliament pursuant to Section 22 of the Chronically Sick and Disabled Persons Act 197

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    A Systematic Literature Review of User Experience Evaluation Scales for Human-Robot Collaboration

    Get PDF
    In the last decade, the field of Human-Robot Collaboration (HRC) has received much attention from both research institutions and industries. Robot technologies are in fact deployed in many different areas (e.g., industrial processes, people assistance) to support an effective collaboration between humans and robots. In this transdisciplinary context, User eXperience (UX) has inevitably to be considered to achieve an effective HRC, namely to allow the robots to better respond to the users’ needs and thus improve the interaction quality. The present paper reviews the evaluation scales used in HRC scenarios, focusing on the application context and evaluated aspects. In particular, a systematic review was conducted based on the following questions: (RQ1) which evaluation scales are adopted within the HRI scenario with collaborative tasks?, and (RQ2) how the UX and user satisfaction are assessed?. The records analysis highlighted that the UX aspects are not sufficiently examined in the current HRC design practice, particularly in the industrial field. This is most likely due to a lack of standardized scales. To respond to this recognized need, a set of dimensions to be considered in a new UX evaluation scale were proposed

    System Identification of Bipedal Locomotion in Robots and Humans

    Get PDF
    The ability to perform a healthy walking gait can be altered in numerous cases due to gait disorder related pathologies. The latter could lead to partial or complete mobility loss, which affects the patients’ quality of life. Wearable exoskeletons and active prosthetics have been considered as a key component to remedy this mobility loss. The control of such devices knows numerous challenges that are yet to be addressed. As opposed to fixed trajectories control, real-time adaptive reference generation control is likely to provide the wearer with more intent control over the powered device. We propose a novel gait pattern generator for the control of such devices, taking advantage of the inter-joint coordination in the human gait. Our proposed method puts the user in the control loop as it maps the motion of healthy limbs to that of the affected one. To design such control strategy, it is critical to understand the dynamics behind bipedal walking. We begin by studying the simple compass gait walker. We examine the well-known Virtual Constraints method of controlling bipedal robots in the image of the compass gait. In addition, we provide both the mechanical and control design of an affordable research platform for bipedal dynamic walking. We then extend the concept of virtual constraints to human locomotion, where we investigate the accuracy of predicting lower limb joints angular position and velocity from the motion of the other limbs. Data from nine healthy subjects performing specific locomotion tasks were collected and are made available online. A successful prediction of the hip, knee, and ankle joints was achieved in different scenarios. It was also found that the motion of the cane alone has sufficient information to help predict good trajectories for the lower limb in stairs ascent. Better estimates were obtained using additional information from arm joints. We also explored the prediction of knee and ankle trajectories from the motion of the hip joints

    An Affordable Upper-Limb Exoskeleton Concept for Rehabilitation Applications

    Get PDF
    In recent decades, many researchers have focused on the design and development of exoskeletons. Several strategies have been proposed to develop increasingly more efficient and biomimetic mechanisms. However, existing exoskeletons tend to be expensive and only available for a few people. This paper introduces a new gravity-balanced upper-limb exoskeleton suited for rehabilitation applications and designed with the main objective of reducing the cost of the components and materials. Regarding mechanics, the proposed design significantly reduces the motor torque requirements, because a high cost is usually associated with high-torque actuation. Regarding the electronics, we aim to exploit the microprocessor peripherals to obtain parallel and real-time execution of communication and control tasks without relying on expensive RTOSs. Regarding sensing, we avoid the use of expensive force sensors. Advanced control and rehabilitation features are implemented, and an intuitive user interface is developed. To experimentally validate the functionality of the proposed exoskeleton, a rehabilitation exercise in the form of a pick-and-place task is considered. Experimentally, peak torques are reduced by 89% for the shoulder and by 84% for the elbow
    • …
    corecore