45,957 research outputs found

    Making Models Match: Replicating an Agent-Based Model

    Get PDF
    Scientists have increasingly employed computer models in their work. Recent years have seen a proliferation of agent-based models in the natural and social sciences. But with the exception of a few "classic" models, most of these models have never been replicated by anyone but the original developer. As replication is a critical component of the scientific method and a core practice of scientists, we argue herein for an increased practice of replication in the agent-based modeling community, and for widespread discussion of the issues surrounding replication. We begin by clarifying the concept of replication as it applies to ABM. Furthermore we argue that replication may have even greater benefits when applied to computational models than when applied to physical experiments. Replication of computational models affects model verification and validation and fosters shared understanding about modeling decisions. To facilitate replication, we must create standards for both how to replicate models and how to evaluate the replication. In this paper, we present a case study of our own attempt to replicate a classic agent-based model. We begin by describing an agent-based model from political science that was developed by Axelrod and Hammond. We then detail our effort to replicate that model and the challenges that arose in recreating the model and in determining if the replication was successful. We conclude this paper by discussing issues for (1) researchers attempting to replicate models and (2) researchers developing models in order to facilitate the replication of their results.Replication, Agent-Based Modeling, Verification, Validation, Scientific Method, Ethnocentrism

    Towards A Novel Unified Framework for Developing Formal, Network and Validated Agent-Based Simulation Models of Complex Adaptive Systems

    Get PDF
    Literature on the modeling and simulation of complex adaptive systems (cas) has primarily advanced vertically in different scientific domains with scientists developing a variety of domain-specific approaches and applications. However, while cas researchers are inherently interested in an interdisciplinary comparison of models, to the best of our knowledge, there is currently no single unified framework for facilitating the development, comparison, communication and validation of models across different scientific domains. In this thesis, we propose first steps towards such a unified framework using a combination of agent-based and complex network-based modeling approaches and guidelines formulated in the form of a set of four levels of usage, which allow multidisciplinary researchers to adopt a suitable framework level on the basis of available data types, their research study objectives and expected outcomes, thus allowing them to better plan and conduct their respective research case studies. Firstly, the complex network modeling level of the proposed framework entails the development of appropriate complex network models for the case where interaction data of cas components is available, with the aim of detecting emergent patterns in the cas under study. The exploratory agent-based modeling level of the proposed framework allows for the development of proof-of-concept models for the cas system, primarily for purposes of exploring feasibility of further research. Descriptive agent-based modeling level of the proposed framework allows for the use of a formal step-by-step approach for developing agent-based models coupled with a quantitative complex network and pseudocode-based specification of the model, which will, in turn, facilitate interdisciplinary cas model comparison and knowledge transfer. Finally, the validated agent-based modeling level of the proposed framework is concerned with the building of in-simulation verification and validation of agent-based models using a proposed Virtual Overlay Multiagent System approach for use in a systematic team-oriented approach to developing models. The proposed framework is evaluated and validated using seven detailed case study examples selected from various scientific domains including ecology, social sciences and a range of complex adaptive communication networks. The successful case studies demonstrate the potential of the framework in appealing to multidisciplinary researchers as a methodological approach to the modeling and simulation of cas by facilitating effective communication and knowledge transfer across scientific disciplines without the requirement of extensive learning curves

    Overview on agent-based social modelling and the use of formal languages

    Get PDF
    Transdisciplinary Models and Applications investigates a variety of programming languages used in validating and verifying models in order to assist in their eventual implementation. This book will explore different methods of evaluating and formalizing simulation models, enabling computer and industrial engineers, mathematicians, and students working with computer simulations to thoroughly understand the progression from simulation to product, improving the overall effectiveness of modeling systems.Postprint (author's final draft

    Principles and Concepts of Agent-Based Modelling for Developing Geospatial Simulations

    Get PDF
    The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded. The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded

    Key challenges in agent-based modelling for geo-spatial simulation

    Get PDF
    Agent-based modelling (ABM) is fast becoming the dominant paradigm in social simulation due primarily to a worldview that suggests that complex systems emerge from the bottom-up, are highly decentralised, and are composed of a multitude of heterogeneous objects called agents. These agents act with some purpose and their interaction, usually through time and space, generates emergent order, often at higher levels than those at which such agents operate. ABM however raises as many challenges as it seeks to resolve. It is the purpose of this paper to catalogue these challenges and to illustrate them using three somewhat different agent-based models applied to city systems. The seven challenges we pose involve: the purpose for which the model is built, the extent to which the model is rooted in independent theory, the extent to which the model can be replicated, the ways the model might be verified, calibrated and validated, the way model dynamics are represented in terms of agent interactions, the extent to which the model is operational, and the way the model can be communicated and shared with others. Once catalogued, we then illustrate these challenges with a pedestrian model for emergency evacuation in central London, a hypothetical model of residential segregation tuned to London data which elaborates the standard Schelling (1971) model, and an agent-based residential location built according to spatial interactions principles, calibrated to trip data for Greater London. The ambiguities posed by this new style of modelling are drawn out as conclusions

    The Logic of the Method of Agent-Based Simulation in the Social Sciences: Empirical and Intentional Adequacy of Computer Programs

    Get PDF
    The classical theory of computation does not represent an adequate model of reality for simulation in the social sciences. The aim of this paper is to construct a methodological perspective that is able to conciliate the formal and empirical logic of program verification in computer science, with the interpretative and multiparadigmatic logic of the social sciences. We attempt to evaluate whether social simulation implies an additional perspective about the way one can understand the concepts of program and computation. We demonstrate that the logic of social simulation implies at least two distinct types of program verifications that reflect an epistemological distinction in the kind of knowledge one can have about programs. Computer programs seem to possess a causal capability (Fetzer, 1999) and an intentional capability that scientific theories seem not to possess. This distinction is associated with two types of program verification, which we call empirical and intentional verification. We demonstrate, by this means, that computational phenomena are also intentional phenomena, and that such is particularly manifest in agent-based social simulation. Ascertaining the credibility of results in social simulation requires a focus on the identification of a new category of knowledge we can have about computer programs. This knowledge should be considered an outcome of an experimental exercise, albeit not empirical, acquired within a context of limited consensus. The perspective of intentional computation seems to be the only one possible to reflect the multiparadigmatic character of social science in terms of agent-based computational social science. We contribute, additionally, to the clarification of several questions that are found in the methodological perspectives of the discipline, such as the computational nature, the logic of program scalability, and the multiparadigmatic character of agent-based simulation in the social sciences.Computer and Social Sciences, Agent-Based Simulation, Intentional Computation, Program Verification, Intentional Verification, Scientific Knowledge

    Errors and Artefacts in Agent-Based Modelling

    Get PDF
    The objectives of this paper are to define and classify different types of errors and artefacts that can appear in the process of developing an agent-based model, and to propose activities aimed at avoiding them during the model construction and testing phases. To do this in a structured way, we review the main concepts of the process of developing such a model – establishing a general framework that summarises the process of designing, implementing, and using agent-based models. Within this framework we identify the various stages where different types of errors and artefacts may appear. Finally we propose activities that could be used to detect (and hence eliminate) each type of error or artefact.Verification, Replication, Artefact, Error, Agent-Based Modelling, Modelling Roles
    • …
    corecore