32 research outputs found

    Heterogeneous LTE/ Wi-Fi architecture for intelligent transportation systems

    Get PDF
    Intelligent Transportation Systems (ITS) make use of advanced technologies to enhance road safety and improve traffic efficiency. It is anticipated that ITS will play a vital future role in improving traffic efficiency, safety, comfort and emissions. In order to assist the passengers to travel safely, efficiently and conveniently, several application requirements have to be met simultaneously. In addition to the delivery of regular traffic and safety information, vehicular networks have been recently required to support infotainment services. Previous vehicular network designs and architectures do not satisfy this increasing traffic demand as they are setup for either voice or data traffic, which is not suitable for the transfer of vehicular traffic. This new requirement is one of the key drivers behind the need for new mobile wireless broadband architectures and technologies. For this purpose, this thesis proposes and investigates a heterogeneous IEEE 802.11 and LTE vehicular system that supports both infotainment and ITS traffic control data. IEEE 802.11g is used for V2V communications and as an on-board access network while, LTE is used for V2I communications. A performance simulation-based study is conducted to validate the feasibility of the proposed system in an urban vehicular environment. The system performance is evaluated in terms of data loss, data rate, delay and jitter. Several simulation scenarios are performed and evaluated. In the V2I-only scenario, the delay, jitter and data drops for both ITS and video traffic are within the acceptable limits, as defined by vehicular application requirements. Although a tendency of increase in video packet drops during handover from one eNodeB to another is observed yet, the attainable data loss rate is still below the defined benchmarks. In the integrated V2V-V2I scenario, data loss in uplink ITS traffic was initially observed so, Burst communication technique is applied to prevent packet losses in the critical uplink ITS traffic. A quantitative analysis is performed to determine the number of packets per burst, the inter-packet and inter-burst intervals. It is found that a substantial improvement is achieved using a two-packet Burst, where no packets are lost in the uplink direction. The delay, jitter and data drops for both uplink and downlink ITS traffic, and video traffic are below the benchmarks of vehicular applications. Thus, the results indicate that the proposed heterogeneous system offers acceptable performance that meets the requirements of the different vehicular applications. All simulations are conducted on OPNET Network Modeler and results are subjected to a 95% confidence analysis

    Stochastic Estimation and Control of Queues within a Computer Network

    Get PDF
    Captain Nathan C. Stuckey implemented the idea of the stochastic estimation and control for network in OPNET simulator. He used extended Kalman filter to estimate packet size and packet arrival rate of network queue to regulate queue size. To validate stochastic theory, network estimator and controller is designed by OPNET model. These models validated the transient queue behavior in OPNET and work of Kalman filter by predicting the queue size and arrival rate. However, it was not enough to verify a theory by experiment. So, it needed to validate the stochastic control theory with other tools to get high validity. Our goal was to make a new model to validate Stuckey’s simulation. For this validation, NS-2 was studied and modified the Kalman filter to cooperate with MATLAB. Moreover, NS-2 model was designed to predict network characteristics of queue size with different scenarios and traffic types. Through these NS-2 models, the performance of the network state estimator and network queue controller was investigated and shown to provide high validity for Stuckey’s simulations

    On-demand service architecture for wireless vehicular networks

    Get PDF
    Vehicular Networks (VN) or VANETS has become a cutting-edge topic in the development of innovative solutions for the automotive industry and of special interest to transit management authorities. Well known examples of the potential benefits of enabling communications in vehicles is fostering a better driving by reducing the risk of accidents on the road. Besides the transmission of safety messages among vehicles in the vicinity, the development of non-safety applications will allow the delivery of information services to potential users willing to request them in on-demand basis. To provide such type of services, major challenges need to be tackled to offer secure and reliable communication in anonymous and sometimes hostile communication environments on the roads. These challenges cover security, billing and accounting issues to provide a secure access to services. The objective of this thesis work is to propose a service architecture for on-demand services in vehicular environments. A key point to keep a robust information service supply, stands in the capacity to provide and manage security mechanisms which comprise authentication and authorization of subscribers following a temporary subscription model. These features, along with privacy mechanisms, will offer to the communicating peers a secure way to mutually access and exchange information even if no previous knowledge of each other is available. Policies of service providers can regulate the supply of information services according to the subscribers' profiles. Providers can also define the implementation of accountability models in the form of metering and billing schemes appropriate for VANETS. This will result in the implementation of incentive and collaborative mechanisms to foster service delivery among vehicles

    Communication Technologies Support to Railway Infrastructure and Operations

    Get PDF

    IMPROVING QoS OF VoWLAN VIA CROSS-LAYER BASED ADAPTIVE APPROACH

    Get PDF
    Voice over Internet Protocol (VoIP) is a technology that allows the transmission of voice packets over Internet Protocol (IP). Recently, the integration of VoIP and Wireless Local Area Network (WLAN), and known as Voice over WLAN (VoWLAN), has become popular driven by the mobility requirements ofusers, as well as by factor of its tangible cost effectiveness. However, WLAN network architecture was primarily designed to support the transmission of data, and not for voice traffic, which makes it lack ofproviding the stringent Quality ofService (QoS) for VoIP applications. On the other hand, WLAN operates based on IEEE 802.11 standards that support Link Adaptive (LA) technique. However, LA leads to having a network with multi-rate transmissions that causes network bandwidth variation, which hence degrades the voice quality. Therefore, it is important to develop an algorithm that would be able to overcome the negative effect of the multi-rate issue on VoIP quality. Hence, the main goal ofthis research work is to develop an agent that utilizes IP protocols by applying a Cross-Layering approach to eliminate the above-mentioned negative effect. This could be expected from the interaction between Medium Access Control (MAC) layer and Application layer, where the proposed agent adapts the voice packet size at the Application layer according to the change of MAC transmission data rate to avoid network congestion from happening. The agent also monitors the quality of conversations from the periodically generated Real Time Control Protocol (RTCP) reports. If voice quality degradation is detected, then the agent performs further rate adaptation to improve the quality. The agent performance has been evaluated by carrying out an extensive series ofsimulation using OPNET Modeler. The obtained results of different performance parameters are presented, comparing the performance ofVoWLAN that used the proposed agent to that ofthe standard network without agent. The results ofall measured quality parameters hav

    Improving Multicast Communications Over Wireless Mesh Networks

    Get PDF
    In wireless mesh networks (WMNs) the traditional approach to shortest path tree based multicasting is to cater for the needs of the poorest performingnode i.e. the maximum permitted multicast line rate is limited to the lowest line rate used by the individual Child nodes on a branch. In general, this meansfixing the line rate to its minimum value and fixing the transmit power to its maximum permitted value. This simplistic approach of applying a single multicast rate for all nodes in the multicast group results in a sub-optimal trade-off between the mean network throughput and coverage area that does not allow for high bandwidth multimedia applications to be supported. By relaxing this constraint and allowing multiple line rates to be used, the mean network throughput can be improved. This thesis presents two methods that aim to increase the mean network throughput through the use of multiple line rates by the forwarding nodes. This is achieved by identifying the Child nodes responsible for reducing the multicast group rate. The first method identifies specific locations for the placement of relay nodes which allows for higher multicast branch line rates to be used. The second method uses a power control algorithm to tune the transmit power to allow for higher multicast branch line rates. The use of power control also helps to reduce the interference caused to neighbouring nodes.Through extensive computer simulation it can be shown that these two methods can lead to a four-fold gain in the mean network throughput undertypical WMN operating conditions compared with the single line rate case

    Reliable Server Pooling - Evaluierung, Optimierung und Erweiterung einer neuen IETF-Architektur

    Get PDF
    The Reliable Server Pooling (RSerPool) architecture currently under standardization by the IETF RSerPool Working Group is an overlay network framework to provide server replication and session failover capabilities to applications using it. These functionalities as such are not new, but their combination into one generic, application-independent framework is. Initial goal of this thesis is to gain insight into the complex RSerPool mechanisms by performing experimental and simulative proof-of-concept tests. The further goals are to systematically validate the RSerPool architecture and its protocols, provide improvements and optimizations where necessary and propose extensions if useful. Based on these evaluations, recommendations to implementers and users of RSerPool should be provided, giving guidelines for the tuning of system parameters and the appropriate configuration of application scenarios. In particular, it is also a goal to transfer insights, optimizations and extensions of the RSerPool protocols from simulation to reality and also to bring the achievements from research into application by supporting and contributing relevant results to the IETF's ongoing RSerPool standardization process. To achieve the described goals, a prototype implementation as well as a simulation model are designed and realized at first. Using a generic application model and appropriate performance metrics, the performance of RSerPool systems in failure-free and server failure scenarios is systematically evaluated in order to identify critical parameter ranges and problematic protocol behaviour. Improvements developed as result of these performance analyses are evaluated and finally contributed into the standardization process of RSerPool
    corecore