9 research outputs found

    From complex data to clear insights: visualizing molecular dynamics trajectories

    Get PDF
    Advances in simulations, combined with technological developments in high-performance computing, have made it possible to produce a physically accurate dynamic representation of complex biological systems involving millions to billions of atoms over increasingly long simulation times. The analysis of these computed simulations is crucial, involving the interpretation of structural and dynamic data to gain insights into the underlying biological processes. However, this analysis becomes increasingly challenging due to the complexity of the generated systems with a large number of individual runs, ranging from hundreds to thousands of trajectories. This massive increase in raw simulation data creates additional processing and visualization challenges. Effective visualization techniques play a vital role in facilitating the analysis and interpretation of molecular dynamics simulations. In this paper, we focus mainly on the techniques and tools that can be used for visualization of molecular dynamics simulations, among which we highlight the few approaches used specifically for this purpose, discussing their advantages and limitations, and addressing the future challenges of molecular dynamics visualization

    Visual Exploration of Dynamic Multichannel EEG Coherence Networks

    Get PDF
    Electroencephalography (EEG) coherence networks represent functional brain connectivity, and are constructed by calculating the coherence between pairs of electrode signals as a function of frequency. Visualization of such networks can provide insight into unexpected patterns of cognitive processing and help neuroscientists to understand brain mechanisms. However, visualizing dynamic EEG coherence networks is a challenge for the analysis of brain connectivity, especially when the spatial structure of the network needs to be taken into account. In this paper, we present a design and implementation of a visualization framework for such dynamic networks. First, requirements for supporting typical tasks in the context of dynamic functional connectivity network analysis were collected from neuroscience researchers. In our design, we consider groups of network nodes and their corresponding spatial location for visualizing the evolution of the dynamic coherence network. We introduce an augmented timeline-based representation to provide an overview of the evolution of functional units (FUs) and their spatial location over time. This representation can help the viewer to identify relations between functional connectivity and brain regions, as well as to identify persistent or transient functional connectivity patterns across the whole time window. In addition, we introduce the time-annotated FU map representation to facilitate comparison of the behaviour of nodes between consecutive FU maps. A colour coding is designed that helps to distinguish distinct dynamic FUs. Our implementation also supports interactive exploration. The usefulness of our visualization design was evaluated by an informal user study. The feedback we received shows that our design supports exploratory analysis tasks well. The method can serve as a first step before a complete analysis of dynamic EEG coherence networks

    PolyVR - A Virtual Reality Authoring Framework for Engineering Applications

    Get PDF
    Die virtuelle Realität ist ein fantastischer Ort, frei von Einschränkungen und vielen Möglichkeiten. Für Ingenieure ist dies der perfekte Ort, um Wissenschaft und Technik zu erleben, es fehlt jedoch die Infrastruktur, um die virtuelle Realität zugänglich zu machen, insbesondere für technische Anwendungen. Diese Arbeit bescheibt die Entstehung einer Softwareumgebung, die eine einfachere Entwicklung von Virtual-Reality-Anwendungen und deren Implementierung in immersiven Hardware-Setups ermöglicht. Virtual Engineering, die Verwendung virtueller Umgebungen für Design-Reviews während des Produktentwicklungsprozesses, wird insbesondere von kleinen und mittleren Unternehmen nur äußerst selten eingesetzt. Die Hauptgründe sind nicht mehr die hohen Kosten für professionelle Virtual-Reality-Hardware, sondern das Fehlen automatisierter Virtualisierungsabläufe und die hohen Wartungs- und Softwareentwicklungskosten. Ein wichtiger Aspekt bei der Automatisierung von Virtualisierung ist die Integration von Intelligenz in künstlichen Umgebungen. Ontologien sind die Grundlage des menschlichen Verstehens und der Intelligenz. Die Kategorisierung unseres Universums in Begriffe, Eigenschaften und Regeln ist ein grundlegender Schritt von Prozessen wie Beobachtung, Lernen oder Wissen. Diese Arbeit zielt darauf ab, einen Schritt zu einem breiteren Einsatz von Virtual-Reality-Anwendungen in allen Bereichen der Wissenschaft und Technik zu entwickeln. Der Ansatz ist der Aufbau eines Virtual-Reality-Authoring-Tools, eines Softwarepakets zur Vereinfachung der Erstellung von virtuellen Welten und der Implementierung dieser Welten in fortschrittlichen immersiven Hardware-Umgebungen wie verteilten Visualisierungssystemen. Ein weiteres Ziel dieser Arbeit ist es, das intuitive Authoring von semantischen Elementen in virtuellen Welten zu ermöglichen. Dies sollte die Erstellung von virtuellen Inhalten und die Interaktionsmöglichkeiten revolutionieren. Intelligente immersive Umgebungen sind der Schlüssel, um das Lernen und Trainieren in virtuellen Welten zu fördern, Prozesse zu planen und zu überwachen oder den Weg für völlig neue Interaktionsparadigmen zu ebnen
    corecore