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Abstract
Electroencephalography (EEG) coherence networks represent functional brain connectivity, and are constructed by calculating
the coherence between pairs of electrode signals as a function of frequency. Visualization of such networks can provide insight
into unexpected patterns of cognitive processing and help neuroscientists to understand brain mechanisms. However, visualizing
dynamic EEG coherence networks is a challenge for the analysis of brain connectivity, especially when the spatial structure of
the network needs to be taken into account. In this paper, we present a design and implementation of a visualization framework
for such dynamic networks. First, requirements for supporting typical tasks in the context of dynamic functional connectivity
network analysis were collected from neuroscience researchers. In our design, we consider groups of network nodes and their
corresponding spatial location for visualizing the evolution of the dynamic coherence network. We introduce an augmented
timeline-based representation to provide an overview of the evolution of functional units (FUs) and their spatial location over
time. This representation can help the viewer to identify relations between functional connectivity and brain regions, as well
as to identify persistent or transient functional connectivity patterns across the whole time window. In addition, we introduce
the time-annotated FU map representation to facilitate comparison of the behaviour of nodes between consecutive FU maps.
A colour coding is designed that helps to distinguish distinct dynamic FUs. Our implementation also supports interactive
exploration. The usefulness of our visualization design was evaluated by an informal user study. The feedback we received shows
that our design supports exploratory analysis tasks well. The method can serve as a first step before a complete analysis of
dynamic EEG coherence networks.

Keywords: information visualization, visualization, medical imaging, visualization

ACM CCS: •Applied Computing → Life and Medical Sciences, •Human-Centered Computing → Information Visualization

1. Introduction

A functional brain network is a graph representation of brain or-
ganization, in which the nodes usually represent signals recorded
from spatially distinct brain regions and edges represent significant
statistical correlations between pairs of signals. Currently, increased
attention is being paid to the analysis of functional connectivity at
the sub-group level. A sub-group is defined as an intermediate entity
between the entire network and individual nodes, such as a com-
munity or module which is composed of a set of densely connected
nodes (Ahn et al. [APS14]). Such a group of nodes can represent a
certain cognitive activity that requires brain connectivity.

Data-driven visualization of functional brain networks plays an
important role as a pre-processing step in the exploration of brain
connectivity, where no a priori assumptions or hypotheses about
brain activity in specific regions are made. This type of visualiza-
tion can provide insight into unexpected patterns of brain function
and help neuroscientists to understand how the brain works. An im-
portant goal of visualization is to facilitate the discovery of groups of
nodes and patterns that govern their evolution (Reda et al. [RTJ*11]).
Recent techniques mostly focus on the visualization of static elec-
troencephalography (EEG) coherence networks. Here, we focus on
the evolution of groups of nodes over time, that is dynamic commu-
nities, which has received less attention so far in the neuroscience
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Figure 1: Example of an FU map [tC08] as obtained during an
oddball task (see also Section 5.1).

domain. Although some visualization approaches have been de-
veloped for dynamic social networks, these approaches cannot be
directly applied to brain networks, since they do not maintain the
spatial structure of the network, that is, the relative spatial positions
of the nodes. Visualization approaches that do not take into account
the physical location of the nodes make it hard to identify how the
functional pattern is related to brain regions.

An EEG coherence network is a two-dimensional (2D) graph
representation of functional brain connectivity. In such a network,
nodes represent electrodes attached to the scalp at multiple loca-
tions, and edges represent significant coherences between elec-
trode signals [HRA*95, MSvdHdJ06]. If there are many electrodes,
for example 64 or 128, the term ‘multi-channel’ or ‘high-density’
EEG coherence network is commonly used. Traditional visual-
ization of multi-channel EEG coherence networks suffers from a
large number of overlapping edges, resulting in visual clutter. To
solve this problem, a data-driven approach has been proposed by
ten Caat et al. [tCMR08] that divides electrodes into several func-
tional units (FUs). Each FU is a set of spatially connected electrodes
which record pairwise significantly coherent signals. For a certain
EEG coherence network, FUs can be derived by the FU detection
method [tCMR08] and displayed in a so-called FU map. An exam-
ple is shown in Figure 1. In such a map, a Voronoi cell is associated
to each electrode position, cells within one FU have the same colour,
circles overlaid on the map represent the barycentres of FUs, and
the colour of the line connecting two FUs encodes the average co-
herence between all electrodes of the two FUs. Here, we extend this
method to analyse dynamic EEG coherence networks.

In this paper, we provide an interactive visualization methodology
for the analysis of dynamic connectivity structures in EEG coher-
ence networks as an exploratory pre-processing step to a complete
analysis of such networks. Experts from the neuroscience domain
were involved in our study in two ways. First, they provided a set of
requirements for supporting typical tasks in the context of dynamic
functional connectivity network analysis. Second, we carried out
an evaluation of our tool with a (partially different) group of ex-
perts from the neuroscience domain. One of the main requirements
coming from the domain experts is that spatial information about
the brain regions needs to be maintained in the network layout, a

feature which is not present in most existing network visualization
methods.

Our design enables users to: (1) identify the change in composi-
tion of FUs over time; (2) discover how brain connectivities are re-
lated to brain regions and (3) compare the state of individual network
nodes between consecutive time steps. To achieve this functionality,
we use an augmented timeline-based representation to produce an
overview of the evolution of FUs and their corresponding spatial
locations. By colour coding and using additional partial FU maps,
this representation can help the user to identify relations between
functional patterns and locations of electrodes, as well as to identify
persistent or transient patterns across the whole time window. In
addition, a time-annotated FU map is proposed for investigating the
behaviour of nodes between consecutive FU maps. This augmenta-
tion can also be used to compare FU maps obtained under different
conditions. In an informal user study with domain experts, we eval-
uated the usefulness of our visualization approach. In summary, the
main contribution of this paper is a combination and adaptation of
existing techniques to visualize functional connectivity data in the
neuroscience domain. In particular, we provide:

� an augmented timeline representation of dynamic EEG coher-
ence networks with a focus on revealing the evolution of FUs
and their spatial structures;

� the detection of dynamic FUs to identify persistent as well as
transient FUs;

� a sorted representation of FUs and vertices per time step to fa-
cilitate the tracking of the evolution of FUs over time and the
identification of brain regions that the FU members belong to;

� a time-annotated FU map, which is an extended FU map for
detailed comparison of FU maps at two consecutive time steps;

� an online interactive tool that provides an implementation of the
above methods.

This paper is an extension of a conference paper [JvdGMR17].
The following parts are novel as compared to the conference paper:

� the introduction has been extended;
� details were added to the design description (Sections 3.1 and

3.2);
� a description has been added explaining how to order the lines

corresponding to electrodes in the timeline representation for
reducing edge crossings and enhancing visual traceability (Sec-
tion 4.1.2);

� an explanation has been added how to assign colours to dynamic
FUs for distinguishing dynamic FUs (Section 4.2.2);

� Figures 5 and 7 are new, as well as Figures 9 and 10 that replace
figure 7 of the conference paper;

� more feedback has been included from the participants in the
evaluation stage (Sections 5.2.1 and 5.2.2).

2. Related Work

Many techniques for visualizing dynamic networks have been de-
veloped; these are reviewed by Beck et al. [BBDW14]. These tech-
niques can be classified into three categories: animation, timeline-
based visualization and hybrid approaches. The most straightfor-
ward method is animation (Archambault et al. [APP11]). When

c© 2018 The Authors
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an animation is used to visualize the evolution of networks, the
changes are usually reflected by a change in the colour of the nodes.
However, network animation is limited to a small number of time
steps [RFF*08, RTJ*11]. When this number becomes large, the
users have to navigate back and forth to compare networks since it
is hard to memorize the states of networks in previous time steps,
see Bach et al. [BHRD*15]. Some work has been done to help users
easily capture network changes. These approaches aim to preserve
the abstract structural information of a graph, called the mental map
(Diehl et al. [DGK01], Misue et al. [MELS95]).

An alternative to animation is the timeline-based representation.
A typical approach is the application of small multiples, in which
multiple networks at different points in time are placed next to
each other [BHRD*15]. This approach is limited by the size of the
display screen: it is very hard to display entire graphs at once when
the data set becomes large. Networks can be shrunk in size, but
the corresponding resolution and detail are reduced [BHRD*15].
Besides, this type of small multiples makes it hard to track the
evolution of networks, because corresponding nodes in different
multiples have to be identified visually.

Interactive visual analysis of temporal cluster structures in high-
dimensional time series was studied by Turkay et al. [TPRH11].
They presented a cluster view that visualizes temporal clusters with
associated structural quality variation, temporal signatures that vi-
sually represent structural changes of groups over time, and an
interactive visual analysis procedure. Van den Elzen et al. [vdE-
HBvW16] presented a visual analytics approach for the exploration
and analysis of dynamic networks, where snapshots of the network
are considered as points in a high-dimensional space that are pro-
jected to two dimensions for visualization and interaction using a
snapshot view and an evolution view of the network. However, in
both approaches the spatial nature of the data did not play a role or
was absent from the beginning.

An extension of the timeline-based representation has been de-
veloped for visualizing the evolution of communities that is widely
used for dynamic social networks (Sallaberry et al. [SMM13],
Vehlow et al. [VBAW15], Liu et al. [LWW*13]). In this repre-
sentation, nodes are aligned vertically for each time step and are
connected by lines between consecutive time steps. For a certain
time step, nodes in the same community form a block. As time
progresses, lines may split or merge, reflecting changes in the com-
munities. This visualization is based on the flow metaphor, as is
used in Sankey diagrams (Riehmann et al. [RHF05]) or flow map
layouts (Phan et al. [PXY*05]), where users can explore complex
flow scenarios.

Specifically, the communities and nodes are sorted to reduce the
number of line crossings, which can improve the readability of
the graph [SMM13, VBAW15]. In addition, the colour of the nodes
usually reflects the temporal properties of a community, for example
the stability of a dynamic community or the node stability over
time [VBAW15]. To allow interactivity, the order of the nodes can be
manipulated by the user [RTJ*11]. However, this approach cannot
be applied to dynamic brain networks directly since it visualizes
the dynamic network while ignoring the spatial information of the
network nodes, which is a crucial factor in the analysis of brain
networks.

In addition, several other useful tools for visualizing brain net-
works have been introduced. Christodoulou et al. [CSTT11] present
BrainNetVis to serve brain network modelling and visualization by
providing both quantitative and qualitative network measures of
brain interconnectivity. Xia et al. [XWH13] introduce BrainNet
Viewer to display brain surfaces, nodes, and edges as well as prop-
erties of the network. Sorger et al. [SBS*13] discuss NeuroMap to
display a structural overview of neuronal connections in the fruit
fly’s brain. Ma et al. [MKF*15] present an animated interactive vi-
sualization of combing a node-link diagram and a distance matrix
to explore the relation between functional connections and spatial
structure of the brain. Finally, Hassan et al. [HSK*15] introduce
EEGNET to analyse and visualize functional brain networks from
M/EEG recordings.

In spite of the many brain network visualizations that exist, none
is effective for our goal, which is to visualize and explore dynamic
networks for the tasks defined in Section 3.1. As we mentioned in
Section 1, our approach is based upon the FU map method intro-
duced by ten Caat et al. [tCMR07, tCMR08]. This approach has been
co-developed with the Department of Clinical Neurophysiology of
the University of Groningen and used to analyse coherence net-
works and validate them in a comparison of networks from young
and old participants (ten Caat et al. [tCMR08]). Next, it was ap-
plied and validated in a joint study with the Department of Work
Psychology of the University of Groningen about the influence of
mental fatigue on coherence networks (Lorist et al. [LBtC*09],
ten Caat et al. [tCLB*08]). Later, it was extended to the analy-
sis of functional fMRI (functional Magnetic Resonance Imaging)
networks by Crippa et al. [CR11].

3. Design

In this section, we first introduce the tasks that neuroscientists want
to perform in the context of functional connectivity network anal-
ysis, then formulate the design goals that take into account the
requirements following from the task analysis and describe the de-
cisions we took when designing the visualization.

3.1. Requirements

We used a questionnaire to collect requirements from a small group
of researchers who regularly employ brain connectivity analysis.
Eight participants were involved in the requirements collecting
stage, consisting of master and PhD students, a postdoc, an associate
and a full professor; they came from different universities around
the world: one from the United States, the rest from the Netherlands.
The mean age of seven participants (one participant did not indicate
his age) was 37.4 years; their experience in working with brain data
varied from 0.5 to 30 years (mean: 11.9 years for seven participants,
while the one participant who did not indicate his experience had at
least 4 years of experience). To gain understanding of the require-
ments for (visual) analysis of brain data, the participants were asked
to complete a questionnaire consisting of open-ended questions. The
goal of the questionnaire was to understand the general problems
the researchers are facing when analysing their data, the specific
needs regarding network analysis, and the role of visualization in
their data analysis.

c© 2018 The Authors
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Although the way of acquiring neuroimaging data may vary
among researchers, the common underlying data representation for
different types of connectivity and the methods of analysing data
are similar. Therefore, our questionnaire was not limited to the anal-
ysis of EEG data, but also addressed fMRI data. In our study, we
restricted ourselves to graph representations, especially focusing on
dynamic structures present in the data. The questionnaire is com-
posed of three parts.

(1) The first part includes general questions, such as the goal
of analysing data sets, the general analysis pipeline, tools
used by the participants in their current research and the
problems of these tools.

(2) The second part focuses on network analysis, such as the
purpose of analysing brain connectivity, the procedure of
brain connectivity analysis, the properties of brain networks
the participants want to compare and the problems they are
facing in this process.

(3) The last part is about the role of visualization in data analy-
sis, such as the purpose of using visualization, the difficul-
ties in visualizing (dynamic) data and preferences in visual
encoding and interaction.

We analysed the feedback of the respondents and compiled the
following list of tasks that are of interest to them to explore brain
connectivity, and for which visualization tools are not readily avail-
able:

� Task 1: Provide an overview of coherence networks across time.
� Task 2: Identify the state of each coherence network, that is

indicate significant connections between signals recorded from
distinct locations.

� Task 3: Discover how functional connectivity is related to spatial
brain structure at each time step.

� Task 4: Explore the evolution of functional connectivity struc-
tures over time. That is, determine at which time step and in
which brain areas the connections and their spatial distribution
change, to find the areas of interest in which connections are
stable or strongly changing, as a starting point for further study.

� Task 5: Compare coherence networks between individuals or
conditions. That is, indicate the differences between coherence
networks of, for example patients and healthy individuals, or
the differences of coherence networks between task conditions
for single individuals. This can help neuroscientists to predict
diseases or explain differences in human behaviour.

3.2. Design

Properties of brain connectivity networks that neuroscientists are in-
terested in include the significant connections, as usually expressed
in connectivity values above a threshold between brain activities
recorded at distinct brain locations, the relation between functional
connectivity and brain spatial structures, and how these relations
change over time. In this section, we discuss our choices for repre-
senting the evolution of coherence networks over time, and the visual
encodings adopted in the representation, that meet the requirements
set out above.
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Figure 2: Schematic map of the scalp on which electrodes have been
attached (nose on top). Electrodes, represented by Voronoi cells, are
divided into seven regions based on the EEG electrode placement
system: LT (Left Temporal), Fp (Fronto-polar), F (Frontal), C (Cen-
tral), P (Parietal), O (Occipital), RT (Right Temporal). Each region
has a unique colour (see the colour legend on the right-bottom).

Visualizing dynamic coherence networks requires that the
changes of connections are shown. As mentioned in Section 2, an-
imation or a timeline-based representation can be used to visualize
dynamic coherence networks. Given the limitations of animation,
we have chosen to base our method on the timeline representation
for visualizing the evolution of communities in dynamic social net-
works (see Figure 3), because it can not only provide an overview
but also the trend of changes in coherence networks over time
(Task 1).

In this timeline-based representation, electrodes are represented
by lines (Figure 3a). For each time step, to reflect the connec-
tions between electrodes and also consider their spatial information
(Figure 1), we use the FUs proposed by ten Caat et al. [tCMR08]. An
FU, which can be viewed as a region of interest, is a set of spatially
connected electrodes in which each pair of EEG signals at these
electrodes is significantly coherent. In the timeline representation,
FUs are represented by blocks of lines (Figure 3). The blocks are
separated by a small gap to distinguish different FUs (Task 2).

Since the representation based on FUs maintains the spatial lay-
out of electrode positions, it is more intuitive compared to other
representations when exploring the relationship between spatial
structures and functional connectivity. For each FU in the time-
line representation, we use the colour of the line to indicate which
brain region the corresponding electrode originates from (Figure 2).
In addition, to provide the exact location for each FU we provide a
partial FU map for each block of lines in the timeline representation
(Figure 3b). A partial FU map for a block of lines is a map where
the electrodes included in this block are coloured black and the rest
of the electrodes are coloured white (Task 3).

To help users identify the persistent or transient functional con-
nectivity and to simplify the tracking of connections over time, we
first pre-process the coherence networks to detect dynamic FUs. A
dynamic FU is a set of similar FUs detected at consecutive time
steps (a precise definition is provided in Section 3.3, Figure 4). A
dynamic FU that persists across a wide span of consecutive time
steps is a stable state across time (Figure 3a). Dynamic FUs which

c© 2018 The Authors
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(a) Timeline-based representation without partial FU map.

(b) Augmented timeline-based representation with partial FU map.

Figure 3: Examples of timeline-based representations. Both rep-
resentations display the evolution of dynamic FUs across five time
steps for coherence in the frequency band 8–12 Hz. (a) Normal
timeline-based representation without partial FU maps. (b) Aug-
mented timeline-based representation including partial FU maps.
Details are provided in Section 4.
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Figure 4: Synthetic FU maps with five dynamic FUs tracked
over five time steps. Each cell corresponds to an electrode.
Cell colours indicate different dynamic FUs: red represents
D1 : {C1,1, C2,1, C3,1, C4,1, C5,1}, blue represents D2 : {C1,2}, cyan
represents D3 : {C1,3, C2,3, C3,3, C4,2, C5,3}, green represents D4 :
{C2,2, C3,2} and magenta represents D5 : {C5,2}; the white cells rep-
resent electrodes belonging to small FUs with size less than two.

only exist for a small range of time steps are referred to as transient
dynamic FUs (Task 4).

The last main goal is to compare coherence networks between
different conditions. To achieve this goal, we use a time-annotated
FU map to demonstrate the differences between two consecutive
FU maps (Figure 6). In this time-annotated FU map, we adopt a

division of each cell into an inner and an outer region, such that the
information of the previous/current state is encoded in the colour
of the inner/outer cell, where the dynamic FU from each coherence
network is mapped to the colour of the corresponding region. We
consider this approach to be useful since it does not obscure the
graph layout structure and it can provide details about changes of
the node states (Task 5).

3.3. Data model and dynamic FU detection

In our visualization framework, we define a dynamic EEG coher-
ence network as a sequence S = (G1, G2, . . . , GN ) of consecutive
coherence networks, where N denotes the number of such networks,
and Gt = (V,Et ) (1 ≤ t ≤ N ) is a coherence network at time step t

defined by a set of vertices V and a set of edges Et ⊆ V × V . Each
coherence network has the same vertex set V since the electrode
set, and therefore the vertex set, is constant over time. In contrast,
the edge sets Et change over time as coherences change over time.

3.3.1. FUs and FU map

For exploring the network while taking its spatial structure into
account, the node-link diagram is considered to be more intuitive
compared to other representations since its layout is based on the
actual physical distribution of electrodes. However, the node-link
diagram suffers from a large number of overlapping edges if the
number of nodes exceeds a certain value. Therefore, the FU map can
be used to better understand the relationship between connections
and spatial structure (Figure 1).

The FU map was proposed to visualize EEG coherence networks
with reduced visual clutter and preservation of the spatial structure of
electrode positions. An FU is a spatially connected set of electrodes
recording pairwise significantly coherent signals. Here, ‘significant’
means that their coherence is equal or higher than a threshold which
is determined by the number of stimuli repetitions [tCMR08]. For
each coherence network, FUs are displayed in a so-called FU map
which visualizes the size and location of all FUs and connects FUs
if the average coherence between them exceeds the threshold.

For each time step, FUs are detected by the method proposed by
ten Caat et al. [tCMR08]. We denote the set of FUs detected at time
step t by Pt = {Ct,1, Ct,2, . . . , Ct,nt

}, where nt is the number of FUs
at time t .

3.3.2. Dynamic FU

To track the evolution of FUs, we introduce the concept of dynamic
FU. Connecting FUs across time steps, a set of L dynamic FUs
{D1, D2, . . . , DL} is derived from the dynamic EEG coherence net-
work S as follows. Each dynamic FU Dl is an ordered sequence Dl =
{Ctl ,l1 , Ctl+1,l2 , . . . , Ctl+kl

,lkl
} ∈ Ptl × Ptl+1 × . . . × Ptl+kl

, where tl is
the time step at which Dl first appears, kl is the number of time steps
during which Dl lasts, and each Ctl+i ,li is an FU at time step tl+i

(Figure 4). That is, each dynamic FU Dl is an FU whose members
(i.e. included electrodes) are evolving over time as a result of the
changing coherences between signals recorded by electrodes.

The key problem of detecting dynamic FUs is how to connect
FUs at consecutive time steps. Similar to Greene’s work [GDC10],

c© 2018 The Authors
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we do a pairwise comparison of the FUs between consecutive time
steps and put the most similar FUs into the same dynamic FU. Here,
we define the similarity between FUs C1 and C2 as a weighted
sum of Jaccard similarity J (C1, C2) = |C1∩C2|

|C1∪C2| and spatial similarity
E(C1, C2) :

sim(C1, C2) = λJ (C1, C2) + (1 − λ)E(C1, C2), (1)

where the weight factor λ satisfies λ ∈ [0, 1]. E(C1, C2) is defined
as one minus the 2D Euclidean distance between the barycentres of
C1 and C2. Note that this 2D Euclidean distance is normalized to the
interval [0, 1] by scaling it to the maximum possible distance in an
FU map. If sim(C1, C2) is equal or higher than a threshold θ ∈ [0, 1],
then we consider these two FUs similar. Our similarity measure is
inspired by Crippa et al. [CMLR11], but note that they used a
dissimilarity measure rather than a similarity measure. Standard
values of the parameters were chosen in our experiments, following
the literature: λ = 0.5 [CMLR11] and θ = 0.3 [GDC10].

Algorithm 1 Dynamic FU Detection

Require: Pt (1 ≤ t ≤ N ); sim(Ct−1,j , Ct,i)(2 ≤ t ≤ N, 1 ≤ j ≤
|Pt−1|, 1 ≤ i ≤ |Pt |); similarity threshold θ .

Ensure: Dl is the dynamic FU l consisting of a series of similar
FUs; L(Ct,i) indicates the dynamic FU that Ct,i belongs to;
Lmax is the number of dynamic FUs.

1: for i = 1 to |P1| do
2: Di = {C1,i}
3: L(C1,i) = i

4: comi = nodes(C1,i)
5: end for
6: Lmax = |P1|
7: for t = 2 to N do
8: for i = 1 to |Pt | do
9: L(Ct,i) = 0
10: end for
11: add all similarities sim(Ct−1,j , Ct,i) (1 ≤ j ≤ |Pt−1|,

1 ≤ i ≤ |Pt |) between FUs in Pt−1 and Pt to queue in de-
scending order

12: while queue 	= ∅ do
13: sim(Ct−1,j , Ct,i) = dequeue(queue)
14: if sim(Ct−1,j , Ct,i) ≥ θ and |nodes(Ct,i)

∩ comL(Ct−1,j )| ≥ 1 and L(Ct,i) = 0 then
15: DL(Ct−1,j ) = DL(Ct−1,j ) ∪ Ct,i

16: L(Ct,i) = L(Ct−1,j )
17: comL(Ct−1,j ) = nodes(Ct,i) ∩ comL(Ct−1,j )

18: end if
19: end while
20: for i = 1 to |Pt | do
21: if L(Ct,i) = 0 then
22: Lmax = Lmax + 1
23: L(Ct,i) = Lmax

24: DLmax = {Ct,i}
25: comLmax = nodes(Ct,i)
26: end if
27: end for
28: end for

The pseudo-code of the dynamic FU identification process is
given in Algorithm 1, see also Figure 4 for a synthetic example.
This identification algorithm maintains the following dynamic struc-
tures:

� Dl : A set of FUs representing the dynamic FU Dl .
� A dynamic label L(Ct,i) that equals l when Ct,i belongs to dy-

namic FU Dl .
� coml : A set of the common nodes of the FUs Ctl+i ,li , i = 1, . . . , kl

that are part of the dynamic FU Dl .
� nodes(Ct,i): A set of nodes contained in the FU Ct,i .
� A queue containing all similarities in decreasing order between

FUs at consecutive time steps.

Algorithm 1 contains two major steps. The first one (lines 1–6)
is the initialization step of the dynamic structures. The second one
(lines 7–28) is the core step of detecting dynamic FUs. It merges the
FU of the current time step with an existing dynamic FU or creates
a new dynamic FU for it based on the FU similarity.

From the pseudo-code, the algorithm can be expected to have
quadratic complexity in the number N of time steps. For the data
considered in this paper, this did not present a problem. The FU
detection was carried out as a pre-processing step. For a data set of
119 electrodes and five time steps, the computing time was in the
order of 7 s on a modern laptop.

4. Dynamic Network Visualization

Our visualization design provides an interactive exploration of dy-
namic coherence networks. As discussed in Section 3, our de-
sign aims for helping users to understand the states of coher-
ence networks, how these states are related to brain regions, how
the states change over time, and where the differences occur be-
tween coherence networks at different time steps or under different
conditions.

To this end, we employ three views: an FU map, a timeline-based
representation and a time-annotated FU map. The FU map has al-
ready been described in Section 3.3.1. The timeline-based represen-
tation provides an overview of the evolution of FUs including both
the changes in its composition and spatial information. The time-
annotated FU map reveals the detailed content of the vertices and
location of FUs, to facilitate the assessment of vertex behaviour in
two consecutive FU maps and the comparison of FU maps obtained
under different conditions.

4.1. Augmented timeline-based representation

The timeline-based representation has already been used in other
contexts to visualize dynamic communities [SMM13, RTJ*11,
LWW*13]. In this representation, time is mapped to the horizontal
axis, while the vertical axis is used to position vertices represented
by lines. We extended this representation to show the evolution of
FUs. For a certain time step, lines grouped together represent cor-
responding electrodes forming FUs. Thus, the width of the grouped
lines is proportional to the size of the FU in question, similar to what
is done in Sankey diagrams or flow map layouts [RHF05, PXY*05].
The grouped lines are separated by a small gap to distinguish
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different FUs. The lines running from left to right represent the
time evolution of the states of the coherence networks. When the
grouped lines separate, this means that the corresponding FU splits,
while the electrodes start to form an FU when lines forming different
groups are joined together in the next time step. Thus, this split and
merge phenomenon helps to investigate the evolution of FUs over
time.

4.1.1. Including spatial information

To incorporate spatial information in such a timeline-based repre-
sentation, we provide two methods. First, we encode the spatial
information into the colour of the lines. To achieve this, we use an
EEG placement layout based on underlying brain regions showing
the location of electrodes. In this layout, electrodes are partitioned
into several regions based on the EEG electrode placement system
(Oostenveld and Praamstra [OP01]), and each region has a unique
colour generated by the Color Brewer tool [HB03] (Figure 2). In the
timeline-based view (Figure 3), the lines are coloured in the same
way as the corresponding electrodes in the EEG electrode placement
system of Figure 2, thus providing a mapping of each timeline to a
specific spatial brain region.

However, the colour of the lines only provides rough spatial in-
formation (one of the seven brain regions). To assess the dynamics
of a small number of coherence networks in more spatial detail, we
augment the timeline-based representation by combining the evo-
lution of FUs with partial FU maps through a method inspired by
Vehlow et al. [VBAW15]. In a partial FU map, only one FU is dis-
played with its cells coloured black, while the cells of all other FUs
are coloured white. For a given time step, each FU is visualized by
a block of lines, followed by the corresponding partial FU map. For
example, in Figure 3(b) each block of lines (labelled 1, 2, ..., 14)
represents an FU, except the top block which represents electrodes
that do not belong to any FUs because their size is below the size
threshold. Each block is followed by a partial FU map in which the
corresponding electrodes in this FU are coloured black and the rest
are white.

In Figure 3, dynamic FUs are tracked over five time steps, re-
sulting in a total of 14 detected dynamic FUs. The larger FUs
included in dynamic FUs D1, D14 (labelled in the figure by ‘1’
and ‘14’, respectively) are located in the Parieto-Occipital and
Fronto-polar regions (Figure 2). The dynamic FUs D1, D5, D9,
D10, D11, D14 exist for all time steps. Dynamic FU D1 splits at
time step 2, creating a new dynamic FU D4 in addition to D1.
Dynamic FU D11 significantly changes at time step 3: the elec-
trodes coloured in blue disappear while other electrodes (coloured
green) become part of it; at time step 4, D11 returns to the orig-
inal state. This is also happening for D9, which changes a lot at
time steps 2 and 3, but returns to the original state at time step 4
(Figure 3b).

4.1.2. Ordering of FUs and vertices

To help users easily track the evolution of FUs and their locations in
the brain, FUs need to be ordered in such a way that the positions of
FUs in the timeline-based view reflect their locations in the FU map.

Within each FU, lines representing electrodes should be ordered in
such a way that it is easy to find the electrode distribution within
this FU.

To this end, we first order FUs based on the y-coordinate of
their corresponding barycentres for each time step (Figure 3). The
FUs with larger y-coordinate are placed above the FUs whose
y-coordinates are smaller. If any FUs have the same y-coordinate,
they are ordered based on their corresponding x-coordinate from
left to right. Because FUs exchanging many electrodes over time
usually are close to each other in the FU map, this ordering also
makes for a stable layout to some extent.

To allow the viewer to understand the electrode distribution within
each FU, we have chosen to order the vertices of an FU based on
their location in the EEG placement layout (Figure 2). Within each
FU, vertices are ordered based on the brain parts to which they
belong. Vertices from the same brain regions are placed together,
and they are ordered as follows: vertices from LT are placed at
the top of the FU, followed by the vertices from Fp, F, C, P and
O. Finally, vertices from RT are placed at the bottom of the FU.
Thus, we do not optimize the view for minimum line crossings,
since earlier experiments have shown that optimizing the layout for
minimum line transitions often resulted in local layouts where some
areas suffer from excessive crossings [RTJ*11]. In our case, the
optimized layout for minimum line crossings would make it hard
to understand the spatial distribution. Instead, we order vertices
within the same brain region of FU Ct,i in the following way for
reducing edge crossings and enhancing visual traceability: nodes
will not move within an FU and lines representing these nodes do
not intersect if they split in the next time step. This ordering needs
to take into account the previous ordering of FUs. For example,
if vertices v and v′ from the same brain region are located in FU
Ct,i at time step t and in FUs Ct+1,m, Ct+1,n at time step t + 1,
and FU Ct+1,m is located above Ct+1,n at time step t + 1, then v

should lie at the upper position compared to v′ in FU Ct,i at time
step t . In practice, we first order vertices at the last time step tlast .
The vertices of the same FU and brain region at time step tlast are
ordered based on the FUs they belong to at the previous time step
tlast − 1, such that if vertices v and v′ of the same FU and brain
region at time step tlast come from FUs Ctlast −1,m, Ctlast −1,n at time
step tlast − 1 and FU Ctlast −1,m is located above Ct+1,n at time step
t + 1, then v lies above v′ at the last time step. Vertices of the same
brain region and FU at time step t(1 ≤ t ≤ tlast − 1) are ordered
based on the ordering of FUs at time step t + 1. Figure 5 shows an
example of ordering vertices. The labels of electrodes are arranged
vertically on the left of the timeline representation. Each label is a
combination of letters and a digit except for the electrodes located
at the midline of the brain for which the label only has letters.
The letter is to identify the general brain region and the number
is to identify the hemisphere in question and the distance from the
midline. A lowercase z is used to represent midline locations. For
example, FCC1 lies over the fronto-central–central region to the
left of the midline. Cz lies over the central cortex on the midline.
At time step 1, they both belong to dynamic FU D8, while they
both belong to the dynamic FU D9 at time step 2. They split at
time step 3: FCC1 joins dynamic FU D12 while Cz joins dynamic
FU D6 (Figure 5). Then FCC1 is placed above Cz at time steps
1 and 2.
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Figure 5: Example of ordering vertices from Figure 3(a). The high-
lighted lines representing electrodes FCC1 and Cz both come from
the central part of the brain (Figure 2).
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Figure 6: Time-annotated FU map at time step 5 (see Figure 3).
The outer cell colour indicates which dynamic FU (see the colour
legend on the right) the electrode belongs to at time step 5 while the
colour of the inner cell represents the state in the previous time step
4. The white cells belong to FUs with size smaller than four.

4.2. Time-annotated FU map and vertex colouring

4.2.1. Time-annotated FU map

The timeline-based view provides an overview of the evolution of
FUs over time, and the changes of states between consecutive time
steps can be inferred from the line transitions. These transitions
provide a rough indication of the difference between states at con-
secutive time steps. To focus on specific changes in the states of
coherence networks between consecutive time steps, it is necessary
to provide more detail about the behaviour of electrode signals. To
achieve this, we provide a time-annotated FU map to facilitate the
comparison of states of vertices between two consecutive FU maps.
An example is shown in Figure 6.

Here, we employ a technique inspired by the work of
Alper et al.[ABHR*13]. Cells are divided into an inner and outer
part; for simplicity, we will speak of ‘inner cell’ and ‘outer cell’.
The information of the previous state is encoded in the colour of
the inner cell, the information of the current state is encoded in
the colour of the outer cell. Before we do this, each dynamic FU
is assigned a unique colour to distinguish different dynamic FUs.

This method preserves the FU map’s structure, and it is intuitive to
infer changes from the colours of the inner and outer cells. For the
first time step, the colour of the inner cell is the same as that of the
outer cell. For an FU at a given time step t > 1, if the colour of
the majority of inner cells is the same as their outer cells’ colour, it
means that this FU is relatively stable during these two consecutive
time steps.

4.2.2. Vertex colouring

An appropriate colour encoding can provide useful information
about dynamic networks. In Section 4.1.1, we use the line colour
to indicate the regions where the corresponding electrodes come
from (pure 3). We now use colour encoding to distinguish distinct
dynamic FUs for easy comparison of electrode states at different
time steps. Since the partitioning of brain regions is fixed among
individuals, the assignment of colours in Section 4.1.1 is also con-
sistent for different data sets. Here, we use an automatic method
to assign colours to dynamic FUs. This implies that the colours of
dynamic FUs may be different for different data sets and possibly
similar to the colours of brain regions. Our method determines the
colour of dynamic FUs according to the following criterion: dy-
namic FUs that overlap with respect to electrodes or time periods
should be easily recognized by their colours. To achieve this, we use
the colour assignment proposed by Dillencourt et al. [DEG06]. This
approach assigns distinct colours to vertices of a geometric graph by
embedding the graph into a colour space so that the colours assigned
to adjacent vertices are as different from one another as possible. To
extend this method to our vertex colouring problem, we construct
a graph in which dynamic FUs represent nodes and pairs of nodes
are adjacent if the corresponding dynamic FUs have overlapping
electrodes or time windows. Then, the vertices of this graph are
mapped to the colour space of interest in which each vertex has a
unique coordinate representing a colour. It is also important to note
that our goal is for adjacent vertices to be coloured differently. It
does not matter how non-adjacent vertices, which are dynamic FUs
that have no overlapping electrodes or time windows, are coloured.
We applied the method to the dynamic FUs detected in Figure 3,
and the result is shown in Figure 7. If there are many time steps, and
thus many dynamic FUs, the number of vertices of the constructed
graph is large, as well, and the generated colours would be not easy
to distinguish. For this case, the colour assignment can be done with
a time sliding window, where colours of dynamic FUs are computed
for each data window, separately.

Note that this time-annotated FU map is not limited to the com-
parison of consecutive FU maps, but can also be used to compare FU
maps obtained under different conditions, for example to compare
the states between healthy individuals and patients.

4.3. Interaction

To support the interactive exploration of the states of coherence
networks and their evolution over time, our visualization approach
also incorporates brushing-and-linking techniques that help users
to focus on a particular coherence network or dynamic FU of the
dynamic coherence network. A prototype application was developed
for this purpose [Ji17].
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Figure 7: Result of assignment of colours to dynamic FUs. Each
circle represents a dynamic FU and an edge connecting circles
indicates that the corresponding dynamic FUs have overlapping
electrodes or time windows. We applied this colour assignment to
the time-annotated FU map in Figure 6.
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Figure 8: Main interface. (a) Buttons for the two timeline repre-
sentations. (b) Electrode placement layout for reference purposes;
(c) Colour legend for regions; (d) Dynamic FU index window; (e)
Main window for displaying the timeline representation; (f) Time
ticks.

A screenshot of the user interface is shown in Figure 8. Figure 8(a)
shows two buttons: one button (AugRep) is used to display the
augmented timeline representation, and the other one (NorRep) is
used to display the timeline representation without partial FUs.
Users can find a time step of interest in the timeline representation
and click on the time step (the blue area in Figure 8f) where they
want to get more details, so that the corresponding FU map at that
time step is displayed in Figure 8(b). Clicking on a particular FU
in the timeline view, FUs belonging to the same dynamic FU will
be highlighted in the timeline view, and the corresponding dynamic
FU index also will be highlighted in Figure 8(d). Linked views
are used for synchronous updating of the timeline representation
and the FU map. This can help users to track the evolution of
dynamic FUs. Following Vehlow et al. [VBAW15], the highlighting
is accomplished by using 100% opacity for the selected item and
a smaller opacity for the remaining items. If the mouse is moved
over the blue area (time tick) in Figure 8(f), the associated time

step is selected. Clicking on the white space between blue areas in
Figure 8(f), the time-annotated FU map is displayed so that the user
can compare the corresponding two consecutive FU maps. Within
the timeline view itself, we also allow for zooming and panning
techniques to investigate the evolution of larger coherence networks.

5. User Study

To evaluate the usefulness of our visualization design, we con-
ducted an informal user study in which the participants explored the
use of the dynamic coherence network visualization methods. Dur-
ing exploration, we collected online and offline feedback from the
participants on the current and potential utility of our framework.
Specifically, our goal was to assess how our visualization methods
can help neuroscientists to analyse domain problems related to the
identified tasks described in Section 3.

Five PhD students (three female and two male) participated in
the study. The mean age of these participants was 30 years. Four
participants regularly analysed EEG data; one used brain connectiv-
ity analysis while the others analysed event-related potential (ERP)
data. They all have at least 2 years of experience with brain con-
nectivity analysis. One participant was a computer scientist familiar
with general visualization techniques and some familiarity with
EEG data visualization. The first author met the participants at their
research institutes, and carried out an evaluation interview. Note
that the participants in the evaluation stage were not the same as
the participants in the requirements collecting stage. The role of
the participants in the requirement elicitation stage is to describe
problems they are facing, whereas the role of participants in the
evaluation stage is to evaluate the application design we proposed.
We believe that the use of two different groups helps to remove a
potential bias in the evaluation.

5.1. Evaluation procedure

During the interview, the purpose of the visualization method as
well as the use of the implementation were explained first. Then,
the participants were asked to explore data derived from an EEG
experiment with four tasks and discuss their observations freely.
These data were recorded from an oddball detection experiment,
in which a P300 ERP is generated [MSvdHdJ06]. The P300 wave
is a parieto-central positivity that occurs when a subject detects an
informative task-relevant stimulus. The ‘P300’ name derives from
the fact that its peak latency is about 300 ms, when a subject makes
a simple sensory discrimination after the stimulus[Pic92]. In this
experiment, participants (N.B.: not the same participants as those
in our user study) were instructed to count target tones of 2 kHz
(probability 0.15) and to ignore standard tones of 1 kHz (proba-
bility 0.85). After the experiment, each participant had to report
the number of perceived target tones. For details of the experiment,
see [MSvdHdJ06]. In our data, brain responses to 20 target tones
were analysed in L = 20 segments of 1 second, sampled at 1 KHz.
We first averaged over segments and then divided the averaged
segment into five equal time intervals. For each time interval, we
calculated the coherence network within the [8, 12] (alpha) Hz fre-
quency band and detected FUs following the procedure described
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by ten Caat et al. [tCMR08]. We focused on this band as its related
FU maps were interesting [tCMR08].

The tasks the participants of our user study had to execute were
based on the requirement analysis as reported in Section 3:

(1) to explore the state of the coherence network at a certain
time step;

(2) to explore the relation between functional connectivity and
brain regions;

(3) to explore the evolution of coherence networks over time;
(4) to compare consecutive FU maps of interest using the time-

annotated FU map.

At the end of the session, each participant completed a question-
naire. Each session took approximately 60 min and was audiotaped.
The interface of our visualization prototype is illustrated in Figure 8.
All participants used the online version of our tool.

5.2. Results

We collected both the observations of participants during explo-
ration and their feedback in the form of a questionnaire that was
completed after they finished the exploration.

5.2.1. Results during exploration

In general, the participants agreed that they can get a general picture
of the dynamic networks from the timeline representation and then
can subsequently use it for further exploration (Task 1). One partic-
ipant said that connectivity in a certain brain area can be deduced
from the thickness of the blocks of lines: the thicker the block, the
more electrodes are connected in its corresponding FU (Task 2). In
addition, the partial FU map was found to be very useful to locate
the FUs on the scalp and to identify the constantly connected part
across time (Task 3). Regarding the change in brain connectivity
over time, one participant said that she can find the change in FUs
over time from the transition of lines in the timeline representation
and she can also analyse brain connectivity at a specific time step
(Tasks 2 and 4). For example, at time step 5 there are many lines
in the small FU (the top block of lines for time step 5) in which
corresponding electrodes are less connected with other electrodes
(see Figure 9a), which may be caused by the response fading out
(Task 2).

Next, we describe a number of more specific observations made
by the participants. For tracking the evolution of dynamic FUs, one
participant found that the dynamic FUs of D3 and D15 are more sta-
ble across time, and furthermore that the majority of the electrodes
in D15 comes from the P region; see Figure 10(a) (Tasks 1 and 4).
Participants were mostly interested in the change of connections
within regions (Tasks 3 and 4). The colour of lines, which is related
to the division of the brain into seven regions, then is very useful:
it can be used to find the state of connections within regions and
between regions. For example, one participant found that dynamic
FU D10 appears at the second time step and lasts for four time steps,
but there is a big change at the third time step at which two elec-
trodes come from the RT and F regions while at another time step
all electrodes from the C region join (see Figure 10b). This could

(a) (b)

Dynamic FU index:

1 8

Figure 9: (a) Timeline representation at the fifth time step. (b) Time-
annotated FU map for comparing FU maps at the second and third
time steps.

be interpreted as regions RT, F and C communicating information
at that time step. She also found that F and C regions change a lot
in composition, while the Fp and O regions are more stable across
time when she selected the region index in Figure 8(c). She said that
this may be related to the P300 experiment resulting in the F and C
regions being more activated.

Participants were also interested in transient dynamic FUs (they
called these ‘striking’), which only exist for a few time steps or exist
at one particular time step only. Two participants who regularly
used ERP analysis were particularly interested in the second and
third time steps (Tasks 1 and 3). One participant first found dynamic
FUs D11 and D15 to be very interesting since each of them includes
a lot of electrodes which can be seen from the thickness of the
blocks of lines and the partial FU maps. In particular, she found
it interesting that dynamic FUs D10 and D11 appear at the second
time step corresponding to the time interval of (201 and 400 ms),
which may be related to the presence of a P300 component in the
ERP. One participant also found that the LT and RT regions have
similar patterns across time: most of their electrodes are involved
in small FUs (see Figures 10c and d), which means they are less
synchronized. The transient dynamic FUs, which only exist for one
time step, include the dynamic FUs D2, D5, D6, D9, D17 and D18

(see the online demonstration [Ji17]).

One participant said that she could derive more detail about
changes from the time-annotated FU map when she first identi-
fied some interesting part in the timeline representation. She also
pointed out that the colour encoding in the time-annotated FU map
could assist her to find changes per electrode (Task 5). One partici-
pant found that many electrodes in the F region change their states
when she used the time-annotated FU map to compare the second
and third FU map (Task 5). See Figure 9(b), where the colour of
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(d)
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Figure 10: Examples of results during exploration. (a) Dynamic FU D15 exists for five time steps. (b) Dynamic FU D10 appears at the second
time step, and the electrodes in this dynamic FU mostly come from the C region except at the third time step at which two electrodes come
from the F and P regions. (c) and (d) The evolution of connections of electrodes in the LT and RT regions, respectively. The line colours are
determined by the regions to which the corresponding electrodes belong (see Figure 2).
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each inner cell represents the dynamic FU to which the electrode
belongs at the second time step, while the outer cell colour repre-
sents the dynamic FU at the third time step. Colours of dynamic
FUs are depicted by the circles to the right. The black cells indicate
that they belong to FUs smaller than four cells.

In summary, participants are mostly interested in stable or tran-
sient dynamic FUs, and dynamic FUs appearing at a specific time
step. These observations can serve as the starting point for further
analysis.

5.2.2. Observations from questionnaires

After free exploration, a questionnaire was used to collect additional
feedback from the participants using the following five questions:

(1) How does the visualization reflect the coherence network at
a certain moment in time? (Easy to understand/Insightful/I
would be able to use it)

(2) What do you think about the connections in the timeline
representation? (Clear/Relevant)

(3) What do you think about the relation between the grouped
lines and their underlying spatial brain structure in the time-
line representation? (Easy to understand/Insightful/I would
be able to use it)

(4) What do you think about the visualization of changes
over time in the timeline representation? (Easy to under-
stand/Insightful/I would be able to use it)

(5) What do you think about the time-annotated FU map to
facilitate the comparison of FU maps? (Easy to under-
stand/Insightful/I would be able to use it)

Responses were collected on a Likert scale (fully disagree; dis-
agree; neutral; agree; fully agree).

For the first question, four of the participants (fully) agreed that
the visualization is easy to understand and insightful, while three
of them agreed they would be able to use it. When considering
the properties of the connections in the timeline representation, all
participants agreed that it is clear and three of them agreed it is
relevant. For the third question, four of them agreed that it is easy
to understand and all agreed it is insightful. Furthermore, all agreed
that it is easy to understand the changes over time in the timeline
representation and that it is insightful. Finally, all of them agreed
that the time-annotated FU map is easy to understand and four of
them agreed that it is insightful. Regarding the usability, the majority
of the participants agreed that they would be able to use it; however,
for each task there was one ‘disagree’ response.

The second part of the questionnaire contained open-ended ques-
tions that invited participants to give both positive and negative com-
ments. Most participant thought the proposed visualization methods
are useful: they can see how the FUs are distributed on the FU map
and how these FUs change over time. One participant thought the
FU map is very useful since it provides the specific localization of
electrodes. When asked which of the timeline-representations (with
or without partial FU maps) is better, one participant said that he
preferred the representation with partial FU maps, because from this
representation he could recognize the location of electrodes easily.
Most participants thought the representations were useful and some

stated that they can be used in several ways: to interpret the data;
for presentation purposes; to compare several participants simulta-
neously and to investigate the dynamics in ERP experiments.

When asked whether anything could be improved or about further
applications, two participants who work on ERP analysis said that
this visualization could be used to analyse the change in ERP signals
and for visualization of specific time steps.

In summary, the feedback we received from the user study was
generally positive, which indicates the application potential of our
method for visualizing dynamic EEG coherence networks. Some
suggestions for further improvement have been made.

6. Conclusions and Future Work

Requirements for supporting typical tasks in the context of dy-
namic functional connectivity network analysis were obtained from
neuroscience researchers. We designed an interactive method for
visualizing the evolution of EEG coherence networks over time that
meets the requirements. With this visualization, a user can inves-
tigate the relationship between functional brain connectivity and
brain regions, and the time evolution of this relationship. In addi-
tion, we provided a time-annotated FU map, which can be used to
facilitate the comparison of consecutive FU maps.

The user study suggests that our visualization method is poten-
tially useful for dynamic coherence network analysis. However, our
visualization method still has some limitations. First, the coherence
between FUs at a certain time step is not reflected in the timeline-
based representation. Therefore, a future improvement is to develop
effective visual encodings to reflect the connections between FUs
at a certain time step.

Another concern for our visualization method is its scalability.
The order of electrodes and FUs at a certain time step is based on
regions to which electrodes belong and barycentres of FUs. The
ordering of electrodes will benefit the recognition of members for
each FU, while the ordering of FUs will benefit the tracking of
the evolution of dynamic FUs. However, for a dynamic coherence
network in which there are many electrodes that switch their state
often, the number of line crossings in the timeline-based view in-
creases, especially when the number of electrodes increases. This
makes the representation less readable. One potential solution is to
provide some interaction techniques that allow users to interactively
reorder electrodes and FUs. Third, for a large data set, the number of
dynamic FUs also increases, potentially making the colours hard to
distinguish between dynamic FUs (as was remarked by one partici-
pant in our user study). Finally, although the dynamic FU detection
is carried out as a pre-processing step, it may still become time
consuming as the number of time steps increases.

As future work, we therefore intend to further explore the dynamic
coherence networks regarding the following five potential aspects:

(1) incorporate the coherence between FUs in the timeline rep-
resentation;

(2) reduce the number of line crossings;
(3) improve the colour assignment for larger data sets;
(4) provide access to the original EEG signals;

c© 2018 The Authors
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(5) find an approximation to the algorithm of detecting dynamic
FUs with lower complexity.
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