1,043 research outputs found

    Implementation and Evaluation of a Cooperative Vehicle-to-Pedestrian Safety Application

    Full text link
    While the development of Vehicle-to-Vehicle (V2V) safety applications based on Dedicated Short-Range Communications (DSRC) has been extensively undergoing standardization for more than a decade, such applications are extremely missing for Vulnerable Road Users (VRUs). Nonexistence of collaborative systems between VRUs and vehicles was the main reason for this lack of attention. Recent developments in Wi-Fi Direct and DSRC-enabled smartphones are changing this perspective. Leveraging the existing V2V platforms, we propose a new framework using a DSRC-enabled smartphone to extend safety benefits to VRUs. The interoperability of applications between vehicles and portable DSRC enabled devices is achieved through the SAE J2735 Personal Safety Message (PSM). However, considering the fact that VRU movement dynamics, response times, and crash scenarios are fundamentally different from vehicles, a specific framework should be designed for VRU safety applications to study their performance. In this article, we first propose an end-to-end Vehicle-to-Pedestrian (V2P) framework to provide situational awareness and hazard detection based on the most common and injury-prone crash scenarios. The details of our VRU safety module, including target classification and collision detection algorithms, are explained next. Furthermore, we propose and evaluate a mitigating solution for congestion and power consumption issues in such systems. Finally, the whole system is implemented and analyzed for realistic crash scenarios

    Cooperative Passive Coherent Location: A Promising 5G Service to Support Road Safety

    Full text link
    5G promises many new vertical service areas beyond simple communication and data transfer. We propose CPCL (cooperative passive coherent location), a distributed MIMO radar service, which can be offered by mobile radio network operators as a service for public user groups. CPCL comes as an inherent part of the radio network and takes advantage of the most important key features proposed for 5G. It extends the well-known idea of passive radar (also known as passive coherent location, PCL) by introducing cooperative principles. These range from cooperative, synchronous radio signaling, and MAC up to radar data fusion on sensor and scenario levels. By using software-defined radio and network paradigms, as well as real-time mobile edge computing facilities intended for 5G, CPCL promises to become a ubiquitous radar service which may be adaptive, reconfigurable, and perhaps cognitive. As CPCL makes double use of radio resources (both in terms of frequency bands and hardware), it can be considered a green technology. Although we introduce the CPCL idea from the viewpoint of vehicle-to-vehicle/infrastructure (V2X) communication, it can definitely also be applied to many other applications in industry, transport, logistics, and for safety and security applications

    Cooperative Perception for Social Driving in Connected Vehicle Traffic

    Get PDF
    The development of autonomous vehicle technology has moved to the center of automotive research in recent decades. In the foreseeable future, road vehicles at all levels of automation and connectivity will be required to operate safely in a hybrid traffic where human operated vehicles (HOVs) and fully and semi-autonomous vehicles (AVs) coexist. Having an accurate and reliable perception of the road is an important requirement for achieving this objective. This dissertation addresses some of the associated challenges via developing a human-like social driver model and devising a decentralized cooperative perception framework. A human-like driver model can aid the development of AVs by building an understanding of interactions among human drivers and AVs in a hybrid traffic, therefore facilitating an efficient and safe integration. The presented social driver model categorizes and defines the driver\u27s psychological decision factors in mathematical representations (target force, object force, and lane force). A model predictive control (MPC) is then employed for the motion planning by evaluating the prevailing social forces and considering the kinematics of the controlled vehicle as well as other operating constraints to ensure a safe maneuver in a way that mimics the predictive nature of the human driver\u27s decision making process. A hierarchical model predictive control structure is also proposed, where an additional upper level controller aggregates the social forces over a longer prediction horizon upon the availability of an extended perception of the upcoming traffic via vehicular networking. Based on the prediction of the upper level controller, a sequence of reference lanes is passed to a lower level controller to track while avoiding local obstacles. This hierarchical scheme helps reduce unnecessary lane changes resulting in smoother maneuvers. The dynamic vehicular communication environment requires a robust framework that must consistently evaluate and exploit the set of communicated information for the purpose of improving the perception of a participating vehicle beyond the limitations. This dissertation presents a decentralized cooperative perception framework that considers uncertainties in traffic measurements and allows scalability (for various settings of traffic density, participation rate, etc.). The framework utilizes a Bhattacharyya distance filter (BDF) for data association and a fast covariance intersection fusion scheme (FCI) for the data fusion processes. The conservatism of the covariance intersection fusion scheme is investigated in comparison to the traditional Kalman filter (KF), and two different fusion architectures: sensor-to-sensor and sensor-to-system track fusion are evaluated. The performance of the overall proposed framework is demonstrated via Monte Carlo simulations with a set of empirical communications models and traffic microsimulations where each connected vehicle asynchronously broadcasts its local perception consisting of estimates of the motion states of self and neighboring vehicles along with the corresponding uncertainty measures of the estimates. The evaluated framework includes a vehicle-to-vehicle (V2V) communication model that considers intermittent communications as well as a model that takes into account dynamic changes in an individual vehicle’s sensors’ FoV in accordance with the prevailing traffic conditions. The results show the presence of optimality in participation rate, where increasing participation rate beyond a certain level adversely affects the delay in packet delivery and the computational complexity in data association and fusion processes increase without a significant improvement in the achieved accuracy via the cooperative perception. In a highly dense traffic environment, the vehicular network can often be congested leading to limited bandwidth availability at high participation rates of the connected vehicles in the cooperative perception scheme. To alleviate the bandwidth utilization issues, an information-value discriminating networking scheme is proposed, where each sender broadcasts selectively chosen perception data based on the novelty-value of information. The potential benefits of these approaches include, but are not limited to, the reduction of bandwidth bottle-necking and the minimization of the computational cost of data association and fusion post processing of the shared perception data at receiving nodes. It is argued that the proposed information-value discriminating communication scheme can alleviate these adverse effects without sacrificing the fidelity of the perception

    An Agent-based Modelling Framework for Driving Policy Learning in Connected and Autonomous Vehicles

    Get PDF
    Due to the complexity of the natural world, a programmer cannot foresee all possible situations, a connected and autonomous vehicle (CAV) will face during its operation, and hence, CAVs will need to learn to make decisions autonomously. Due to the sensing of its surroundings and information exchanged with other vehicles and road infrastructure, a CAV will have access to large amounts of useful data. While different control algorithms have been proposed for CAVs, the benefits brought about by connectedness of autonomous vehicles to other vehicles and to the infrastructure, and its implications on policy learning has not been investigated in literature. This paper investigates a data driven driving policy learning framework through an agent-based modelling approaches. The contributions of the paper are two-fold. A dynamic programming framework is proposed for in-vehicle policy learning with and without connectivity to neighboring vehicles. The simulation results indicate that while a CAV can learn to make autonomous decisions, vehicle-to-vehicle (V2V) communication of information improves this capability. Furthermore, to overcome the limitations of sensing in a CAV, the paper proposes a novel concept for infrastructure-led policy learning and communication with autonomous vehicles. In infrastructure-led policy learning, road-side infrastructure senses and captures successful vehicle maneuvers and learns an optimal policy from those temporal sequences, and when a vehicle approaches the road-side unit, the policy is communicated to the CAV. Deep-imitation learning methodology is proposed to develop such an infrastructure-led policy learning framework

    Development and verification of cooperative adaptive cruise control via LTE-V

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordIn this paper, we present a testbed platform for realizing cooperative adaptive cruise control (CACC) enabled by LTE-V (LTE-vehicle). The platform is developed on a platoon of vehicles, each of which is equipped with a suite of on-board sensing and computing devices for environment perception and automated vehicle control, as well as an LTE-V transceiver for high-performance vehicle-to-vehicle (V2V) communication. The hardware architecture and software architecture, especially the perception and control methods, of the platform are described. Field experiments in different road conditions are conducted to verify the feasibility of our platform. The results also show the potential of V2V communications via LTE-V in terms of improving the sensing capability of individual vehicle’s on-board sensors.National Natural Science Foundation of ChinaFundamental Research Funds for the Central UniversitiesShanghai Yangfan ProgramEuropean Union Horizon 202

    Fifth-Generation Technologies for the Connected Car:Capable Systems for Vehicle-to-Anything Communications

    Get PDF
    Two strong technology trends, one in the mobile communications industry and the other in the automotive industry, are becoming interwoven and will jointly provide new capabilities and functionality for upcoming intelligent transport systems (ITSs) and future driving. The automotive industry is on a path where vehicles are continuously becoming more aware of their environment due to the addition of various types of integrated sensors. At the same time, the amount of automation in vehicles increases, which, with some intermediate steps, will eventually culminate in fully automated driving without human intervention. Along this path, the amount of interactions rises, both in-between vehicles and between vehicles and other road users, and with an increasingly intelligent road infrastructure. As a consequence, the significance and reliance on capable communication systems for vehicleto-anything (V2X) communication is becoming a key asset that will enhance the performance of automated driving and increase further road traffic safety with combination of sensor-based technologies [1]
    • …
    corecore