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Abstract

The development of autonomous vehicle technology has moved to the center of automotive

research in recent decades. In the foreseeable future, road vehicles at all levels of automation and

connectivity will be required to operate safely in a hybrid traffic where human operated vehicles

(HOVs) and fully and semi-autonomous vehicles (AVs) coexist. Having an accurate and reliable

perception of the road is an important requirement for achieving this objective. This dissertation

addresses some of the associated challenges via developing a human-like social driver model and

devising a decentralized cooperative perception framework.

A human-like driver model can aid the development of AVs by building an understanding of

interactions among human drivers and AVs in a hybrid traffic, therefore facilitating an efficient and

safe integration. The presented social driver model categorizes and defines the driver’s psychological

decision factors in mathematical representations (target force, object force, and lane force). A model

predictive control (MPC) is then employed for the motion planning by evaluating the prevailing

social forces and considering the kinematics of the controlled vehicle as well as other operating

constraints to ensure a safe maneuver in a way that mimics the predictive nature of the human

driver’s decision making process. A hierarchical model predictive control structure is also proposed,

where an additional upper level controller aggregates the social forces over a longer prediction horizon

upon the availability of an extended perception of the upcoming traffic via vehicular networking.

Based on the prediction of the upper level controller, a sequence of reference lanes is passed to a

lower level controller to track while avoiding local obstacles. This hierarchical scheme helps reduce

unnecessary lane changes resulting in smoother maneuvers.

The dynamic vehicular communication environment requires a robust framework that must

consistently evaluate and exploit the set of communicated information for the purpose of improving

the perception of a participating vehicle beyond the limitations. This dissertation presents a de-
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centralized cooperative perception framework that considers uncertainties in traffic measurements

and allows scalability (for various settings of traffic density, participation rate, etc.). The framework

utilizes a Bhattacharyya distance filter (BDF) for data association and a fast covariance intersection

fusion scheme (FCI) for the data fusion processes. The conservatism of the covariance intersection

fusion scheme is investigated in comparison to the traditional Kalman filter (KF), and two different

fusion architectures: sensor-to-sensor and sensor-to-system track fusion are evaluated.

The performance of the overall proposed framework is demonstrated via Monte Carlo sim-

ulations with a set of empirical communications models and traffic microsimulations where each

connected vehicle asynchronously broadcasts its local perception consisting of estimates of the mo-

tion states of self and neighboring vehicles along with the corresponding uncertainty measures of the

estimates. The evaluated framework includes a vehicle-to-vehicle (V2V) communication model that

considers intermittent communications as well as a model that takes into account dynamic changes in

an individual vehicle’s sensors’ FoV in accordance with the prevailing traffic conditions. The results

show the presence of optimality in participation rate, where increasing participation rate beyond a

certain level adversely affects the delay in packet delivery and the computational complexity in data

association and fusion processes increase without a significant improvement in the achieved accuracy

via the cooperative perception.

In a highly dense traffic environment, the vehicular network can often be congested leading to

limited bandwidth availability at high participation rates of the connected vehicles in the cooperative

perception scheme. To alleviate the bandwidth utilization issues, an information-value discriminating

networking scheme is proposed, where each sender broadcasts selectively chosen perception data

based on the novelty-value of information. The potential benefits of these approaches include,

but are not limited to, the reduction of bandwidth bottle-necking and the minimization of the

computational cost of data association and fusion post processing of the shared perception data at

receiving nodes. It is argued that the proposed information-value discriminating communication

scheme can alleviate these adverse effects without sacrificing the fidelity of the perception.
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Chapter 1

Introduction

The automotive industry has always been ever-changing with innovative technologies that

improve the comfort, the safety, and/or the performance of automobiles. In the last decade, the field

of automotive research has been revolutionized again with the introduction of vehicle autonomy and

connectivity fueled by the development of advanced sensors and vehicular communication networks.

Modern vehicles are being equipped with various types of on-board sensors including radar, LiDAR,

camera, GPS, etc. as well as communication devices that allow vehicular connectivity via Dedicated

Short Range Communication (DSRC) standard, cellular communication (3G, 4G LTE, or 5G C-

V2X), or Wi-Fi, to aid the driver’s perception of the road and traffic environment. Previewed

horizon data (i.e. eHorizon data) such as predicted traffic motions, traffic signal timings, etc., are

also available to provide additional information beyond one vehicle’s restricted sensor Field-of-View

(FoV) perception in real-time. All of this information can now be used to improve situational

awareness and to compute energy-optimal motion/manuever plans for autonomous vehicles. Such

technologies give significant advantages over traditional safety and control systems as it enables the

ego-vehicle to know or accurately predict the motion of surrounding vehicles with improved traffic

perception. As more vehicles adapt these technologies, the benefits will be amplified for vehicular

traffics. With the on-going endeavor to create even safer yet more efficient transportation systems,

these technologies are expected to be the crucial drivers for realizing the concept of connected traffic.

In the near future, road vehicles at all levels of automation and connectivity are expected

to coexist. To allow these vehicles to operate safely in such an environment, understanding the

inter-vehicular interactions and having a reliable situational awareness will be essential. First, un-
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derstanding the interaction between human operated vehicles (HOVs) and autonomous vehicles

(AVs) will be vitally important. Social driving models that capture the characteristics of HOVs can

explain human-driving controls and its interactions with others. Second, vehicular network can be

utilized to not only enhance the accuracy of the Field-of-View (FoV) perception but also to extend

the perception boundary further. This enhancement and extension have a great potential in vehic-

ular safety and motion planning applications. In the following section, these issues are discussed

further along with reviews of existing literature.

1.1 Research Motivation

1.1.1 A Social Driver Model

The development of advanced driver models has been at the center of automotive research

for several decades. From maneuver planning, lane change, to collision avoidance, numerous variants

of driver models have been developed for traffic simulation studies as well as for refining advanced

driver assistance systems (ADAS) [6, 30, 78]. One critical issue that many studies emphasize is the

importance of developing human-like driver models. In an hybrid traffic environment where human

operated vehicles (HOVs) and fully autonomous vehicles (AVs) coexist, the interaction between

the two groups is inevitable and understanding the human-like psychological decision-making and

planning processes becomes a crucial factor. While each system may utilize its own prediction

or estimation model for tracking nearby object vehicles, rule-based or conventional vehicle control

strategies are fundamentally different from the way human drivers behave. A human-like social driver

model can not only benefit in the development of AVs but also help understanding of behaviors of

human drivers and their interactions with AVs in traffics [19, 42, 144], thereby facilitating an efficient

integration of hybrid traffic.

An early version of the social force model (SFM) was first proposed in 1998 by Helbing in

[47] to model pedestrian movements. Social forces represent a measure for the internal motivations

of the individuals to perform certain actions that determine their navigation behavior. While it

is not a physical measure of any direct force, a social force can be interpreted as a psychological

pressure that is indirectly exerted from the environment. The social force is divided into three

different types for pedestrian applications: destination force, repulsive force, and attractive force.

The destination force describes the willingness to reach the destination, which is the main drive
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Figure 1.1: Vehicular Social Forces

force to move the subject forward. The repulsive force describes the subject’s intention to avoid

obstacles while the attractive force represents the opposite behavior. Similar social forces can be

conceived to be at play when humans operate/drive vehicles in traffic. In particular, one can identify

target force/attractor associated with reaching a destination, object forces/repulsors for collision-

avoidance, and lane forces for road lane keeping. In the following chapter, we detail how these

constituent forces may be modeled and used for vehicle control/driver modeling.

A number of researchers have already shown promising results of implementing the SFM for

analyzing vehicular traffic. The collision risk of bicycle-car is analyzed in a shared space by using

SFM to model the interactions among the subjects in the traffic in [71]. A mixed flow of electric

bike-car is studied with a microscopic model that adopts SFM and simulates the flow in [98]. Using

the same model, a lane-changing behavior of a vehicle in a car-only traffic is demonstrated in [45]

but without considering vehicle dynamics. All of the studies mentioned above did not adopt any

control strategy to optimize the input of the ego vehicle nor significantly modify the pedestrian SFM

with a view to enhance its performance when used with vehicular traffic. A vehicle dynamics model

is considered along with a PID controller that transforms the social forces into control inputs in

[136]. Therein, the steering angle was computed by a simple PID controller and the longitudinal

acceleration of the vehicle was managed by a rule-based control. Most of the studies mentioned above

use SFM to model the equation of motion for multiple agents (pedestrians or vehicles) without any

optimization of the total social force. In this dissertation, a vehicular SFM is proposed considering

vehicle dynamics and both longitudinal and lateral actuation, and a nonlinear model predictive

control (NMPC) framework is used as the predictive constrained optimization for an autonomous
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vehicle control and prediction. The proposed scheme is presented in Chapter 2.

1.1.2 Cooperative Perception

Another primary requirement for operating in the hybrid traffic mentioned above is the

ability to construct a reliable situational awareness for each automated vehicle. An accurate per-

ception of other vehicles in traffic is a crucial element of emerging intelligent vehicle applications,

such as advanced driver assistance system (ADAS), automated driving, platooning, etc. The per-

ception constructed by one ego-vehicle is often limited to information that can be gathered by its

own on-board sensors including GPS (Global Positioning System), radars, LIDARs, and cameras.

The fidelity of the perception that can be achieved by these sensors is restricted by their technical

limitations and is highly environment-dependent (e.g. lighting, obstacles, etc). Available GNSS

(Global-navigation-satellite-system)-based GPS receivers suffer from positioning errors up to tens of

meters [74, 16], and as such cannot be relied upon for accurate localization by themselves. Often a

fusion of several on-board sensors is used to create a Field of View (FoV) for the ego vehicle, but the

fused perception still inherits the limitations of the on-board sensors. Cooperative perception, where

vehicles share their locally obtained information via a communication network, can help circumvent

these limitations.

Figure 1.2: Vehicular Communication Network

The simplest form of a cooperative perception strategy involves Basic Safety Messages

(BSM) which is standardized by the Society of Automotive Engineering (SAE). Each BSM only
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includes the sender’s ego-vehicle information such as location, velocity, driving direction, etc, and

this type of messages is also referred as Cooperative Awareness Messages (CAM). The simple ar-

chitecture and its relatively low payloads, 49 Bytes in average [75], make it attractive especially for

emergency and safety applications [130]. However, due to the limited information given in each mes-

sage, a high participation rate is often essential to fully capture the traffic environment especially

in a highly dense vehicular traffic. European Telecommunications Standards Institute (ETSI) is

continuing to develop and standardize cooperative messages that contain information about the sur-

rounding traffic (object vehicles within sensor FoV) in addition to those of the ego-vehicle [113, 126].

Such messages are widely known as Cooperative/Collective Perception Messages (CPM) or Environ-

mental Perception Messages (EPM). Since each message consists of information on multiple vehicles,

the average packet size is much greater than the BSM.

The exchange of CPM can be readily supported by V2V standards such as DSRC, which can

support data rates of 4.5 to 27 Mbps, as demonstrated by several studies [86, 4]. The experimental

analysis of communication parameters based on IEEE 802.11p in [100] demonstrated the applicabil-

ity of DSRC for V2X-based cooperative perception. Closely related to the concept of cooperative

perception strategies, Simultaneous Localization and Mapping (SLAM) as well as see-through per-

ception technologies have also been introduced to achieve more detailed visual perception of the

environment [137, 86, 62]

In the literature, a common cooperative perception or localization strategy uses an ad

hoc trilateration technique to fuse the received position information from Received Signal Strength

Indicators (RSSIs) of received BSM / CAM (Cooperative Awareness Message) of neighbor vehicles

with on-board GNSS-based position estimates [61, 53, 54, 52]. The absolute and relative position

estimates through Vehicle to Vehicle (V2V) or Vehicle to Infrastructure (V2I) (or generically (V2X))

communication are analyzed in a distributed manner in [70]. By sharing positions, pseudo-range

estimated errors and DR (Dead Reckoning) in the distributed environment, the position estimate is

enhanced by applying set-inversion and constraint-propagation techniques. A number of works have

demonstrated potential benefits of the extended view of a V2X-enabled vehicle using cooperative

perceptions from gathered sensory data in vehicle maneuver planning and control as well as energy

management [141, 114, 117, 63, 64]. A likelihood-based weighted average method is proposed in

[35] to discover non-DSRC equipped vehicles and estimate the position of equipped vehicles through

wirelessly exchanging sensor information. A Kalman Filter (KF) or an Extended Kalman Filter
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(EKF) is the most commonly used method to fuse multiple groups of information ranging from

on-board ranging sensors, DSRC transceivers and GPS receivers for improving the perception of

nearby vehicles [109, 96, 145, 103, 106, 77, 87]. A number of studies adopt Particle Filters (PF)

for more accurate and robust simultaneous localization and mapping (SLAM) [56, 128, 84, 20] with

increased computational complexity as a tradeoff.

1.1.3 Data Processing Architectures for Cooperation

Vehicular data sharing and management is a broad-ranging field of research. At one level,

there are many studies on medium access channel assignment mechanisms [37, 69, 82] as well as

data forwarding and routing mechanisms [138, 150, 146, 147, 4] intended to improve the reliability

and performance of vehicular networks. In this dissertation, we focus on the lower level algorithms

and evaluations of cooperative perception schemes given a V2V broadcast network of participating

vehicles in traffic.

Two commonly proposed architectures for cooperative perception can be identified in the

literature. The first is a sensor-level distributed fusion framework in which each participating vehicle

shares minimally pre-processed on-board sensor data. Such a framework is commonly adopted in

cooperative Simultaneous Localization and Mapping (SLAM) where participating agents contribute

to the construction of a detailed map of the surroundings [137, 62]. This deals with large packets

of data (sensor point clouds, or compressed images/videos) and is, therefore, severely constrained

by the bandwidth limitation of vehicular networks [86]. Furthermore, as the number of participat-

ing connected vehicles increases, the computational demands increase significantly as each fusion

node/vehicle must manipulate large data sets [41, 64]. To address these limitations, the use of

infrastructure-based Roadside Units (RSUs) is proposed to perform the data processing and to relay

processed information to vehicles thereby reducing the computational, if not the communication,

burdens for each vehicle [148, 15]. To reduce the complexity at the fusing node without the use of

such road-side infrastructures, other studies have proposed effective mapping techniques to achieve

a global map with lower computational complexity [64, 22, 84]. Still another major difficulty that

limits the applicability of sensor-level fusion is the lack of general data modularity at the sensor level

[101]. As each raw sensor data will have a specific format and defined characteristics, performing a

consistent data association and fusion process can be difficult without knowing the specifications of

the sensors at the fusing nodes.
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The second is a vehicle-level cooperative perception architecture in which each participating

vehicle communicates only processed track data. A modern ego-vehicle has its own integrated data

processing unit to process local sensor FoV information and to generate tracks of objects in the

traffic around the ego-vehicle. Communicating such track data (composed of state estimates often

with corresponding covariances) [44, 119, 35] significantly reduces the bandwidth requirements while

providing high data modularity to work with heterogenous capabilities of the participating vehicles.

These track data can be efficiently handled via track-to-track fusion schemes [101]. The most

studied and minimalist version of these vehicle-level cooperative perception architectures involve

exchanging of BMS or CPM [81, 86, 4]. A communication network solution for sharing CAM or

CPM is demonstrated based on IEEE 802.11p in [100].

It is this second architecture that is adopted in this dissertation. Here, some of other re-

lated works that exploited this second architecture are highlighted. A high-level data processing

architecture of CAM and CPM in V2X-based cooperative perception systems was demonstrated in

[101, 102] focusing on the spatial and temporal alignments of the communicated data [101] and the

data association process using Auction-ICP (Implicit Cooperative Positioning) algorithm [102]. In

[119, 18], another set of ICP data association methods were proposed where connected vehicles share

additional CPMs of passive features in the driving environment in order to enhance the association

process of the shared localization data. The results demonstrated that the proposed method outper-

formed the conventional Global Navigation Satellite Systems (GNSS). A robust cubature Kalman

filter (CKF) was proposed in [73] to enhance the utilization of GNSS data with a DSRC network

under uncertain sensor observation environments. The performance of various data fusion methods

for CPMs were compared for a real time cooperative localization in [17]. A decentralized Bayesian-

based approach was proposed in [104] to improve GPS vehicle position estimates using vehicular ad

hoc network (VANET)-based inter-vehicle distance measurements. A Sequential Monte-Carlo Prob-

ability Hypothesis Density (SMC-PHD) filter for GPS data association and fusion is proposed in [41]

and showed a three fold increase in localization accuracy. The central limit theorem for classification

of estimates is presented in [35] and claimed an 85% improvement compared to GPS-only estimates

at a signalized intersection. The details of the adopted architecture and its associated methods are

discussed further Chapter 3 and 4.
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1.1.4 Vehicular Data Association and Fusion

Since the cooperative perception schemes we focuse on operate based on broadcast data with-

out commonly interpretable object tags, participating vehicles have to deal with data association to

sort/cluster received data before proceeding to fusion computations [102]. A Mahalanobis Distance

(MD)-based Chi-square test is a widely adopted statistical method to evaluate the compatibility of

data and associate the estimates from different sources [55, 109, 129, 90, 96]. The fundamental as-

sumption for computing MD is that the distributions of two estimates are assumed identical. Since

FoV perception estimates are obtained by vehicles of varying capabilities, and are likely to have

distinct distributions, MD is unsuitable for vehicle-level data association. Bhattacharyya Distance

(BD) gives a statistical measure of similarity between two distinct distributions, often over large

distances in pattern space [3]. In this dissertation, we adopt the BD-based gating test to associate

received track data.

There are also several choices of methods for the fusion computations. A Bayesian-based

approach is perhaps the most popular formulation for a sensor-level data fusion [55, 103, 38, 124]

as well as for a higher-level fusion dealing with heterogenous information ranging from on-board

ranging sensors, DSRC transceivers and GPS receivers [109, 106, 77, 7]. Typically, these are reduced

to multi-level Kalman Filters (KFs, regular, extended or unscented). A number of studies adopted

Particle Filters (PF) for robust localization and mapping [56, 84, 20] with increased computational

complexity as a tradeoff. A significant challenge in the fusion computations is in what to do with

data correlation, i.e, double counting of information which leads to overconfidence in the fused

estimates. This, for example, is a significant drawback of most Bayesian-based (and so, KF-based)

approaches, which often ignore or assume no correlation in the received data in order to facilitate

factorizing of the relevant distributions. In contrast, Covariance Intersection (CI) has been known for

its ability to yield consistent fused estimates given an unknown degree of inter-estimate correlation

[58, 25, 72]. In [17], CI-fused estimates showed higher accuracy compared to extended KF-based

ones and the variance in estimated moving direction of vehicles is significantly reduced. In [113],

various CI methods are evaluated for active road safety applications (e.g. BSM, CAM networks),

and the suitability of the Improved Fast Covariance Intersection (I-FCI or FCI) is demonstrated.

In [46], Split Covariance Intersection Filter (SCIF) is proposed for localization of a single chain of

road vehicles and achieved more accurate cooperative multi-vehicle localization than an extended
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KF. The superior performance of Fast CI in comparisons to KF in road vehicle data fusion is also

noted in Chapter 3 along with the adopted fusion approach.

1.1.5 Effects of Participation Variations in the Connected Traffic

An important line of inquiry in studies on cooperative perception has been the question of

the effect of the rates of participation of the connected vehicles(equipped vehicles) in the cooperative

perception scheme. The participation rate is often interpreted as the level of penetration of tech-

nologically equipped vehicles in the prevailing traffic. Most evaluations of the perception schemes

with regard to participation/penetration rates seem to have been done in closed-loop. That is, the

participating vehicles (their human/automated drivers) were made to respond to and/or act on the

collaboratively computed perception. In [83, 43], it was shown that a higher number of connected

vehicles reduced the impact of aggressive behaviors in traffic as cooperation increased the stability

domains and homogenized the traffic. In [119], an improvement in the Root Mean Square Error

(RMSE) of the position estimates was noted with increasing number of connected vehicles when

an implicit cooperative positioning (ICP) algorithm was used. In [91], an extended multi-class gas-

kinetic theory was used to model the dynamics of cooperative traffic where connected vehicles share a

warning message about downstream congestion. A critical participation rate that avoids traffic flow

instabilities and eliminated shock waves was found to be around 50% under their assumed model. In

[35], the recognition ratio, defined as the average ratio of the vehicles whose positions are estimated

uniquely within a set Euclidean threshold distance to all vehicles within the evaluation region, was

shown to gradually increase with increasing participation rate. It was also noted that the recognition

ratio plateaus near 80% participation rate with slightly above 80% recognition ratio. [44] defined

an awareness ratio as the ratio of the number of unique vehicles known to the ego-vehicle to those

within the communication range. They used this metric to evaluate the collective perception with

varying communication message types and participation rates. They showed a superior performance

for the cooperative perception over radar-only perception, with full participation (100%) achieving a

perfect awareness ratio. On the other end of the spectrum, in [9], the importance of performance at

low participation rates was highlighted for the near future scenario when only a small fraction of the

vehicles in traffic will be utilizing the vehicular connectivity for cooperative perception. In Chapter

2 and refchapter3, we introduce a modification of the Optimal Sub-pattern Assignment (OSPA)

metric [112] and illustrate its use to evaluate the achieved ”accuracy” of cooperative perception in
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dynamic traffic (Section 4.3.7). This modified metric allows us to naturally take into account effects,

not only of the estimation uncertainty, but also of the dynamic and random changes in sensor FoV

(obstructions) and communication losses (path losses, drops and fades) towards the computed state

estimates and cardinality errors.

1.1.6 Limitations of Vehicular Networks

In spite of the potential advantages of V2V cooperative perception, a number of critical

requirements and limitations still exist. A cooperative perception strategy generally requires a high

level of participation rate to ensure robust performance [91, 35]. In [35, 83, 44, 43], the performance

of cooperative perception (as measured by some metrics involving average position estimation or

object recognition errors) is shown to monotonically improve with increase in participation rates.

One significant drawback of high participating rates is that the grow in data traffic loads can be

exponential. The generation and the dissemination of messages is a critical parts of a CPM man-

agement. Many of existing standardized strategies follow a set of rule-based methods to generate

CPMs where the system parameters are determined experimentally. Such frameworks seem easy to

implement for a wide range of applications as they do not require sophisticated tuning algorithms.

The ETSI standards, for example, state three main CPM generation conditions that consider the

changes in absolute position (> 4m), speed (> 0.5m/s), and communication interval (> 1sec) [32],

and all detected object vehicles that satisfy at least one of the conditions are to be included in

the CPM to be broadcasted. In a dynamic environment (e.g. high density highway traffic), such a

method can be inefficient as it would frequently generate a new set of CPM on a limited number

of vehicles. This is undesirable as each CPM requires a header which accounts for a significant

portion of the packet size regardless of the number of object vehicle information included. In [126],

the conditions are modified by predicting the states of object vehicles and their qualification of the

CPM generation conditions for the next planned communication and transmitting them in the cur-

rent CPM. The proposed method resulted in a better utilization of the communication channel by

reducing the CPM generation rate. While such a strategy may have potential benefits managing the

communication of CPMs in a predictable environment, a simple rule-based periodic broadcasting

strategy can be ineffective due to the dynamic nature of vehicular traffic especially in a congested

and unpredictable road traffic situations [79].

To achieve more robust and effective performance, one can rely on distributed or decen-
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tralized schemes which allow each participant to evaluate and make decisions on the contents of its

CPM considering their potential impact on the cooperative perception. To this end, each participant

should evaluate not only the quality of the information (e.g. position errors), but also some notion

of the value of information. For detailed definitions and discussions of these notions, we refer the

reader to [13, 50, 40]. In the present context, the focus is on the value of information included in

CPM. One attribute of value is the degree to which redundancy is avoided, or equivalently, to which

the novelty of information in emphasized. For example, in [127], the ETSI standards are further

improved where the CPM generation frequency is adjusted based on the presence of corresponding

object vehicle information in the recently received CPM from other connected vehicles to reduce the

redundancy of information in the pool of communicated CPM. In [40], an adaptive generation rule

that conditionally removes Sensor Information Container (SIC) from CPM based on a set threshold

of Access Layer (AL)-specific Maximum Transmission Unit (MTU) is proposed for ETSI standards

to reduce the packet size. The result showed a similar service quality as the standard static rule

while significantly reducing the overall channel load. In [50], a value-anticipating scheme is pro-

posed where each participating vehicle evaluates the value of its perception information from the

perspective of receivers by leveraging anticipated CPM history as well as inferences about the com-

munication network status. In this strategy, each piece of information in a CPM is selected based on

its relative entropy with respect to the recorded CPM histories of remote vehicles and their expected

prior knowledge about the specific information. The feasibility of the strategy is demonstrated where

increased packet reception ratio and reduced object tracking errors are reported. In [79], a dynamic

dissemination method is proposed where the expected position error of each perception measure-

ment is evaluated based on a set threshold to dynamically adjust the communication interval. In an

urban traffic simulation, the proposed method achieved 20% improved perception accuracy. In this

dissertation, we present a V2V cooperative framework that evaluates the novelty of information by

comparing the new perception information to be communicated with historical communication data.

In this framework, each participating vehicle is able to evaluate the value of the message contents

in the current communication network without any anticipation or assumption on other vehicles’

perspective. The details of the proposed framework will be discussed in Chapter 4.
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1.2 Contributions

The main contributions of the dissertation can be summarized as follows:

� A social driver model is developed to provide a human-like driver model. By representing

internal motivations of human drivers and their decision processes, the completed model is

expected to be feasible as an autonomous vehicle control model and also as a motion prediction

model for other human operated vehicles in traffic.

– D. D. Yoon and B. Ayalew, ”Social Force Control for Human-Like Autonomous Driving”,

Proceedings of the ASME 2018 International Design Engineering Technical Conferences

& Computers and Information in Engineering Conference (IDETC 2018), August 2.

� A social driver model controller that leverages vehicular connectivity is developed by adopting

a hierarchical (two-level) predictive architecture to utilize communication information among

vehicles in traffic. The extended perception provided by the vehicular connectivity allows more

efficient plan and control of the vehicle (e.g. optimal lane change).

– D. D. Yoon and B. Ayalew, ”Social Force Aggregation Control for Autonomous Driving

with Connected Preview,” 2019 American Control Conference (ACC), 2019, pp. 1388-

1393, doi: 10.23919/ACC.2019.8814725.

� A decentralized cooperative perception framework that allows scalability, with variable partic-

ipation in the communication scheme (changing traffic density, non-connected vehicles, road

topology, etc.), is developed. By evaluating the performance of the framework via a Monte

Carlo approach, valuable insights will be provided for devising an effective implementation

of the framework with an intent of optimizing resource utilization (communication network

bandwidth and computational complexity).

– D. D. Yoon, G. G. M. N. Ali and B. Ayalew, ”Data Association and Fusion Framework

for Decentralized Multi-Vehicle Cooperative Perception”, Proceedings of the ASME 2019

International Design Engineering Technical Conferences and Computers and Information

in Engineering Conference IDETC/CIE2019, August 18-21, 2019.

– D. D. Yoon, G. G. M. N. Ali and B. Ayalew, ”Cooperative Perception in Connected Vehi-

cle Traffic under Field-of-View and Participation Variations,” 2019 IEEE 2nd Connected

and Automated Vehicles Symposium (CAVS), 2019, pp. 1-6, doi: 10.1109/CAVS.2019.8887832.
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– D. D. Yoon, B. Ayalew and G. G. M. N. Ali, ”Performance of Decentralized Cooperative

Perception in V2V Connected Traffic,” in IEEE Transactions on Intelligent Transporta-

tion Systems, doi: 10.1109/TITS.2021.3063107.

� A novelty-value discriminating method is developed that works in a decentralized manner

and allows each participating vehicle to filter communicable Field-of-View (FoV) perception

data based on the novelty-value of information prior to broadcasting it in the vehicle-to-vehicle

(V2V) communication network. The framework will improve bandwidth utilization and latency

without significant compromises on the average cooperative perception metric for participants.

– D. D. Yoon and B. Ayalew, ”A Novelty Discrimination Method for V2V Decentralized

Cooperative Perception,” in IEEE Transactions on Vehicular Technology, 2021 (In Re-

view)

The following list of work has also been completed during the dissertation. The details of

these studies are not included, although some of the tools are related, the specific topics are deemed

out of scope of the dissertation.

� D. D. Yoon, B. Ayalew, A. Ivanco, and K. Loiselle, ”Predictive Kinetic Energy Management

for an Add-on Driver Assistance Eco-driving of Heavy Vehicles,” in IET Intelligent Transport

Systems, 2020, 14(13), pp.1824-1834.

� D. D. Yoon, B. Ayalew, A. Ivanco and Y. Chen, ”Predictive Kinetic Energy Management for

Large Electric Vehicles using Radar Information,” 2020 IEEE Conference on Control Tech-

nology and Applications (CCTA), 2020, pp. 82-87, doi: 10.1109/CCTA41146.2020.9206307.

� L. Kerbel, D. D. Yoon, K. Loiselle, B. Ayalew, and A. Ivanco, ”Assessment of Driver As-

sistance Controls for Efficient Driving in Randomized Traffic,” in IET Intelligent Transport

Systems, 2021 (In Review)

� H. Zomorodi, D. Yoon and B. Ayalew, ”Use of Predictive Information for Battery pack Ther-

mal Management,” 2017 American Control Conference (ACC), 2017, pp. 5020-5025, doi:

10.23919/ACC.2017.7963733.
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1.3 Dissertation Organization

The dissertation is organized as follows. In Chapter 2, a social driver model is presented with

a nonlinear model predictive controller (NMPC) to mimic the predictive planning behavior of social

human drivers. A hierarchical control scheme is also presented to exploit vehicular connectivity and

integrate extended perception information into more efficient maneuver planning. In Chapter 3, a

unified cooperative perception framework that employs vehicle-to-vehicle (V2V) connectivity is pre-

sented along with a decentralized data association and fusion process that is scalable with respect to

participation variances. In Chapter 4, a novelty discrimination method for decentralized cooperative

perception is presented for the reduction of bandwidth bottle-necking and the minimization of the

computational cost of data association and fusion post processing of the shared perception data at

receiving nodes. Then Chapter 5 summarizes the main conclusions and points out directions for

further research.
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Chapter 2

Social Force Model Control for

Human-like Autonomous Driving
1

2.1 Abstract

An autonomous driving control system that incorporates notions from human-like social

driving could facilitate an efficient integration of hybrid traffic where fully autonomous vehicles

(AVs) and human operated vehicles (HOVs) are expected to coexist. This chapter aims to develop

such an autonomous vehicle control model using the social-force concepts, which was originally

formulated for modeling the motion of pedestrians in crowds. Nonlinear model predictive control

(NMPC) scheme is formulated to mimic the predictive planning behavior of social human drivers

where they are considered to optimize the total social force they perceive. In addition, an extended

preview afforded by vehicular connectivity can be exploited to bring additional information about

downstream traffic to be incorporated in the planning and guidance computations for an autonomous

vehicle. For this purpose, a hierarchical vehicular social force control scheme that integrates both

ideas is also presented. At the upper level, social force aggregation is applied to predictively select the

1The contents of this chapter have appeared in conference publications:

� D. D. Yoon and B. Ayalew, ”Social Force Control for Human-Like Autonomous Driving”, Proceedings of
the ASME 2018 International Design Engineering Technical Conferences & Computers and Information in
Engineering Conference (IDETC 2018), August 2.

� D. D. Yoon and B. Ayalew, ”Social Force Aggregation Control for Autonomous Driving with Connected Pre-
view,” 2019 American Control Conference (ACC), 2019, pp. 1388-1393, doi: 10.23919/ACC.2019.8814725.
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most efficient lane over a long horizon covered by connectivity. This is then passed down to a lower

level controller that enforces lane tracking while considering higher fidelity social force resolution

and lane-changing dynamics within the shorter horizon captured by the ego vehicle’s sensor field of

view. The workings and performance of the proposed framework are illustrated via simulations of

the connected autonomous vehicle in multi-lane highway scenarios.

2.2 Introduction

The social force model (SFM) was first introduced by Helbing [47] in 1995 to model pedes-

trian movements. Social forces can be thought of as Newtonian interpretations of the psychological

pressure exerted on a human subject from the surroundings. They are quantitative representations

of the internal motivations for the maneuvering actions (heading and speed selections) of humans

walking in crowds/traffic. Considering the significant similarity between a pedestrian and a human

driver in their maneuver planning, a few recent works have considered the use of the notion of the

SFM to model social behaviors of human drivers (or human-driven vehicles) in traffic [71, 98, 45, 136].

However, the demonstrations were mostly limited in sophistication to simple PID-like feedback con-

trollers that regulate the total social force to its minimum.

A human-like autonomous driver model using SFM is presented in a nonlinear model pre-

dictive control (NMPC) framework. The NMPC framework is a natural choice as the predictive

constrained optimization seems to parallel or at least model the navigation decisions made by hu-

man drivers. Based on the data received through sensory perception, human drivers endeavor to

predict and analyze the behavior of other vehicles before executing the next move. The generic

framework of NMPC bears a resemblance to such a process very well. This has been explored in a

number of studies, [28, 107, 94].

In mathematical terms, this SFM formulation differs from other NMPC formulations pro-

posed for autonomous vehicle guidance [134], where cost functions involved path and speed tracking

errors while obstacles and lanes are expressed as constraints, including in probabilistic terms [132].

Therein, finite state machines (FSMs) or rules are often listed to dictate lane change and other

pre-defined discrete driving states [134, 67]. These are executed outside optimization or result in

mixed integer programs (as in choosing between lanes), which in turn require a relaxation that in-

creases the dimensionality of the optimization problem to be solved at every update [133] (e.g. by
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a number of lane selection variables). The formulation presented here, however, does not require

such rule-based assigners for treatment of lanes or objects. The overall concept of the presented

approach rather resembles potential field methods (PFM) [66, 118]. By minimizing the social force

potentials along the path of travel, it provides an alternative method for formulating autonomous

driving without additional rules or such accommodations [67]. In the following section, we detail

the NMPC formulation where we consider the driver to optimize the total social force experienced

in the presence of obstacles, lanes and a description of a target.

The potential of vehicular connectivity towards enabling more efficient and safer traffic has

been widely explored [151, 117]. Vehicular communication allows participating vehicles to engage

in cooperative perception, where connected vehicles collect and share information about their ob-

servations (and intentions) of the surroundings thereby enhancing participants’ awareness of the

neighboring or upcoming traffic [63, 100]. Having such communicated information enables more

efficient maneuvering that may reduce unnecessary lane changes or speed selections by incorporat-

ing what is beyond the limited field of view (FOV) of the ego vehicle’s on-board sensors. In the

presented scheme, the SFM NMPC formulation is refined by integrating hierarchy in the social force

aggregation which makes it even more attractive for socially-inspired guidance of an automated ego

vehicle in a connected traffic. To do so, an upper traffic-level social force controller is introduced

which generates a reference trajectory based on such communicated data with long spatial preview

and passes it for a lower level social force controller to follow. As we shall detail in this chapter, the

two controllers would use different evolution models and compute their respective optimal solutions

by evaluating different cost functions. While they also execute at different sampling rates, the overall

control scheme achieves a coherent guidance of the ego vehicle.

The hierarchical approach is indeed a commonly used approach to manage the complexity

of motion planning from guidance of autonomous ground robots [85, 97] to aerial flight control

[31, 10]. For road vehicles, hierarchical formulations abound, including those mentioned above that

use finite state machine assigners as upper level generating references for lower level NMPC trackers

[132, 133, 67, 111]. There are also proposals to use hierarchical two-level MPC that delegate the path

planning and path tracking objectives to the two levels [33]. A key observation of the hierarchical

approaches is that pre-computing feasible references for the lower-level control using upper level

schemes helps reduce the computational cost of the lower level controller and leads to a more robust

performance for the overall guidance scheme. In this chapter, we exploit these observations in the
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specifics of our proposed hierarchical social-force control scheme.

2.3 System Framework and Modeling Details

The schematic of the proposed framework is shown in Figure 2.1. Object vehicle locations

and speeds are detected through the environmental perception module (on-board sensors and pro-

cessing) and transmitted to the lower level MPC. Therein, the SFM and a suitable vehicle dynamics

model are used to compute the optimal set of inputs (steering angle and accelerations) for the ego

vehicle. If we consider communicated information acquired via vehicular connectivity (V2V, V2I)

on vehicles in traffic that include those beyond the FOV of the on-board sensors, the upper level

control must be used. The communicated information is considered to be used mainly in the upper

level controller although for those vehicles within the FOV, the communicated information can be

fused with the FOV to enhance the lower level control.

Figure 2.1: Overview of the Social Force Model Framework

While the SFM will be used in both levels of the hierarchy, we adopt different social force

aggregations in the two levels. The upper level aggregates object social forces for each lane in the
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communication range along with a simpler motion model therefore optimizing newly introduced lane

selection variables. The lower level maintains a detail accounting of all vehicular social forces in the

field of view irrespective of the lane position. In cases where the vehicular network is unavailable

or the SFM is being purposed as a simple controller or as a prediction model for human operative

vehicles, simply only the lower level controller scheme can be utilized. This has been also demon-

strated in 2.4.2. It is important to note that the two controllers deal with different dynamics and

different preview and prediction horizons. At the upper level, which typically has the longer preview

than the on-board sensor FOV, coarse sampling and MPC update rates can be adopted, while at

the lower level where higher resolution plans are needed for immediate use the prediction horizon

and the sampling rates will be shorter and faster, respectively.

2.3.1 Social Force Model

The social force model (SFM) includes the following four components.

2.3.1.1 Target Social Force

The purpose of the target force is to encourage the vehicle to reach the target as soon as

possible. It is formulated as:

SFT= |Vego − Vmax| (2.1)

where Vego is the current ego vehicle speed and Vmax is the maximum allowable speed on the road.

Minimizing the energy associated with this force, SF 2
T=(Vego − Vmax)

2
, encourages the vehicle to

continuously attempt to maintain the maximum velocity thereby ensuring the vehicle to travel as

fast as possible. Vego will also be constrained not to exceed Vmax.

2.3.1.2 Object Social Force

Object force is the most important social force that models collision-avoidance behavior.

This social force is represented as a repulsive force acting on the vehicle and modeled with the

monotonically decreasing function:

SFO = K1

(
1

Sj −DBD
− 1

DLAH −DBD

)
(2.2)
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where DLAH (≈ 200m) is the look-ahead visual distance of the vehicle, DBD (≈ Vego • tb) is the

safety braking distance corresponding to a braking time tb (= 2 ∼ 3s), K1 is a scaling factor, and

Sj is the major axis of the hyper elliptical region:

Sj =
n

√
1

Kn
2

(Xj −X)
n
+ (Yj − Y )

n
(2.3)

where (X,Y ) is the position coordinate of the ego vehicle, (Xj , Yj) is the position coordinate of

object j , n is the order of the hyper ellipse, and K2 is the ratio of the major to the minor axis of

the hyper ellipse. The above formulation allows the object force to rise to infinity as the distance

between the vehicle and an object nears the braking distance, limSj→DBD
SFO=∞ , which ensures

that no other social force components (target, lane, etc) can dominate in the total social force.

2.3.1.3 Lane Social Force

The lane force consists of two different parts. Assuming that the lane center reference is

available, the first part of the lane force can be formulated as:

SF cen=

∣∣∣∣∣Y−Lcen

(
Nlane∑

i

Sigi (Y )

)∣∣∣∣∣ (2.4)

where Y is the lateral position of the ego vehicle, and Lcen is computed from a look up function for

the identified lane. Lane identification is done by using a set of sigmoid functions defined by upper

and lower bounds:

Sigi (Y )=
1

1+e−k(Y−Lloweri)
− 1

1+e−k(Y−Lupperi)
(2.5)

where Lupperi and Lloweri are the bounds of each lane i (1 . . .Nlane), and k is a constant that governs

the smoothness of the sigmoid function. The second part of the lane force is to track the yaw angle

error in reference to the curvature of the road. This is defined as:

SF agl= |ψ−θl| (2.6)

where ψ is the yaw angle of the ego vehicle and θl is the angle representing the curvature of the road.

This will ensure that vehicle heading angle is aligned with the curvature of the road. This portion

of the lane force is important especially for stabilizing the lateral motion of the vehicle during lane
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change.

SFL=
[
SFcenLLC SFaglLLC

]T
(2.7)

The total energy associated with the lane social force is defined by simply taking the weighted sum

of the squares of the two forces SF cen and SF agl with weights Wcen and Wagl applied to each part,

respectively.

2.3.1.4 Tracking Social Force

In addition to the three main forces described above, another social force is defined the

hierarchical controller scheme is being utilized with the upper level controller. This force takes the

form:

SFR= |Y−Yref (X)| (2.8)

where Yref will be interpolated from the upper level planned trajectory at the current ego vehicle

X-coordinate, X.

2.3.2 Lower Level NMPC Formulation

2.3.2.1 Motion Models for Lower Level NMPC

For the ego vehicle, we adopt the bicycle (single-track) vehicle dynamics model [29] consid-

ering the body slip angle, the yaw rate, the yaw angle, the X and Y coordinates, and the vehicle

speed as the states of the system; the road steering angle and the vehicle longitudinal acceleration

as the inputs. Then we consider object motions to follow simplified constant velocity models for

the purposes of computing the social forces in the short prediction horizon of the lower level MPC

which updates fast enough to make this assumption reasonable.
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The evolution model of the whole local traffic system can be written compactly as:

ẋLLC (t) = f (xLLC (t) ,uLLC (t))

yLLC (t) = [xLLC (t) ,uLLC (t) , SFLLC(t)]
T

(2.10)

where the states denoted with xLLC are the ego vehicle and object motion states, the inputs are

uLLC=[δ, ax]
T
, the steering and longitudinal acceleration, and f is vector function composed of

the right hand side of 2.9 and of the constant velocity models for the traffic objects in the FOV.

The social force vector aggregated for the lower level controller (LLC) is denoted as: SFLLC =

[SFT LLC SFOLLC SFLLLC SFRLLC ]
T
. Note that the total object force SFOLLC will be a force

field peaking near all detected objects in the FOV. Note also that due to the state-dependent ego

vehicle dynamics and the nonlinear object forces, the overall system is nonlinear.

2.3.2.2 Cost Function and Constraints for Lower Level NMPC

The objective of the lower level NMPC is optimizing the total social force, which is a measure

of internal motivation or psychological pressure that drivers and autonomous vehicles that mimic

human drivers, wish to minimize while allowing the vehicle to maneuver safely and travel as fast as

possible. Each social force component described above needs to be weighted appropriately to achieve

the desired behavior. For example, the weights on the object forces must be carefully adjusted to

ensure comfortable and safe collision-avoidance behavior. However, only minimizing the social force

does not guarantee feasible vehicle control without taking the control inputs into consideration.

Therefore, the cost function is formulated as follows:

JLLC =
∑NpLLC

k=0 ∥SFLLCk∥
2
QL

+
∑NcLLC−1

k=0 ∥uLLCk
∥2RL

(2.11)
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where k ∈ {0, NpLLC} the prediction step index, NpLLC is the prediction horizon length, NcLLC

is the control horizon length. We set NpLLC = NcLLC . QL and RL are the weighting matrices for

the social forces and the inputs, respectively. The optimization problem at each NMPC update is

formulated as:

min
uLLC0

...uLLCNpLLC−1

J

LLC

(2.12)

subjected to the time-discretization of the evolution model 2.10 and the following additional con-

straints applied at each prediction step:



αx,min ≤ αx≤αx,max

αy,min ≤ αy≤αy,max

0 ≤ V ≤ Vmax

0 ≤ Zi ≤

(2.13)

where, amax and amin are the maximum and the minimum allowable acceleration of the vehicle, δmax

and δmin are the maximum and the minimum allowable road wheel steering angles of the vehicle.

The Y coordinate of the vehicle is constrained so that the vehicle does not cross the edges of the

road. Lmax and Lmin are the left and the right edges of the road (not individual lanes). The vehicle

velocity is upper bounded by the road speed limit Vmax, and reverse motion is not allowed.

2.3.3 Upper Level NMPC Formulation

2.3.3.1 Motion Models for Upper Level NMPC

The main task of the upper level NMPC is to compute a reference trajectory with an optimal

lane selection based on the downstream traffic information assumed to be available from V2V and

V2I connectivity. For this purpose, we use a reduced acceleration-controlled motion model for the

ego vehicle as opposed to the more detailed one considered above for the lower level control:
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where the longitudinal and the lateral positions, X and Y , as well as velocities, Vx and VY , are the

states, and the accelerations, ax and aY , are the inputs.

For the upper-level MPC, the object forces are to be aggregated for each lane. To facilitate

lane selection with consideration of this aggregation, we introduce lane selection variables, Zi, with

i = 1 . . . Nlanes. In order to encourage only one of the lanes to be chosen at a time, we impose the

integrality constraint [14], [16]:

Nlanes∑
i=1

Zi = 1, Zi ∈ [0, 1] (2.15)

We model the lane selection variables as additional states in the upper-level MPC with the

auxiliary dynamics:

 Żi = uzi i ̸= Nlanes

Żi = −
∑Nlanes−1

i=1 uzi i = Nlanes

(2.16)

where uzi is an auxiliary input used to manipulate Zi. The lane selection variables are applied as

additional weights on the object and lane forces on each lane (see use in cost function below). This

formulation encourages the controller to identify the lane with the object forces that minimizes the

overall cost function. The model of the system including the lane selection variables can be written

compactly as:

ẋULC (t) = g (xULC (t) ,uULC (t))

yULC (t) = [xULC (t) ,uULC (t) , SFULC(t)]
T

(2.17)

where the states in xULC are of motion states of the ego vehicle and other traffic objects (vehicles) in

the connectivity range and the lane selection variables, and the inputs in uULCk
= [ax, ay, uzi]

T
are

the longitudinal and lateral accelerations for the ego vehicle and the auxiliary inputs for manipulating

the lane selection variables. Function g includes the motion model for the ego vehicle 2.14 and
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assumed constant velocity models for the detected objects in the connectivity range.

2.3.3.2 Cost Function and Constraints for the Upper Level NMPC

As stated above, by aggregating the object and lane forces in the connectivity range for

each lane, the cost function of the upper-level NMPC becomes:

JULC =

∑NpULC−1

k=0 ∥uULCk
∥2RU

+
∑NpULC

k=0

(∥∥∥SFTULCk

∥∥∥2
QUT

)
+
∑NpULC

k=0

∑Nlanes

i=1 Zi

(∥∥∥SFOULCk

∥∥∥2
QUO

+
∥∥∥SFLULCk

∥∥∥2
QUL

) (2.18)

where, k ∈ {0, NpULC} is the prediction step index, NpULC is the prediction horizon length(
NpULC ≫ NpLLC

)
, QUT

and QUO
, and QUL

are the weight matrices for the target, the ob-

ject , and the lane social forces, respectively, and, RU is the weighting matrix for the inputs. The

optimization problem to be solved at each upper level NMPC update is then:

min
uULC0

... uULCNpULC−1

J

ULC

(2.19)

subjected to the time-discretization of the evolution model 2.17 and the following additional con-

straints applied at each prediction step:



αx,min ≤ αx ≤ αx,max

αy,min ≤ αy ≤ αy,max

0 ≤ V ≤ Vmax

0 ≤ Zi ≤ 1

(2.20)

Given the solution of this optimization problem at each update of the upper level control, the

coordinates of the upper level motion model, are passed down to the lower level control as reference

trajectory [Xref , Yref ] .
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2.4 Results and Discussion

2.4.1 Simulation Settings

The NMPC formulations posed above were solved by utilizing a sequential quadratic pro-

gramming (SQP) solver implemented in the ACADO Toolkit in MATLAB R2017b interface [30].

A multi-shooting method was used for the discretization of the NMPC problems posed above for

both levels. For the lower level NMPC, a discretization time step of 0.05 seconds was selected; while

for the upper level NMPC, a time step of 0.25 seconds was used. Prediction horizon lengths of 5

sec (100 steps) and 20 sec (80 steps) are used for the lower and the upper level, respectively. For

integration of the motion models, a 4th order Runge-Kutta explicit integration method was used.

To illustrate the performance of the proposed social driver model, a several simple scenarios

are presented first. For the purposes of the illustrations, the positions and velocities of the object

vehicles are assumed available by measurement, and measurement uncertainties are not considered.

Simulations are done for single-lane and multi-lane roads with different initial conditions. The lane

identification is numbered from the right to the left as [Lane 1, Lane 2, . . . , Lane 4] for 4-lane roads.

For each scenario, weighted social forces, lateral trajectory, velocity, acceleration, yaw rate, and

road steering wheel angle history are plotted along with a few snapshots of the traffic on the road.

To illustrate the performance of the proposed hierarchical framework, two additional scenarios are

presented which will highlight the benefits of the proposed framework.

Table 2.1: Single-level Social Driver Model: Initial Condition for Scenario 1

Vehicle X (m) Lane Number V (m/s)
Ego 0 1 17.89
OV 1 150 1 3.58

2.4.2 Single-level Social Driver Model

The first scenario represents a case when there is a slow vehicle in a single-lane road. The

initial conditions are shown in Table 2.1. A few snapshots along with the vehicle dynamics plots

are presented in Figure 2.2. The lateral trajectory, yaw rate, and steering input plots are omitted

since there were no dynamics observed. The initial velocities are set as 17.9 m/s (40 mph) and

3.58 m/s (8 mph) for the ego and the object vehicle, respectively. As the NMPC attempts to

minimize the cost function 2.11 by optimizing the inputs, the ego vehicle accelerates to reach the
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Figure 2.2: Single-level Social Driver Model: Results of Scenario 1

speed limit of the road (20.1 m/s or 45 mph) since the target force is the dominant force due to

the initial conditions. The object force starts to increase as the ego vehicle approaches the object

vehicle. As the inter-vehicle distance nears the braking distance defined by the object force in 2.2,

the object force becomes the dominant cost in 2.11. In spite of the increase in the target force, the

ego vehicle decelerates significantly to prevent the object force increasing toward infinity. After t ≈

20s, the velocity of ego vehicle matches the velocity of the object vehicle and maintains a safe braking

distance between them. This scenario demonstrates an adaptive cruise control (ACC) function in

the social-force based autonomous driving scheme. The flexibility of the proposed model excludes

the need of specific rules defined for each traffic scenario.

The second scenario represents a 4-lane road where there is a slow vehicle in front (Figure

2.3). The major difference from the first scenario is the existence of empty lanes allowing the ego

vehicle to change its lane. The initial conditions are shown in Table 2.2. As in the first scenario,

the ego vehicle accelerates due to the initial target force then decelerate to compensate the increase

in the object force as the ego vehicle approaches the object. In this case, the ego vehicle is affected
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Table 2.2: Single-level Social Driver Model: Initial Condition for Scenario 2

Vehicle X (m) Lane Number V (m/s)
Ego 0 3 17.89
OV 1 150 4 3.58
OV 2 200 3 4.47
OV 3 170 1 4.47
OV 4 350 4 3.58
OV 5 380 2 4.02
OV 6 370 1 3.58

by the object forces from the two vehicles in lane 3 and 4. As the NMPC tries to minimize the

cost function in 2.11, the ego-vehicle is encouraged to perform a lane change from lane 3 to lane 2.

A peak of lane force appears as the vehicle from the center of lane 3 to that of lane 2 in 2.4 and

adjusts its heading angle in 2.6. An increase in target force is also observed as the vehicle slows

down and steer away from lane 3. The combined amount of increase in the target and lane forces is

still minimal compared to the potential increase in the object force when the lane-changing behavior

is delayed or not executed. This is the benefit of the use of the NMPC formulation, which evaluates

the cost for the given prediction horizon.

Table 2.3: Single-level Social Driver Model: Initial Condition for Scenario 3

Vehicle X (m) Lane Number V (m/s)
Ego 0 3 17.89
OV 1 150 4 3.58
OV 2 200 3 4.47
OV 3 170 1 4.47
OV 4 350 4 3.58
OV 5 380 2 4.02
OV 6 370 1 3.58

The third scenario illustrates a case with the presence of additional object vehicles (Figure

2.4). The ego vehicle encounters a group of three object vehicles twice during the given similar

amount of time as the second scenario. The initial condition of the third scenario is listed in TABLE

3. FIGURE 6 shows the ego vehicle changing its lane from lane 3 to lane 2 at t ≈ 8.85s as it sees

a group of vehicles and especially an object vehicle (Object 2) traveling at 4.47 m/s in the lane 3.

At t ≈ 21.10s, the ego vehicle changes its lane once again due to the slow vehicle (Object 5 in lane

2) in front. Object 5 is even slower (v = 4.02 m/s) than Object 2 (v = 4.47 m/s), and the ego

vehicle is still experiencing the object forces from the first group of vehicles as they are still traveling

toward the same direction. Therefore, the second lane-change is more delayed and more aggressive
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Figure 2.3: Single-level Social Driver Model: Results of Scenario 2

compared to the first lane-changing behavior.
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Figure 2.4: Single-level Social Driver Model: Results of Scenario 3
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2.4.3 Hierarchical Social Driver Model

The first result demonstrates the ability of hierarchical social-force MPC to achieve long

horizon maneuver planning using downstream information in a typical highway traffic. The scenario

is depicted in Figure 2.5, where the blue vehicle is the ego vehicle, the yellow vehicles represent the

object vehicles within FOV of the ego vehicle, and the green vehicles represent connected vehicles

that are downstream of the ego vehicle and beyond its sensor FOV. The yellow-shaded area is

the sensor FOV, and the green-shaded area, which covers all vehicles in the figure, represents the

communication range, noted as COM.

Figure 2.5: Hierarchical Social Driver Model: Overview of Scenario 1

In this particular scenario, the motion of the other vehicles (all slower than the ego vehicle)

is such that the lane-change decision near the 200m mark significantly affects the subsequent motion

of the ego vehicle. Changing its lane to Lane 1 will results in it having to perform a series of

lane-changes from Lane 1 to Lane 4 in order to pass another slow traffic. The optimal lane-change

decision is to move from Lane 2 to Lane 3 (near 200 m) and then Lane 3 to Lane 4 (near 400 m). An

SFM control that evaluates the total social force/energy only within the FOV without downstream

information and lane-based aggregation, would not be able to capture this desirable decision. In

such a control, changing its lane to Lane 3 near the 200m mark leads to an increase in total social

force perceived compared to changing to Lane 1 due to the ego vehicle’s proximity to the vehicle

in Lane 4. This would force the ego vehicle to change its lane to Lane 1, which would soon lead

to it being stuck behind slow downstream traffic or make more aggressive (potentially unsafe) lane

changes.

By contrast, the proposed hierarchical social force controller, which uses downstream infor-

mation and lane-based social force aggregation, manages to find the optimal maneuver as shown in
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Figure 2.6: Hierarchical Social Driver Model: Predicted Maneuvers for Scenario 1 a) by Upper Level
b) by Lower Level

Figure 2.7: Hierarchical Social Driver Model: Lane Selection Variable History for Scenario 1

Figure 2.6, where the dotted thin lines show the predicted trajectories at different MPC updates in

a) and the overlay of final trajectory of the ego vehicle is shown with the thick line in b). Since the

upper level controller plans the optimal maneuver for a longer horizon, it minimizes the number of

lane changes required to achieve a low total social force/energy state for the ego vehicle. Figure 2.7

shows the optimal sequence of the lane selection variables corresponding to the upper level predicted
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trajectories shown in part a) of Figure 2.6. The lower level controller successfully tracks the reference

trajectory. The ego vehicle makes optimal lane changes that allows it to travel at the top speed

possible for each phase of the scenario.

The second scenario has a merging lane that can only be seen though the extended preview.

Without the proposed framework, the ego vehicle will be unable to see the merging/ending lane.

This merging lane can also be considered as an obstacle or a stopped vehicle. In a similar context

to the first scenario, the presence of the object vehicles in Lane 3 encourages the ego vehicle to

change its lane to Lane 1. By the time, the ego vehicle encounters a blockage, the vehicles in Lane

2 prevents the ego vehicle from changing its lane (Figure 2.8).

Figure 2.8: Hierarchical Social Driver Model: Final Trajectory of the Ego Vehicle for Scenario 2 a)
without ULC b) with ULC

Comparing the resulting ego vehicle dynamics shown in Figure 2.9 clearly shows the advantage of

the proposed framework. With the proposed upper level controller, the ego vehicle is capable of

more efficient motion without much deceleration (saves energy and travel time). By tracking the

optimal reference trajectory computed by the upper level, the lower level controller manages to stay

near the speed limit with minimal longitudinal and lateral acceleration efforts.
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Figure 2.9: Hierarchical Social Driver Model: Vehicle Dynamics Comparison for Scenario 2 a)
without ULC b) with ULC

2.5 Conclusion

In this chapter, a human-like autonomous driver model is presented. The social aspect

of human driving behavior is captured using a modified social force model (SFM) which is then

implemented for predictive guidance and control via a nonlinear model predictive control (NMPC)

framework. The proposed driver model showed good performance and proper behavior in various

simulated scenarios which include single-lane, as well as multi-lane traffic situations. The ego vehicle

was able to prevent collision when there was a slow-traveling vehicle in front and perform adaptive

cruise control (ACC) adjusting its speed to that of the slow vehicle, and it was also able to change

its lane when there was an available option. Most importantly, the ego vehicle was able to perform

such tasks while maintaining reasonable vehicle dynamic response.

In addition to the modeling and control of the social driver model, a hierarchical vehicular

social force control scheme is presented to utilize lane-based social force aggregation utilizing down-

stream traffic information via V2V or V2I connectivity. This hierarchy includes a coarsely-sampled

long horizon upper level NMPC and a more detailed short horizon lower level NMPC which does lo-

cal motion planning and guidance with its limited sensor FOV information. The upper level NMPC

with a long preview performs optimal lane selection computations. The planned lanes are then

passed as the reference trajectories for the lower-level NMPC which enforces lane tracking along

with other social forces while maintaining proper vehicle dynamics. The presented results showed

clear performance benefits in terms of more efficient guidance of the ego vehicle.

It is important to note that a simple constant velocity and constant acceleration models are

used for estimation and prediction of the states of object vehicles. While these were sufficient for the
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presented scenarios and the NMPC settings used (justified by considering relatively fast update time

steps of 0.05 seconds for the lower level NMPC and 0.25 seconds for the upper level NMPC), it may

require other sophisticated prediction models to accurately track object vehicles in more dynamic

traffic environments.
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Chapter 3

Performance of Decentralized

Cooperative Perception in V2V

Connected Traffic
1

3.1 Abstract

This chapter presents and evaluates a unified cooperative perception framework that em-

ploys vehicle-to-vehicle (V2V) connectivity. At the core of the framework is a decentralized data

association and fusion process that is scalable with respect to participation variances. The evalua-

tion considers the effects of the communication losses in the ad-hoc V2V network and the random

vehicle motions in traffic by adopting existing models along with a simplified algorithm for individual

vehicle’s on-board sensor field of view. Furthermore, a multi-target perception metric is adopted

1The contents of this chapter have appeared in conference and journal publications:

� D. D. Yoon, G. G. M. N. Ali and B. Ayalew, ”Data Association and Fusion Framework for Decentralized Multi-
Vehicle Cooperative Perception”, Proceedings of the ASME 2019 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference IDETC/CIE2019, August 18-21,
2019.

� D. D. Yoon, G. G. M. N. Ali and B. Ayalew, ”Cooperative Perception in Connected Vehicle Traffic under
Field-of-View and Participation Variations,” 2019 IEEE 2nd Connected and Automated Vehicles Symposium
(CAVS), 2019, pp. 1-6, doi: 10.1109/CAVS.2019.8887832.

� D. D. Yoon, B. Ayalew and G. G. M. N. Ali, ”Performance of Decentralized Cooperative Percep-
tion in V2V Connected Traffic,” in IEEE Transactions on Intelligent Transportation Systems, doi:
10.1109/TITS.2021.3063107.
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Figure 3.1: Cooperative Perception in an Urban Roundabout Obstructed with Building. OLoS:
Obstructed Line of Sight (LoS), NLoS (Non-LoS), CV: Connected Vehicle, Ego: Ego-Vehicle

to evaluate both the errors in the estimation of the motion states of vehicles in the surrounding

traffic and the cardinality of the fused estimates at each participating node/vehicle. The extensive

analysis results demonstrate that the proposed approach minimizes the perception metric for a much

larger percentage of the participating vehicles than a baseline approach, even at modest participa-

tion rates, and that there are diminishing returns in these benefits. The computational and data

traffic trade-offs are also analyzed.

3.2 Introduction

The reliability of state-of-the-art vehicular safety features such as Advanced Driver Assis-

tance Systems (ADAS) heavily depends on perception information, i.e., state estimates of position,

velocity, etc., about surrounding vehicles. In autonomous vehicle applications, having a reliable

and accurate perception is critical to ensure safety and also for secondary benefits such as traffic

harmonization and reduced collective energy utilization [141, 10, 29].

Advanced on-board sensing technologies, such as Radar, LiDAR, GPS etc., [149, 68, 55] still

suffer from reliability issues due to the inherent limitations of the sensors (e.g., range vs. resolu-

tion trade-offs) and their high environment dependencies, e.g., direct Line-of-Sight (LoS) or lighting
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requirements. While one can utilize a set of these on-board sensor technologies to enhance an ego-

vehicle’s perception via sensor-level fusion, the fused perception is likely to inherit the drawbacks

of each sensor [23, 2]. Moreover, one or more sensors can be frequently obstructed especially in

dense traffic. To address these limitations and improve on the achievable coverage and accuracy of

the perception for an ego-vehicle, there has been several recent proposals to leverage vehicular con-

nectivity technologies, be it the Dedicated Short Range Communication (DSRC) standard, cellular

communication (3G, 4G LTE, or 5G C-V2X), or Wi-Fi [139, 39, 44]. These proposals, broadly called

Cooperative Perception frameworks, enable participating vehicles to broadcast their perception of

self and/or surrounding vehicles, thereby ultimately allowing multiple participating vehicles to ex-

tend and enhance both the range and the fidelity of their perception of the traffic [104, 41, 44]. See

illustration in Fig. 3.1 for a roundabout intersection.

In this chapter, we detail a generalized framework for decentralized multi-vehicle cooperative

perception and provide a systematic analysis of the framework to expose the inherent limitations

and opportunities. Our main consideration is that the framework must take into account the ad-hoc

and random nature of traffic and connectivity, thereby offering scalability and robustness to work

at different traffic densities and scenarios.

Specifically, we seek to allow and evaluate the effects of variable participation rates in the

cooperative scheme and consider the effects of bulk sensor resolution grades for all participants.

We introduce a summarizing error metric to assess the average “accuracy” of the cooperative per-

ception and to analyze its variations under different scenarios. This metric takes into account the

uncertainties in the state and cardinality estimates from the point of view of each participating

vehicle. For the evalution, the basic functionality of the framework will be first demonstrated under

restrictive assumptions (no participation rate variances, without communication loss models, etc.).

It is observed that the overall cooperative perception framework does indeed reduce the perception

error metric compared to traditional Bayesian-based fusion schemes; or compared to a perception

scheme based on on-board sensors only. In addition, we give a more complete description of the

cooperative perception framework, with updated models of the main components, and also conduct

a systematic evaluation of the scalability and robustness of the scheme in both urban and highway

scenarios to understand its fundamental limitations in heterogeneous traffic involving connected and

unconnected vehicles. The main contributions of this chapter can be summarized as follows:
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� We present the details of a robust and decentralized data association and fusion framework

for cooperative perception that considers uncertainties associated with the sensor FoV (Field

of View) changes, stochastic communication losses, random vehicular motions in multi-lane

traffic, and participation rate variances. These are often disparately treated in the literature.

� We evaluate the cooperative scheme in both highway and urban scenarios utilizing a compre-

hensive cooperative perception metric that considers traffic-relevant kinematic states and their

associated uncertainties, where the latter requires additional details in the communication loss

modeling and thereby the characterization of the results.

� We discover some fundamental properties of the cooperative perception scheme by evaluating

the proposed framework via Monte Carlo simulations of random heterogeneous traffic. The

results show that beyond some moderate levels of participation, the perception metric does not

improve further for most participants while the network and the computational costs continue

to increase substantially. We also conduct comparative analysis of the proposed approach with

a standard baseline approach.

The consideration of communication uncertainties (due to path loss, fading and shadowing,

packet collision, etc.) is important for a realistic evaluation of the performance of any cooperative

scheme. The distance between transmitting and receiving vehicles can vary, and a signal may be

blocked or reflected by obstacles, such as buildings, trees, long and tall vehicles (e.g., commercial

trucks) [21, 120, 5, 131]. In [1], the path loss for LOS (Line-of-Sight) / OLOS (Obstructed LOS)

pathways for highway scenario was studied; however, it neglected the impact of shadowing by build-

ings. [120] proposed an empirically approximated method validated by the experimental results to

capture the effect of obstacle shadowing in vehicular networks. [21] indicated the high compara-

tive performance difference between the obstacle fading and the stochastic fading communication

models. Recently, further experimental and simulation evaluations of the communication aspects of

vehicular networks have been done in [89]. In this chapter, we adopt a combination of these models

to explicitly include communication uncertainties in the evaluation of our decentralized cooperative

perception scheme. The specific models are describe in Section 3.3.3 below.

We briefly mention one other important consideration. Communication bandwidth man-

agement (minimizing network congestion) is often needed to minimize packet drops in dense traffic.

Communication congestion detection can be done via advanced prediction of traffic density using
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Figure 3.2: Overview of the Proposed Perception Computations at Each Participating Ego-Vehicle

communicated beacons [36, 8, 59]. Congestion control algorithms aim to manage the channel load by

dynamically adapting the packet transmission power and frequency thereby providing harmonized

access to the wireless medium [115, 80]. Given the extensive work on the topic of network congestion

management, we do not delve further into it in this chapter. Instead, we evaluate our cooperative

perception scheme at varying participation rates and traffic density by adopting the Carrier Sense

Multiple Access with Collision Avoidance (CSMA/CA) protocol for sharing the wireless medium.

The remainder of this chapter is organized as follows. Section 4.3 gives an overview of the

system architecture as well as the details of each subsystem. Section 4.4 provides the results and

discussions starting with definitions of the evaluation settings and culminating in discussions of the

observed increases in the costs of the cooperative perception at high perception rates. Section 3.5

summarizes the main conclusions of this chapter.

40



3.3 System Framework and Modeling Details

3.3.1 Overall System Framework

A schematic overview of the proposed framework is shown in Fig. 4.1. For local FoV

perception, each participating vehicle is equipped with a set of on-board sensors (LIDAR, Radar,

Camera, etc.) for object vehicle estimation (within the combined FoV of its sensors) and execute ego

localization schemes for self state estimation (using GPS, IMU, odometry system, etc.). Both sets

of estimates (ego and other object tracks) are managed by an Interacting Multiple Model (IMM)

filter (Section 4.3.3). The state estimates and corresponding covariance data, transformed to global

(road-fixed) coordinates, are shared with other connected vehicles via V2V communication. At each

participating vehicle, received data are processed through a communication buffer (Section 3.3.4)

which accounts for the lossy or intermittent nature of the communication.

When object estimates are communicated among participating vehicles, a data association

process (Section 4.3.4) is needed at the receiver since the measurements (the shared state estimates)

and the identification/tagging information used are ego-centric to each sender. The goal of the data

association step is to cluster information about potentially the same object(s). Then, each set of

associated data needs to be processed to yield a single fused state estimate for each object. This

is done via a track-to-track data fusion algorithm to be described later (Section 3.3.6). The final

fused estimates will likely include estimates of several objects beyond the ego-vehicle’s FoV, which

extends the perception horizon.

We make several simplifying assumptions in our modeling, some of which are listed below

and others will be made in the relevant sections to follow:

� We consider vehicles in traffic to be the only relevant objects for discussing the cooperative

perception scheme in this chapter. However, not all vehicles in the traffic need to participate

in the cooperative scheme (they may not be so equipped or choose not to participate).

� Each vehicle in traffic is represented as a point mass; vehicle size and geometry variations are

not considered in this study.

� Each vehicle can detect and estimate its own kinematic state, as well as of all other vehicles

located within the set sensor range of 150 m, provided conditions for the combined FoV of

its sensors are met (See Appendix for the simplified FOV model adopted which accounts for
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occlusions in traffic). Hereafter, we simply say ego-vehicle’s FoV to refer to the combined FoV

of its sensors.

� Each participating vehicle computes sensor-level data association and fusion to generate state

(2D position and velocity) estimates of all detected vehicles in its FoV. We reduce this process

to IMM filters that generate object kinematic data prior to communication. In these filters,

sensor noise is modeled as additive Gaussian noise on each vehicle’s FoV measurement data.

� Each connected vehicle shares its FoV generated IMM filter outputs by broadcasting to sur-

rounding vehicles (single-hop V2V) utilizing CSMA/CA (Carrier Sense Multiple Access with

Collision Avoidance) protocol with a maximum communication range of 300 m (subject to

losses).

3.3.2 Vehicle State Estimation and Tracking

We apply an interactive multiple model (IMM) filter for the estimation and tracking of

self as well as of nearby object vehicles, connected or not connected, within the ego-vehicle’s FoV.

Utilizing constant velocity (CV) and constant acceleration (CA) based Kalman filters, the IMM

filter can be compactly written as

Xm
t+1|t = AmXm

t|t +Bmwm
t|t

Zt|t = CmXm
t|t + vmt|t

(3.1)

where m indicates the mode (1 for CV and 2 for CA) with process noise wm
t|t ≈ N(0, Qm) and the

measurement noise vmt|t ≈ N(0, Rm) for each model respectively. t is the time-index. In this chapter,

the motion states of interest X are the 2D position and velocity in both the longitudinal and the

lateral directions (expressed in a global frame after necessary transformations are applied at each

ego-vehicle). Am and Cm are the mode-parameterized state transition and measurement matrices,

and Bm is the disturbance input matrix for the respective mode m. Z are on-board (FoV) sensor

measurements. By blending hypothesis of each mode, the IMM filter can obtain more consistent

estimates of the motion state of vehicles than what can be obtained by assuming any one of the

modes alone. For details on this, we refer the readers to, for example, [105].

Denoting the set of indices for the vehicles in the shared traffic T (set of vehicles) at time t

by ζT,t, the detected subset ζFoVi,t in the FoV of vehicle i at time t is defined as:
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ζFoVi,t = {j ∈ ζT,t|d(i,j),t < Ri ∧ j ∈ LoSi,t} (3.2)

where d(i,j),t is the Euclidean distance between vehicles i and j, at time t. Eq. (4.4) defines the

FoV neighborhood such that each vehicle i has a FoV measurement Z on vehicle j, if and only if

vehicle i and j are within a set on-board sensor detection range, Ri, and the line-of-sight (LoS)

between the two vehicles is unobstructed (j ∈ LoSi,t ⇔ i ∈ LoSj,t). More discussion about the LoS

computations is given in the Appendix.

To prevent broadcasting track data comprised of estimates with premature convergence (or

of large uncertainties), we set an allowable maximum threshold for the determinant of covariance

matrix accompanying each track. This identifies a communicable set of FoV generated track data

Φci,t as:

Φci,t = {[Xj,t, Pj,t]|det(Pj,t) ≤ ϕIMMi ∧ j ∈ ζFoVi,t} (3.3)

which is about vehicles j (j ∈ ζFoVi,t) that are detected and estimated by vehicle i, Pj,t is the

covariance matrix accompanying IMM estimates of the states Xj,t, and t is the time index for the

send time. ϕIMMi
is an allowable threshold on the convergence of the IMM filter for each track.

This issue becomes more important in rapidly changing traffic where track birth and death effects

are frequent [142].

3.3.3 Communication Loss Model

The following is a generic statement of communication losses between a sender/transmitter

and a reciever [24]:

PRX(d) = PTX +G−
∑

PL(d) (3.4)

where PRX is the received power, PTX is the transmitted power, G is the antenna gain, PL(d) is

the path loss component due to various fading effects. We consider empirical shadow fading models

suitable for VANETs, which take a dual-slope form as discussed in [1, 93]. For line of sight (LoS) /

Obstructed LoS (OLoS) cases, the path loss model for LoS/OLoS is shown in Eq. (3.6), where d is

the distance between the transmitter and the receiver, PL0 is the path loss at a reference distance
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PLLoS/OLoS(d) =

{
PL0 + 10n1log10(

d
d0
) +Xσ if d0 ≤ d ≤ db

PL0 + 10n1log10(
db

d0
) + 10n2log10(

d
db
) +Xσ if db ≤ d

(3.6)

PLNLoS(dt, dr) =

{
PL0NLoS

+ 10n3log10(
d0.957
t

(dwwr)0.81
4πdr

λ )) +Xσ if dr ≤ db
PL0NLoS

+ 10n3log10(
d0.957
t

(dwwr)0.81
4πd2

r

λdb
)) +Xσ if db < dr

(3.7)

d0, db is the breakpoint distance, n1 and n2 are the path loss exponents estimated by regression, and

Xσ is a zero-mean Gaussian distributed random variable with a standard deviation of σ. For non-

line of sight (NLoS) scenarios, where the pathway between a transmitter and a receiver is blocked

by obstacles such as structures, buildings, etc., as happens in urban roundabouts/intersections, the

adopted path loss model is shown in Eq. (3.7). dt is the distance of a transmitter to the center of

the intersection, dr is the distance of a receiver to the center of the intersection, wr is the width of

the street, dw is the distance between a transmitter and a wall, and λ is the wavelength. The values

of aforementioned model parameters can be found in [1] for both urban and highway conditions.

An additional stochastic fading model is applied using the Nakagami-m model to account

for the path loss due to small scale fading of transmitted rays between a transmitter and a receiver

[89]. The probability density function is defined as:

PLs(d) =
2νν

Γ(ν)Ων
d2ν−1e(

−νd2

Ω ),∀d ≥ 0. (3.5)

where d is the distance, ν is the Nakagami parameter ν ≥ 0.5, Γ(ν) is the gamma function, Ω is the

average power of multipath scatter field and controls the spread/variance of the distribution.

3.3.4 Communication Buffer

To compensate for intermittent communications resulting from packet drops and time syn-

chronization issues, receivers are required to maintain a data buffer of received information. Any

missing information due to an unsuccessful communication can be estimated based on recent suc-

cessfully communicated prior data. While the buffer time window is preset, the oldest data set are

continuously replaced with newly received data upon availability. Such a communication buffer was

investigated for the estimation of static objects in [108, 125]. Considering the dynamic nature of

vehicular traffic for the current application, the following formulation uses the latest set of stored
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data to estimate and fill in for recently missed information assuming a constant velocity motion

model to predict the states of those object vehicles in the buffer to the current time index. Let

Xi,j = {Xtc−Nbf
, . . . , Xtc−1, Xtc} be the series of estimates that have been communicated between

vehicles i→ j, where tc is the most current time index, and Nbf is the length for the communication

buffer/window. Each communication may be either successful ξi,j,t = 1 or unsuccessful ξi,j,t = 0.

Then, the buffered estimate at the most current step, Xi,j,tc can be computed from:

Xi,j,tc = ξi,j,tcXi,j,tc + . . .

+

Nbf∑
l=1

{(
l∏

q=1

(1− ξi,j,tc−q+1))ξi,j,tc−lO(∆t)Xi,j,tc−l}
(3.8)

whereO(∆t) is a state transition matrix of the constant velocity model with time step ∆t = ttc−ttc−l.

If no data is received about an object for longer than the set buffer window, no information will be

retained about that object until the next successful communication.

3.3.5 Data Association

At any one receiver, there are likely multiple track data sets that are about the same

object(s) being tracked by multiple participating vehicles’ FoV. Dropping the time index for clarity,

let Φf be the set of FoV data (state estimates and corresponding covariances) and Φc be the set of

buffered communicated data. The combined set of estimates is:

Ψr = Φf ∪Φc (3.9)

where the cardinality of the union set is |Ψr| = Nr. For each indexed pair i, j = 1, . . . , Nr, the

Bhattacharyya distance is computed as [11]:

BD(i,j) =
1

8
(Xi −Xj)

T (
Pi + Pj

2
)−1(Xi −Xj)

+
1

2
ln(

det(
Pi + Pj

2
)√

det(Pi)det(Pj)
)

(3.10)

where BD(i,j) = 0 for i = j. We define a set threshold, ϕBD, to identify a group of pairs of estimates
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that are reachable (directly or via neighboring estimates) from one another whenever (BD(i,j) ≤

ϕBD). Such a group/cluster of associated estimates are considered to potentially represent the same

object or vehicle. We denote all such groups of associated estimates by:

Sasso = {Ψa1
,Ψa2

, . . . ,ΨaNv
} (3.11)

where Ψa1
∪ Ψa2

∪ Ψa3
· · · ∪ ΨaNv

⊆ Ψr, each Ψan
= [Xan

,Pan
] is a cluster set of associated

estimates (n = 1, . . . , Nv), with Xan
= {Xan1

, . . . , XanNest,n
} and Pan

= {Pan1
, . . . , PanNest,n

}, and

|Ψan | = Nest,n is the cardinality of the corresponding cluster Ψan . Nv is the number of clusters.

3.3.6 Data Fusion

Since there is an unknowable correlation between the received and associated data, we

adopt the Covariance intersection (CI) fusion algorithm which can manage an unknown degree of

inter-estimate correlation and compute a consistent, albeit conservative, fused estimate [58, 25,

72]. Furthermore, since the original covariance intersection formulation involves computationally

expensive optimizations for the fusion weights, we use the aforementioned FCI algorithm for which

analytical approximations have been offered [34, 92]. The consistency of the fused estimate remains

guaranteed with the FCI algorithm. For details on this, we refer the readers to [34]. Using FCI, we

fuse the group of estimates in each associated cluster Ψan
into the single estimate Ψfn = [Xfn , Pfn ]

where:

P−1
fn

=

Nest,n∑
k=1

ωank
P−1
ank

Xfn = Pfn

Nest,n∑
k=1

ωank
P−1
ank

Xank

(3.12)

where the non-negative fusion weights satisfy
∑Nest,n

k=1 ωank
= 1. Dropping the subscript an for

brevity, each ωk is calculated as:

ωk =
η + det(P−1

k )− det(η − P−1
k )

ηNest,n +
∑Nest,n

m=1 {det(P
−1
m )− det(η − P−1

m )}
(3.13)

where η = det(
∑Nest,n

k=1 P−1
k ). Repeating this for all associated clusters, (Ψan = [Xan ,Pan ]→ Ψfn =

[Xfn , Pfn ] for all n = 1, . . . , Nv ), we arrive at the final set of fused estimates with the final fused
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cardinality of Nv:

Ψf = {Ψf1 ,Ψf2 , . . . ,ΨfNv
} (3.14)

3.3.7 Performance Metric

We set to evaluate the performance of the cooperative perception scheme at scale, on numer-

ous traffic scenarios and at various participation rates. To this end, we need a compact metric that

takes into account the multi-target estimation error from the perspective of any one participating

vehicle. The optimal subpattern assignment metric (OSPA) [112] is one such metric that weighs

all possible pair-wise (estimate to true target) assignments and corresponding errors along with the

possible differences in cardinality between the associated and fused outputs and the ground truth.

The original OSPA metric, however, does not consider the uncertainty information associated with

the estimates, considering only on the localization error measured via the Euclidean distance. In

[88], a modified OSPA metric was proposed involving the Hellinger distance (related to the Bhat-

tacharya distance) that accounts for uncertainty; however, it needs covariance information about

the ground truth data which is generally absent in our setting. In this chapter, we modify the

metric by using Mahalanobis distance (MD) to incorporate the covariances obtained with the state

estimates. We also use the metric to compactly quantify both the localization and 2D velocity state

estimation errors. Our final modified OSPA metric is given by Eq. (4.13) (See top of this page),

where MD(c)(·)p is given by:

MD(c)(·)p = (min(c,MD(·)))p (3.15)

where the exponent p is within 1 ≤ p ≤ ∞, c is the cut-off distance (c > 0) for un-assignable

estimates[112], and MD(·) is:

MD(Xgi ,Ψfπ(i)
)

=
√
(Xgi −Xfπ(i)

)P−1
fπ(i)

(Xgi −Xfπ(i)
)

(3.16)

where Xg = X1, . . . , Xr is a set of ground truth states with r being the number of vehicles in the

evaluation range (in the ground truth), and ΠNv
is a set of permutations π ∈ ΠNv

that assign each

of the estimates to the true target states in the ground truth.
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d
(c)
OSPAMD

(Xg,Ψf ) =

(
1

Nv

(
min

π∈ΠNv

m∑
i=1

MD(c)(Xgi ,Ψfπ(i)
)p + cp(|Ψf | − |Xg|)

)) 1
p

(3.17)

In addition to the modified OSPA metric, in our evaluation of the cooperative perception,

we will also use the (unscaled) cardinality error metric defined as |Ψf | − |Xg| (the number of fused

estimates - the number of vehicles in the ground truth within the evaluation region). This metric

primarily measures detection errors and is only indirectly related to state estimation at the data

association/fusion steps.

3.4 Results and Discussions

3.4.1 Simulation Settings

A number of traffic environments are created using the traffic microsimulation software

PTV VISSIM [95]: a unidirectional 4-lane highway and a roundabout (rotary) intersection with

4-lane bidirectional (2-lane each) roads. We applied a Monte Carlo approach for evaluating the

cooperative perception scheme in order to account for the stochastic nature of the simulated traffic,

the communication network, as well as the sensor FoV and IMM filtering processes at each vehicle.

A set of 30 samples were taken for each case of 5 different traffic flow rates (3500, 5500, 7500, 9500,

and 11500 veh/hr) with 5 different prescribed average traffic speeds (60, 70, 80, 90, and 100 kph)

for the highway, and 3 different traffic flow rates (1500, 2500, and 3000 veh/hr) with 3 different

average traffic speeds (60, 70, 80 kph) for the roundabout scenario. In summary, a total of 750

and 270 samples were generated, respectively, for the highway and roundabout environments using

randomized driver and vehicle models in VISSIM to represent realistic traffic. For space and clarify

of exposition, in the discussions below, we present detailed results for only three representative traffic

density settings for each environment: 35, 94, and 192 veh/km for the highway and 19, 36, 50 veh/km

for the roundabout scenario. However, the observations are also corroborated with the remainder

of the data generated. As a baseline for comparison, we also considered a modification of the

BSM-based cooperative scheme standardized by SAE [81], where the received BSMs are associated

and fused with local FOV data at each participating ego-vehicle to enhance its perception. In the

following discussions and the figures, we will use the shorthand DCP (Decentralized Cooperative
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Perception) to refer to our proposed approach, and the shorthand BSM for the baseline approach.

The performance of both schemes is evaluated by computing the modified OSPA metric from the

perspective of each participating vehicle for a region of 150-m radius centered on that vehicle at the

various geographic locations in the traffic environment under consideration (excluding the boundary

entry/exit regions). The modified OSPA metric is denoted as OSPAMD. In all evaluations, we vary

the participation rate from 0 (no cooperation) to 100% (fully cooperative).

Each vehicle is given a uniformly distributed random value between 0 to 50 ms as its

initial clock setting and set to broadcast its FoV track information at a rate of 20 Hz [93]. Each

participating vehicle is assumed to perform the data association and fusion process at a rate of

10 Hz. The communication buffer window is taken to be 150 ms (a width of 3 nominal broadcast

intervals). To consider the Medium Access Control (MAC) layer issues with the ad-hoc vehicular

communication network, the Carrier-Sense Multiple Access with Collision Avoidance (CSMA/CA)

protocol is adopted from [12, 51]. Even with the CSMA/CA protocol, packet collisions is still

possible due to hidden nodes. While more advanced solutions exist to alleviate such issues including

handshaking protocols, increasing transmitting power, etc., these are beyond the scope of the current

study.

As mentioned previously, the effect of FoV is crucial for evaluating the effectiveness of

cooperative perception in realistic traffic. To model the effect of the dynamic traffic on the FoV of

each vehicle (obstructing each other), we use the simple exclusion algorithm given in the Appendix.

We then vary the FOV sensor angular resolution of the exclusion algorithm in three settings: Fine

(5o), Medium (10o), Coarse (30o); each setting being applied for all participating vehicles. The

angular sensor resolution represents the smallest sector angle from the ego-vehicle in which nearby

object vehicles can be detected as distinct (not overlapping). If there are two or more object

vehicles where the sensor detection rays (LoS) from the ego-vehicle to each nearby vehicle form an

angle smaller than the set angular sensor resolution, only the closest object vehicle is considered

detectable to the ego-vehicle, see Fig. 1. In this way, we seek to evaluate the effect of the trade-offs in

investments in sensing capability (finer resolution settings corresponding to more capable on-board

sensing with, say, more cameras and/or radar/LiDAR units around each vehicle) vs. participation

in the cooperative perception.
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3.4.2 Ego Vehicle Evaluation Scenario

First, the effectiveness of the framework is evaluated on one vehicle which is randomly chosen

as the ego vehicle from whose perspective we evaluate the cooperative perception. The first scenario

is a low-density highway traffic scenario where the traffic flow is defined as 10 vehicles per minute

with an average speed of 120 km/hr. In Figure 3, the % error for two cases are shown. The first

case is single-vehicle perception (SP) with information acquired only through the on-board sensors

(FoV) of the ego vehicle, without vehicular communication. The second case is the proposed data

association and fusion architecture, BDF and CIF. The effect of cooperative perception is trivial for

the first 10 sec of time as the ego vehicle can accurately estimate all nearby vehicles via on-board

sensors without any obstruction in its FoV. As the ego vehicle or other nearby vehicle changes its

lane and adjusts speed however, a couple of vehicles become no longer detectable within the FoV

of the ego vehicle without communication (Figure 3.4). For example, as the ego vehicle changes its

lane (∼ 10 sec), from lane 3 to lane 2 (numbered left to right as lane 1 to 4), the rearmost vehicle

becomes undetectable by the on-board sensors due to another vehicle in between but still remains

perceptible via vehicular communication. The corresponding change in the overall cardinality is

clearly noted in Figure 3.3.

Figure 3.3: Scaled OSPA metric (0 to 100%) Comparison For Low Density Highway Traffic – Scenario
1

The second scenario (Figure 3.6) is a high-density highway traffic where the traffic flow is

defined as 100 vehicles per minute with an average speed of 90 km/hr. In such a traffic, the benefit

of vehicular communication is apparent. In addition to the two cases observed in the first scenario,
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Figure 3.4: Cardinality History For Low Density Highway Traffic – Scenario 1

Figure 3.5: Snapshots of Low Density Highway Traffic Scenario: Red: ego vehicle, Yellow: detectable
via on-board sensors & communication, Blue: detectable only via communication, White: out of
evaluation range.

a cooperative perception (CP) with BDF and traditional Kalman Filter Fusion (KFF) is added for

comparison. To do so, a parallel KF [39] is used to fuse the associated estimates along with the
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proposed BDF association process. As shown in Figure 3.6a, the proposed framework achieved the

lowest % error while SP had the highest. The high % error (∼70 %) of SP is mainly caused by the

high-density traffic which blocked the ego vehicle’s FoV. The difference in cardinality is shown in

Figure 3.6. It is important to note the same number of spikes are shown in Figure 3.6a for both of the

cooperative perception (CP) cases. These are due to sharing initial poor quality (yet to converge)

estimates (from IMM) of newly detected vehicles.

(a)

(b)

Figure 3.6: Scaled OSPA metric (0 to 100%) Comparison For High Density Highway Traffic –
Scenario 2

As some vehicles enter and exit the evaluated region or as vehicles adjust their speeds and perform

lane changes within the high-density traffic, the FoV of some CP-participating vehicles change.
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Figure 3.7: Cardinality History For High Density Highway Traffic – Scenario 2

Once new vehicles are detected within the FoV, observing vehicles initiate the tracking (e.g. using

IMM), improving their estimates iteratively with new measurements. Communicating these early

estimates, which are most likely deviating from the true states, results in creating outliers as they

are not associated with other estimates, thereby artificially increasing the cardinality of the fused

estimates (Figure 3.7). This why 4.5 is used to observe the determinant of the covariance matrix

within the IMM filter and limit the object state estimates to be broadcast to only those that have

converged below a set threshold. The results are shown in Figure 3.6b.

3.4.3 Cooperative Perception in a Highway Scenario

Fig. 3.8 and 3.9 show results for the traffic evaluation of the 4-lane highway scenario.

Comparisons with modified BSM-based baseline scheme are included in Fig. 3.9. The plots in Fig.

3.8 report the average OSPAMD and cardinality error with varying participation rates. These are

computed by averaging the results from Monte Carlo simulations for all participating connected

vehicles at selected traffic densities (35, 94, and 192 veh/km) and the three representative angular

sensor resolution settings. The negative average cardinality errors in Fig. 3.8 show the average

number of undetected vehicles at each setting.

We make the following observations from the results in Fig. 3.8. First, there is a con-
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tinuous improvement in the average OSPAMD and the cardinality error as the participation rate

increases from 0 to 100% for all traffic density settings. Second, the lowest participation rate for the

minimum average OSPAMD and cardinality error have some dependence on the sensor resolution

settings. Whereas, for coarse sensor resolution, the minima are achieved at full participation, at

finer sensor resolutions, there is only a marginal improvement in the perception metrics beyond a

70-80% participation rate. In particular, the cardinality error doesn’t improve beyond 50% partic-

ipation at finer sensor resolutions. Third, the trend for the average OSPAMD seems independent

of traffic density, although the (unscaled) cardinality error metric clearly shows that more vehicles

become undetectable at the higher traffic density and low participation rates due to the higher LoS

restrictions of the on-board sensors.

In order to provide a comparison to the baseline modified BSM-based approach, and to

take a closer look at the trends of the distributions of the lower values of OSPAMD among the

participants, in Fig. 3.9, we plotted the percentage of participating vehicles that achieve a value of

OSPAMD below a given threshold across their time in the evaluation region for both the proposed

DCP and the BSM-based framework. The threshold is taken as 10 based on the numerical results

in Fig. 3.8 for all three sensor settings. Recall that the states and the associated uncertainties being

evaluated include not only the localization errors but also the 2D velocity state estimation errors;

as such the threshold should be interpreted in relative terms considering the definition of the OSPA

metric in Eq. 4.13. We observe in Fig. 3.9 that: 1) At participation rates lower than 30% for DCP

(at much higher 85% for BSM), only a small number of participants benefit from the cooperative

scheme with OSPAMD <10, specially if the sensor resolutions are coarse. 2) The percentage of

the vehicles that benefit from the DCP scheme plateaus at moderate participation rates, specially

at finer sensor resolutions. 3) In all settings, it was not possible for all participants (100%) to

achieve OSPAMD <10 ; that is, not all participants are able to minimize their perception error. We

attribute part of this to the cost of participation and this will be discussed more in Section 3.4.5.

For the case of BSM which is outperformed by the proposed DCP in all cases, the maximum share

of benefiting vehicles is noted as 40% at a full participation rate, and as should be expected there is

minimal effect from sensor resolution. 4) With respect to traffic density, at lower participation rates

and higher traffic density, fewer participants benefit from the cooperative scheme due to the high

likelihood of restricted FOVs by neighboring vehicles. This latter aspect is also partly an artifact of

boundary region effects on the evaluation, especially in low density settings. As the participation
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(a)

(b)

(c)

Figure 3.8: Average OSPAMD and Cardinality Error (#Estimates - #True) for an Ego-Vehicle in
Highway Scenario with Varying Angular Sensor Resolution: (a) Coarse (30o), (b) Medium (10o),
and (c) Fine (5o).

rate increases, however, more vehicles in the higher traffic density benefit compared to those in the

lower density settings.
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(a)

(b)

(c)

Figure 3.9: Percentage of Participating Vehicles with OSPAMD less than 10 for the Highway Sce-
nario with Varying Angular Sensor Resolution: (a) Coarse (30o), (b) Medium (10o), and (c) Fine
(5o).

3.4.4 Cooperative Perception in a Roundabout Scenario

Fig. 3.10 and Fig. 3.11 show results for the roundabout scenario, all with the fine (5o)

angular sensor resolution setting. In this scenario, vehicular communications and FoV perception

are drastically restricted due to the presence of buildings and other structures near the roads (see

56



the environment illustrated in Fig. 3.1). The overall observations from these results are consistent

with that of the highway scenario. However, due to the more complex environment and associated

costs to be discussed in the Section 3.4.5, here the minimum OSPAMD is generally higher than in

the highway scenario in all tested traffic density settings. In addition, the results suggest that there

is marginal improvement in the minimum average OSPAMD beyond moderate participation rates.

As the vehicles near the entry or the exit of the roundabout, the evaluation range includes a portion

of the roundabout while their FOV as well as communications are hindered by the presence of

buildings. As a result, OSPAMD is shown to be highest in those areas (50 ≤ |D| ≤ 100 m, where D

is the distance to the center of the intersection). When the vehicle enters the roundabout (|D| ≤ 50

m), the effect of the participation rate on the perception metric changes remarkably. There, a

participating vehicle is able to form a LoS on-board perception as well as LoS/OLoS communication

with other vehicles at all four segments of straight roads connecting to the roundabout. Similar to

the results of the highway scenario, the highest percentage of participating vehicles with OSPAMD

(a)

(b)

Figure 3.10: Percentage of Participating Vehicles with OSPAMD less than 10 for Roundabout
Scenario: (a) near the Entry or the Exit (b) within the Roundabout
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Figure 3.11: OSPAMD for Roundabout Scenario with Traffic Density of 36 veh/km (2500 veh/hr
with 70 kph average speed) with Varying Cooperative Perception Participation Rate.

<10 is measured to be around 50% at the center of the roundabout with the lowest density setting.

It is shown that the performance of the BSM-based scheme is significantly exacerbated when the

vehicles are located further away from the center (near entry / exit) and as the traffic density is

increased even with higher participation rates.

Fig. 3.11 shows a heat map of the OSPAMD for a closer look at the spatial distribution of

the metric in the roundabout scenario. It shows that significant improvement is achieved at the center

starting at 15% participation. Increasing the participation rate further improves the perception on

the straight road segments. Beyond the participation rate of 50%, the overall perception does not

improve significantly.

3.4.5 Costs of Increasing Participation Rates

We estimate the communication costs of the cooperative perception scheme by computing

the packet delivery ratio (PDR). For our purposes, it is defined as:

PDR =
# of successfully received packets

# of expected received packets
(3.18)

Fig. 3.12a and 3.12b show plots of the PDR for the indicated settings. Increasing the

participation rate results in a lower PDR, more in the roundabout intersection scenario than in the

highway scenario, although the traffic densities considered are lower at the intersection. Note that

the significant drops in the PDR at high participation rates and high traffic density settings do not

totally negate the benefits of the cooperative perception; they serve to level-off its benefits to the

participants. That there is some tolerance of the deterioration of the PDR at high participation rates

is an inherent application-level reliability of the cooperative framework[89]. Not all of the broadcast
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(a)

(b)

Figure 3.12: Average Packet Delivery Ratio (PDR) for (a) Roundabout and (b) Highway Scenarios.

information at 20 Hz may be needed to compute the perception metric at 10 Hz. Furthermore, we

had included a communication buffer to offset some of this effects. Still, the lower PDR noted at high

participation rates, is one of the limiting costs for the plateauing of the benefits of the cooperative

scheme as shown in Fig. 3.9 and 3.10. In more heavily congested traffic, a severe communication

network congestion may not permit high participation rates due to bandwidth bottlenecking. This

could result in a further decrease in the overall PDR thereby necessitating advanced network con-

gestion control schemes [121]. For the presented scenarios, however, the average packet delay (Fig.

3.13) is shown to be around 22 ms for the highest density test setting. With a slower data rate of

4.5 Mbps, the average delay with the maximum participation rate could be as high as 200 ms which

is still manageable with the presented framework. These results match that of previous vehicular

network studies [93, 60, 4].

Next we consider the computational costs. Compared to the BSM scheme, the additional

computational costs of the proposed framework mainly arise from the data processing, especially
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Figure 3.13: Average Packet Delay for the High Traffic Density (192 veh/km)

(a)

(b)

Figure 3.14: (a) Average Number of Pair-wise Evaluations Required for Data Association (b) Average
Processed Data Size per Second for the High Traffic Density (192 veh/km)

the data association step. This is due to the increased cardinality of the data set |Ψr| = Nr (Eq.

4.6) which includes both FOV sensor generated and received data. For the proposed framework, the

cardinality is approximately equal to Nr,DCP ≈ Φc,cav(θ) · (Ncav +1), where Φc,cav(θ) is the average

number of communicable FoV data per vehicle (Eq. 4.5) which monotonically increases with a finer
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sensor resolution, θ, and Ncav is the total number of vehicles successfully communicating with the

ego-vehicle. For the BSM scheme, the cardinality simply becomes Nr,BSM = Φc,ego(θ)+Ncav. It can

be easily seen that the cardinality difference between the two schemes will increase significantly as the

traffic density increases and/or the average sensor resolution becomes finer for a given participation

rate. The latter will further amplify the computational effort and data size for the DCP approach

compared to the BSM. The results for the high traffic scenario in Fig. 3.14 shows the number of

required pairwise evaluations for the data association process (Fig. 3.14a ) and the average data

size, assuming 39B for the headers and 60B for each object vehicle information, which need to

be processed by each participating vehicle per second (Fig. 3.14b ). For details of packet size

estimation, we refer the readers to [135, 122]. The computational effort for the association process is

O(C(Nr, 2)) as it requires C(Nr, 2) =
(Nr)!

2(Nr−2)! pair-wise evaluations (See Fig. 3.14a). Each iteration

involves matrix inversion computations of the covariance matrix for the uncertainty of the shared

estimate which as complexity O(n3), where n is the size of the matrices inverted. Here, n = 4 for

covariance matrices associated with the 2D position and velocity estimates. [99]. Considering the

fusion computations in Eq. 4.9 as well, we observe that the needs for these computations grows only

linearly with participation and traffic density. Therefore, we conclude that, although the proposed

DCP approach involves more computations and data sizes than the baseline BSM approach, the

needs may not be prohibitively expensive for modern and future on board computing devices. The

benefits depicted in Fig. 3.9 and 3.10 may outweigh the added costs from these drawbacks.

However, since we observed diminishing returns of the benefits of the DCP at high par-

ticipation rates (especially at high sensor resolutions, where the computations and data size are

highest), there is an imperative to reduce the amount of data communicated, not only to reduce

computational cost, but also to alleviate potential bandwidth bottle-necking. In this regard, one

attractive approach is to develop algorithms where senders filter the information they broadcast

based on some value criteria [123, 50].

3.5 Conclusion

In this chapter, we have provided a generalized cooperative perception framework based

on decentralized V2V vehicular communication. We presented evaluations of the framework based

on randomized traffic simulations for multi-lane highway and roundabout intersection scenarios,
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considering both communication losses and sensor FOV resolution issues.

The summarizing observation is that there are levels of optimal participation rates for co-

operative perception beyond which the overall perception does not improve significantly while the

cost of communication losses and computation increases dramatically. The optimal participation

rates are a function of the traffic scenario and assumptions about the individual vehicle’s FoV sensor

resolution. In particular, investments on more sensors (in number and capability) alleviate the need

for very high participation rates for the most number of participants to benefit from engaging in

the cooperative scheme. Comparisons with a BSM-based baseline cooperative perception scheme

shows that the proposed approach benefits a much larger percentage of participating vehicles with

lower perception errors, even at modest participation rates, in both highway and urban roundabout

scenarios.

We also observed that these benefits come with higher data traffic and computational costs

than the baseline, specially at high participation rates, although the computational needs remain

within the realm of modern on-board devices. One solution to reduce the data traffic in the commu-

nication medium and the associated computational needs at each receiver is to allow senders reduce

the cardinality of the data they broadcast using one or more value criteria [50, 110, 57].
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Chapter 4

A Novelty Discrimination Method

for V2V Decentralized Cooperative

Perception in V2V Connected

Traffic
1

4.1 Abstract

In this chapter, we propose a novelty discrimination method for decentralized cooperative

perception and evaluate its performance in high density vehicular traffic scenarios. The presented

scheme aims to filter communicable Field-of-View (FoV) perception data based on the novelty-value

of information prior to broadcasting it in the vehicle-to-vehicle (V2V) communication network. The

potential benefits of these approaches include, but are not limited to, the reduction of bandwidth

bottle-necking and the minimization of the computational cost of data association and fusion post

processing of the shared perception data at receiving nodes. We provide the details of the proposed

method along with its evaluation in stochastic traffic settings at various rates of participation of

1The contents of this chapter have appeared in a journal publication:

� D. D. Yoon and B. Ayalew, ”A Novelty Discrimination Method for V2V Decentralized Cooperative Perception,”
in IEEE Transactions on Vehicular Technology, 2021 (In Review)
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individual vehicles in the cooperative perception framework. The proposed method does indeed im-

prove bandwidth utilization and latency without significant compromises on the average cooperative

perception metric for participants.

4.2 Introduction

The potential benefits of vehicular communication technologies such as Dedicated Short

Range Communication (DSRC), cellular communication (4G LTE or 5G), or Wi-Fi [139, 39] have

received significant attention in recent decades. These technologies enable an Internet of Vehicles

(IoV) where connected vehicles can utilize the communication medium to exchange various types of

information. For example, vehicles may share their Field-of-View (FoV) sensing information with

others via inter-vehicular networks, allowing them to leverage each other’s raw sensor measurements

or even processed perception information. This allows participating vehicles to expanding their

situational awareness (SA) by overcoming technical limitations (e.g., Line-of-Sight (LoS), detection

range, resolution) of their on-board sensors (e.g. radar, LiDAR, and camera) and improving the

robustness and the reliability of their local composite FoV perception [149, 68, 55]. Such use of

vehicular network technologies has come to be known as cooperative perception, although it is also

often called collaborative perception when the perception information is shared for the purpose of

achieving a common goal in a centralized scheme. The cooperative/collaborative perception scheme

is vital for advancement of intelligent transportation systems such as intelligent traffic management

systems, Advanced Driver Assistance Systems (ADAS), and autonomous driving systems [48, 23, 2].

A number of studies have introduced network-level strategies devised to relieve vehicular

network congestion, such as packet-dropping [116], adaptive packet transmission [115, 80], optimized

channel modeling [76], and prioritized packet assignments [140]. While these methods can potentially

alleviate the network congestion by delaying or even rejecting communications, they may still lead

to significant computational demands or delays of essential contents of information being shared.

To minimize the chances of information of negligible novelty-value being disseminated in

the network, the issue can be addressed by careful design of data discrimination or filtering methods

at all sender vehicles (of the information). [123, 50]. By doing so, each participating vehicle can

actively reduce the size of the packet it communicated by retaining only valuable information and

thereby minimize the overall load on the communication medium.
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Despite the positive results of existing studies [127, 40, 50, 79], the limitations for real traffic

applications still exist in their underlying assumptions. For example, it is not possible to know the

absolute error of its perception information since the ground truth of an object vehicle cannot be

known. Evaluation of other vehicles’ communication environment is also extremely difficult even with

the utilization of RSUs, and maintaining V2V communication history with respect to all participating

vehicles will significantly increase the computational complexity and data intensity especially in a

congested environment. In this chapter, we propose a V2V cooperative framework that evaluates

the novelty of information by comparing the new perception information to be communicated with

previously communicated data that are either transmitted by ego-vehicle or received from other

participating vehicles within a set time window. Without any anticipation or assumption on other

vehicles’ perspective, ego-vehicle attempts to evaluate the value of the contents of its CPM in the

current communication network.

In this chapter, we investigate the potential of a novelty-based discrimination method for

selective dissemination of vehicular information in a vehicle-to-vehicle (V2V) decentralized coopera-

tive perception framework. The proposed method constantly evaluates the novelty of newly acquired

FoV perception data prior to the broadcast and selectively communicates information of novelty-

value above a certain threshold. Novelty of new information can be assessed based on the relative

entropy of the newly acquired FOV perception data with respect to the previously communicated

information from other vehicles’ as well as the ego-vehicle’s own prior broadcast data. Since there

will be multiple estimates being shared, especially in high vehicular traffic density, some discrimi-

nation or filtering can be made based on the statistics of the relative entropy values. The relative

entropy has also been used in [50] as a way to assess the anticipated value of information before

broadcasting. Although the approach in [50] is similar to ours, their method required a participating

ego vehicle to make inferences about communications among other vehicles that the ego-vehicle may

not necessarily be communicating with. While probabilistic models can be constructed to attempt

to predict the traces of all nearby communications, the application is unlikely to robust and it sig-

nificantly increases the computational loads for participants. By contrast, our approach relies on

information already available at each participating ego-vehicle thereby avoiding a need for making

inferences about communications among other vehicles.

The main contributions of this chapter can be summarized as follows:

� We present the details of a vehicular perception data discrimination method that statistically
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Figure 4.1: Overview of the Proposed Novelty Discrimination Computations at Each Participating
Ego-Vehicle

evaluates the novelty of the new perception information to be broadcasted for decentralized

cooperative perception frameworks in V2V networks.

� We evaluate the presented method in highway scenarios at different vehicular traffic density

settings utilizing a comprehensive cooperative perception metric that considers traffic-relevant

kinematic states and their associated uncertainties.

� We discover that there are promising benefits for the novelty discrimination method with

respect to improving bandwidth utilization at moderate participation rates and minimizing

communication delay with insignificant compromises on the perception accuracy.

The rest of the chapter is organized as follows. Section 4.3 gives the system framework and

modeling details. Section 4.4 gives the results and discussion from the evaluation of the proposed

framework. Section 4.5 summarizes the main conclusions and directions for further investigation.
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4.3 System Framework and Modeling Details

4.3.1 Data Processing Framework

A schematic overview of the proposed framework is shown in Fig. 4.1. The framework

consists of three main parts, which are the FoV perception management, the V2V communication

data collection and synchronization, and the sensor to system fusion processes. For the FoV percep-

tion, each vehicle employs a set of on-board sensors (radar, LIDAR, camera, etc.) for object vehicle

estimation and another set of sensors (GPS, IMU, etc.) for ego localization. These measurements

are processed by an Interacting Multiple Model (IMM) filter to form sensor tracks for the ego vehicle

as well as each vehicle in its sensor’s composite FoV. In the following, we refer to the output of this

process as sensor track data. At the same time, all participating vehicles receive a set of sensor

tracks from others via the V2V network which are processed through a communication buffer for

time synchronization. The combined set of sensor tracks are then associated and fused with the sys-

tem tracks (tracks held in system track memory at the ego-vehicle) via a data association and fusion

process. Therein, the data association step clusters the collected information into newly identified or

pre-existing tracks, and each set of associated data are processed to yield a single fused system track

for each object. Following this step, the ego sensor tracks are evaluated for their relative novelty

against other sensor tracks and if deemed valuable, they are shared with other connected vehicles

via V2V broadcast.

We keep several simplifying assumptions from [143] as listed below:

� Each vehicle in traffic is represented as a point mass; vehicle size and geometry variations are

not considered in this study.

� Each vehicle can detect and estimate its own kinematic state, as well as of all other vehicles

located within the set sensor range of 150 m. We adopt the sensor FoV angular obstruction

filtering model from [143]. See Section. 4.3.3 later.

� Each participating vehicle computes sensor-level data association and fusion to generate state

(2D position and velocity) estimates of all detected vehicles in its FoV. We reduce this process

to IMM filters in which sensor noise is modeled as additive Gaussian noise on each vehicle’s

FoV measurement data.

� Each connected vehicle shares its FoV generated IMM filter outputs by broadcasting to sur-

rounding vehicles (single-hop V2V) utilizing CSMA/CA (Carrier Sense Multiple Access with
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Collision Avoidance) protocol.

4.3.2 Novelty-aware CPM Selection

4.3.2.1 Design Overview

The objective of novelty-aware evaluation is to exclude redundant sensor tracks (low novelty-

value) in CPMs and broadcast only the sensor tracks with high novelty-value. The evaluation must

be performed by each participating vehicle by computing the novelty-value of the new FoV data

with respect to its previously broadcasted CPMs as well as other vehicles’ communicated CPMs on

the corresponding vehicle. In order to do so, the ego-vehicle must store and maintain the following

information in memory over the past buffer window (BW), tNbf
, or the communication time interval

(CTI) ,tnc ,:

� Measured FoV history (BW): Records of FoV sensor tracks that the ego-vehicle has maintained

over the past buffer time window.

� Ego-broadcasted CPM history (BW): Records of CPMs that the ego-vehicle has successfully

broadcasted over the past buffer time window.

� Newly received CPMs (CTI): A set of new CPMs that the ego-vehicle has received since its

last communication interval.

� Connected vehicle list (CTI): A list of connected vehicles Sv,t that the ego-vehicle updated

based on CPMs that the ego-vehicle successfully received over the past communication interval.

An example scenario is illustrated in Fig. 4.2. To focus on the workings of the novelty-

aware evaluation, we will only consider communicating sensor tracks on object vehicles which

are non-connected vehicles labeled as OV 1, OV 2, and OV 3. Connected vehicles are labeled as

CV 1, CV 2, ..., CV 4. In the scenario shown, the ego-vehicle can only perceive OV 2 and OV 3 di-

rectly. During the communication interval, the ego-vehicle has received sensor tracks of all three

object vehicles from different sets of connected vehicles as shown on the table: CPMCV 1 containing

OV 1CV 1 and OV 2CV 1, CPMCV 2 containing OV 2CV 2 and OV 3CV 2, CPMCV 3 containing OV 3CV 3,

and CPMCV 4 also containing OV 3CV 4. Prior to broadcasting, the ego-vehicle evaluates each of its

FoV sensor tracks (OV 2Ego and OV 3Ego) to corresponding sensor tracks received from other vehi-

cles. Since the ego-vehicle does not have any perception information on OV 1, it does not attempt

any evaluation on the received OV 1 sensor track. The details of the novelty-value computations are
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given in the next subsection below. For now, the results of the novelty evaluation given in the table

insert in Fig. 4.2 show that the OV 2Ego sensor track of the ego-vehicle has a high novelty-value

compared to he CPM broadcast by CV 1 and CV 2, which contain OV 2CV 1 and OV 2CV 2, respec-

tively. Based on this result, the ego-vehicle decides to share only its OV 2Ego sensor track during

the following transmission. While this scenario provides a basic understanding of the framework, a

number of exceptions must also be defined. In the following conditions, the ego-vehicle must share

its sensor track with others:

� A new connected vehicle is detected since the last ego CPM transmission.

� A new object vehicle is detected within the FoV since the last ego CPM transmission.

Figure 4.2: Novelty-aware Evaluation and Selective V2V Broadcasting
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Figure 4.3: Novelty-value discriminating control flow at each ego-vehicle.

� A sensor track has not been communicated over the buffer time window.

� A sensor track has a high novelty-value than at least one of the corresponding sensor tracks

(about an object vehicle, connected or not) received from other connected vehicles.

The control flow depicted in Fig. 4.3 shows the overall decision process incorporating the aforemen-

tioned conditions.

4.3.2.2 Novelty Evaluation

The novelty-aware communication constantly evaluates the perception information prior to

broadcasting to assess the value of the contents and to communicate essential parts of the information

selectively. To do so, we need a metric that can provide a concise and efficient statistical measure that

can be computed without increasing the computational complexity of the framework. In information

theory, the information gain achieved by random data distribution Q in comparison to another
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random distribution P or the relative entropy of P with respect to Q is measured using the Kullback-

Leibler (KL) divergence [14]:

DKL(P,Q) =

∫ ∞

−∞
p(x) log(

p(x)

q(x)
)dx (4.1)

where p and q denote the probability densities of P and Q. The KL divergence for two d-variate

Gaussian distributions, PN ≈ N(µ1,Σ1) and QN ≈ N(µ2,Σ2), has a closed formed expression given

as [49]:

DKL(PN , QN ) =
1

2
[log
|Σ2|
|Σ1|

+ Tr[Σ−1
2 Σ1]

− d+ (µ1 − µ2)
TΣ−1

2 (µ1 − µ2)]

(4.2)

In our application, the data association step (Section. 4.3.4) must precedes the computation of the

KL divergence as the association process will identify a set of communicated sensor tracks to be

fused with the ego vehicle FoV sensor track. The KL divergence of the ego vehicle sensor track can

then be computed with respect to each of the associated tracks. Revisiting Fig. 4.2 as an example,

the evaluation of the KL divergence on the OV 2 is computed between the ego vehicle sensor track

PN = OV 2Ego and each of communicated and associated sensor tracks QN = OV 2CV 1 or OV 2CV 2.

Only the ego vehicle sensor track that satisfies the following condition with respect to all of its

associated tracks will then be broadcasted via V2V communication:

DKL(Ψego,Ψ1...Nest
) ≥ ϕNV T (4.3)

where Ψ1...Nest
is a list of communicated sensor tracks that are associated with Ψego and ϕNV T is a

novelty-value threshold (NVT) which can be set at a desired level or even adjusted dynamically to

tune the desired degree of discrimination. Further discussion of the data association and definition

of the sensor tracks (Ψego,Ψ1...Nest
), and the novelty discrimination is given in Section 4.3.6 below.

4.3.3 Field-of-View Vehicle Tracking

An IMM filter is used for the estimation and tracking of self as well as of nearby vehicles

within the ego-vehicle’s FoV as described in [143]. Utilizing constant velocity (CV) and constant

acceleration (CA) based Kalman filters and blending hypothesis of each mode, the IMM filter can
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obtain more consistent estimates of the motion state of vehicles than what can be obtained by

assuming any one of the modes alone [105]. Denoting the set of indices for the vehicles in the shared

traffic T (set of vehicles) at time t by ζT,t, the detected subset ζFoVi,t in the FoV of vehicle i at time

t is defined as:

ζFoVi,t = {j ∈ ζT,t|d(i,j),t < Ri ∧ j ∈ LoSi,t} (4.4)

where d(i,j),t is the Euclidean distance between vehicles i and j, at time t. Eq. (4.4) defines the

FoV neighborhood such that each vehicle i has a FoV measurement Z on vehicle j, if and only if

vehicle i and j are within a set on-board sensor detection range, Ri, and the line-of-sight (LoS)

between the two vehicles is unobstructed (j ∈ LoSi,t ⇔ i ∈ LoSj,t). To prevent broadcasting

track data comprised of estimates with premature convergence (or of large uncertainties), we set an

allowable maximum threshold for the determinant of covariance matrix accompanying each track.

This identifies a communicable set of FoV generated track data Φci,t as:

Φci,t = {[Xj,t, Pj,t]|det(Pj,t) ≤ ϕIMMi ∧ j ∈ ζFoVi,t} (4.5)

which is about vehicles j (j ∈ ζFoVi,t) that are detected and estimated by vehicle i, Pj,t is the

covariance matrix accompanying IMM estimates of the states Xj,t, and t is the time index for the

send time. ϕIMMi is an allowable threshold on the convergence of the IMM filter for each track.

This issue becomes more important in rapidly changing traffic where track birth and death effects

are frequent [142].

4.3.4 Data Association and Fusion

The cooperative perception framework we presented in [143] lacked the retention of prior fu-

sion computations. Therein, at every iteration of the data association and fusion process, the newly

computed perception information were considered directly usable by the higher level application

such as ADAS for that instant only. For the next iteration, a new set of perception information were

computed without any utilization of the fusion history. Such a fusion architecture is often called a

sensor-to-sensor track fusion architecture [26]. Each participating vehicle (sensor/sender) generated

FoV estimates (sensor tracks) and periodically sent them to the ego-vehicle (system/receiver). The

ego-vehicle then performed data association of the sensor tracks and data fusion process to form sys-

tem tracks where each system track corresponds to a single hypothesized object vehicle without the
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use of the previous state estimates of the system tracks. Although such an architecture could avoid

correlated estimation errors, the overall process was not efficient since the prior processing history

are discarded. To address this issue, we adopt the sensor-to-system track fusion architecture[26],

which is depicted as follows in Fig. 4.4.

Figure 4.4: Sensor to System Track Fusion Framework

As mentioned in Section 4.3.1, all sensor tracks, generated by the ego-vehicle or received from

other connected vehicles via broadcast, must go through a data association process. Dropping the

time index for clarity, let Φf be the set of FoV data (state estimates and corresponding covariances)

and Φc be the set of buffered communicated data. The combined set of estimates is:

Ψsnr = Φf ∪Φc (4.6)

where the cardinality of the union set is |Ψsnr| = Nsnr. Given that there is an existing set of system

tracks, Ψsys with |Ψsys| = Nsys, the Bhattacharyya distance is computed for all possible indexed

pair i = 1, . . . , Nsnr and , j = 1, . . . , Nsys, as [11]:

BD(i,j) =
1

8
(Xi −Xj)

T (
Pi + Pj

2
)−1(Xi −Xj)

+
1

2
ln(

det(
Pi + Pj

2
)√

det(Pi)det(Pj)
)

(4.7)

We define a set threshold, ϕBD, to identify a group of pairs of estimates that can be asso-
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ciated with (directly or via neighboring estimates) one another whenever (BD(i,j) ≤ ϕBD). Such

a group/cluster of associated estimates are considered to potentially represent the same object or

vehicle. The sensor tracks that are not associated to the pre-existing system tracks, go through a

sensor-to-sensor track association process to form a new set of system tracks [143]. We denote all

such groups of associated estimates by:

Sasso = {Ψa1 ,Ψa2 , . . . ,ΨaNv
} (4.8)

whereΨa1∪Ψa2∪Ψa3 · · ·∪ΨaNv
⊆ (Ψsnr∪Ψsys), eachΨan = [Xan ,Pan ] is a cluster set of associated

estimates (n = 1, . . . , Nv) that may or may not contain one of the pre-existing system tracks.

The states and the covariances are Xan = {Xan1
, . . . , XanNest,n

} and Pan = {Pan1
, . . . , PanNest,n

}

respectively, |Ψan
| = Nest,n is the cardinality of the corresponding cluster Ψan

. Nv is the number

of clusters.

As shown in Fig. 4.4, the proposed framework can be viewed as a centralized system with

two independent sensors: the ego vehicle’s on-board sensors and the vehicular communication. The

sensor data (on-board measurements of ego or connected object vehicles) are processed locally to

form sensor tracks (IMM) which are then sent (within the ego’s system or via V2V communication)

to the ego vehicle to be fused and form system tracks. While the two sensors can be considered as

independent and uncorrelated, the system track has to deal with the problem of correlated estimation

errors due to the presence of historical data from each of the sensor tracks.

As in our previous study [143], the Fast Covariance intersection (FCI) fusion algorithm is

adopted here to manage an unknown degree of inter-estimate correlation and compute a consistent,

albeit conservative, fused estimate [72, 34, 92]. Using FCI, the group of estimates in each associated

cluster Ψan
is fused into the single estimate Ψfn = [Xfn , Pfn ] where:

P−1
fn

=

Nest,n∑
k=1

ωank
P−1
ank

Xfn = Pfn

Nest,n∑
k=1

ωank
P−1
ank

Xank

(4.9)

where the non-negative fusion weights satisfy
∑Nest,n

k=1 ωank
= 1. Fusing all associated clusters,

(Ψan
= [Xan

,Pan
] → Ψfn = [Xfn , Pfn ] for all n = 1, . . . , Nv ), we arrive at the final set of fused

estimates with the final fused cardinality of Nv:
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Ψf = {Ψf1 ,Ψf2 , . . . ,ΨfNv
} (4.10)

4.3.5 Communication Buffer

Since sensor tracks that have been measured or transmitted at potentially different times

will be compared, it is important to synchronize the tracks prior to the novelty evaluation. To this

end, we use a communication buffer to not only keep all sensor tracks from CPMs synchronized

to the current process time but also to compensate for intermittent communications resulting from

packet drops and time synchronization issues for the data association and fusion step. The following

formulation uses the latest set of stored data to estimate and fill in for recently missed information

assuming a constant velocity motion model to predict the states of those object vehicles in the buffer

to the current time index. Let Xi,j = {Xtc−Nbf
, . . . , Xtc−1, Xtc}, where tc is the most current time

index, be the series of estimates that have been communicated between vehicles i → j, and Nbf

is the length for the communication buffer/window. Each communication may be either successful

ξi,j,t = 1 or unsuccessful ξi,j,t = 0. Then, the buffered estimate at the most current step, Xi,j,tc can

be computed from:

Xi,j,tc = ξi,j,tcXi,j,tc + . . .

+

Nbf∑
l=1

{(
l∏

q=1

(1− ξi,j,tc−q+1))ξi,j,tc−lO(∆t)Xi,j,tc−l}
(4.11)

whereO(∆t) is a state transition matrix of the constant velocity model with time step ∆t = ttc−ttc−l.

If no data is received about an object for longer than the set buffer window, no information will be

retained about that object until the next successful communication.

4.3.6 Novelty Discrimination

As described in Section 4.3.2.2, each of the ego vehicle FoV sensor tracks that has one or

more associated sensor tracks will be evaluated for its information novelty-value using Eq. 4.2. Then

a set of FoV sensor tracks ΨfNV
can be identified based on Eq. 4.3 as:
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ΨfNV
= {Ψfi ∈ Ψan

|DKL(Ψfi ,Ψn1...Nest
) ≥ ϕNV T } (4.12)

where Ψan
is an associated cluster which contains one of the ego vehicle FoV sensor track, Ψfi , and

other associated sensor tracks, Ψn1...Nest
, that are transmitted by other connected vehicles.

4.3.7 Performance Metric

In [143], we modified the optimal subpattern assignment metric (OSPA) [112] to consider the

uncertainty information associated with the corresponding estimates while weighing all possible pair-

wise assignments and cardinality errors between the associated and fused outputs and the ground

truth. This metric was used to evaluate the proposed scheme at scale based on various traffic

scenarios and participation rates. The modified OSPA metric uses Mahalanobis distance (MD) to

incorporate the covariances obtained with the state estimates. We also use the metric to compactly

quantify both the localization and 2D velocity state estimation errors. Our final modified OSPA

metric is given by Eq. (4.13) [143]. We shall use this metric continuing form the previous chapter to

evaluate the performance of the proposed Novelty discriminating approach in the following section.

4.4 Results and Discussions

4.4.1 Simulation Settings

To evaluate the performance of the proposed framework, we will be focusing on scenarios

with highly congested vehicular traffic. We created a unidirectional 4-lane traffic environment using

the traffic microsimulation software PTV VISSIM [95]. A set of 30 simulation runs were taken for

each case of 3 different traffic flow rates (9500, 11500, and 15500 veh/hr) with a prescribed average

traffic speed of 60-70 kph, which correspond to traffic density settings of 146, 177, and 238 veh/km.

Randomized driver and vehicle model parameterizations are used to represent realistic traffic. With

these randomizations and multiple simulation runs we take a Monte Carlo approach for for evaluating

the cooperative perception scheme in order to account for the stochastic nature of the simulated

traffic as well as of the communication network.

For the communication model, a dual slope communication loss model has been adopted

[1, 93] and the stochastic fading model of Nakagami-m is used to account for the path loss due to
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d
(c)
OSPAMD

(Xg,Ψf ) =

(
1

Nv

(
min

π∈ΠNv

m∑
i=1

MD(c)(Xgi ,Ψfπ(i)
)p + cp(|Ψf | − |Xg|)

)) 1
p

(4.13)

small scale fading of transmitted rays [89]. To consider the Medium Access Control (MAC) layer

issues with the ad-hoc vehicular communication network, we adopted the Carrier-Sense Multiple

Access with Collision Avoidance (CSMA/CA) protocol.

As a baseline for comparison, we considered an identical cooperative perception framework

without the novelty discrimination method where all of the sensor tracks are actively communicated

with other connected vehicles without any filtering process. In the following discussions and the

figures, we will use the shorthand ND to refer to our proposed approach. The performance is

evaluated by computing the modified OSPA metric from the perspective of each participating vehicle

for a region of 150-m radius centered on that vehicle at the various geographic locations in the traffic

environment under consideration (excluding the boundary entry/exit regions). In all evaluations,

we vary the participation rate from 15 to 100% (fully connected and cooperative).

4.4.2 Performance of Novelty-aware Dissemination

For the comparative analysis and the evaluation for the performance of the proposed method,

two different discriminating threshold settings were used (ϕNV THigh
and ϕNV TLow

), where the high

setting utilizes a higher threshold to isolate and disseminate vehicular information of higher novelty-

value. These two settings are compared with a framework without any novelty measure to show the

relative benefits of the proposed dissemination method.

Fig. 4.5 and Fig. 4.6 show the average bandwidth usage and the average communication

delay per vehicle for varying participation rates and at three traffic density settings. Overall, a

gradual increase in the bandwidth usage (Fig. 4.5) is shown with increasing vehicular traffic density

and participation rates. This trend is inevitable for the following reasons. The number of FoV

sensor tracks grows with the increase in the traffic density since more and more vehicles are detected.

This continues to increase until it is limited by the sensor resolution of each vehicle. In addition,

the presence of increased number of vehicles in FoV also means that there will be more frequent

communication LoS blockage. As a result, the increase in the participation rate has even more

significant effects on both bandwidth utilization and communication delay at higher traffic density
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(a) 146 veh/km

(b) 177 veh/km

(c) 238 veh/km

Figure 4.5: Average Bandwidth Usage (%) for Each Traffic Density Setting

settings as can be seen by comparing Fig. 4.5a and Fig 4.6a with the lower density settings. Notably,

without the proposed novelty discrimination scheme, we see in Fig. 4.5 that the bandwidth usage

reaches the maximum utilization (100%) near 10-80% participation rate for the high traffic density

of 177 and 238 veh/km. In [143], it was noted that such effects translate into computational loads

that grew linearly with participation and traffic density, which motivated the use of our proposed
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(a) 146 veh/km

(b) 177 veh/km

(c) 238 veh/km

Figure 4.6: Average Delay (ms) for Each Traffic Density Setting

scheme.

It can also be seen that the proposed novelty discrimination scheme does alleviate the

bandwidth usage at moderate participation rates for all three traffic density settings, albeit the

improvements can be small when the discrimination threshold (NVT) is low. For the highest traffic

density setting (238 veh/km) with very high (90-100%) participation rates, it can be seen that the
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low NVT setting could not reduce the overall bandwidth usage (Fig. 4.5c) despite of the reduction

in the average delay (Fig. 4.6c). Since each participating vehicle is broadcasting only a subset of

FoV perception data that are expected to have more novelty-value than others, the congestion on

the V2V network is mitigated. This is backed by Fig. 4.6 which shows the substantial reduction

in the average communication delay for all communicated CPMs. It is interesting to note that, at

high traffic density settings, the high NVT setting had a diminishing improvement on the bandwidth

usage from mid to high (60% to 100%) participation rates while it had a consistent improvement in

the average delay. The latter is due to the decrease in communicated CPMs with the high filtering

(high NVT setting).

While such results were expected based on the proposed framework, the important question

is whether there was any sacrifice of perception accuracy due to the reduction of the communicated

content in CPMs. With a high novelty-value threshold, there is a risk of filtering valuable perception

data which in result can worsen the perception accuracy of the participating vehicles. In Fig. 4.7,

modified OSPA values that account for 90th-percentile of the participating vehicles are shown. These

values represent the average perception accuracy for the majority of participating vehicles throughout

the simulation period. For the first two lower traffic density settings (146 and 177 veh/km), all three

cases achieved the same modified OSPA value when the participation rate was equal to or higher

than 25%. For the case of 238 veh/km, however, the proposed framework further improved the

perception of the participating vehicles for 25-50% participation rate. It is important to note that

the OSPA metric considers both the uncertainty of the estimates and also the cardinality errors

which are heavily penalized. Therefore, the results shown in Fig. 4.7 confirms that the presented

novelty value discrimination scheme does not degrade the perception accuracy starting with rather

low levels of participation.

The observations in the previous two paragraphs that the bandwidth utilization as well as

the average delay are improved at the high NVT setting without compromising the performance of

the cooperative perception suggest that even higher NVT setting settings can be used in extremely

congested environments to alleviate the congested communication medium. Dynamic adjustments

of the NVT settings could also be pursued.
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(a) 146 veh/km

(b) 177 veh/km

(c) 238 veh/km

Figure 4.7: 90th Percentile Modified OSPA for Each Traffic Density Setting

4.5 Conclusion

In this chapter, we have presented a novelty discrimination method for decentralized co-

operative perception framework that has the potential to alleviate known shortcomings leading to

bandwidth limitations and delays in V2V networks. The main idea of the method is to endow each

participating ego-vehicle with a way to evaluate the novelty value of the perception data in it in-
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cludes in its CPM so that only data deemed of sufficient novelty value is included. We evaluated the

proposed scheme using randomized traffic simulations for a multi-lane highway environment with

dense traffic settings, considering FoV sensing and communication losses.

The results showed that there is a clear benefit in the reduction of bandwidth utilization and

the average communication delay with the proposed novelty discriminating approach. The average

bandwidth utilization improvements appear can be up to 20% at moderate participation rates, while

similar average delay improvements are achieved at high participation rates and high traffic density

settings. We observed that these benefits are realized without sacrificing the perception accuracy

of the main decentralize cooperative perception scheme. The effect of novelty-value threshold is

also presented where the high threshold setting further reduced the bandwidth utilization and the

average delay.
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

The dissertation focused on improving situational awareness of intelligent vehicles in con-

nected traffic with the consideration of 1) social driver model and predictive controllers, 2) vehicular

data association and fusion architecture, 3) decentralized cooperative perception strategy, and 4)

effects of participation variations and other limitations on the communication network. We briefly

summarize the main conclusions from each of these considerations.

First, a human-like social driver model is presented. The social aspect of human driving

behavior is captured using a modified social force model (SFM) which is then implemented for

predictive guidance and control via a nonlinear model predictive control (NMPC) framework. The

model showed good performance in various simulated scenarios including a single-lane as well as

multi-lane traffic situations and demonstrated proper behaviors such as adaptive cruise control

(ACC) and lane-changes while maintaining reasonable vehicle dynamic response.

Then, a hierarchical vehicular social force control scheme is presented to utilize lane-based

social force aggregation that would rely on downstream traffic information obtained via vehicular

connectivity. The upper level NMPC with a long preview performs optimal lane selection computa-

tions, and the planned lanes are then passed as the reference trajectories for the lower-level NMPC

which enforces lane tracking along with other social forces while maintaining proper vehicle dynam-

ics. The presented results showed clear performance benefits in terms of more efficient guidance of

the ego vehicle.
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A vehicular data association and fusion architecture is presented utilizing Bhattacharyya

Distance Filter (BDF) and Covariance Intersection Fusion (CIF). The performance is demonstrated

for generalized cases where each communicating vehicle broadcasts ego sensor field of view (FoV)

estimates along with corresponding uncertainties, and also acts as a fusing node for perception

data received from other vehicles in its communication range. For the evaluation of the proposed

framework, a modified Optimal Subpattern Assignment Metric (OSPA) is proposed as a compact

metric that takes into account the multi-target estimation error from the perspective of any one

participating vehicle.

With the proposed data processing architecture, a generalized cooperative perception frame-

work is presented that is based on decentralized V2V vehicular communication. The framework is

then evaluated on randomized traffic simulations for multi-lane highway and roundabout intersection

scenarios considering both communication losses and sensor FOV resolutions. Compared to a base-

line cooperative perception scheme, the presented cooperative perception framework benefits a much

larger percentage of participating vehicles with lower perception errors, even at modest participation

rates, in both highway and urban roundabout scenarios. It is observed that these benefits come with

higher data traffic and computational costs than the baseline, specially at high participation rates,

although the computational needs remain within the realm of modern on-board devices.

Finally, a novelty discrimination method for decentralized cooperative perception framework

is presented to alleviate the bandwidth limitations and the communication delays in V2V networks.

The method is evaluated based on randomized traffic simulations demonstrated a clear benefit in

the reduction of bandwidth utilization and the average communication delay with the proposed

novelty discriminating approach. The average bandwidth utilization improvement up to 20% is

shown at moderate participation rates, while similar average delay improvements are achieved at

high participation rates and high traffic density settings. Most importantly, these benefits are

achieved without sacrificing the perception accuracy of the main decentralize cooperative perception

scheme.

5.2 Future Works

There are a number of areas covered in this dissertation that require for further investigation

and open avenues for future work. Some of the main ones are discussed below:
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� The social force aggregation control introduced in Chapter 2 utilizes a hierarchical vehicular

SFM control scheme where the upper level predictively select the most efficient lane over a long

horizon covered by connectivity, and the lower level enforces the lane tracking while considering

higher fidelity social force resolution and lane-changing dynamics within the shorter horizon

captured by the ego vehicle’s FoV. In the completed work, it was assumed that object vehicle

information within the extended range are readily available for the upper level controller of the

ego vehicle. In reality, the construction of the information from vehicular connectivity should

explicitly consider the uncertainty associated with the medium (signal fading, losses, latencies,

etc.). To consider such important dynamics, the cooperative perception framework presented

in Chapter 3 will need to be integrated with the social force aggregation controller. The

cooperative perception framework will work with the social force controllers simultaneously in

a coordinated manner with proper update rates. In this integrated model, the fused system

tracks will be sent to both the upper level for the longer horizon perception and the lower

level controller for the enhanced local FoV perception. In addition, there is an uncertainty

associated with the state information of object vehicles in traffic. The uncertainty information

can be in fact integrated into the formulation of the object forces. The complete integrated

system should then be evaluated by applying a Monte Carlo approach in order to account for

the stochastic nature of the overall system. For a given simulation setting (road topology, traffic

density, and speed limit), various performance metrics (number of total lane changes, average

travel speed, average acceleration, etc.) should be evaluated with a careful consideration of

variances such as the perception and the upper level controller update rate, the participation

rate, the sensor and the communication range.

� The cooperative perception scheme discussed in Chapter 3 treated all received information as

being free of malice. In practice, it is important to add algorithms that detect and isolate

malicious intent in the data communicated before proceeding with the fusion computations.

A reliability/confidence metric may also be shared with other connected vehicles via V2V

communication to minimize repetitive evaluations. Some works already exist in this direction

[65, 27].

� The evaluation of the novelty discriminating method presented in Chapter 4 suggested that fur-

ther performance improvements can be possible by adopting a dynamic novelty-value threshold

which can be adjusted based on the detected bandwidth utilization or even based on the statis-

85



tical analysis of the KL divergence across all system tracks. Ultimately, these schemes need to

be incorporated and validated with connected vehicle test beds that allow high participation

rates and high traffic density where the bandwidth/delay issues appear. These are capabilities

that may become available in the future; in the meantime, model and simulation similar to

what is proposed in this dissertation can be used to evaluate the dynamic thresholding scheme.

� The results for novelty discriminating method presented in Chapter 4 assumed that all par-

ticipating vehicles adopt the same IMM model (with the same Gaussian measurement and

process noise assumptions for all vehicles) to track object vehicles in their FoV and utilize

the covariance matrices as uncertainty information for associated object vehicle data. The

practically possible heterogeneity of the noise characteristics in traffic could have a bearing on

the novelty value computations, and this aspect needs further investigations.
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Appendix A Line-of-Sight (LoS) Algorithm

Figure 1: Illustration for the LoS Algorithm
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Algorithm 1: A simple LoS evaluation algorithm for identifying objects vehicles that are
detectable from an ego-vehicle.

Data: XY coordinates of ego [Xego, Yego], and surrounding object vehicles [Xobjn , Yobjn ],
where n = 1, . . . , Nobj

Result: A set of LoS object vehicle indices, LoSego

1 LoS Proximity-based Association:

2 Compute U⃗objn = [Xobjn −Xego, Yobjn − Yego] for ∀n;
3 for i = 1 to Nobj do
4 k ← 0;
5 for j = 1 to Nobj do

6 ̸ (U⃗obji , U⃗objj )← cos
(U⃗obji , U⃗objj )(
||U⃗obji ||.||U⃗objj ||

) ;
7 if ̸ (U⃗obji , U⃗objj ) ≤ ̸ Amax then
8 Tobji(k)← j;
9 k ← k + 1;

10 end

11 end

12 end

13 LoS Minimum Distance Object Identification:
14 for i = 1 to Nobj do
15 z ← Tobji(1);

16 M ← ||U⃗objz ||;
17 k ← 1;
18 LoSego(i)← z;
19 NTi ← #|Tobji |;
20 for k = 2 to NTi do
21 q ← Tobji(k);

22 if ||U⃗objq || < M then
23 LoSego(i)← q;

24 M ← ||U⃗objq ||;
25 end

26 end

27 end
28 return LoSego;
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intelligent traffic management systems. Transportation Research Part C: Emerging Technolo-
gies, 10(5-6):473–506, oct 2002.

[49] John R Hershey and Peder A Olsen. Approximating the Kullback Leibler divergence between
Gaussian mixture models. In 2007 IEEE International Conference on Acoustics, Speech and
Signal Processing-ICASSP’07, volume 4, pages IV–317. IEEE, 2007.

[50] Takamasa Higuchi, Marco Giordani, Andrea Zanella, Michele Zorzi, and Onur Altintas. Value-
Anticipating V2V Communications for Cooperative Perception. pages 1947–1952. Institute of
Electrical and Electronics Engineers (IEEE), aug 2019.

[51] Tien-Shin Ho and Kwang-Cheng Chen. Performance analysis of IEEE 802.11 CSMA/CA
medium access control protocol. In Proceedings of PIMRC’96-7th International Symposium
on Personal, Indoor, and Mobile Communications, volume 2, pages 407–411. IEEE, 1996.

[52] G. M. Hoang, B. Denis, J. Harri, and D. T.M. Slock. Mitigating unbalanced GDoP effects in
range-based vehicular Cooperative Localization. In 2017 IEEE International Conference on
Communications Workshops, ICC Workshops 2017, 2017.

[53] Gia Minh Hoang, Benoit Denis, Jerome Harri, and Dirk T.M. Slock. Breaking the Gridlock
of Spatial Correlations in GPS-Aided IEEE 802.11p-Based Cooperative Positioning. IEEE
Transactions on Vehicular Technology, 2016.

[54] Gia Minh Hoang, Benoit Denis, Jerome Harri, and Dirk T.M. Slock. On communication
aspects of particle-based cooperative positioning in GPS-aided VANETs. In IEEE Intelligent
Vehicles Symposium, Proceedings, 2016.

93



[55] Md. Anowar Hossain, Ibrahim Elshafiey, and Abdulhameed Al-Sanie. Cooperative vehicle
positioning with multi-sensor data fusion and vehicular communications. Wireless Networks,
pages 1–11, jun 2018.

[56] Andrew Howard. Multi-robot Simultaneous Localization and Mapping using Particle Filters.
The International Journal of Robotics Research, 25(12):1243–1256, dec 2006.

[57] Hui Huang, Huiyun Li, Cuiping Shao, Tianfu Sun, Wenqi Fang, and Shaobo Dang. Data
Redundancy Mitigation in V2X Based Collective Perceptions. IEEE Access, 8:13405–13418,
2020.

[58] S.J. Julier and J.K. Uhlmann. A non-divergent estimation algorithm in the presence of
unknown correlations. In Proceedings of the 1997 American Control Conference (Cat.
No.97CH36041), pages 2369–2373 vol.4. IEEE, 1997.

[59] Andreas Kasprzok, Beshah Ayalew, and Chad Lau. Decentralized traffic rerouting using min-
imalist communications. In IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications, PIMRC, volume 2017-Octob, pages 1–7. Institute of Electrical and
Electronics Engineers Inc., feb 2018.

[60] Manveen Kaur, G. G. Md. Nawaz Ali, Beshah Ayalew, and Jim Martin. Network Driven Per-
formance Analysis in Connected Vehicular Networks. In 2019 IEEE 90th Vehicular Technology
Conference: VTC2019-Fall 22–25 September 2019, Honolulu, HI, USA.

[61] I. Khan, G. M. Hoang, and J. Harri. Rethinking cooperative awareness for future V2X safety-
critical applications. In IEEE Vehicular Networking Conference, VNC, 2018.

[62] Been Kim, Michael Kaess, Luke Fletcher, John Leonard, Abraham Bachrach, Nicholas Roy,
and Seth Teller. Multiple relative pose graphs for robust cooperative mapping. In Proceedings
- IEEE International Conference on Robotics and Automation, pages 3185–3192, 2010.

[63] Seong-Woo Kim, Wei Liu, Marcelo H. Ang, Emilio Frazzoli, and Daniela Rus. The Impact
of Cooperative Perception on Decision Making and Planning of Autonomous Vehicles. IEEE
Intelligent Transportation Systems Magazine, 7(3):39–50, 2015.

[64] Seong-Woo Kim, Baoxing Qin, Zhuang Jie Chong, Xiaotong Shen, Wei Liu, Marcelo H. Ang,
Emilio Frazzoli, and Daniela Rus. Multivehicle Cooperative Driving Using Cooperative Percep-
tion: Design and Experimental Validation. IEEE Transactions on Intelligent Transportation
Systems, 16(2):663–680, apr 2015.

[65] Seung Hyun Kong and Sang Yun Jun. Cooperative Positioning Technique with Decentral-
ized Malicious Vehicle Detection. IEEE Transactions on Intelligent Transportation Systems,
19(3):826–838, mar 2018.

[66] Yoram Koren and Johann Borenstein. Potential field methods and their inherent limitations
for mobile robot navigation. In Proceedings - IEEE International Conference on Robotics and
Automation, volume 2, pages 1398–1404. Publ by IEEE, 1991.
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