56 research outputs found

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR

    Searching Spontaneous Conversational Speech:Proceedings of ACM SIGIR Workshop (SSCS2008)

    Get PDF

    Language modeling for speech recognition of spoken Cantonese.

    Get PDF
    Yeung, Yu Ting.Thesis (M.Phil.)--Chinese University of Hong Kong, 2009.Includes bibliographical references (leaves 84-93).Abstracts in English and Chinese.Acknowledgement --- p.iiiAbstract --- p.ivChapter 1 --- Introduction --- p.1Chapter 1.1 --- Cantonese Speech Recognition --- p.3Chapter 1.2 --- Objectives --- p.4Chapter 1.3 --- Thesis Outline --- p.5Chapter 2 --- Fundamentals of Large Vocabulary Continuous Speech Recognition --- p.7Chapter 2.1 --- Problem Formulation --- p.7Chapter 2.2 --- Feature Extraction --- p.8Chapter 2.3 --- Acoustic Models --- p.9Chapter 2.4 --- Decoding --- p.10Chapter 2.5 --- Statistical Language Modeling --- p.12Chapter 2.5.1 --- N-gram Language Models --- p.12Chapter 2.5.2 --- N-gram Smoothing --- p.13Chapter 2.5.3 --- Complexity of Language Model --- p.15Chapter 2.5.4 --- Class-based Langauge Model --- p.16Chapter 2.5.5 --- Language Model Pruning --- p.17Chapter 2.6 --- Performance Evaluation --- p.18Chapter 3 --- The Cantonese Dialect --- p.19Chapter 3.1 --- Phonology of Cantonese --- p.19Chapter 3.2 --- Orthographic Representation of Cantonese --- p.22Chapter 3.3 --- Classification of Cantonese speech --- p.25Chapter 3.4 --- Cantonese-English Code-mixing --- p.27Chapter 4 --- Rule-based Translation Method --- p.29Chapter 4.1 --- Motivations --- p.29Chapter 4.2 --- Transformation-based Learning --- p.30Chapter 4.2.1 --- Algorithm Overview --- p.30Chapter 4.2.2 --- Learning of Translation Rules --- p.32Chapter 4.3 --- Performance Evaluation --- p.35Chapter 4.3.1 --- The Learnt Translation Rules --- p.35Chapter 4.3.2 --- Evaluation of the Rules --- p.37Chapter 4.3.3 --- Analysis of the Rules --- p.37Chapter 4.4 --- Preparation of Training Data for Language Modeling --- p.41Chapter 4.5 --- Discussion --- p.43Chapter 5 --- Language Modeling for Cantonese --- p.44Chapter 5.1 --- Training Data --- p.44Chapter 5.1.1 --- Text Corpora --- p.44Chapter 5.1.2 --- Preparation of Formal Cantonese Text Data --- p.45Chapter 5.2 --- Training of Language Models --- p.46Chapter 5.2.1 --- Language Models for Standard Chinese --- p.46Chapter 5.2.2 --- Language Models for Formal Cantonese --- p.46Chapter 5.2.3 --- Language models for Colloquial Cantonese --- p.47Chapter 5.3 --- Evaluation of Language Models --- p.48Chapter 5.3.1 --- Speech Corpora for Evaluation --- p.48Chapter 5.3.2 --- Perplexities of Formal Cantonese Language Models --- p.49Chapter 5.3.3 --- Perplexities of Colloquial Cantonese Language Models --- p.51Chapter 5.4 --- Speech Recognition Experiments --- p.53Chapter 5.4.1 --- Speech Corpora --- p.53Chapter 5.4.2 --- Experimental Setup --- p.54Chapter 5.4.3 --- Results on Formal Cantonese Models --- p.55Chapter 5.4.4 --- Results on Colloquial Cantonese Models --- p.56Chapter 5.5 --- Analysis of Results --- p.58Chapter 5.6 --- Discussion --- p.59Chapter 5.6.1 --- Cantonese Language Modeling --- p.59Chapter 5.6.2 --- Interpolated Language Models --- p.59Chapter 5.6.3 --- Class-based Language Models --- p.60Chapter 6 --- Towards Language Modeling of Code-mixing Speech --- p.61Chapter 6.1 --- Data Collection --- p.61Chapter 6.1.1 --- Data Collection --- p.62Chapter 6.1.2 --- Filtering of Collected Data --- p.63Chapter 6.1.3 --- Processing of Collected Data --- p.63Chapter 6.2 --- Clustering of Chinese and English Words --- p.64Chapter 6.3 --- Language Modeling for Code-mixing Speech --- p.64Chapter 6.3.1 --- Language Models from Collected Data --- p.64Chapter 6.3.2 --- Class-based Language Models --- p.66Chapter 6.3.3 --- Performance Evaluation of Code-mixing Language Models --- p.67Chapter 6.4 --- Speech Recognition Experiments with Code-mixing Language Models --- p.69Chapter 6.4.1 --- Experimental Setup --- p.69Chapter 6.4.2 --- Monolingual Cantonese Recognition --- p.70Chapter 6.4.3 --- Code-mixing Speech Recognition --- p.72Chapter 6.5 --- Discussion --- p.74Chapter 6.5.1 --- Data Collection from the Internet --- p.74Chapter 6.5.2 --- Speech Recognition of Code-mixing Speech --- p.75Chapter 7 --- Conclusions and Future Work --- p.77Chapter 7.1 --- Conclusions --- p.77Chapter 7.1.1 --- Rule-based Translation Method --- p.77Chapter 7.1.2 --- Cantonese Language Modeling --- p.78Chapter 7.1.3 --- Code-mixing Language Modeling --- p.78Chapter 7.2 --- Future Works --- p.79Chapter 7.2.1 --- Rule-based Translation --- p.79Chapter 7.2.2 --- Training data --- p.80Chapter 7.2.3 --- Code-mixing speech --- p.80Chapter A --- Equation Derivation --- p.82Chapter A.l --- Relationship between Average Mutual Information and Perplexity --- p.82Bibliography --- p.8

    NusaCrowd: Open Source Initiative for Indonesian NLP Resources

    Full text link
    We present NusaCrowd, a collaborative initiative to collect and unify existing resources for Indonesian languages, including opening access to previously non-public resources. Through this initiative, we have brought together 137 datasets and 118 standardized data loaders. The quality of the datasets has been assessed manually and automatically, and their value is demonstrated through multiple experiments. NusaCrowd's data collection enables the creation of the first zero-shot benchmarks for natural language understanding and generation in Indonesian and the local languages of Indonesia. Furthermore, NusaCrowd brings the creation of the first multilingual automatic speech recognition benchmark in Indonesian and the local languages of Indonesia. Our work strives to advance natural language processing (NLP) research for languages that are under-represented despite being widely spoken

    Automatic Speech Recognition for Low-resource Languages and Accents Using Multilingual and Crosslingual Information

    Get PDF
    This thesis explores methods to rapidly bootstrap automatic speech recognition systems for languages, which lack resources for speech and language processing. We focus on finding approaches which allow using data from multiple languages to improve the performance for those languages on different levels, such as feature extraction, acoustic modeling and language modeling. Under application aspects, this thesis also includes research work on non-native and Code-Switching speech

    Acoustic Modelling for Under-Resourced Languages

    Get PDF
    Automatic speech recognition systems have so far been developed only for very few languages out of the 4,000-7,000 existing ones. In this thesis we examine methods to rapidly create acoustic models in new, possibly under-resourced languages, in a time and cost effective manner. For this we examine the use of multilingual models, the application of articulatory features across languages, and the automatic discovery of word-like units in unwritten languages

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Design of a Controlled Language for Critical Infrastructures Protection

    Get PDF
    We describe a project for the construction of controlled language for critical infrastructures protection (CIP). This project originates from the need to coordinate and categorize the communications on CIP at the European level. These communications can be physically represented by official documents, reports on incidents, informal communications and plain e-mail. We explore the application of traditional library science tools for the construction of controlled languages in order to achieve our goal. Our starting point is an analogous work done during the sixties in the field of nuclear science known as the Euratom Thesaurus.JRC.G.6-Security technology assessmen
    corecore