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Summary

This thesis explores methods to rapidly bootstrap automatic speech recognition
systems (ASR) for languages, which lack resources for speech and language
processing - called low-resource languages. We focus on finding approaches
which allow using data from multiple languages to improve ASR systems for
those languages on different levels, such as feature extraction, acoustic model-
ing and language modeling. Under application aspects, this thesis also includes
research work on non-native and Code-Switching speech, which have become
more common in the modern world.

The main contributions of this thesis are as follows:

Building an ASR system without transcribed audio data: In this thesis, we de-
veloped a multilingual unsupervised training framework which allows build-
ing ASR systems without transcribed audio data. Several existing ASR sys-
tems from different languages were used in combination with cross-language
transfer techniques and unsupervised training to iteratively transcribe the au-
dio data of the target language and, therefore, bootstrap ASR systems. The key
contribution is the proposal of a word-based confidence score called “Multilin-
gual A-stabil” which works well not only with well trained acoustic models but
also with a poorly estimated acoustic model, such as one which is borrowed
from other languages in order to bootstrap the acoustic model for an unseen
language. All the experimental results showed that it is possible to build ASR
systems for new languages without any transcribed data, even if the source and
the target languages are not related.

Multilingual Bottle-Neck features: We explored multilingual Bottle-Neck (BN)
features and their application to rapid language adaptation to new languages.
Our results revealed that using a multilingual multilayer perceptron (MLP) to
initialize the MLP training for new languages improved the MLP performance
and, therefore, the ASR performance. Finally, visualization of the features us-
ing t-SNE leads to a better understanding of the multilingual BN features.

Improving ASR performance on non-native speech using multilingual and
crosslingual information: This part presents our exploration of using multi-
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lingual and crosslingual information to improve the ASR performance on non-
native speech. We showed that a multilingual ASR system consistently outper-
forms a monolingual ASR system on non-native speech. Finally, we proposed
a method called cross-lingual accent adaptation to improve the ASR performance
on non-native speech without any adaptation data. With this approach, we
achieved substantial improvements over the baseline system.

Multilingual deep neural network based acoustic modeling for rapid lan-
guage adaptation: This thesis comprises an investigation of multilingual deep
neural network (DNN) based acoustic modeling and its application to new lan-
guages. We investigated the effect of phone merging on multilingual DNN in
the context of rapid language adaptation and the combination of multilingual
DNNs with Kullback–Leibler divergence based acoustic modeling (KL-HMM).
Our studies revealed that KL-HMM based decoding consistently outperformed
conventional hybrid decoding, especially in low-resource scenarios. Further-
more, we found that multilingual DNN training equally benefits from simple
phone set concatenation and a manually derived universal phone set based on
IPA.

Multilingual language modeling for Code-Switching speech: We investigated
the integration of high level features, such as part-of-speech tags and language
identifiers into language models for Code-Switching speech. Our results showed
that using these features in state-of-the-art language modeling techniques, such
as recurrent neural network and factored language models improved the per-
plexity and mixed error rate on Code-Switching speech. Moreover, the inter-
polated language model between these two LMs gave the best performance
on the SEAME database. Finally, we showed that Code-Switching is speaker
dependent and, therefore, Code-Switching attitude dependent language mod-
eling further improved the perplexity and the mixed error rate.

We believe that our findings will have an increasing impact over time not only
for research but also for industry. The results can be used to save costs and
developmental time for the building of a speech recognizer for a new lan-
guage. In addition, the contribution of this thesis on non-native and Code-
Switching speech will become more important due to the rapidly growing glob-
alization.
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Zusammenfassung

In dieser Arbeit erforschen wir verschiedene Methoden, um automatische Sprach-
erkennungssysteme (ASR) für neue Sprachen mit wenigen Ressourcen zu en-
twickeln. Insbesondere konzentrieren wir uns auf Ansätze, Daten aus mehreren
Sprachen zu verwenden, um verschiedene Komponenten der ASR solcher Spra-
chen wie Merkmalsextraktion, akustische Modellierung und Sprachmodellierung
zu verbessern. In Bezug auf Anwendungen beinhaltet diese Dissertation auch
Forschungen über akzentbehaftete und Code-Switching Sprache, die in der
modernen Welt immer häufiger vorkommen.

Die wichtigsten Beiträge dieser Arbeit sind die folgenden:

Aufbau eines ASR-Systems ohne transkribierte Sprachdaten: In dieser Ar-
beit wird ein multilinguales, unüberwachtes Trainingsframework entwickelt,
das den Aufbau eines ASR-Systems ohne transkribierte Daten ermöglicht. Idee
ist es, Spracherkenner anderer Sprachen in der Kombination mit unüberwach-
tem Training zu verwenden. Dadurch werden die Zeit und Kosten für das
Transkribieren der Sprachdaten minimiert. Ein wesentlicher Beitrag ist die
Entwicklung eines wortbasierten Konfidenzmaßes namens “multilingual A-
stabil”, das nicht nur mit robusten akustischen Modellen, sondern auch mit
einem schwachen akustischen Modell funktioniert. Alle experimentellen Ergeb-
nisse zeigen, dass wir ein ASR-System für neue Sprachen ohne transkribierte
Daten bauen können, selbst wenn die Quell- und Zielsprachen nicht verwandt
sind.

Multilinguale Bottle-Neck Sprachmerkmale: Die Integration von neuronalen
Netzen in die Vorverarbeitung des Spracherkenners in Form von Bottle-Neck
Merkmale ist Stand der aktuellen Forschung. In dieser Arbeit werden multi-
linguale neuronale Netze und ihre Anwendbarkeit für neue Sprachen unter-
sucht. Wir stellen einen innovativen Ansatz vor, der zur Initialisierung bereits
trainierte multilinguale neuronale Netze verwendet. Eine Visualisierung der
Merkmale mittels t-SNE erlaubt es, ein besseres Verständnis für multilinguale
Bottle-Neck Sprachmerkmale zu entwickeln.
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Verbesserung der ASR Leistung auf akzentbehafteter Sprache mit Hilfe von
multilingualen und crosslingualen Informationen: Diese Arbeit erforscht die
Verwendung von multilingualen und crosslingualen Informationen zur Ver-
besserung der ASR Leistung auf akzentbehafteter Sprache. Wir zeigen, dass ein
multilinguales ASR-System auf akzentbehafteter Sprache besser funktioniert
als ein monolinguales ASR-System. Außerdem haben wir eine neue Methode,
crosslingual accent adaptation, entwickelt, die die ASR Leistung ohne Adaptions-
daten auf akzentbehafteter Sprache verbessert. Mit diesem Ansatz konnten wir
signifikante Verbesserungen gegenüber dem Referenzsystem erreichen.

Akustische Modellierung basierend auf multilingualen Deep Neural Net-
works: Diese Arbeit umfasst die Untersuchung multilingualer Deep Neural
Network (DNN) für akustische Modellierung und ihre Anwendung auf neue
Sprachen. Wir untersuchen den Effekt der Verschmelzung des Phonesets beim
Training eines DNNs und der Kombination von multilingualen DNNs mit Kull-
back-Leibler Divergenz Hidden Markov Model (KL-HMM) beim Dekodieren
auf die ASR Leistung bei neuen Sprachen. Unsere Untersuchungen zeigen,
dass KL-HMM basierte Dekodierung die ASR Leistung verbessert, insbeson-
dere wenn Trainingsdaten für die neue Sprache nur eingeschränkt vorhanden
sind. Weiterhin haben wir festgestellt, dass die Verschmelzung des Phonesets
auf IPA-Basis keinen Effekt auf das multilinguale DNN Training hat.

Multilinguale Sprachmodellierung für Code-Switching Sprache: Wir unter-
suchen die Integration von linguistischen Merkmalen wie Wortarten und Sprachi-
dentifikatoren in Sprachmodelle für Code-Switching. Unsere Ergebnisse zeigen,
dass die Verwendung dieser Merkmale in verschiedenen Sprachmodellierung-
stechniken, wie z.B. rekurrente neuronale Netze oder faktorisierte Sprachmod-
elle, die Perplexität des Sprachmodells und auch die Fehlerrate des Spracherken-
ners auf Code-Switching verbessert. Außerdem liefert die Kombination dieser
beiden Techniken die beste Leistung auf unserem Testset. Schließlich zeigen
wir, dass Code-Switching-Verhaltens sprecherabhängig ist. Daher liefert Code-
Switching verhaltensabhängige Sprachmodellierung weitere Verbesserungen
auf dem Code-Switching Datenkorpus.

Die Bedeutung dieser Dissertation wird in Zukunft nicht nur in der Forschung
sondern auch in der Praxis steigen. Zum einen können die Ergebnisse genutzt
werden, um Kosten und Entwicklungszeit für den Bau eines Spracherkenners
für eine neue Sprache zu sparen. Zum anderen gewinnen die Arbeiten mit
akzentbehafteten Sprachen und Code-Switching mehr Bedeutung aufgrund der
schnell zunehmenden Globalisierung.
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CHAPTER 1

Introduction

Human-machine communication is one of the most important research fields in
the last decade. Speech processing is an important subarea, since speech is the
most natural way of human communication. In addition, due to globalization
the need of communication across language barriers increases. Therefore, re-
search on multilingual speech processing becomes important and earns a lot of
attention in the research community and the industry. This thesis deals with the
topic of multilingual speech recognition. The main research ideas are presented
in this chapter.

1.1 Aspects of multilingual ASR

Automatic speech recognition (ASR) is called multilingual if at least one of the
components, such as feature extraction, acoustic model, pronunciation dictio-
nary or language model is created by using data of multiple languages - mul-
tilingual data. Since multilingual data are used, the linguistic knowledge can
be shared and transfered between languages. Therefore, multilingual ASR is
suitable to applications, in which

• The target languages lack resources (low-resource languages).

1



1 Introduction

• The acoustic or linguistic characteristics of two languages impact each
other (non-native speech).

• Multiple languages appear in a conversion or an utterance, such as Code-
Switching speech.

The next following paragraphs explain the challenges of low-resource languages,
non-native speech and Code-Switching in more details. Moreover, the role of
these terms in this thesis is characterized.

Based on the availability of resources, languages can be categorized in well-
resource languages and low-resource languages. While more than 6,900 lan-
guages exist all over the world, the number of well-resourced languages is quite
limited. Most speech processing systems can only handle very few languages.
Google Voice Search, for example, includes 29 languages and accents (2012).
Further core systems today are Siri ASR application with 8 languages (2012)
and Dragon with 40 languages (2013). The gap from those few languages to
6,900 languages in the world has its most important reason in different avail-
abilities of resources. A large amount of languages are low-resource. The term
low-resource refers to languages with one or more of the following aspects:
lack of a unique writing system or stable orthography, lack of linguistic ex-
pertise, lack of electronic resources for speech and language processing. If the
goal is to rapidly bootstrap ASR systems for new languages, the first immedi-
ate step is to concentrate on low-resource languages which lack of resources
for speech and language processing, such as transcribed speech data. In this
thesis, low-resources languages with small amounts of transcribed audio data
or no transcribed audio data at all are addressed.

Accented speech is a very important application of multilingual ASR. More
specifically, an accent is a manner of pronunciation peculiar to a particular indi-
vidual, location, or nation [Dic05]. An accent may identify the locality in which
speakers reside (a regional or geographical accent), the socio-economic status of
its speakers, their ethnicity, their caste or social class (a social accent), or influ-
ence from their first language (a foreign accent) [LG97]. This thesis focuses only
on the challenges of foreign accents, which are known as “non-native speech”.
For example, a Chinese speaking English will sound different compared to an
American or a Britain speaking English. In this case, the Chinese speaker is a
non-native speaker and English is not the mother tongue. The mother tongue
of the speaker could be Mandarin or Cantonese, which is referred to as L1. En-
glish is another language which the speaker can speak. It is called L2. For many
years, non-native speech has been a big challenge for state-of-the-art ASR sys-
tems. Two of the main challenges of ASR for non-native speech are high pho-
netic variations among speakers depending on the their mother tongue and
their proficiency level, and lack of resources, such as transcribed audio data.
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1.2 History of multilingual ASR

Another important application of multilingual ASR is the recognition of Code-
Switching speech in which multiple languages can appear. CodeSwitching
speech is a common phenomenon in multilingual communities. Its main char-
acteristic is that speakers change languages during a conversation or even within
a sentence. The main challenges of ASR for Code-Switching is the lack of bilin-
gual training data. Moreover since the speakers use multiple languages in a
conversation, the pronunciation may be changed due to co-articulation effects.
Due to the characteristics of Code-Switching speech, multilingual ASR is one
of the most suitable solutions.

1.2 History of multilingual ASR

Multilingual speech recognition has a long research history in the speech recog-
nition community starting in the late nineties. There are many studies which
followed this research direction and demonstrated successful results. However
for a long time, multilingual speech recognition seemed to be interesting only
for the academic world. This situation has changed dramatically as will be
explained later in part 1.3.

The following paragraphs provide an overview of the beginnings of using mul-
tilingual and crosslingual information in speech recognition systems.

In the preprocessing step, cepstral features were widely used as speech fea-
tures. Since they are assumed to be language independent, there was no reason
to conduct research on using multilingual data for feature extraction. However
in 2002, new features for speech recognition were introduced by H. Hermansky
which are called Tandem features [HDS00]. They use the output of a neural net-
work which has many hidden layers called multilayer peceptron (MLP) for the
speech recognition task. The neural network uses the cepstral features as input
and is trained on transcribed audio data. After that, researchers investigated
the use of crosslingual and multilingual data to train the neural network and,
therefore, improve the Tandem features for the speech recognition task. Sev-
eral studies showed that features extracted from an MLP which was trained
with one language or multiple languages can be applied to further languages
[CMDL+07, TFGK08, PSN11].

In the late nineties, researchers started to systematically investigate the use-
fulness of language independent acoustic models to bootstrap systems to un-
seen languages. Studies especially considered the impact of language families
([CC97]), the impact of the amount of languages used to create acoustic mod-
els ([GG97], [SW98a]), the impact of the amount of training data ([WKAM94,
Köh98, SW98b]) and possible ways to share acoustic models across languages
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([SW98b, Köh98]). One of the early findings was that multilingual acoustic
models outperform monolingual ones for the purpose of rapid language adap-
tation ([SW01b]).

In the context of multilingual language modeling, there are only few previ-
ous studies. Several research in the late nineties concentrated on building lan-
guage models to handle switches between languages in a sentence [CDG+97,
AHG+98, WRN+98] or between sentences [WBNS97]. In later research since
2002, the investigation of the transfer of information which appears in one lan-
guage to other languages using dictionary-based translation models was pre-
sented in [KK02]. Furthermore, methods were developed which allowed the
combination of several monolingual models into one multilingual language
model [FSS+03].

1.3 Current developments

Compared to the late nineties, the situation has dramatically changed. The eco-
nomic, technological, sociocultural, and political sectors have been changed
during the last decade by a process commonly referred to as globalization.
Moreover, the use of Internet increases rapidly all over the world. Due to
the these facts, the availability of multimedia data and the need of multilin-
gual applications have changed. Applications with speech technology are used
not only in industrial countries, such as the United States, Germany or Japan
but also in developing countries, such as Thailand, Vietnam or South Africa.
Naturally, people prefer to use their mother tongue to communicate with each
other or with machines. Therefore, there is an urgent need of supporting many
languages. Furthermore, with the strong growth of the Internet, divers me-
dia provide a great amount of easily and inexpensively accessible audio data
for various languages. However, there are no restrictions in topic or vocabu-
lary for those data, and one has to deal with different dialects or even different
languages. Moreover, the most crucial problem is the possible lack of tran-
scriptions. To overcome these limitations, automatic methods for training a
speech recognition system which does not require transcribed audio data are
necessary. Moreover, methods are required which allow using those data more
efficiently to train multilingual models which can be used to bootstrap and im-
prove an ASR system for a new language or accent. Finally, as a part of global-
ization, the exchange of economy, technology and migration occurs more often
and easier than in the past, e.g. multilingual communication becomes more
popular over the world. There are more and more non-native speakers who
use speech technology for their multilingual communication. Hence, the need

4



1.4 Main contributions

of developing an ASR system which can handle non-native speech is more im-
portant than in the past. Moreover, bilingualism is more common in different
countries, such as Singapore, Malaysia, South Africa, USA, or India. This in-
volves that people switch language while they communicate (Code-Switching).
Indeed, Code-Switching is a challenging task for state-of-the-art speech tech-
nology since there has not been a lot of research in this direction yet.

To sum up, due to the rapid changes of the initial situation in the last fifteen
years, multilingual speech recognition becomes more important and earns at-
tention not only in the academic but also in the industrial world. The building
of an ASR system for a new language with minimal human effort is a very
important research topic. The success of approaches for this will save a lot of
time and costs in the development of ASR systems for many languages. As a
result, it will be possible to increase the usage of speech technology applica-
tions around the world. Moreover, an ASR system which can be used to handle
special multilingual challenges, such as non-native or Code-Switching speech
is necessary.

1.4 Main contributions

1.4.1 Objectives

The most important goal of this thesis is the exploration of methods to use
multilingual and crosslingual information to rapidly bootstrap and improve
an ASR system for low-resource languages. First, we address the case that no
transcribed audio data is available. We aim at developing a training frame-
work which allows using ASR systems from several resource-rich languages
and available data resources of the target language, such as language model,
pronunciation dictionary and untranscribed audio data. With this framework,
it is possible to automatically build an ASR system for the target language with
minimal human effort. Afterwards, we focus on finding approaches which al-
low sharing data across multiple languages to improve the ASR system in dif-
ferent levels, such as feature extraction, acoustic modeling and language mod-
eling.

Furthermore, under application aspects, this thesis includes research work on
non-native and Code-Switching speech, which have become more common
in the modern world. First, we aim at exploring systematically how to im-
prove ASR performance on non-native speech with and without adaptation
data using multilingual and crosslingual information. For the application of
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Code-Switching speech, we concentrate on the investigation of language mod-
eling. Our goal is to integrate linguistic knowledge into state-of-the-art lan-
guage modeling techniques to build a multilingual language model which pre-
dicts not only the next word but also the switches between languages.

1.4.2 Contribution

The main contributions of the thesis are as follows:

1. Development of a multilingual unsupervised training framework which
allows training an ASR system for a new language without any tran-
scribed audio data: Several ASR systems from different languages (source
languages) are used to bootstrap an ASR system for a new language (tar-
get language) for which the pronunciation dictionary, the language model
and untranscribed audio data are given. We propose a new method to
compute a word-based confidence score called “multilingual A-stabil”
which works well not only with well trained but also with poorly esti-
mated acoustic models. We present our multilingual unsupervised train-
ing framework which uses all the available resources to train an ASR for
new languages automatically. We demonstrate that the framework gen-
eralizes well and, thus allows building ASR systems for many languages
even if the source and the target languages are not related. To our knowl-
edge, this has never been shown in the literature before.

2. Study of a method to extract Bottle-Neck features for low-resource lan-
guages using a multilingual multilayer perceptron (MLP): The key idea
is to use a multilingual MLP which can be trained with a large amount
of training data from different languages as an initial model to bootstrap
an MLP for a new language. For both, large and a very small amounts of
data, we demonstrate that the performance of the new MLP and, there-
fore, the final ASR performance are significantly improved. Moreover,
our research reveals that the number of languages, and the amount of
data as well as the similarity of the source and target language have
a strong impact on the final ASR performance. Last but not least, we
showed that visualization of the features using t-Distributed Stochastic
Neighbor Embedding [VdMH08] leads to a better understanding of the
multilingual BN features.

3. Investigation of the use of multilingual and crosslingual information to
improve ASR performance on non-native speech: First, if the adapta-
tion data is available, our experimental results show that bilingual L1-
L2 acoustic models can improve ASR performance on non-native speech.

6



1.5 Structure of the thesis

If information of L1 or L1 data is not available, multilingual ASR out-
performs monolingual ASR on non-native speech. Second, for the case
that no adaptation data for the target accent is available, we propose an
innovative method called crosslingual accent adaptation which allows shar-
ing adaptation data across L2 languages with the same non-native ac-
cent. This proposed approach provides significant improvements over
the baseline system on the non-native test data without any adaptation
data. To our knowledge, this has never been shown before in literature.

4. Multilingual deep neural network based acoustic modeling for rapid lan-
guage adaptation: We investigate the effect of IPA based phone merging
on the multilingual DNN and its application to new languages. More-
over, multilingual DNNs in combination with Kullback-Leibler decoding
in the context of rapid language adaptation for low-resource languages
are explored. On different languages, we find that Kullback–Leibler di-
vergence based hidden Markov models in combination with crosslingual
model transfer yields the best performance. Furthermore, our experi-
ments suggest that it is not necessary to manually derive IPA based uni-
versal phonesets for multilingual DNN training.

5. Exploration of multilingual language modeling in context of Code-Switching
(CS) speech: We propose a method to train a multilingual language model
which can be used for Code-Switching. Different features, such as Part-
Of-Speech tags (POS) and language identification (LID) are integrated
into Recurrent Neural Network language models and Factored language
models to predict not only the next word but also the switches between
languages. Furthermore, our analyses of Code-Switching points show
that the Code-Switching phenomenon is speaker dependent and there
are several groups of speakers which share the same “Code-Switching
attitude”.

1.5 Structure of the thesis

This thesis is organized as follows:

Chapter 2 (Background) provides a brief introduction into the field of auto-
matic speech recognition. Cepstral features and multilayer perceptron features
are presented. Basic techniques, such as HMM/GMM and advanced tech-
niques like Deep Neural Network are briefly described. State-of-the-art lan-
guage modeling techniques, such as N-gram language models, factored lan-
guage models and recurrent neural network language models are presented
and compared. Furthermore, lattices and N-best lists are explained. We also
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describe the unsupervised acoustic model training and adaptation approaches
which are relevant to this thesis.

Chapter 3 (Data, Tools and Baseline (ASR) Systems for Multiple Languages) de-
scribes the resources including the databases which are used for the experi-
ments and the baseline monolingual ASR systems. The database part includes
the descriptions of the GlobalPhone data, the non-native speech corpus, the
VOV database and the SEAME corpus. Finally, we present our monolingual
ASR systems for many languages which were built with GlobalPhone data.
Those ASR systems serve as baseline in many experiments in this thesis.

Chapter 4 (Cross-language Bootstrapping Based on Completely Unsupervised Train-
ing) describes our multilingual unsupervised training framework (MUT) which
allows training an ASR system for a new language without any transcribed
data. First, we revisit the cross-language transfer techniques and investigate the
correlation between the ASR performance and the similarity between source
and target language. Second, we present a new method to compute confidence
scores called “multilingual A-stabil” which works quite well not only with well
trained acoustic models but also with poorly estimated acoustic models. In the
experiments, we apply our framework MUT to build ASR systems for different
scenarios with increasing levels of difficulty.

Chapter 5 (Multilingual Bottle-Neck Features and Their Application To Low-resource
Languages) presents our investigation on using multilingual data to improve
multilayer perceptron features for new languages. The study starts with our
proposal of using multilingual MLPs to initialize the monolingual MLP train-
ing which allows training an MLP with a very small amount of training data.
Afterwards, we explore the correlation between the similarity of source and tar-
get languages and the final ASR performance. Finally, this chapter ends with a
visualization of the output of the bottle-neck hidden layer to provide a better
understanding of the behavior of those features in the context of multilingual
and crosslingual characteristics.

Chapter 6 (A Study on Using Multilingual and Crosslingual Information To Improve
Non-Native ASR) describes the investigation of automatic speech recognition
(ASR) on non-native speech. We explore the effect of multilingual acoustic
modeling on non-native speech in different ways. First the bilingual acous-
tic models trained with L1 and L2 training data are evaluated on non-native
speech. For the case that L1 is unknown or L1 data is not available, a multilin-
gual ASR system trained without L1 speech data is examined. Finally, we pro-
pose a method called crosslingual accent adaptation, which allows using English
with Chinese accent to improve the German ASR on a German with Chinese
accent.
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1.5 Structure of the thesis

Chapter 7 (Multilingual Deep Neural Network based Acoustic Modeling For Rapid
Language Adaptation) investigates the effect of IPA based phone merging on
multilingual DNNs in the context of rapid language adaptation. We also ex-
plore the multilingual DNNs in combination with KL-HMM decoding to im-
prove ASR accuracy. Furthermore, the influence of different pre-training meth-
ods on crosslingual DNN based acoustic modeling is studied.

Chapter 8 (Multilingual Language Model for Code-Switching Speech) describes the
investigation of language modeling for Code-Switching on the SEAME cor-
pus. We present different analyses of textual features which might have po-
tential to predict Code-Switching. A recurrent neural network language model
(RNNLM) and a factored language model (FLM) are used to improve the LM
performance on Code-Switching speech. Additionally, we present an analy-
sis which shows that RNNLM and FLM provide complementary information.
Hence, the linear interpolation of RNNLM and FLM provides the best perfor-
mance on the SEAME corpus. Finally, the investigation on Code-Switching atti-
tudes is presented.
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CHAPTER 2

Background

This section gives an overview of two fundamental backgrounds for the the-
sis. First, the languages of the world are described. In particular, the following
two questions are discussed: How many languages are spoken in the world?
How can the similarity between languages be estimated? Second, state-of-the-
art techniques of automatic speech recognition including preprocessing, acoustic
modeling, language modeling and some advanced techniques, such as unsuper-
vised training and acoustic model adaptation are introduced.

2.1 Languages

2.1.1 Languages of the world

The question how many languages are spoken in the world is interesting, albeit
difficult. One reason why the question is not easy to answer is that the number
of languages changes over time. Another reason is that the opinion which di-
alect is considered as language might change. For example in 1996, the edition
of Ethnologue listed 6,703 languages distributed over the five continents. The
2009 edition listed 6,909 living languages. However, those 206 more languages
might not have been created over the years. Rather, the decision of the lin-
guistic communities about how to distinguish languages might have changed.
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2 Background

In terms of number of speakers, we observe a range from 867 million native
speakers (of Mandarin Chinese) down to 1 or 2 speakers (of Coos in Southern
Oregon). Table 2.1 lists the top 20 languages by the number of speakers accord-
ing to [Gor].

Table 2.1: Top 20 languages sorted by the number of speakers [Gor]
Rank Language Speakers Rank Language Speakers

(in millions) (in millions)
1 Mandarin 867.2 11 Wu 77.2
2 Spanish 322.3 12 Javanese 75.5
3 English 309.4 13 Telugu 69.7
4 Arabic 206.0 14 Marathi 68.0
5 Hindi 180.8 15 Vietnamese 67.4
6 Portuguese 177.5 16 Korean 67.0
7 Bengali 171.1 17 Tamil 66.0
8 Russian 145.0 18 French 64.8
9 Japanese 122.4 19 Italian 61.5
10 German 95.4 20 Urdu 60.5

Many of the about 6,000 languages mentioned in Ethnologue are endangered
or nearly extinct. They have less than 10,000 speakers which makes them es-
pecially vulnerable. For about half of the world’s languages, new generations
of children are not being raised to speak them anymore. Hence in the future,
the number of languages in the world may be reduced very much. As a result,
efforts should be taken to preserve languages [UNE13].

2.1.2 Linguistic description and classification

This section summarizes relevant information about the linguistic description
and classification based on [SK06]. Languages can be classified based on his-
torical relatedness (language family) and linguistic characteristics (typology).
These two criteria are not always correlated. English and German, for example,
are North Germanic languages, but have a very different word order. English
almost always uses SVO (Subject-verb-object) order while German puts the V
(verb) at the end of relative clauses.

From the point of view of speech technology, studies about the relativeness be-
tween languages can be very useful. For languages which share the same char-
acteristics, the same speech and language processing techniques can be applied
to achieve better performance.

12



2.1 Languages

Language families

The establishment of family trees charting the genetic relatedness of languages
has been a concern of historical linguistics for a long time, and there has been
much debate about the categorization of particular languages within this scheme.
More details of the genetic classification of languages can be found in [Kat02].
According to [Kat02], there are 21 major language families. Figure 2.1 shows
their distribution over the world. The five largest and most widely known
language families are Indo-European, Afro-Asiatic, Niger-Congo, Sino-Tibetan
and Austronesian. In addition to these, there are many small groups, such as
Dravidian, Australian, and American Indian languages, as well as many “in-
dependent” languages, such as Basque (language spoken in northern Spain) or
Aimu (language spoken on Hokkaido island of Japan).

The Indo-European family is the world’s largest family in terms of number of
speakers and contains almost all the languages spoken in Europe plus many
languages in India and the Middle East. Figure 2.2 illustrates the Indo-European
language tree which has eight main branches, namely Germanic, Italic, Ro-
mance, Celtic, Hellenic, Slavic, Baltic, and Indo-Iranian. In this thesis, several
languages from Germanic, Romance and Slavic language families were used.

The second largest language family is the Sino-Tibetan family which contains
more than 400 languages spoken in East Asia, Southeast Asia and parts of South
Asia, including the Chinese and Tibeto-Burman languages. In this thesis, three
languages of Sino-Tibetan, namely Mandarin, Thai and Vietnamese are used
in our experiments. Note that Asian languages are distributed over different
language families. For example, Japanese and Korean do not belong to the
Sino-Tibetan but to the Altaic language family.

Language topology

Using language typology is another way to classify languages into different cat-
egories. This classification is based on structural characteristics. This subsec-
tion concentrates only on those linguistic characteristics which are relevant to
the speech technology, such as sound structure, word formation and sentence
structure.

Phonetics, phonology and prosody describe the sound structure of a language.
While the goal of phonetics is the analysis of sound acoustics, sound production
and perception, phonology studies the functional, contrastive role of sounds in
an entire system. In contrast, prosody studies concentrate on pitch, stress, in-
tonation, and phrasing that span several sound segments. Sounds as specific
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Figure 2.1: The distribution of language families over the world [Wik13]
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2.1 Languages

Figure 2.2: Indo-European language tree [GI90]

acoustic events are referred to as phones while sounds as smallest units that
distinguish a minimal word pair are called phonemes.

The description of phones in terms of articulation is usually based on the cate-
gories of the International Phonetic Alphabet (IPA) [Ass99]. IPA is an interna-
tionally used notational system for transcribing speech sounds. It was first pro-
posed in 1988. One of the most commonly used versions is shown in figure 2.3.
Under this scheme, phones are classified based on their phonetic features. For
Consonants, they use 1) their place of articulation (bilabial, labiodental, dental,
alveolar, postalveolar, retroflex, palatal, velar, uvular, pharyngeal, glottal), 2)
their manner of articulation (plosive, nasal, trill, tap/lap, fricative, lateral frica-
tive, approximant, katerak approximant) and 3) their phonation type (voiced
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2 Background

Figure 2.3: The International Phonetic Alphabet (IPA) [Ass99]
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2.1 Languages

or voiceless). Vowels are classified based on tongue height, tongue advance-
ment, lip rounding, and nasality. Moreover, the voice quality and the length of
vowels are also important features. Each language has a phoneme inventory
which indicates the complexity of the language. In addition to the phoneme
inventory, the pattern of phoneme combinations is also a feature to classify the
language.
At the prosody level, pitch, duration and rhythm are important phenomena. Pitch
denotes the fundamental frequency of sounds. It can be used in two major
ways: in tonal languages and intonation languages. In the case of tonal languages,
the pitch contours give different meaning to the words, e.g. in Mandarin or
Vietnamese. By contrast, intonation languages use pitch contours to indicate
phrase and sentence boundaries, and for contrastive emphasis.

Morphology describes the process of the word formation in a language in which
the smallest meaningful parts of the language (morphemes) are combined in or-
der to form larger words. Languages can be classified based on their word
formation mechanisms. The class of isolating languages simply forms sequences
of invariable free morphemes. Such languages are often said to “have no mor-
phology”. Vietnamese is one of those languages. There is no clear segmen-
tation between words or word boundaries. White spaces occur directly after
each morpheme and each morpheme could be accepted as an individual word.
Agglutinative languages combine several morphemes per word and each mor-
pheme can be identified by a linear segmentation of the word into its com-
ponents. Examples for those languages are Turkish and Tamil. Another class
is fusional languages which also uses several morphemes per word. However,
compared to the agglutinative languages, the combination of morphemes within
a word may lead to a new word form. Most languages belong to more than one
of the three categories described above.

Word order refers to the properties of a phrase and the sentence structure (syn-
tax). It is most often categorized by the relative ordering of subject (S), verb (V),
and object (O). The six resulting possible word orders - SOV, SVO, VSO, VOS,
OVS, and OSV - cover all the languages in the world. However, the first two
types have a much higher frequency than the others. Most languages do not
have only one of these types but also allow several different word orders. Some
languages like German or Russian have a ”free” word order since all the word
orders are possible. Moreover, it is hard to say for those languages which order
is more frequent than another.

For speech processing applications, the morphological complexity of a lan-
guage and the number of possible word orders are important to state the diffi-
culty of the language modeling task.
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2.2 Automatic speech recognition

The fundamental problem of speech recognition is to find the most likely word
sequence given a speech recording. The following equation which is based
on Bayes’ rule summarizes the mathematical model commonly used for large
vocabulary continuous speech recognition (LVCSR):

Ŵ = argmaxwP (W |X) = argmaxw
P (W )P (X|W )

P (X)
(2.1)

As a result of the digital signal processing, the acoustic signal is represented as
a sequence of acoustic vectors X that capture the most important information
of the speech signal for the classification task. The goal is to estimate the most
likely word sequence Ŵ = W1,W2, ...,Wn depending on the prior probability
P (W ) provided by a language model and the conditional probability P (X|W )
given by an acoustic model. Since the language model works on word level
and the acoustic model on acoustic units like phones, a pronunciation dictio-
nary is required to bridge the gap between words and phones. The pronun-
ciation dictionary used for LVCSR systems is a mapping between words and
their pronunciations. For the computation of the most probable word sequence,
the denominator P (X) is not considered since it is irrelevant for maximizing
the function. Finally, to find the word sequence with the highest probability
(argmaxw), a search strategy has to be applied. The following subsections de-
scribe the preprocessing, acoustic modeling, and language modeling in more
detail.

2.2.1 Signal preprocessing

Cepstral features

Goal of the signal preprocessing step is to extract features from the speech sig-
nal which provide a compact representation of speech. They are calculated
by dividing the speech signal into smaller blocks (typically between 10 and 30
ms). It is a common practice to let the blocks overlap and extend their duration
(e.g. 16ms, 25ms). There are different ways of extracting speech signal fea-
tures. In LVCSR, commonly used features are the Mel-Frequency Cepstral Coeffi-
cients (MFCCs) [DM80]. MFCCs are the representation of the short-term power
spectrum of a sound wave, transferred on the Mel scale by using overlapping
triangular windows. Another way to extract information about the sound spec-
trum is perceptual Linear Prediction (PLP) coefficients [Her90]. PLP computes
linear prediction coefficients from a perceptually weighted non-linearly com-
pressed power spectrum and, then, transforms the linear prediction coefficients
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2.2 Automatic speech recognition

to cepstral coefficients. In addition to spectral coefficients, first order (delta) and
second order (delta-delta) regression coefficients are often used to capture the
temporal changes in the spectra.

Multi Layer Perceptron features

In the last years, the use of neural networks to improve ASR performance
earned a lot of attention in the speech community. One application of them is
using multilayer perceptrons (MLP) for feature extraction. Instead of cepstral
features, the values of the output layer (Tandem features [HDS00]) or the val-
ues of the hidden layer (Bottle-Neck features [GKKC07]) are used in the prepro-
cessing step. In many setups and experimental results, MLP features proved to
be of high discriminative power and very robust against speaker and environ-
mental variations. Figure 2.4 shows the layout of an MLP architecture which
has been adopted from [MHJ+10]. As input for the MLP network, eleven stacks
of adjacent MFCC feature vectors of 13 dimensions each can be used. To train
the MLP, phones, subphones or context dependent subphones (details in 2.2.2)
can be applied as target classes. The network has several hidden layers. One
of them has a significant smaller number of neurons compared to the rest. This
layer is called Bottle-Neck (BN) layer. Only the output of the BN layer is used
for the speech recognition task. This also means that only the first hidden lay-
ers up to the BN layer need to be stored on the disk to extract the final speech
features. Since the MLP is trained to discriminate among speech units, the out-
put of the BN layer is expected to condensate the most important information
of the MFCC features for the classification task.

Figure 2.4: Bottle-Neck feature
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Feature dimension reduction

To increase the context information at the feature level, the cepstral or bottle-
neck features are usually stacked with a certain number of left and right neigh-
boring frames. However, stacking significantly increases the feature dimension
which can lead to data sparsity problems and increases the confusion ability
among classes. Therefore, different feature dimension reduction techniques
can be applied to extract the final features. The most widely used technique
in speech recognition is linear discriminant analysis (LDA) [Fuk90]. It aims at
finding a linear combination of features which separates two or more classes.
The resulting combination may be used as a linear classifier, or, more com-
monly, for dimensionality reduction before classification. First, the features are
assigned to their corresponding classes. Afterwards, the LDA matrix is esti-
mated to minimize the variance within a class and maximize the variance be-
tween classes, which is also known as Fisher criterion. Hence, it results in a pro-
jection which separates the classes as much as possible while increasing their
compactness at the same time. Therefore, the final features are discriminative
and suitable for a classification task.

2.2.2 Acoustic modeling

Hidden Markov Model (HMM)

In LVCSR, the acoustic is modeled by using smaller units than words, like
phones, subphones or context dependent subphones (senones). Hidden Mar-
kov Models (HMM) [Rab89] are currently the most widely used representation
of those units. An HMM λ is a 5-tuple consisting of the following elements:

• Set of states S : S1, S2, .., SN . In any discrete moment, the system is in
one of these states. In comparison to a Markov Model, the current HMM
state is unknown or “hidden”. Observing the system leads to an indirect
conclusion in which particular state the system may be at a certain time.

• A discrete alphabet V : v1, v2, .., vM of possible emissions.

• State transition probability distribution matrix A, where aij is the proba-
bility of moving from state Si to state Sj in the next step given a current
state Si.

• A matrix B of the emission probability distribution (bj(k)) where bj(k)
denotes the probability of emitting symbol vk in state Sj .

• The probability distribution π that assigns a probability to each state Si to
be the initial state.
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In the first-order HMM, there are two assumptions. The first assumption is the
Markov assumption:

P (st|st−11 ) = P (st|st−1) (2.2)

where st−11 represents the state sequence s1, s2, ..st−1. Hence, this assumption
states that the probability for the next state only depends on the previous state
and not on the states before that.

The second is the output-independence assumption:

P (Xt|Xt−1
1 , st1) = P (Xt|st) (2.3)

whereXt−1
1 represents the output sequenceX1, X2, .., Xt−1. The output-independence

assumption states that the probability that a symbol is emitted at time t de-
pends only on the state st and is independent of the past observation.

Given the definition of an HMM above, three basic problems have to be ad-
dressed in order to apply HMMs to speech applications.

• The Evaluation problem: Suppose an HMM is given, the task is to deter-
mine the probability that a particular sequence of the visible states was
generated by that model. This problem can be solved using Forward or
Backward algorithms [Dev85].

• The Decoding problem: Suppose an HMM and a set of observations are
given. The task is to determine the most likely sequence of hidden states
that led to those observations. This problem can be solved by using
Viterbi algorithm [Vit67, FJ73].

• The Learning problem: For a given HMM λ = (A,B, π) and set of training
observations O, the task is to adjust these parameters that maximize the
probability to observe O: λ∗ = arg maxλ P (O|λ). Baum-Welch method - a
special case of expectation-maximization algorithms can solve this prob-
lem [DLR77].

For speech recognition, the emission probability distribution matrix B can be
modeled by using Gaussian Mixture Models (GMM) or Deep Neural Networks
(DNN) which are described in the next paragraphs.

Gaussian Mixture Model (GMM)

One of the most common techniques to model the emission probability of an
HMM is the Gaussian Mixture Model. Each of the M components of the mix-
ture model is a Gaussian probability density function. The likelihood for state
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sj is the weighted sum of all the mixture likelihoods.

bj(x) =

M∑
m=1

cjm(x|µ(jm),Σ(jm)) (2.4)

where cjm is the mixture weight for Gaussianm of state sj . These priors should
satisfy the standard constraints for a valid probability mass function:

M∑
m=1

cjm = 1, cjm ≥ 0 (2.5)

Deep neural network (DNN)

Another approach to model the emission probability distribution is using a ar-
tificial neural network (ANN). An ANN/HMM hybrid model was first used
for automatic speech recognition in 1990 (see [BM94]). This model was trained
to predict the posterior probabilities of each HMM state. During decoding,
the output probabilities were divided by the prior probability of each state to
form a “pseudo-likelihood”. However, the performance of the ANN/HMM
could not outperform the GMM/HMM system since the complex structure was
modeled by using only one hidden layer. Recent researches in Machine Learn-
ing have led to the development of algorithms which can be used to train deep
neural networks more efficiently ([HOT06, VLBM08]). One of these approaches
is the Deep Belief Network (DBN), a multi-layered generative model which can
be trained greedily, layer by layer using Restricted Boltzmann Machine at each
layer ([HOT06]). It has been observed that using parameters of a DBN to initial-
ize a deep neural network (DNN) - a neural network with many hidden layers
- before fine tuning with backpropagation leads to a better performance of a
DNN. This idea has been recently applied to the ANN/HMM hybrid system
[SLY11, DYDA12, MDH12] and led to a significant improvement in different
tasks with different data sets.

Restricted Boltzmann Machine (RBM) are bipartite undirected graphical models,
with a set of nodes corresponding to observed random variables (also called
visible units, v) and a set of nodes corresponding to latent random variables (or
hidden units, h), that only allow interactions between the two sets of variables
(that is, between the visible and hidden units) but not within each set of nodes.
The joint probability of the visible units v and hidden units h is defined as:

P (v, h) =
1

Zh,v
eE(v,h) (2.6)
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where Zh,v is the normalizing partition function. Visible units are real-valued
for speech observations and binary-valued otherwise and hidden units are al-
ways binary-valued. In the case of binary visible units, a Bernoulli-Bernoulli
RBM can be used. Its energy function is:

EBB
(v, h) = −vTWh− bT v − aTh (2.7)

For real-valued visible units, a diagonal covariance Gaussian-Bernoulli RBM is
used. Its energy function is given by:

EGB
(v, h) = −vTWh− 1

2
(v − b)T (v − b)− aTh (2.8)

W is a symmetric weight matrix defining interactions between vectors v and
h while b and a are additive bias terms. RBM pre-training maximizes the
likelihood of the training samples using the contrastive divergence algorithm
[HOT06]. If many layers have to be initialized, the parameters of the given layer
are fixed and its output is used as the input to the higher layer which is opti-
mized as a new RBM. This can be repeated as many times as desired to produce
many layers of non linear feature detectors that represent progressively more
complex structure in the data. The RBMs can be combined to produce a single,
multilayer generative model called Deep Belief Network (DBN).

DNN acoustic model training: Finally, the generative weights can simply be used
in the reverse directions as a way of initializing all the feature detecting layers
of a feed-forward neural network. Then, the final softmax layer can be added
and fine-tuning using error back propagation (BP) [RHW02a] can be performed
discriminatively.

DNN initialization: After the success of the results of [SLY11, DYDA12, MDH12],
many research works were performed in this direction and earned a lot of atten-
tion in the speech community. One of the main challenges of the DNN training
is initialization. Using pre-trained DBN is one of several initialization meth-
ods. The traditional way is to initialize the DNN parameters with random val-
ues, for example in a specified interval. Furthermore, another method called
“discriminative pre-training” which has been proposed in [SLCY11] could be
applied. In this approach, a one-hidden-layer DNN is trained to full conver-
gence first. For this, senone labels with BP are used. Then, the softmax layer is
replaced by another randomly initialized hidden layer and a new random soft-
max layer is added on top of this. Afterwards, the network is discriminatively
trained again until full convergence. This process is repeated until the desired
number of hidden layers is reached. In [SLCY11], it was shown that there is
no significant difference in terms of performance between using pre-trained
DBN and discriminative pre-training techniques. Moreover, using discrimina-
tive pre-training is even slightly better than using pre-trained DBN when the
number of hidden layers increases.
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Acoustic modeling unit

The acoustic modeling unit is the first important question which should be care-
fully explored to build an ASR system. [HAH01] mentioned that an accurate,
trainable, and generalizable unit should be used. That means,

• The unit should represent the acoustic realization that appears in different
contexts (accurate).

• Enough training data should be available to train the parameters of the
unit (trainable).

• It should be possible to derive new words from a predefined unit inven-
tory (generalizable).

Obviously, the word unit is accurate but not trainable and generalizable for
LVSCR. Therefore, we concentrate on discussing smaller unit, such as phones,
sub-phones, and context-depedent subphones.

Phones/Subphones Compared to word units, phones are a better choice for LVSCR.
Most of the languages have less than 50 phones and, therefore, the acous-
tic model for those phones can be trained with a reasonable amount of data.
Moreover, they are vocabulary independent and can be trained on one task
and tested on another. To model a phone, 3-states HMM is typically used. It
means that a phone is divided into three subphones: the begin, the middle
and the end of the phone. The most important reasons are 1) a phone sounds
different at the beginning, in the middle or at the end, and 2) the minimum
duration of a phone is around 30ms, which corresponds to at least three HMM
states since each state emits at least one frame of 10ms length. However, the
phonetic model is inadequate because it assumes that a phone is identical in
different contexts. Due to co-articulation effects, the phones in a word are not
produced independently. Thus, the realization of a phone is strongly affected
by its neighboring phones.

Context dependent phones/subphones One of the most important techniques which
is widely used for acoustic modeling is context-dependent modeling [Lee88].
Started with the motivation, that phones sound differently depending on the
preceding and the following phones due to coarticulation effects, different acous-
tic models are trained for a phone dependent on the context of this phone. In
general, a context dependent phone is known as polyphone. However, depend-
ing on the width of the context, different terms, such as triphone (one left and
one right context) or quintphone (two left and two right contexts) are defined.
The most popular technique used to cluster the context-dependent phones is
using decision trees [LHH+90]. It allows finding acoustic models for all context
dependent phones even if they do not appear in the training data. Moreover,
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in [HHA96] it was shown that applying clustering on subphone level is bet-
ter than on phone level. Therefore, context-dependent subphones - known as
senones - have become state-of-the-art techniques for context dependency mod-
eling of LVCSR. The questions of the tree could be chosen based on linguistic
knowledge or data-driven. Figure 2.5 illustrates an example of a context de-
cision tree. In this case, the questions are defined using linguistic knowledge,
e.g. is the left context of the phone a vowel? Is the right context of the phone a
fricative?

A(P,M)-b
A(L,F)-b  A(O,N)-b  A(L,U)-b

A(I,T)-b

A(P,M)-b
A(L,F)-b  A(L,U)-b

A(O,N)-b
A(I,T)-b

A(P,M)-b
A(L,U)-b

A(L,F)-b

-1 =vowel

no
yes

+1 =fricative?
yesno

A-b(2)

A-b(4)A-b(3)

Figure 2.5: Context dependent decision tree for the phone state A-b

2.2.3 Language modeling

This section provides a short overview of three different kinds of language
models (LMs): N-gram, Factored language model (FLM), and Recurrent Neu-
ral Network language model (RNNLM). N-gram is the traditional technique
which is mainly used in many speech related applications. FLM [BK03] and
RNNLM [MKB+10] are advanced techniques which earned a lot of attention
in the speech processing community since they provide substantial improve-
ments over the N-gram in many tasks on different databases. They also allow
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to easily integrate additional linguistic features to obtain better and more ro-
bust language models.

N-gram language model

The N-gram language model used in speech recognition captures automatically
extracted linguistic knowledge about the target language from text. It helps to
select the best option for a word transition. Language and acoustic models are
computed separately and, then, connected as illustrated in equation 2.1 to help
the search algorithm to find the most likely word sequence. The N-gram model
can be computed from a text corpus. It is a process of counting the occurrences
of a given word W in some history H . The history contains the previous n− 1
words from a text and depending on n, the LM can be unigram (no history
considered), bigram (a context of 2 words, i.e. history of one word considered),
trigram, etc. The probability of a given sequence of words can be computed
using trigram language models with the help of following equation:

P (wn−2wn−1wn) = P (wn−2)P (wn−1|wn−2)P (wn|wn−1wn−2) (2.9)

To estimate the N-gram probabilities for trigrams, the occurrences ofwn−2, wn−1, wn
and wn−2, wn−1 are counted in a training text. Afterwards, P (wn|wn−1, wn−2)
can be computed using the following equation:

P (wn|wn−1wn−2) =
C(wn−2, wn−1, wn)

C(wn−2, wn−1)
(2.10)

The main challenge of this training procedure is data sparseness. For example,
if a bigram never occurs in the training data, its probability would be 0. There-
fore, if the bigram appears in a sentence of the testing data, the probability
for the whole sentence would be 0. This is an obvious underestimation of those
sentences. To escape the problem of assigning a zero probability to a phrase that
actually can occur as valid language construct but did not occur in the training
text, different LM smoothing techniques can be applied. The strategies used
to implement LM smoothing are discounting, back-off and interpolation with
lower order models. Discounting techniques subtract a defined number from
the counts of frequently occurring n-grams and distribute it to the n-grams that
do not occur frequently. Another way to smooth the probability distributions
of the n-grams is to back off to lower order models. If a given n-gram does not
occur in the training data, usually the n− 1-gram distribution is used.
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Factored language model (FLM)

In a factored language model [BK03], a word is regarded as a vector of n factors,
hence wt = f1t , f

2
t , .., f

n
t . Factors can be, for example, morphological classes,

stems, roots, and other features. In highly inflected languages (e.g., Arabic,
German, Finnish), morphological features may be helpful, while for sparsely
inflected languages, data-driven word classes or semantic features may pro-
vide useful information. Obviously, the standard N-gram language models are
special cases of FLMs, since the factors could be the words themselves. If a
sequence of features has not been detected in the training data, back-off will
be used. Unfortunately, the number of possible parameters is rather high: Dif-
ferent feature combinations from different time steps can be used to predict
the next word (conditioning factors). Furthermore, different back-off paths and
different smoothing methods may be applied. To detect useful parameters, the
genetic algorithm described in [DK04] can be used. It is an evolution-inspired
technique that encodes the parameters of an FLM as binary strings (genes).
First, an initializing set of genes is generated. Then, a loop follows that evalu-
ates the fitness of the genes and mutates them until their average fitness does
not improve any more. As fitness value, the inverse perplexity of the FLM
corresponding to the gene on the development set is used. Hence, parameter
solutions with lower perplexities are preferred in the selection of the genes for
the following iteration. In [DK04], it is shown that this genetic method out-
performs both knowledge-based and randomized choices. An example of a
back-off graph is illustrated in figure 2.6. In this example, part-of-speech (POS)
tags and words are used as features. The three conditioning factors contain the
previous word Wt−1 and the two previous POS tags Pt−1 and Pt−2.

Recurrent neural network language model (RNNLM)

Another option to estimate the probability of a word given a specific context is
using a recurrent neural network [MKB+10]. Figure 2.7 illustrates the idea of
this model. Vector w(t) forms the input of the recurrent neural network. It rep-
resents the current word using 1-of-N coding. Thus, its dimension equals the
size of the vocabulary. Vector s(t) contains the state of the network. It is called
’hidden layer’. The network is trained using back-propagation through time
(BPTT) [Wer90], an extension of the back-propagation algorithm for recurrent
neural networks. With BPTT, the error is propagated through recurrent connec-
tions back in time for a specific number of time steps t. Hence, the network is
able to remember information for several time steps. The matrices U , V and W
contain the weights for the connections between the layers. These weights are
learned during the training phase. Moreover, the output layer is factorized into
classes to accelerate the training and testing processes. Every word belongs to
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Figure 2.6: Possible back-off graph for a FLM using the previous word
Wt−1 and the part-of-speech tags of the last two previous words
Pt−2, Pt−1 as features
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Figure 2.7: Recurrent neural language model [MKB+10]

exactly one class. The classes are formed during the training phase depending
on the frequencies of the words. Vector c(t) contains the probabilities for each
class and vector y(t) provides the probabilities for each word given its class.
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2.2 Automatic speech recognition

Hence, the probability P (wi|history) is computed as shown in equation 2.11.

P (wi|history) = P (ci|s(t))P (wi|ci, s(t)) (2.11)

This technique has several advantages over the N-gram language model since
it can handle a very long history context. Furthermore for every word of the
output, a probability could be obtained. Hence, this model captures smoothing
implicitly.

2.2.4 Combining acoustic and language models

According to Bayes’s equation 2.1, the acoustic model probability and the lan-
guage model probability can be combined through simple multiplication. In
practice, we need to add a language model weight and an insertion penalty.

The acoustic model probability is usually underestimated due to the Markov
fallacy and the independence assumptions [HAH01]. Therefore, combining the
language model probability with the underestimated acoustic model probabil-
ity would give the language model too little weight. Moreover, the two quanti-
ties have a different range if continuous HMMs are used. With a language model
weight LW , the LM probability P (W ) becomes P (W )LW .

Furthermore, a penalty for inserting a new word is introduced. If the penalty
is large, the decoder will prefer fewer longer words in general and vice versa.
To adjust the penalty of inserting new words, the insertion penalty IP is used.
Therefore, the language model contribution becomes:

P (W )LW IPN(W ) (2.12)

where N(W ) is the number of words in the sentence W . Both LW and IP
are typically determined empirically to optimize the ASR performance on a
development set.

2.2.5 N-best lists and word lattices

The output of an ASR system is usually the first best hypothesis. However,
for many applications, such as speech translation or information retrieval, it is
common to store the topN best possible hypotheses. The lattice is a graph with
connected word hypotheses in a time synchronous manner that represents the
alternative hypotheses of the speech recognizer. Depending on the implemen-
tation, a word can be stored in a node or in an edge of the graph. If a node in
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the word lattice represents the word hypothesis with the corresponding acous-
tic model score at the current time segment, then the language model scores
can be stored as transition probabilities on the word lattice links.

From the lattice, it is possible to extract the N-best hypotheses. One of the most
widely used techniques which is used to extract the N-best list from a word
lattice is presented in [SKW97a]. Obviously, every N-best list is only a part of
the lattice. This also means that information is lost when N-best lists instead of
lattices are used. However in scenarios with limited processing time, N-bests
lists can be very helpful.

2.2.6 Unsupervised training of acoustic models

One of the main challenges of standard acoustic model training is the need
for transcriptions and high costs to create transcriptions respectively. In 1998,
Zavaliagkos and Colthurst started the first explorations towards unsupervised
training to improve ASR performance [ZC98]. The idea is to use an existing
speech recognizer to generate automatic transcriptions for available untran-
scribed audio data. With confidence measures derived from the recognizer
output, the hypotheses which have a higher confidence score than a specified
threshold are selected as transcriptions. This threshold is normally a design
parameter to control the tradeoff between the amount of selected data and the
quality of the automatic transcriptions. The selection of appropriate transcrip-
tions is crucial to the resulting recognizer performance.

Confidence measures The confidence of a speech recognizer output expresses
the certainty of the emitted hypothesis. The less confusion exists while gener-
ating the output hypothesis, the more confident the system is. However, high
confidence does not always correlate with a correct hypothesis. Therefore, con-
fidences have to be treated carefully, especially, if the speech recognizer has a
high overall word error rate. Confidence can be measured at different levels of
the recognizer output: utterance based confidence measures indicate the cer-
tainty regarding a whole sentence and also its semantic context; word based
confidence measures abstract from the semantic context and give a confidence
score for each word in an utterance; phone level and frame level confidence
measures provide a more precise indication of the certainty of the acoustic
model, apart from any semantic. In this thesis, two different confidence mea-
sures based on word lattices are used, namely gamma and A-stabil [SK97].

Gamma corresponds to the link probability in the word lattice. A node in the
word lattice represents an HMM state and is associated with a word in the hy-
pothesis whereas the emission probability of each HMM state corresponds to

30



2.2 Automatic speech recognition

the acoustic model score of this word at the current time segment. The transi-
tion probabilities of the word lattice links represent the language model scores.
Given the emission probabilities and the transition probabilities of the word lat-
tice, the link probability can be computed with the standard forward-backward
algorithm.

A-stabil refers to acoustic stability and is computed at a higher level of the word
lattice. A fixed number (typically 100) of different hypotheses are produced us-
ing the lattice. Each of those hypotheses results from a different weighting
between acoustic model and language model. It is then aligned against a refer-
ence output of the recognizer, which is defined as the supposedly best hypoth-
esis. For each word in the reference output, the number of occurrences in the
alternative hypotheses is counted and divided by the total number of alterna-
tive hypotheses. The result of this calculation serves as confidence score for this
word.

The quality of confidence measures usually depends on the recognizer. If the
recognizer performance is good, the confidences are more reliable. Whereas
confidences produced by a recognizer with poor performance tend to be un-
reliable. That means even though a word has a very high confidence score,
the word itself may be wrong nonetheless. In order to maintain reliability of
confidences, a threshold for the least reliable confidence has to be selected care-
fully.

2.2.7 Acoustic model adaptation

Acoustic model adaptation is a technique used to modify the acoustic mod-
els of a speech recognizer to better match specific speakers or conditions. It is
widely used in many speech recognition systems to improve the performance
for the user. Adaptation can transform a speaker-independent system into a
speaker-dependent one. If not enough data is present to train a real speaker
dependent system, general models can be used as a starting point. The idea of
adaptation is using a small amount of specific speech data to calibrate the al-
ready trained general models towards the new conditions. Hence, adaptation
is a powerful concept inspired by methods which humans use to understand
speech with never seen properties. There are different techniques of acoustic
model adaptation. Batch adaptation, for example, means adapting the system
in one step with all the adaptation data. Another possibility is incremental
adaptation which runs the adaptation process in the background and adapts
while the user is speaking. Generally, adaptation can also be categorized ac-
cording to the available transcriptions as supervised or unsupervised adapta-
tion.
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This section describes two widely used acoustic model adaptation techniques
called Maximum Likelihood Linear Regression (MLLR) and Maximum a Pos-
teriori (MAP).

Maximum Likelihood Linear Regression (MLLR)

Maximum Likelihood Linear Regression (MLLR) is a method that transforms
the parameters of the emission Gaussian density functions of an HMM in a lin-
ear manner. This kind of transformation captures linear relationships between
the general models and the adaptation data. The transformation can be applied
either in the model space or in the feature space. When using MLLR adapta-
tion, either exclusively the means or additionally the variances of the Gaussian
distributions are transformed [Gal98, LW95]. It is also possible to decouple the
means from the variances and transform them separately which is defined as
unconstrained MLLR in [Gal98].

˜µsm = Asµm

˜Σsm = HsΣmH
T
s

(2.13)

If the two matrix transformations are constrained to be the same, then a linear
transform related to a feature space transform can be obtained. This is called
contrained MLLR [LW95] :

˜µsm = Ãsµm

˜Σsm = ÃsΣmÃTs
(2.14)

Parameter estimation The transformation matrix is estimated to maximize
the likelihood given the adaptation data in supervised or unsupervised mode.
For supervised adaptation, the transcription is known and can be directly used
without further consideration. If used in unsupervised mode, the transcrip-
tions must be derived from the recognizer output. In this case, MLLR is nor-
mally used iteratively to increase the transcription quality and, therefore, the
adaptation process. The confidence score can be used to weight the automatic
transcription.

Regression class tree If adaptation data is limited, the transformation can
be shared across different Gaussians in the system. The number of transfor-
mations to use for any specific set of adaptation data can be determined au-
tomatically using a regression class tree in figure 2.8. Each node represents a
regression class, i.e. a set of Gaussian components which will share a single
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… … …

Global Class

Base Class – one per Gaussian

Figure 2.8: A regression class tree

transform. The total occupation count associated with any node in the tree can
be easily computed since the counts are known at the leaf nodes. Then for a
given set of adaptation data, the tree is descended and the most specific set of
nodes is selected for which there is sufficient data. This regression tree can be
automatically trained by applying a clustering technique to categorize Gaus-
sians.

Maximum a Posteriori (MAP)

The Maximum a Posteriori (MAP) adaptation [GL94] tries to re-estimate the
HMM parameters given an observed signal. Let λik = (µik,Σik) be the k-th
Gaussian component of state i with corresponding mixture weight ωk. Given
the observation samples X = (x1, ..., xM ), the update equation for the mean
vector can be formulated as followed:

µ̃ik =
τikµik +

∑
ciktxt

τik + α
∑
cikt

(2.15)

where

cikt =
ωkN(xt|λik)∑
ωkN(xt|λik)

(2.16)
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and µ̃ik, µik denote the initial and the adapted vector respectively. τ is normally
determined empirically. Since every Gaussian component is updated individ-
ually, MAP adaptation suits well to the case that enough adaptation data is
available.

2.2.8 Evaluation criteria

Language model performance

To evaluate a language model, the out-of-vocabulary (OOV) rate and perplexity
(PPL) can be computed on a test set. The OOV rate gives the number of tokens
in a test set which are not covered by the vocabulary of the language model.
The perplexity of a language model is derived from the entropy H(W ) of the
test sequence. It can be computed using the following equation.

H(W ) = −
∑

P (W )logP (W ) (2.17)

The perplexity is then obtained as 2H(W ). For a fixed OOV, language models
with lower perplexity are usually sought, although it is known that the per-
plexity is only loosely correlated with the performance of an ASR system.

ASR performance

The standard metric to evaluate an ASR system is the word error rate (WER).
The output of the decoding process is a hypothesis for what has been spoken.
Comparing the hypothesis with the reference text which is the true transcrip-
tion of what has been said, yields a score in the form of the percentage of errors
made. The following errors can occur after the alignment of the hypothesis and
the reference text:

• Substitution: a word is misrecognized

• Deletion: a word from the reference is missing in the hypothesis

• Insertion: the recognizer inserts a word that has actually not been spoken

To compute the WER after identifying these errors, the following equation is
used:

WER[%] =
#substitutions+ #insertions+ #deletions

#words(reference)
∗ 100% (2.18)
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The equation above shows that the WER can exceed 100%, especially in the case
that the speech recognizers tends to insert words. The word error rate can be
transformed into different similar measurements, such as character error rate
or syllable error rate depending on the language. For a special task like rec-
ognizing Mandarin English Code-Switching speech, word error rates can be
applied for English and character error rates for Mandarin respectively. There-
fore, the measurement is called mixed error rate (MER). The presented MER
is the weighted average over all English and Mandarin portions of the speech
recognition output. By applying character based error rates for Mandarin, the
performance does not dependent on the applied word segmentation algorithm
for Mandarin and, thus, performance can be compared across different seg-
mentations, providing more flexibility for future investigations.
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CHAPTER 3

Data, Tools and Baseline
(ASR) Systems for Multiple

Languages

This chapter briefly reviews all the databases which are used in the thesis in-
cluding the GlobalPhone database, the accented speech corpus and the SEAME
corpus. Afterwards, the monolingual speech recognition systems which serve
as baseline for many experiments in this thesis and their performance on the
GlobalPhone database are presented.

3.1 Data corpora

3.1.1 GlobalPhone database

GlobalPhone is a multilingual data corpus developed at Karlsruhe Institute of
Technology (KIT) [Sch02, SVS13]. The complete data corpus comprises (1) au-
dio/speech data, i.e. high-quality recordings of spoken utterances read by na-
tive speakers, (2) corresponding transcriptions, (3) pronunciation dictionaries
covering the vocabulary of the transcripts, and (4) baseline N-gram language
models. The first two parts are referred to as GlobalPhone Speech and Text
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Database (GP-ST), the third as GlobalPhone Dictionaries (GP-Dict), and the lat-
ter as GlobalPhone Language Models (GP-LM). GP-ST is distributed under re-
search or commercial license by two authorized distributors, the European Lan-
guage Resources Association (ELRA) [ELR12] and Appen Butler Hill Pty Ltd.
[htt12]. GP-Dict is distributed by ELRA, while the GP-LMs are freely available
for download from our website [LB12].

Language Coverage

To date, the GlobalPhone corpus covers 20 languages, namely Modern Stan-
dard Arabic (AR), Bulgarian (BG), Chinese-Mandarin (MA), Chinese-Shang-
hai (SH), Croatian (HR), Czech (CZ), French (FR), German (GE), Hausa (HA),
Japanese (JA), Korean (KR), Polish (PL), Brazilian - Portuguese (PT), Russian
(RU), Latin American - Spanish (SP), Swedish (SW), Tamil (TA), Thai (TH),
Turkish (TU), and Vietnamese (VN). This selection covers a broad variety of
language peculiarities relevant for Speech and Language research and devel-
opment. It comprises wide-spread languages (e.g. Arabic, Chinese, Span-
ish, Russian), contains economically and politically important languages, and
spans wide geographical areas (Europe, Africa, America, Asia). The spoken
speech covers a broad selection of phonetic characteristics, e.g. tonal sounds
(Mandarin, Shanghai, Thai, Vietnamese), pharyngeal sounds (Arabic), conso-
nantal clusters (German), nasals (French, Portuguese), and palatized sounds
(Russian). The written language contains all types of writing systems, i.e. logo-
graphic scripts (Chinese Hanzi and Japanese Kanji), phonographic segmental
scripts (Roman, Cyrillic), phonographic consonantal scripts (Arabic), phono-
graphic syllabic scripts (Japanese Kana, Thai), and phonographic featural scripts
(Korean Hangul). The languages cover many morphological variations, e.g.
agglutinative languages (Turkish, Korean), compounding languages (German),
and also include scripts that completely lack word segmentation (Chinese, Thai,
Vietnamese).

Data Acquisition

The data acquisition was performed in countries where the language is offi-
cially spoken. In each language about 100 adult native speakers were asked to
read about 100 sentences. The read texts were selected from national newspa-
per articles available from the web to cover a wide domain with large vocab-
ulary. The articles report national and international political news, as well as
economic news, which makes it possible to compare the usage of proper names
(politicians, companies, etc.) across languages. The following newspapers
were used: Assabah for Arabic, Banker, Cash, and Sega for Bulgarian, Peoples

38



3.1 Data corpora

Daily for Mandarin and Shanghai Chinese, HRT and Obzor Nacional for Croa-
tian, Ceskomoravsky Profit Journal and Lidove Noviny newspaper for Czech,
Le Monde for French, Frankfurter Allgemeine und Sueddeutsche Zeitung for
German, CRI online and RFI for Hausa, Hankyoreh Daily News for Korean,
Nikkei Shinbun for Japanese, Folha de Sao Paulo for Portuguese, Dziennik
Polski for Polish, Ogonyok Gaseta and express-chronika for Russian, La Na-
cion for Spanish, Goeteborgs-Posten for Swedish, Thinaboomi Tamil Daily for
Tamil, Bangkok Biz news and Daily News for Thai, Zaman for Turkish, and Tin
Tuc among others for Vietnamese. The speech data was recorded with a close-
speaking microphone and is available in identical characteristics for all the lan-
guages: PCM encoding, mono quality, 16bit quantization, and 16kHz sampling
rate. Most recordings were peformed in ordinary rooms, in the majority with-
out background noise, so that the speakers were not distracted. The quality
of noise level and recording room setup was reported for each session. The
speakers were given instructions about the equipment handling in advance.
They were introduced to the project goals and were allowed to read the texts
before recording. The transcriptions are available in the original script of the
corresponding language. In addition, all transcriptions have been romanized,
i.e. transformed into Roman script applying reversible 1:1 character mappings.
The transcripts were internally validated and supplemented by special mark-
ers for spontaneous effects like stuttering, false starts, and non-verbal effects,
such as breathing, laughing, and hesitations. Speaker information, such as age,
gender, place of birth, dialect, occupation, etc. as well as information about the
recording setup complement the database.

Corpus Statistics

The entire GlobalPhone corpus contains over 400 hours of speech spoken by
more than 1900 native adult speakers. The data are organized by languages
and speakers and are divided in speaker disjoint sets for training (80%), de-
velopment (10%), and evaluation (10%). Research work in this thesis used data
from 15 different languages, namely Bulgarian, Czech, French, German, Hausa,
Croatian, Japanese, Korean, Mandarin, Polish, Russian, Spanish, Tamil, Thai,
and Vietnamese. Table 3.1 summarizes the amount of transcribed speech data
of these relevant languages.

GlobalPhone Pronunciation Dictionaries

Phone-based pronunciation dictionaries are available for each GlobalPhone lan-
guage. The dictionaries cover the words which appear in the transcriptions.
The majority of the dictionaries were constructed in a rule-based manner using
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Table 3.1: GlobalPhone Corpus Statistics

Training Development Evaluation
Language [hrs:min] [hrs:min] [hrs:min]
Bulgarian 16:47 2:16 1:56
Czech 26:49 2:22 2:41
French 24:55 - 2:01
German 14:54 1:57 1:28
Hausa 6:36 1:02 1:06
Croatian 11:48 2:02 1:45
Japanese 21:51 1:26 1:40
Korean 16:34 2:09 2:04
Mandarin 26:38 1:59 2:25
Polish 18:39 2:47 2:16
Russian 21:08 2:41 2:36
Spanish 17:35 1:40 2:03
Tamil 15:50 1:04 1:00
Thai 19:05 2:03 1:58
Vietnamese 22:15 1:40 1:30

language specific phone sets. After this automatic creation process the dictio-
nary was manually post-processed by a native speaker, correcting errors in the
automatic pronunciation generation and introducing pronunciation variants.
To enable the development of multilingual speech processing, the phone names
are consistent across languages, leveraging the International Phonetic Alphabet
(IPA) [Ass99]. Table 3.2 gives an overview of the size of the phone sets, amount
of vocabulary words covered, and amount of pronunciation variants of the 15
selected languages in the GlobalPhone pronunciation dictionaries.

3.1.2 Non-native speech database

To conduct experiments with non-native speech, an accented database was col-
lected as an extension of the GlobalPhone database, named GlobalPhone Ac-
cented (GPA). Until today, GPA contains English with four different non-native
accents [Mih11] and German with Chinese accent [Wan13].
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Table 3.2: GlobalPhone Pronunciation Dictionaries

Languages #Phones #Words #Dict entries
Bulgarian 44 275k 275k
Czech 41 277k 277k
French 39 122k 195k
German 43 39k 41k
Hausa 33 43k 48k
Croatian 32 21k 23k
Japanese 31 9k 13k
Korean 39 1.3k 3k
Mandarin 49 73k 73k
Polish 36 34k 34k
Russian 47 39k 40k
Spanish 42 31k 39k
Tamil 41 288k 292k
Thai 44 23k 25k
Vietnamese 38 30k 39k

English with non-native accents

In [Mih11], 63 non-native speakers of English (approximately 10 hours) were
recorded. Table 3.3 presents some statistic about this corpus. Since there are
many differences between the accents of people with various language back-
grounds, this research is focused on four major groups of speakers: Native
speakers of Bulgarian (BG), Chinese (Mandarin or Cantonese) (CH), German
(GE) and some of the languages spoken in India (Hindi, Marathi, Bengali, Tel-
ugu, Tamil) (IN). The choice of these speaker groups was based on the avail-
ability of subjects as well as on the fact that these languages stem from dif-
ferent language families. Bulgarian is from the Slavic language family, Man-
darin and Cantonese are members of the Sino-Tibetan language family, Ger-
man is a Germanic language and the Indian languages belong to several lan-
guage families, such as the Indo-European or the Dravidian language family.
The recorded read speech sentences are extracted from the Wall Street Journal
database [PB92]. The majority of topics are economy related news. All subjects
were asked to read approximately 30 English sentences unique for each speaker
within an accent and 6 sentences that are the same for everyone.

Depending on the speaker’s self confidence and experience with the language,
the recording of the sentences took between 30 minutes and an hour.

English with German and Bulgarian accent was recorded in Germany, while
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Table 3.3: GlobalPhone Accented Corpus Statistics

Total BG CH GE IN
#speakers 63 16 17 15 15
male/female 42/21 9/7 11/6 10/5 12/3
audio length [min] 490 125 149 107 109
time/speaker [min] 7.47 7.46 8.42 7.8 7.14
#tokens 57.4 14.3k 15.8k 13.6k 13.9k
#tokens/speaker 911 890 927 904 924
#utterances 2,368 583 640 565 580
#utts/speaker 37 36 37 37 38

the speech data for the Chinese and Indian databases were collected in the
USA. The speakers from India have spent two years in average as residents
in the USA, the Chinese speakers approximately 2.5 years. The numbers for
the German and the Bulgarian speakers are 4.5 months and less than a month,
respectively. All the speakers are at an age between 21 and 30: BG (21 - 29), CH
(22 - 30), GER (22 - 30), IN (21 - 29). All the recordings were performed in a
quiet room.

The division of the speakers that is used for the experiments is as follows: 5
speakers from each accent form the test set, 5 speakers are in the development
set and additional 5 speakers from each accent are used for the acoustic model
adaptation experiments or to train a new system. As the read text is taken
from the Global Phone Database, the utterances are also available in native
speech. Five speakers from every test or development set read the utterances
of 10 speakers from the English Global Phone database, which means that two
native speakers map to one non-native speaker from each accented database.

German with Chinese accent

To conduct crosslingual accent adaptation experiments, we collected about three
hours German speech with Chinese accent [Wan13]. Chinese students at Karl-
sruhe Institute of Technology were asked to read about 50 German sentences
selected from the German GlobalPhone database in a relative quiet room. The
recordings took between 30min and 70min per person. In total, the corpus con-
tains 21 speakers whose ages are between 19 and 32. Their native language is
Mandarin. Most of the speakers have spent less than one year as residents in
Germany. Table 3.4 presents some statistical information about the adaptation,
development and testing data.
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Table 3.4: German with Chinese accent speech corpus statistics
Total Adaptation Dev Eval

#speakers 21 9 6 6
male/female 12/9 5/4 3/3 4/2
audio length [min] 186 75 52 59
time/speaker [min] 8,86 8,30 8,73 9,83
#utterances 1057 454 301 302

3.1.3 SEAME corpus

SEAME (South East Asia Mandarin-English) is a conversational Mandarin-English
Code-Switching speech corpus recorded from Singaporean and Malaysian speak-
ers, created and collected by [LTCL10]. The corpus was used for the research
project ’Code-Switch’ jointly performed by Nanyang Technological University
(NTU) and Karlsruhe Institute of Technology (KIT). The recordings consist of
spontaneously spoken interviews and conversations of about 63 hours of au-
dio data. The corpus is designed for multiple research purposes which in-
clude language boundary detection, language identification studies and mul-
tilingual LVCSR systems. Hence, a word-level manual transcription with lan-
guage boundary alignment is provided. As the corpus was developed for spon-
taneous Code-Switching speech research, the recordings consist of interviews
and conversations without prepared transcriptions. Considering the particular
speaking styles in Singapore and Malaysia, the transcribed words were classi-
fied into four categories for language identification research: English and Man-
darin words, Silence and Others (discourse particles, other languages, and hes-
itations). The ratio in tokens of Mandarin, English, Silence and Others is 44%,
26%, 21% and 7% respectively. The average number of code switches within
each utterance is 2.6 when counting only switches between Mandarin and En-
glish and ignoring the silence and others tags. In total, the corpus contains 9,210
unique English and 7,471 unique Mandarin words. The duration of monolin-
gual segments is very short: More than 82% English and 73% Mandarin seg-
ments are less than 1 second long while the average duration of English and
Mandarin segments is only 0.67 seconds and 0.81 seconds, respectively. We
divided the corpus into three sets (training, development and test set) and dis-
tributed the data based on several criteria (e.g. gender, speaking style, ratio of
Singaporean and Malaysian speakers, ratio of the four categories, and the du-
ration in each set). Table 3.5 lists the statistics of the SEAME corpus in these
three sets.
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Table 3.5: Statistics of the SEAME corpus
Train set Dev set Eval set

# Speakers 139 8 8
Duration(hours) 58.4 2.1 1.5
# Utterances. 48,040 1,943 1,015

3.2 Speech recognition for multiple languages

To conduct research in multilingual speech recognition, we developed mono-
lingual ASR systems for the 15 languages using the GlobalPhone database. This
section describes the acoustic and language models as well as the toolkits Janus
and Rapid Language Adaptation Toolkit which were used to train the ASR sys-
tem. Afterwards, we present some advanced techniques which we developed
to optimize the ASR systems based on language peculiarities.

3.2.1 Acoustic modeling

Janus Speech Recognition Toolkit

To train acoustic models for multiple languages, we used the Janus speech
recognition toolkit (JRTk) [FGH+97] which is a software developed at Carnegie
Mellon University (CMU) and KIT. The toolkit includes an AM trainer which
supports state-of-the-art AM training techniques and the dynamic decoder Ibis
[SMFW01]. The AM training using Janus includes three main steps: context-
independent AM training, decision tree building and context-dependent AM
training. On top of that, speaker adaptive training or discriminative train-
ing based on boosted MMIE [PKK+08] can be applied. However, those two
techniques are not used for the baseline systems described in this section since
we aimed at developing speaker independent ASR systems. Furthermore, the
amount of training data in the GlobalPhone database is rather small. Hence,
discriminative training techniques may lead to no substantial improvements.
In our experiments with Vietnamese, we observed less then 1% relative im-
provement over the baseline system. Since the discriminative training is CPU-
intensive and time-consuming, we decided to not apply this technique on top
of our baseline systems.
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Acoustic model training

We used the multilingual inventory which has been trained earlier from seven
GlobalPhone languages [SW01b] to bootstrap a system in a new language. First,
an initial state alignment is produced by selecting the closest matching acoustic
models from the multilingual inventory as seeds. The closest match is derived
from an IPA-based phone mapping. The standard front-end is applied by using
a Hamming window of 16ms length with a window overlap of 10ms. Each fea-
ture vector has 143 dimensions containing 13 Melscale Frequency Ceptral Coef-
ficients (MFCC) and their five left and right neighbors. A Linear Discriminant
Analysis transformation reduces the feature vector size to 42 dimensions. The
acoustic model uses a fully-continuous 3-state left-to-right HMM. The emission
probabilities are modeled by Gaussian Mixtures with diagonal covariances. For
context-dependent acoustic models, we train a quintphone system and stop
the decision tree splitting process at a specified language dependent thresh-
old (varies between 500 and 3,000 leaves depending on the available amount
of training data). After context clustering, a merge&split training [UNGH98]
is applied, which selects the number of Gaussians according to the amount of
data. For all the models, we used one global semi-tied covariance (STC) ma-
trix [Gal99] after applying the Linear Discriminant Analysis (LDA) [Fuk90].

3.2.2 Language modeling

Rapid Language Adaptation Toolkit (RLAT)

The project SPICE (DARPA, 2004-2008) performed at the Language Technolo-
gies Institute at Carnegie Mellon and the Rapid Language Adaptation project at
Cognitive Systems Lab (CSL) aims at bridging the gap between language and
technology expertise. For this purpose, RLAT [RLA12] provides innovative
methods and interactive web-based tools to enable users to develop speech
processing models, to collect appropriate speech and text data to build these
models, as well as to evaluate the results and improve the models iteratively
[SBB+07]. The toolkit significantly reduces the amount of time and effort in-
volved in building speech processing systems for unsupported languages. In
particular, the toolkit allows the user to (1) design databases for new languages
at low costs by enabling users to record appropriate speech data along with
transcriptions, (2) to continuously harvest, normalize, and process massive
amounts of text data from the web, (3) to select appropriate phone sets for new
languages efficiently, (4) to create vocabulary lists, (5) to automatically generate
pronunciation dictionaries, (6) to apply these resources by developing acoustic
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and language models for speech recognition, (7) to develop models for text-to-
speech synthesis, and (8) to finally integrate the built components into an appli-
cation and evaluate the results using online speech recognition and synthesis
in a talk-back function [SBB+07]. RLAT [RLA12] and SPICE are freely available
online services which provide an interface to the web-based tools. They have
been designed to accommodate all potential users, ranging from novices to ex-
perts. In this thesis, RLAT was applied to crawl the text material on the Internet
which was then used to build the language models.

GlobalPhone Language Models

We applied RLAT to crawl a massive amount of text data and used the strategy
presented in [VSKS10] to quickly and efficiently build the GlobalPhone lan-
guage models for 18 languages. We crawled text data for several days, and
each day one language model was built based on the daily crawled text data.
The final language model was then created by a linear interpolation of all the
daily language models. The interpolation weights were computed using the
SRI Language Model Toolkit [Sto02], optimized on the GlobalPhone develop-
ment sets. The experimental results in [VSKS10] indicated that the text data
from the first few days are most helpful and, therefore, receive the highest inter-
polation weights in the final language model. Since the outcome of the crawl-
ing process depends on the input websites, the starting pages have to be chosen
carefully. In our experiments, we found that in the case of Croatian, Japanese,
Korean and Thai, the crawling process finished prematurely after one or two
days, retrieving a rather small amount of text data. Since text data diversity
has a major impact on language model quality and the final performance of an
ASR system, we selected additional websites to harvest more diverse text data.
The final best language models were then built based on the interpolation of the
language models from a variety of websites. Table 3.6 gives an overview of the
amount of crawled text data, the trigram perplexities (PPL), out-of-vocabulary
(OOV) rates on the GlobalPhone test sets, and the vocabulary sizes of the lan-
guage models for the 15 selected languages. For each language, the numbers
of both the full (LM) and the pruned benchmark language models (LM-BM)
are reported. The symbols in parentheses after the language name indicate
the token units used, i.e. (w) for word-based, (s) for syllable-based, and (c)
for character-based token units. The pruned benchmark language models are
available for download in [LB12].
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Table 3.6: Text Resources and Language Models

3-gram PPL OOV
Language LM-BM LM [%] #Vocab #Tokens

Bulgarian (w) 454 351 1.0 274k 405M
Czech (w) 1421 1361 4.0 267k 508M
French (w) 324 284 2.4 65k -
German (w) 672 555 0.3 38k 20M
Hausa (w) 97 77 0.5 41k 15M
Croatian (w) 721 647 3.6 362k 331M
Japanese (s) 89 76 1.0 67k 1600M
Korean (c) 25 18 0 1.3k 500M
Mandarin (c) 262 163 0.8 13k 900M
Polish (w) 951 904 0.8 243k 224M
Russian (w) 1310 1150 3.9 293k 334M
Spanish (w) 154 108 0.1 19k 12M
Tamil (s) 730 624 1.0 288k 91M
Thai (s) 70 65 0.1 22k 15M
Vietnamese (s) 218 176 0 30k 39M

3.2.3 Language specific system optimization

Depending on the language peculiarities, we applied different techniques to
improve the ASR performance. The following paragraphs list several optimiza-
tion techniques which we used to optimize the ASR performance depending on
the languages.

Tonal languages To model tonal languages, such as Chinese, Hausa, Thai,
and Vietnamese, we apply the “Data-driven tone modeling” approach, where
all tonal variants of a phone share one base model [VS09, SDV+12]. The infor-
mation about the tone is added to the dictionary in form of a tone tag. These
tags are used as questions in the context decision tree when building context
dependent acoustic models. This way, it is based on the data whether different
tonal variants of the same basic phone are represented by different models or
share the same basic phone model.

In the case of Vietnamese, we also experimented with integrating fundamen-
tal frequency information into the preprocessing step [VS09]. According to
[Nol64], the cepstrum of a speech signal has a peak corresponding to the funda-
mental period which can be used to extract tone features. Therefore, we com-
puted the cepstrum with a window length of 40ms and detected the position of
the maximum of all cepstral coefficients starting with the 30th coefficient. Fur-
thermore, the positions of the three left and right neighbors, and their first and
second derivatives were considered. This resulted in 21 additional coefficients
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(1 maximum, 3 left neighbors, 3 right neighbors plus the first and second order
derivatives). These 21 coefficients were added to the original 143 dimensional
feature vector. With an LDA transformation, we finally reduced the 164 dimen-
sional feature vector to 42 dimensions. By using this technique, we obtained
about 5% relative improvement on the Vietnamese test set [VS09].

Isolating languages In isolating languages like Vietnamese, the text data
contains sequences of monosyllables, i.e. white spaces occur directly after each
monosyllable and each monosyllable could be accepted as an individual word.
Therefore, it is important to increase the history in the language model and the
context width in the acoustic model to improve the ASR performance. Thus, we
combined monosyllable words to multisyllable words by concatenating sylla-
bles using the method in [VS09]. For example, the Vietnamese multisyllable
word “sinh1 vien1” (student) was merged from “sinh1” and “vien1”. For this
process, we had to overcome two challenges. First, we had to find suitable
multisyllables. To solve this problem, we used a dictionary based approach
and built a look up table to check whether the combination of monosyllables
is a viable word. For the case of Vietnamese, we used an open source dictio-
nary from the University of Leipzig [Dicb]. It contains about 23.000 bisyllable
Vietnamese words and about 6.500 monosyllable words. The second problem
was to figure out which syllables should be concatenated. Three methods have
been described in the literature: apply statistical information, linguistic infor-
mation, and a hybrid of both. To develop a language-independent technique,
we relied on the statistical method. Using crawled text data, we calculated the
frequencies of all bi-syllable words from the dictionary. For each sentence in
the text corpus, we searched syllable by syllable for multisyllabic words from
the beginning to the end of the sentence. Words with higher hit rate than the
left and right neighbors were selected as multisyllabic words. With the result-
ing new text corpus we created a new language model with RLAT. Then, we
concatenated the corresponding syllables in the transcriptions of the audio data
and re-trained the acoustic model as well.

Morphological-rich languages Morphological-rich languages, such as Ta-
mil may be a challenge for language models of state-of-the-art ASR systems.
The morphological complexity often causes data sparsity problems and results
in high OOV-rates and LM perplexities. A traditional approach to overcome
this problem is to use a very large vocabulary. However, using a very large
search vocabulary also leads to high OOV rates and high resource require-
ments, such as CPU time and memory. Alternatively, morpheme-based LMs
can be used to lower the OOV rate, decrease the perplexity, reduce the re-
source requirements and achieve better accuracy. This paragraph presents the
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technique called Dictionary Unit Merging Algorithm (DUMA) [KSW99, JVS12,
JVS13] which is a data-driven, statistical approach to determine appropriate
dictionary units. It should overcome the high OOV rate and LM perplexity due
to the rich morphology of Tamil. The inputs of the algorithm are a pronuncia-
tion dictionary, the LM training text and a vowel list. The vowel list is the only
linguistic knowledge required by the algorithm. Initially, the entire text was
segmented into syllables which is language dependent. In the case of Tamil,
the algorithm in [LM06] was applied. The word boundary information in the
syllabified text was also included i.e. we inserted a “-” to every syllable that did
not occur at the start of a word. Then, we obtained all possible syllable pairs
from the syllabified text. Afterwards, each possible pair was looked up in the
dictionary and the pronunciation of the vowel-vowel transition was retrieved.
The merging algorithm is governed by the following iterative steps:

1. A hash table is computed that maps the vowel-vowel transition and the
corresponding syllable pair to the frequency of the pair in the LM text.

2. For each vowel-vowel transition in the hash table, the most frequent syl-
lable pairs are inserted into a merge-list.

3. All the pairs in the segmented corpus that can be detected in the merge-
list are merged.

We only merged pairs that occur within a word, and chose not to merge pairs
across word boundaries. We used the merge-list obtained after step 2 of the
unit merging algorithm to merge both the training and test transcripts. Finally,
we combined the units extracted by using this algorithm and the most frequent
words to obtain the best ASR performance for Tamil [JVS13].

ASR performance

Figure 3.1 illustrates the ASR performance on the GlobalPhone test set for all
the languages. Depending on the language, different kinds of error rates were
used. Character error rate was applied for Korean, and Mandarin, while sylla-
ble error rate was used for Japanese, Tamil, Thai, and Vietnamese. The remain-
ing languages were evaluated with word error rate. The ASR performance has
a wide range from around 7.8% to 29.5% on the GlobalPhone test set.

We achieved error rates < 15% for Haitian Creole, Hausa, Mandarin, Polish,
Spanish, Thai, and Vietnamese. Most of them served as baseline in our exper-
iments which are described in the next chapters. For the case of Czech, we
obtained two different baseline performances. The first baseline was used in
Chapter 4 in which we assumed that the manual transcription of the audio
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Figure 3.1: ASR performance on the GlobalPhone test set

data is not available. Therefore, we used a large decoding dictionary contain-
ing 267k words which covers the most frequent words of a web text corpus.
On the Czech test set, we obtained 22.3% WER. The second baseline was used
in Chapter 5 and 7 in which the manual transcriptions were used to select the
most frequent 40k words as decoding dictionary entries. Using this smaller
decoding dictionary, the WER was 19.5% on the Czech test set.

For morphological-rich languages, such as Bulgarian, Croatian, French, Ger-
man, Korean, Russian, and Tamil, we obtained error rates larger than 20% for
most of the cases. There could be three possible reasons for this. The first
reason can lie within the difficulty of the language model task. To build an
accurate LM with a large vocabulary, we need a large amount of text data.
Even with many text data, the language model still has a high OOV rate and
perplexity [VSKS10]. More specifically, in the case of Bulgarian, Czech, Croat-
ian, Russian, Tamil, the search vocabulary is larger than 200,000 and, therefore,
it leads to high perplexities of the language models on the test set. Another
reason might be data inconsistencies including topic and domain because we
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have been collecting the new text data since 2009 while many languages of
the GlobalPhone database were recorded around 1998. Third, the results could
be caused by special challenging aspects, such as homophones issues in French.
These are words which have the same pronunciations and can, therefore, easily
be confused.
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CHAPTER 4

Cross-language
Bootstrapping Based on

Completely Unsupervised
Training

With around 7000 languages in the world and the need to support multiple lan-
guages, the most important challenge nowadays is to port ASR systems to new
languages rapidly and at reasonable costs. This chapter presents our multilin-
gual unsupervised training framework which allows building an ASR system
for new languages without any transcribed audio data - one of the most expen-
sive and time-consuming steps when building an ASR system.

4.1 Introduction

Automatic speech recognition becomes more and more important in the daily
life since it is used in many applications, such as dictation systems, navigation
systems, speech translation systems and spoken web search. Due to the strong
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growth of globalization, the need of ASR in many languages has increased dra-
matically over the last decade. One of the most challenging tasks is to minimize
development costs and effort for the construction of a speech recognizer for a
new language. Furthermore, large amounts of data have to be processed to
allow speech recognition for continuously spoken speech. The principle that
“there is no data like more data” [Jel05] is true in many contexts.

Modern media like the Internet provide a great amount of easily and freely ac-
cessible audio data for various languages. However, there are no restrictions
in topic or vocabulary for these data, and one has to deal with different di-
alects or even different languages. Moreover, the most challenging problem
with these data is the possible lack of transcriptions. Detailed transcriptions of
audio training data are a crucial factor for the construction of automatic speech
recognition systems. The generation of manual transcriptions requires 10 to 40
times real-time, depending, on the one hand, on the transcription quality and
the transcriber’s experience and, on the other hand, on the speaking style and
also the quality of the audio data. Such effort is unbearable for the large amount
of data that is nowadays used to build a recognizer for continuous speech. To
overcome these problems and limitations, automatic methods to train a speech
recognition system without transcribed audio data are required.

Moreover, many ASR systems for resource rich languages already exist. The
question is whether we can use the knowledge and resources which are avail-
able to bootstrap systems for new languages. Figure 4.1 illustrates the initial
situation: The available resources, such as pronunciation dictionary, audio data
and text data of the new language are given, as well as many ASR systems in
different languages. The goal is to build an ASR system for the new target lan-
guage. In this work, we aim at developing a framework which allows building
an ASR system for a new language using available resources with minimal hu-
man effort. In this scenario, we minimize the developing costs and time by
automatically transcribing the audio data.

First, we revisit the cross-language transfer technique [SW01a] and investigate
the impact of the relation between the source and target language on the ASR
performance. Afterwards, different confidence scores, such as A-stabil and
gamma are explored. We propose a new method to compute the word-based
confidence score called “Multilingual A-stabil”. Finally, we demonstrate that
the proposed framework works well in different tasks with different databases
even if the source and the target languages are not related.
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Audio Data
(e.g. Czech TV, Radio)

Text Data 
(e.g. Czech 
website)

Czech
ASR

No correspondence ?

English ASR
hi /h/ /i/
be /b/ /i/

hi 0.01

be 0.02

German ASR
es /e/ /s/
du /d/ /u/

es 0.02
du 0.04

French ASR
est /eh/
tu /t/ /ue/

est 0.02
tu 0.01

Spanish ASR
es /eh/
la /l/ /a/

es 0.01
la 0.03

Dictionary (e.g. Czech)
vy /v/ /i/ ap /aa/ /p/ /e/
ano /a/ /n/ /o/ apel /a/ /p/ /e/ /l/

ant /a/ /n/ /t/ pohyb /p/ /o/ /h/ /i/ /p/

LM
vy 0.01
ano 0.001

ne 0.001

pohyb 0.002

Figure 4.1: Initial situation: We assume to have pronunciation dictionaries and
audio and text data of the new language (e.g. Czech) as well as
several ASR systems of different languages (e.g. English, French,
German, and Spanish). However, no transcriptions of the audio data
are available.

4.2 Related work

4.2.1 Unsupervised and lightly unsupervised training

Unsupervised training in speech recognition showed its success in the past
starting from 1998. The first explorations toward unsupervised training were
conducted by Zavaliagkos and Colthurst [ZC98]. Afterwards, there were many
studies, such as [KW99], [LGA02b], [LGA02a], and [WN05] which followed
this research direction. They started with a recognition system which was
trained on a small amount of manually transcribed data and then decoded un-
transcribed audio data to obtain the automatically generated transcriptions for
acoustic model training.
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In [KW99], the impact of untranscribed data was examined on a recognizer
that was trained with only a small amount of manually transcribed data. The
authors investigated how many manually transcribed data were required to
achieve reasonable results, and how good the quality of the automatically gen-
erated transcriptions was compared to the quality of manual transcriptions.
The study concluded that each system can improve itself using automatic tran-
scriptions. Furthermore, it was observed that in some cases a lot of data was
necessary and the improvement was very slow. However, with increasing sys-
tem performance, the self-learning process also accelerates. In [KW99], Kemp
and Waibel also applied unsupervised training in combination with a confi-
dence score to select accurate data for German ASR. In their experiments, the
WER was improved from 32% to 21.4%. Furthermore, they conducted “oracle
experiments”, by simulating confidence measures with 100% correctness and
showed that the WER of their system cannot be improved significantly beyond
21.4%. Lamel, Gauvain and Adda explored the concept of lightly supervised
and unsupervised training with an iterative method in [LGA02a, LGA02b].
Their iterative refinement of transcriptions was based on several iterations of
repeated Viterbi alignment of the generated transcriptions with the audio sig-
nal. The alignment was corrected manually and, afterwards, a standard EM-
training was executed. Consecutive alignment and correction was repeated
several times with an increasing amount of audio data and transcriptions. The
authors also explored the use of closed captions which are partial transcrip-
tions that depict the topic of the current speech segment. However, their results
showed that the use of closed captions is difficult because of the missing dis-
tinction of speech and non-speech events, different word choices (synonyms),
or alternating word order. For the task of unsupervised training, they tried to
reduce the initial amount of data that has to be transcribed. With ten minutes
of transcribed data and five iterations of unsupervised training, they almost
reached the WER of the same recognizer trained with one hour of transcribed
data. They also observed that closed caption filtering is not necessary for this
method of iterative unsupervised training. Wessel and Ney applied unsuper-
vised acoustic model training on broadcast news data [WN05]. They started
with one hour up to five hours of manually transcribed data. They found that
the more data they use, the better the recognition performance gets. However,
the improvement is rather small and with one hour of manually transcribed
data, they already got sufficiently good results.

4.2.2 Confidence score

The results of the above mentioned previous studies show that the use of confi-
dence scores improved the performance of the unsupervised training approach.
Hui Jiang conducted a survey on confidence measures in 2005 [Jia05]. Three
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kinds of confidence measures are described: Predictor features, posterior prob-
ability, and utterance verification. Predictor features, for example n-best lists,
acoustic stability, or hypothesis density, serve to distinguish false from correct
results. However, none of these features is ideal and even a combination of
several features does not lead to better performance. Posterior probability fea-
tures try to estimate p(X) from the fundamental equation of speech recognition.
Examples for posterior probability features are filler based methods or lattice
based confidences. The third group of confidence measures, utterance verifi-
cation, formulates the problem of confidence measures as statistical hypothesis
testing problem. Hypothesis 0, meaning that X was classified correctly, is com-
pared to hypothesis 1, meaning that X was classified falsely, with a distance
measure, for example likelihood ratio or Bayes factor. Hui Jiang concluded that
lattice based confidence measures seem to provide good results, and have the
advantage of incorporating language model scores. However, a general prob-
lem with confidences is that segmentation errors of the ASR system are not
detected, but lead to bad confidences. Kemp and Schaaf [KS97] compared the
performance of several word lattice based confidences. They compared fea-
tures like gamma, hypothesis density, or acoustic stability. The overall conclu-
sion of this paper was that all the confidence measures - besides gamma - give
approximately the same results. Gamma, on the contrary, was more effective
than all the other features combined, and therefore, was the clear winner. It is
notable that the recognizer that was used to generate the confidence scores was
quite strong with 13.2% WER on their dataset.

4.2.3 Cross-language bootstrapping

Schultz and Waibel introduced cross language transfer in [SW01a] and eval-
uated its application to Swedish based on GlobalPhone data. The idea is to
borrow an existing acoustic model of one language for another language. Their
experiments revealed that for Swedish, the results are independent of the base-
line performance of the source language, as well as mostly independent of the
language family of the source language. In their work, only the crosslingual
effect was explored.

In [LGN09], the authors built a Polish ASR system by using Spanish ASR in
combination with unsupervised training. A Spanish system on European Par-
liament plenary sessions (EPPS) speech data with an initial WER of approx-
imately 10% was ported to Polish with manual phone mapping. The initial
Polish model was refined through iterative recognition and re-training of 130
hours of Polish European Parliament audio data starting at an initial WER of
approximately 60%. Their results are convincing but limited since the source
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and target language are related. Therefore, the initial WER is accurate enough
to apply unsupervised training.

4.3 Cross-language modeling based on phone
mapping

Based on the initial situation described in Section 4.1, the first step is to transfer
the acoustic models from the source languages to the target language to obtain
an initial acoustic model which can be used for unsupervised training. That
means, the acoustic models of the source languages are borrowed and directly
used as initial model of the target language. For this task, the “cross-language
transfer” technique is applied. This section presents the main idea of this tech-
nique and also two different implementations. Both implementations apply the
phone mapping approach based on IPA.

4.3.1 General idea and implementation

Cross language transfer refers to the technique of applying a system developed
in one language to recognize another language without using any training data
of the new language. [SW01a] presented two principle ways of achieving a
phone mapping: manual mapping using the IPA scheme or a mapping that was
automatically derived from data using a target language phone recognizer. In
this thesis, we evaluated the scenario that we do not have audio training data
with transcriptions for developing an ASR, so we cannot build a phone recog-
nizer. Therefore, we decided to use a manual mapping although in [SW01a], a
slightly better performance is presented using an automatically derived map-
ping.

In the original implementation of the technique in [SW01a], the authors mod-
ified the acoustic models of the source languages, i.e. for each acoustic model
of the context-independent HMM-states of the source languages, the acoustic
model of the corresponding HMM-state based on the manual phone mapping
of the target language was selected.

In contrast to the original approach of cross-language transfer [SW01a], we did
not modify the acoustic model of the source languages, but the pronunciation
dictionary of the target language, i.e. we modeled Czech words with phones
of the other source languages. These mapped dictionaries allow the use of
the acoustics of the source languages in combination with the pronunciation
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dictionary and language model of the target language to decode the untran-
scribed audio data and, therefore, to generate automatic transcriptions. Fig-
ure 4.2 shows the idea of our modified cross-language transfer with Polish as
source language and Czech as target language.

LM
ano 0.001

Dictionary
ano /a/CZ /n/CZ /o/CZ

Target: CZ

Phone Set
/a/PL

/n/PL

/o/PL

Source: PL

LM
ano 0.001

Mapped 

Dictionary
ano /a/PL /n/PL /o/PL

Cross-language 

Transfer

Figure 4.2: Modified cross-language transfer with Polish as source and Czech
as target language

Consequently, in contrast to [SW01a], the modified approach will benefit from
context similarities between languages by leveraging the context dependent
acoustic models of the source languages.

4.3.2 Experiments and results

In these experiments, Czech serves as target language while two different lan-
guage groups are used as source languages. The first language group contains
closely related languages to Czech, such as Bulgarian (BL), Croatian (HR), Pol-
ish (PL), and Russian (RU). The languages English (EN), French (FR), German
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(GE), and Spanish (SP) belong to the second group. Compared to the first
group, the languages in the second group are not as related to Czech as the
languages in the first group. The mappings for the evaluated languages are all
created manually and are based on IPA similarities. If no phone with the same
IPA symbol exists, a similar IPA phone is chosen based on articulatory features.
Table 4.1 shows an overview of the mappings between Czech and the other
source languages. Since Czech is the target language, each Czech phone needs
a representative phone in each of the source languages. All the phones in ta-
ble 4.1 are displayed in IPA notation in square brackets. The selected languages
are quite different but still belong to the large Indo-European language family.
Several consonant phones are equal in all nine languages and, therefore, not
listed in Table 4.1. These phones are: [b], [d], [f], [g], [j], [k], [l], [m], [n], [p], [r],
and [z].

We applied both the original and the modified cross-language transfer from
the different source languages to Czech as target language. Table 4.2 compares
the performance between the original and the modified cross-language transfer
approach based on the Czech development set. It also shows the percentage of
polyphone types from the target language covered by each source language,
respectively. The results in table 4.2 indicate that the modified cross-language
transfer outperforms the original approach for those source language that be-
long to the same language family as the target language. This is most likely
due to the fact that words (and contexts) are more similar among the Slavic lan-
guages and, thus, better leverage the context dependent acoustic models after
mapping the dictionary. However, we observed that the polyphone coverage
and ASR performance are only loosely correlated, e.g. using the Polish acous-
tic model yields a better WER than the Bulgarian acoustic model although the
Czech polyphones are better covered by the Bulgarian polyphones. Hence, we
investigated the Slavic language family tree. Polish and Czech are both Western
Slavic languages while Bulgarian is a Southern Slavic language, which can be
a reason to explain the cross-language transfer results. In contrast, Schultz and
Waibel [SW01a] did not observe any correlation between the ASR performance
after applying cross-language transfer and the language similarity between
source/target language. Linguistically closest to their target language Swedish
is German, but Turkish and Korean worked best in their experiments.

4.4 Multilingual A-Stabil - A Multilingual
Confidence Score

The basic idea of unsupervised training is to improve an acoustic model by
iterative recognition of audio data without manual transcriptions. Instead, au-
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Table 4.1: Overview of phone mappings from the 8 source languages to Czech

CZ BL EN FR GE HR PL RU SP
c [ţ] [ţ] [s] [s] [ţ] [ţ] [c] [ţ] [s]
ch [Ù] [Ù] [Ù] [S] [x] [Ù] [Ù] [Ù] [Ù]
dj [é] [dj] [T] [d] [d] [d] [d] [d] [D]
h [H] [k] [h] [h] [h] [x] [H] [h] [G]
mg [M] [m] [m] [m] [m] [m] [m] [m] [m]
nj [ñ] [nj] [n] [ñ] [n] [nj] [n] [nj] [ñ]
ng [N] [n] [N] [N] [N] [nj] [n] [n] [N]
rsh [r] [r] [ô] [K] [K] [r] [r] [r] [R]
rzh [r] [r] [ô] [K] [K] [r] [r] [r] [R]
sh [S] [S] [S] [S] [S] [sj] [S] [S] [s]
tj [t] [tj] [t] [t] [t] [t] [t] [tj] [t]
x [x] [x] [S] [K] [x] [sj] [sj] [x] [x]
zh [Z] [Z] [Ã] [Z] [S] [zj] [Z] [ü] [z]
a [2] [@] [a] [a] [2] [2] [2] [2] [a]
aa [2] [2] [6] [6] [a:] [2] [2] [2] [a]
aw [au] [2] [au] [5] [aU] [2] [2] [2] [au]
e [E] [E] [e] [e] [e] [E] [E] [E] [e]
ee [E:] [E] [e] [E] [e:] [E] [E] [E] [e]
ew [iw] [E] [eI] [ø] [Oy] [E] [E] [E] [eu]
i [I] [I] [I] [i] [i] [I] [I] [I] [i]
ii [i] [i] [i] [i] [i:] [i] [i] [i] [i]
o [o] [o] [O] [o] [o] [o] [o] [o] [o]
oo [o] [o] [O] [O] [o:] [o] [o] [o] [o]
ow [ou] [o] [oU] [o] [o] [o] [o] [o] [o]
u [U] [u] [U] [u] [u] [u] [u] [u] [u]
uu [u] [u] [u] [u] [u:] [u] [u] [u] [u]

tomatically generated transcriptions are used to re-train or adapt the acoustic
model. For an effective use of available acoustic data, it is important to uti-
lize confidence measures to select or weight the contributions of the audio data
so that only training data with accurate automatic transcriptions are used. In
this section, we describe the investigation of confidence scores and propose a
new method called “Multilingual A-stabil” which is based on ASR for multi-
ple languages. We show that “Multilingual A-stabil” suits better than other
confidence score measures when the acoustic model is poorly estimated.
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Table 4.2: Original vs modified cross-language transfer (WER)

Languages Original Modified abs. ∆ Polyphone Coverage
Bulgarian (BG) 67.0% 61.0% 6% 16.9%
Croatian (HR) 68.0% 57.2% 10.8% 15.6%
Polish (PL) 67.7% 55.8% 11.9% 13.2%
Russian (RU) 72.5% 64.3% 8.2% 10.0%
Spanish (SP) 85.4% 87.2% -1.8% 6.8%
German (GE) 75.2% 75.2% 0% 6.4%
French (FR) 84.5% 95.2% -10.7% 2.0%
English (EN) 87.4% 99.8% -12.6% 0.4%

4.4.1 Investigation of confidence scores

In [KS97], “gamma” and “A-stabil” were presented and have been widely ap-
plied to unsupervised training afterwards. The authors showed a high corre-
lation between these confidence scores and the word error rate of the speech
recognition system. However in their experiments, a strong German ASR with
high accuracy on the test set was used. In our experiments, when the initial
acoustic model is obtained by using the crosslingual transfer technique, the
ASR system is rather weak. Therefore, we regarded the robustness of gamma
and A-stabil to figure out whether they are a suitable confidence score in our
task.

To evaluate gamma and A-stabil, we plot the performance (WER) over selected
confidence thresholds. We used the CZ system to decode the development set
and evaluated the WER of all the words occurring in the specified confidence
interval using steps of 0.1. Figure 4.3 compares gamma and A-stabil for two
systems: a CZ system trained on about 23 hours of CZ training data and a CZ
system resulting from cross-language transfer. The WER is 22.7% and 55.8% on
the Czech test set, respectively. During decoding, the language model weight
and the insertion penalty was set to 26 and 0. To compute A-stabil, we gen-
erated 100 alternative hypotheses by varying the language weight from 35 to
44 with a step size of 1 and the insertion penalty from −8 to 10 with a step
size of 2. The figure shows that gamma and A-stabil work very well with well-
trained acoustic models, but have problems with the initial acoustic models
generated by the cross-language transfer. Due to the poor performance of these
confidence scores, it is difficult to apply unsupervised acoustic model training.
Hence, a more robust confidence score is required.
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Figure 4.3: The plot of recognition errors over gamma (and A-stabil) using
a well-trained Czech acoustic model and an initial cross-language
acoustic model (Polish) [Kra11]
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Figure 4.4: “Multilingual A-stabil” method to compute word-based confidence
scores

4.4.2 Multilingual A-Stabil

Based on the idea of A-stabil, we propose a new method to compute confidence
scores using acoustic models from n different languages. First, for the acoustic
model of each language the word lattices are extracted. To generate the alter-
native hypotheses, we vary the weight of the language model and the word
insert penalty of each language. Instead of using only alternative hypothe-
ses of one language, we merge all sets of alternative hypotheses from different
acoustic models to obtain a multilingual arbiter. Afterwards, the frequency of
each word of the reference output is computed based on this set normalized by
the number of alternative hypotheses. By applying this technique, the multi-
lingual arbiter uses divers information from different languages which might
be helpful to compensate mismatching phone sets between languages. More-
over, the multilingual arbiter does not force the system to merge the acoustic
units, such as phones or subphones across languages. In contrast, it collects
all the information provided by each monolingual speech recognizer and lets
the system choose which information from which language should be used by
counting the frequency of the word hypothesis. Figure 4.4 illustrates the new
method to compute word-based confidence scores. In this example, the Czech
acoustic model was generated by using the cross-language transfer technique
with Polish as source language. We used this model to decode the audio data
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4.4 Multilingual A-Stabil - A Multilingual Confidence Score

and obtained the best hypothesis, which is referred to as reference in Figure
4.4. Afterwards, we computed the confidence score for each word in this refer-
ence. For this, we used not only the acoustic model from Polish but also from
Croatian, Bulgarian and Russian to generate alternative hypotheses. Finally,
the reference words are counted in these alternative hypotheses with consider-
ation of the correct time steps. The following equation shows how to compute
the “multilingual A-stabil” confidence score from these counts:

multilingual A-stabil =
#occurrence(reference word)

h
(4.1)

where h is the total number of the alternative hypotheses.

Note that the original definition of A-stabil is a specialization of the new method
with n = 1, that means monolingual. Hence, we refer to it as “multilingual A-
stabil”. Figure 4.5 shows the relation of the recognition error and this score.
We detect a very high correlation between the multilingual A-stabil and the
recognition error for both well-trained acoustic models and poorly estimated
acoustic models. In contrast to gamma and A-stabil, multilingual A-stabil is
much more robust against poor ASR performance. Furthermore, the quality
of the confidence score increases significantly if four languages are used. That
means, the WER is comparatively low for high confidence scores considering
the high overall WERs of all four recognizers. Here again, the x-axis represents
confidence score intervals, the left y-axis the WER for all the words in the cur-
rent confidence score interval, and the right y-axis the number of words in the
current confidence score interval. The plots of WER over confidence score (yel-
low and red curve in Figure 4.5) show a much higher correlation than the plots
of gamma and original A-stabil using the initial acoustic model (green curve in
Figure 4.3). The bars in Figure 4.5 represent the amount of data within a confi-
dence score interval. Since the WER of the initial acoustic model is quite high,
there is only a small amount of data with high confidence scores. However,
with further adaptations of the initial recognizers and thus, rising recognition
accuracy, more words with high confidence scores can be obtained. Through-
out the adaptation and data selection process, sufficient data quality is ensured
with selection of an adequate threshold. The correlation between confidence
score and WER can be observed for both language groups, Slavic languages and
resource rich languages, similarly. That means “multilingual A-stabil” seems to
be reliable even for languages that are not closely related to the target language.
In this case, EN, FR, GE, SP are from the same language family (Indo-European)
but not as close to CZ as BG, HR, PL, and RU.
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Figure 4.5: Performance of multilingual A-stabil confidence scores calculated
with four languages (EN, FR, GE, SP and BL, HR, PL, RU) compared
to the performance of A-stabil for one language (EN) [Kra11]

4.4.3 Threshold selection

Not only the confidence score itself but also the chosen threshold is crucial for
the quality of the data that will be selected. After calculating the confidence
scores, every word that has a score above the selected threshold will be selected
as adaptation data. Choosing a threshold too low will lead to a greater amount
of adaptation data with less quality. A threshold too high will not select enough
data though ensures a very high quality. The optimal threshold is a trade-off
between data quality and amount of data. That means, data with a sufficiently
high quality should be selected. Since finding the optimal threshold is complex
and its verification needs a lot of computation time, we propose an approach to
heuristically obtain a reasonable threshold based on observations of the qual-
ity of automatic transcriptions of the development set. Figure 4.6 shows the
performance of “multilingual A-stabil” for different numbers of languages. On
the x-axis, the confidence score intervals are listed, meaning scores from 0 to
0.1 for the first points, from 0.1 to 0.2 for the second ones and so on. The y-axis
shows the word error rate of the adaptation data for the corresponding confi-
dence score interval. The curves for two and four languages clearly lie below
the curve for one language (A-stabil) and, therefore, provide a superior confi-
dence measure. The drop in WER at 0.2 (for four languages) and 0.5 (for two
languages) indicate the multilingual effect, because at theses points more than
one language has to agree to the same hypothesis word to reach the targeted
confidence score. If we want to select a reasonable threshold, a first thought is
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to use the effect of multilingualism and select as many data as possible. Obvi-
ously, “multilingual A-stabil” for only one language (green line in Figure 4.6)
is equal to the original A-stabil and, therefore, does not provide sufficient data
quality for any given threshold. As soon as at least two languages vote for the
multilingual confidence score, the WER of the adaptation data drops substan-
tially. Thus for N languages, a threshold of 1/N + offset should give reasonable
results. The offset can be chosen in such a manner that a word has to occur a
certain amount of times in all considered languages. For example, the mini-
mal threshold for four languages would be 1/4 = 0.25. That means each word
with a confidence score greater than 0.25 has to occur not only in alternative
hypotheses of one language, but at least once in an alternative hypothesis of
another language. This heuristic works well for N = 2 and N = 4 languages as
shown in Figure 4.6. However, it does not guarantee the best choice of thresh-
old.

Figure 4.6: Performance of multilingual A-stabil for different numbers of lan-
guages - one, two, and four languages [Kra11]

4.5 Multilingual unsupervised training framework

In this section, we present our multilingual unsupervised training framework
which combines cross-language transfer technique and unsupervised training
with the help of the “multilingual A-stabil” confidence score to build an ASR
system without any transcribed data. As mentioned in Section 4.1, we assume
to have ASR systems for several source languages, as well as a language model,
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4 Cross-language Bootstrapping Based on Completely Unsupervised Training

s pronunciation dictionary and untranscribed data of the target language. The
main idea of the training framework is to select audio data and automatically
generate transcriptions which can be used to adapt or train the acoustic model
of the target language based on “multilingual A-stabil”. At the beginning,
since there is no initial acoustic model of the target language, the cross lan-
guage transfer technique is applied for each source language. In this step, sev-
eral phone mappings between the source and the target languages have to be
created manually. Afterwards, several decoding processes are run in parallel
with all the initial acoustic models to transcribe the audio data automatically.
Based on the decoding results, alternative hypotheses are created and collected
from all the source languages. The resulting pool of hypotheses is then used
to compute the “multilingual A-stabil” score for the hypotheses of each source
language individually. Since the initial acoustic model is quite weak at the
beginning of the process, we apply acoustic model adaptation to improve the
performance of the recognizer until a sufficient amount of training data could
be selected. The adaptation itself is a common MAP adaptation. The adapta-
tion data of each iteration are selected from the current recognition results (of
this iteration). It is therefore only used for the current iteration, that means two
iterations only cohere in using the same initial - or adapted - recognizer.

This process applied in this research is independent of source or target lan-
guages. The same iterative recognizer adaptation is applied for each source
language. That means if “multilingual A-stabil” is computed from more than
one language, we have several adaptation processes for the same target lan-
guage in parallel. The multilingual framework sets up a generic structure for
the parallel adaptation processes. Figure 4.7 shows an overview of the frame-
work. Each source language recognizer is bootstrapped to the target language
and afterwards adapted separately.

For each target language, several source language folders are created, with each
of them containing the whole process structure. Additionally, the main folder
(target language) contains representations of the language model, the pronun-
ciation dictionary, and the audio database for the target language. These com-
ponents are global and similarly used for all source languages. Each source
language folder mainly consists of two parts:

• The initial source language recognizer or a target language recognizer cre-
ated via bootstrapping and acoustic model training from selected adap-
tation data.

• The decoding/adaptation cycle, in which the recognizer is iteratively im-
proved. The framework structure is explained in more detail in the next
paragraph.
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Figure 4.7: Overview of the multilingual unsupervised training framework
[Kra11]

The source language folder contents are depicted in Figure 4.8. They embody
the core of the multilingual framework. Each source language iteratively fol-
lows the adaptation process that is illustrated on the right side of Figure 4.8.
Directories for bootstrapping a new recognizer and for the decoding/adapta-
tion cycle are situated in each source language folder. The decoding/adapta-
tion process is as follows: The bootstrapped source language recognizer is used
to decode the audio data. Then, “multilingual A-stabil” is computed from the
pool of available alternative hypotheses. Afterwards, an adaptation database
is constructed and used to adapt the bootstrapped source recognizer. This pro-
cess is performed iteratively until the amount of collected adaptation data is
not sufficient anymore.

4.6 Experiments and results

4.6.1 Experimental setup

For this research, we selected French, German, Spanish, Bulgarian, Polish, Croa-
tian, Russian, Czech, and Vietnamese from the GlobalPhone corpus. In addi-
tion, we used English speech data from WSJ0. Czech and Vietnamese serve
as target languages and the remaining ones are used as source languages. We
split the source languages into two different categories in order to perform the
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Figure 4.8: Multilingual unsupervised training framework with boostrap-
ping/initial recognizer (1) and adaptation circle (2) [Kra11]

experiments: The first one called Big4 contains European, resource-rich lan-
guages, namely English, French, German, and Spanish. The second one con-
sists of four different Slavic languages, namely Bulgarian, Croatian, Polish and
Russian. The idea is to increase the difficulty of the experiments step by step
to explore the generalization ability of the framework. According to this, the
experiments are categorized into three levels as follows:

• Level I: Using Slavic languages to bootstrap Czech ASR - source languages
and target language are closely related since they all belong to the Slavic
language family.

• Level II: Using Big4 languages to bootstrap Czech ASR - source languages
and target language stem from the Indo-European language family, but are
not as close related as in the level I.

• Level III: Using Big4 and Slavic languages to bootstrap Vietnamese ASR
- source languages and target language are not related since the source
languages are Indo-European languages and the target language is a Sino-
Tibetan language.

4.6.2 Closely related languages vs resource-rich languages

The first two experiments were conducted by using Czech as the target lan-
guage and two different groups of source languages: Slavic and Big4 languages.
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The motivation is to look at the final ASR performance while slightly decreas-
ing the similarity between source languages and the target language. Czech
and the Slavic group belong to the Slavic language family while the languages
of Big4 stem from Germanic and Romance language families. However, all of
them belong to the Indo-European language family. Furthermore, the data of
the resource rich languages English, French, German and Spanish are easier to
obtain than the data of the four Slavic languages. Therefore, it is more likely
that we have ASR systems of those resource rich languages to bootstrap the
ASR system for a new language.

Iterative generation of automatic transcriptions

In the case of Russian, Bulgarian, Croatian and Polish, we applied the modi-
fied cross-language transfer without re-training to generate the initial acoustic
models. The word error rate is around 60% on the Czech development set. In
contrast, we used the original cross-language transfer for English (EN), French
(FR), German (GE), and Spanish (SP). The WER is relatively high, with 87.35%
for EN, 84.52% for FR, 75.30% for GE, and 85.42%. With these initial mod-
els, we recognized the Czech training data and selected appropriate adaptation
data using ”multilingual A-stabil“ confidence scores. Based on the heuristic
described in 4.4.3, we chose 0.3 as the threshold to select the training data.
Therefore, words have to occur in alternative hypotheses from more than one
language in order to be selected. Table 4.3 shows the amount of selected data
after each iteration in percentage of all the untranscribed data and their quality
in terms of WER. The results show that using Slavic languages, we could select
more training data (28% relative) with more accurate automatic transcriptions
(31.6% relative) compared to using resource-rich languages. For both cases, we
observed that after four iterations the amount of selected data increased rather
slightly. In the case of resource-rich languages, the quality of transcriptions
even got slightly worse. Therefore, we stopped the adaptation circle after four
iterations.

Cross-language boostrapping

After acoustic training data with high quality transcriptions have been selected,
we used the bootstrapping approach to train the Czech ASR by using the mul-
tilingual acoustic model inventory which was trained earlier from seven Glob-
alPhone languages [SW01b]. To bootstrap the system, an initial state alignment
was produced by selecting the closest matching acoustic models from the mul-
tilingual inventory as seeds. The closest match was derived from an IPA-based
phone mapping. After initialization, the system was completely rebuilt using
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Table 4.3: Iteratively enlarging the amount of training data with automatic transcrip-
tions: results for the source languages Polish and German

Iteration Amount of data % of all data Quality (WER in %)
Polish:
1 5.5h 23.9 25.0%
2 14.3h 62.2 17.0%
3 15.9h 69.1 16.5%
4 16.4h 71.0 16.0%
German:
1 2.3h 10.1 27.1%
2 8.7h 37.8 22.9%
3 10.1h 43.6 23.4%
4 10.2h 44.2 23.5%

the selected data. We trained a quintphone system with 1,500 contexts by ap-
plying merge&split and Viterbi training. Figure 4.9 shows the performance of
the four different systems which were trained with four different selected data
sets on the Czech development set. By using the Slavic languages as source, the
WER ranges from 23.0% to 23.6%. By comparison, the average WER is about
26.6% if the resource rich languages served as source languages. Obviously,
using related languages as source, we can obtain a better initial acoustic model
and, therefore, more training data with more accurate automatic transcriptions
to train a Czech ASR system. The best WER was achieved using the acoustic
training data which was generated by modified cross-language transfer using
Russian as source language.

To increase the amount of the acoustic training data, we decoded the train-
ing data again using the acoustic model from the previous iteration and se-
lected data with high confidence of ”multilingual A-stabil“. In the case of using
Slavic languages and resource-rich languages, we obtained about 18.5h (80%)
and 16.8h (73%) of the training data with automatic transcriptions which have
14.5% and 14.6% WER respectively. For the second iteration, we used the acous-
tic model from the first iteration to generate the state alignment and trained the
system with the same parameters as in iteration 1 afterwards. Since more train-
ing data was selected, we increased the number of contexts to 2,000. The best
system generated by Slavic languages has 22.7% WER on the development set
and 22.3% WER on the evaluation set. In contrast, we obtained 23.3% WER
on the development set and 22.8% WER on the evaluation set by using the
resource-rich languages. The results indicate that there is only a minor differ-
ence in terms of WER between using related and non-related source languages.
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Figure 4.9: Development of speech recognizer quality measured in WER on the
Czech development set using the Slavic source languages vs. re-
source rich languages [Kra11]
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Furthermore, the final Czech ASR built with our proposed training framework
has almost the same performance as the Czech baseline system trained with
manual transcriptions. The WER of the baseline system is 22.3% on the evalu-
ation set.

4.6.3 Under-resourced languages - a study for Vietnamese

In the third experiment, we built an ASR system for an under-resourced lan-
guage - Vietnamese in this case - using the multilingual training framework
with up to six different Indo-Eurpoean languages as source languages. With
this experiment, we simulate one of the most challenging cases in which the
source languages and the target language are not related since Vietnamese be-
longs to the Sino-Tibetan language family. Furthermore, we use different num-
bers of source languages and regard the impact of the number of the source
languages on the final Vietnamese ASR performance.

Syllable- vs. Word-based

In order to improve “Multilingual A-stabil” for the case of Vietnamese, we com-
pute the confidence score on the syllable level. This means, we split Vietnamese
words into syllables before computing the confidence score. We found the vot-
ing process to be more efficient at syllable level than at word level. Therefore,
we can extract more data using the same confidence threshold. Another bene-
fit of generating automatic transcriptions on syllable level is that co-articulation
effects can be modeled by an adaptation or training process. Table 4.4 shows the
amount of data and the quality of automatic transcriptions in terms of SyllER
by applying “Multilingual A-stabil” at syllable and word level for four differ-
ent languages (EN, SP, GE and FR) with a threshold of 0.3 for the first iteration.
It indicates that we gain 24% more training data by applying “Multilingual A-
stabil” at syllable level while achieving almost the same transcription quality.
Therefore, we applied “Multilingual A-stabil” at syllable level for the remain-
ing experiments.

Table 4.4: Syllable- vs. Word-based “Multilingual A-stabil”

Amount SyllER Rel. Gain
Word-based 0.75h 51.54%
Syllable-based 0.93h 52.83% +24%
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Iterative automatic generation of transcriptions

We started by applying cross-language transfer based on English (EN), French
(FR), German (GE), Spanish (SP), Bulgarian (BG) and Polish (PL) acoustic mod-
els without any re-training in order to recognize the Vietnamese development
set. The SyllER was very high with 90.93% for EN, 92.81% for FR, 93.49% for
GE, 89.72% for SP, for 88.49% BG and 86.58% for PL which indicates the chal-
lenges of building a Vietnamese ASR system from scratch without any tran-
scriptions. With these initial models, we decoded the Vietnamese training data
and selected appropriate adaptation data using the “multilingual A-stabil” con-
fidence scores. As we observed in 4.4.3, the SyllER drops rapidly when we se-
lect those syllables which are voted for by at least two languages. To reflect this
with two, four, and six languages, 0.6, 0.3, and 0.2 were chosen as confidence
score thresholds respectively. We terminated the process after four iterations,
since the gains of the amount of selected data and the quality of the automatic
transcriptions seem to saturate. Figure 4.10 displays the amount of selected
data over the iterations in percentage of the number of all the untranscribed
syllables. The figure also shows the resulting transcription quality in terms of
SyllER by using two (EN, SP), four (EN, SP, FR and GE) and six source lan-
guages (EN, SP, FR, GE, BG and PL) that cover 26, 27, and 28 of the 39 Viet-
namese phones. The results indicate a close relation between the amount of
extracted data and the number of languages respectively the phone coverage.
The more target languages we use in our training framework, the more phones
we can cover from the target language and, thereby, the more data we are able
to select. However, Figure 4.10 also indicates that the quality of the automatic
transcriptions gets slightly worse if we use more source languages.

Cross-language bootstrapping

We used the selected Vietnamese acoustic training data with the automatic tran-
scriptions from the initial step to train the Vietnamese acoustic model in this
final step. First, we trained the multilingual inventory with all the existing data
from the source languages by applying an IPA-based phone merging [Ass99].
The closest match is derived manually according to IPA similarity. Table 4.5
summarizes the performance of multilingual acoustic models MM2 (EN, SP),
MM4 (EN, FR, GE, and SP), and MM6 (EN, SP, FR, GE, BG, and PL) after cross-
language transfer on the development set. The results indicate that a larger
number of source languages used for the training of the multilingual acoustic
models improves the cross-language transfer performance on the Vietnamese
development set. Therefore, the quality of state alignment might be improved.
Afterwards, an initial state alignment for the Vietnamese training data is pro-
duced by determining the closest matching acoustic models from the multi-
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Figure 4.10: Amount of selected data given in percentage of all syllables
and the corresponding resulting transcription quality in terms of
SyllER

Table 4.5: Cross-language transfer performance (on VN dev set) of multilingual acous-
tic model MM2 (EN, SP), MM4 (EN, SP, FR and GE) and MM6 (EN, SP,
FR, GE, BG and PL)

Systems SyllER Rel. Delta
MM2 87.54%
MM4 82.35% +5.9%
MM6 76.45% +7.2%

lingual inventory as seeds. Then, the Vietnamese system is completely rebuilt
using the seed acoustic models and the selected data for training (one data set
per source language). We built a quintphone system with 1,500 contexts with
the same training procedure described in paragraph 4.6.2.

To increase the amount of selected acoustic training data, we again decoded the
training data. For the second iteration, we used the acoustic model from the
first iteration to generate the state alignments and then trained the system with
2,000 quintphone contexts. Figure 4.11 summarizes the performance of our
Vietnamese ASR system after the second iteration in terms of SyllER by using
two (EN, SP), four (EN, SP, FR and GE), and six source languages (EN, SP, FR,
GE, BG and PL). The resulting best system achieves 16.8% SyllER on the Viet-
namese development set and 16.1% SyllER on the evaluation set. The results
show that iterative unsupervised training with “multilingual A-Stabil” results
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in accurate automatic transcriptions. They allow to further improve the acous-
tic model of the target language. Compared to the baseline system, trained on
about 22 hours of transcribed data which achieves a SyllER of 14.3%, the fi-
nal results are quite close. However, they are still worse than our best system
where we applied various language specific optimization steps and achieved
11.8% SyllER [VS09].

Furthermore, using more different languages for our multilingual unsuper-
vised training framework results in better performance of the final Vietnamese
ASR system. However, the difference between using four and six source lan-
guages was minor, while the training time increased dramatically. Every time,
when one more source language was used, we needed to decode all the training
data five times in our experiments. When the training data is large, it might not
be worthwhile to increase the number of source languages, since the difference
in SyllER is minor. In all the experiments, four source languages seemed to be
enough to successfully build an ASR systems for new languages without any
transcribed data with our multilingual unsupervised training framework.

Figure 4.11: Cross-language bootstrapping for Vietnamese by using two (EN,
SP), four (EN, SP, GE, FR) and all six languages

4.7 Summary

In this chapter, we presented the multilingual unsupervised training approach
to rapidly build an ASR system for new languages without any transcribed

77



4 Cross-language Bootstrapping Based on Completely Unsupervised Training

data. We explored different implementations of cross language transfer tech-
niques and its performance on related and non-related language pairs. Further-
more, we proposed a new method to compute word-based confidence scores
called “Multilingual A-stabil” which works well not only with well trained
acoustic models but also with a poorly estimated acoustic model. Finally, we
described the whole framework that uses several ASR systems from different
languages and the available resources of the target language, such as untran-
scribed audio data, text data and pronunciation dictionary to build an ASR
system for the target language.

To evaluate the framework, we conducted three experiments with increasing
level of difficulty. The experimental results indicate that our proposed frame-
work can be applied to build an ASR system without any transcribed data for
new languages. We were able to build ASR systems for new languages even if
the source languages and target language were not related in terms of language
family and also polyphone coverage. However, using related source languages
led to a better ASR system of the target language. In our experiments, we ob-
tained 5% relative improvement by using Slavic source languages to bootstrap
Czech ASR instead of using Big4 source languages.

In the first two experiments, the source languages were varied from Slavic lan-
guages to Big4 languages which increased the word error rate of the cross-
language transfer system by up to 20% relative on the Czech development
set. This resulted in a gap of about 5% relative between the final Czech ASR
systems. The relation between the performance of the cross-language transfer
system and the final ASR system is obvious. That also means, the accuracy
of the phone mapping between the source languages and the target language
which might change the performance of the cross-language transfer system a
bit should not have any significant impact on the final ASR system of the target
language.

Our framework demonstrated its success on different experimental setups and
proved to be useful to build ASR systems without any transcribed data. There-
fore, it will save a lot of time and cost by developing ASR systems for new
languages. Moreover, to our knowledge it is the first time in literature to show
that it is possible to bootstrap an LVCSR system for a language which is not
related to the source languages without any transcribed data. The limitation
of the framework is the need of a manual phone mapping between source and
target language, as well as the pronunciation dictionary and language model
of the target language. That means, first, if the language model is not available
or not strong enough due to insufficient text data or second, more extremely,
if the language does not have e.g. a written system or any knowledge about
the phone inventory, the framework may not be usable. In these cases, it might
be worthwhile to transcribe the data manually, or to assume that prompts are
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sufficiently close to the transcriptions using toolkits, such as RLAT [RLA12] or
Woefzela [DVBD+11].
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CHAPTER 5

Multilingual Bottle-Neck
Features and Their
Application To New

Languages

Using Bottle-Neck features is one way to integrate neural networks into ASR
systems at feature level. Previous works showed their success improving state-
of-the-art ASR performance on different tasks and datasets. This chapter ex-
plores the use of multilingual data to improve Bottle-Neck features for ASR for
new languages. The study starts with our proposal of an initialization scheme
using multilingual MLP. Afterwards, the impact of the amount of data and lan-
guages as well as the similarity of source and target languages on the final ASR
performance are investigated. The chapter ends with a detailed analysis of the
output of the Bottle-Neck hidden layer to provide a better understanding of the
behavior of those features in the context of multilingual and crosslingual char-
acteristics.
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5.1 Introduction

Cepstral features have been widely used in many speech processing applica-
tions for many years and have become standard features. At the beginning
of 2000, Hermansky proposed Tandem features [HDS00] which allow the inte-
gration of neural network techniques to extract features for a speech recogni-
tion system. The idea is to use the posterior of a neural network as features.
Afterwards in 2007, Bottle-Neck features were proposed by Grezl [GKKC07].
Instead of using the values of the output layer of a neural network (Tandem
features), he used the output of the hidden layer (Bottle-Neck features) which
is supposed to store the most important information of the input features e.g.
cepstral features. They are known as multilayer perceptron (MLP) features in
the literature. In many setups and experimental results, MLP features proved
to be a high discriminative power and very robust against speaker and envi-
ronmental variations. Furthermore, a very important characteristic of those
features, which is related to this thesis, is the possibility to use multilingual
data to make them robust against language variation, and therefore improve
the final ASR performance. There are several interesting crosslingual and mul-
tilingual studies which showed that MLP features are language independent
(summarized in 5.2), i.e. an MLP can be trained with data of one language or
multiple languages and then used to extract features for a new language.

In this thesis, we focus on using Bottle-Neck features to train the ASR system.
However, to extract the Bottle-Neck features, an accurate MLP has to be trained
first. The machine learning research community showed that an MLP highly
depends on its initialization and has a lot of parameters. At this point, the thesis
presents an innovative approach to first train a multilingual MLP with a large
amount of multilingual data and, then to use it to initialize the MLP training
process for new languages. The goal is to achieve a robust initialization scheme
and to allow training an MLP with many parameters using only a small amount
of training data. For that, we propose a method to train a multilingual MLP
which covers not only the multilingual phones but also the phones of the target
language. That means, the final Bottle-Neck features are extracted from an MLP
which has learned the multilingual data and the data of the target language.
Therefore, we refer to them as multilingual Bottle-Neck features. To have a better
understanding about the initialization scheme, we explored the impact of the
number of languages as well as the similarity of the source and target language
and the final ASR performance. Finally, a visualization of the output of the
Bottle-Neck hidden layer is performed using t-Distributed Stochastic Neighbor
Embedding [VdMH08].
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5.2 Related work

This section provides a short summary of researches related to MLP features in
a multilingual and crosslingual context. Many of them demonstrate that MLP
features are language independent. In many papers, it was shown that features
extracted from an MLP which was trained with one language can be used for
another language.

For example, the authors of [TGH06] showed that features extracted from an
English-trained MLP improved Mandarin and Arabic ASR performance over
the spectral feature (MFCC) baseline system. Crosslingual portability of MLP
features from English to Hungarian was investigated by using English-trained
phones and articulatory feature MLPs for a Hungarian ASR system in [TFGK08].
Furthermore, a crosslingual MLP adaptation approach was investigated, in
which the input-to-hidden weights and the hidden biases of the MLP corre-
sponding to the Hungarian language were initialized by English-trained MLP
weights, while the hidden-to-output weights and output biases were initialized
randomly. The results indicated that crosslingual adaptation often outperforms
cases, in which the MLP features are extracted from a monolingual MLP.

In [CMDL+07], it was explored how portable phone and articulatory feature
based tandem features are in a different language without re-training. Their re-
sults showed that articulatory feature based tandem features are comparable to
the phone-based ones if the MLPs are trained and tested on the same language.
However, the phone based approach is significantly better on a new language
without re-training.

Imseng et al. [IBD10] investigated multilingual MLP features on five European
languages, namely English, Italian, Spanish, Swiss French, and Swiss German
from the Speech-Dat(II) corpus. They trained a multilingual MLP to classify
context-independent phones and integrated it directly into the preprocessing
step for monolingual ASR. Their studies indicate that shared multilingual MLP
feature extraction yields the best results.

Plahl et al. [PSN11] trained several NNs with a hierarchical structure with and
without Bottle-Neck topology. They showed that the topology of the NN is
more important than the training language, since almost all the NN features
achieve similar results, irrespective of whether training and testing languages
match. They obtained the best results on French and German by using the
(crosslingual) NN which has been trained on Chinese or English data without
adaptation.

In [TGH10, TGH12], Thomas et al. demonstrated how to use data from multiple
languages to extract features for an under-resourced language and, therefore,
improve the ASR performance. They proposed to use a data-driven approach
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in which no knowledge about the phone set of the target languages was needed.
In [VKG+12], the language independent character of Bottle-Neck features was
demonstrated on the GlobalPhone database. Improvements were observed by
using multilingual Bottle-Neck features.

5.3 Multilingual multilayer perceptron and its
application to new languages

5.3.1 Multilingual multilayer perceptron

To train a multilingual multilayer perceptron (ML-MLP) for context-indepen-
dent phones, we use the knowledge-driven approach to create a universal phone
set, i.e., the phone sets of all languages are pooled together and then merged
based on their IPA symbols. Afterwards, several training iterations are applied
to create the multilingual model and, thereafter, the alignment for the complete
data set. Figure 5.1 shows the layout of our MLP architecture which is similar
to [MHJ+10]. As the input for the MLP network, 11 adjacent MFCC feature
vectors are stacked and the universal phone set is used as the target classes. A
5 layer MLP was trained with a 143-1500-42-1500-X feed-forward architecture,
in which X is the number of phones in the universal phone set. In our case,
we used the ICSI QuickNet3 software [QN] to train the network. We used a
learning rate of 0.008 and a scale factor of successive learning rates of 0.5. The
initial values of this network were chosen randomly.

Figure 5.1: Bottle-Neck features
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5.3.2 Initialization scheme using multilingual MLP

A multilingual MLP learns to separate the phones in the phonetic space using
MFCC features as input. MFCC features are extracted to capture the presen-
tation of the speech signal independent of languages. Moreover, all the lan-
guages share a common phonetic space which can be described using IPA (see
2.3). That means, if we have speech data from any new target languages, the
multilingual MLP can be used directly without any change to obtain the poste-
rior of each phone in the multilingual phone set. Obviously, if all the phones in
the new language are part of the universal phone set, the multilingual MLP can
be used directly to classify the phones of the new language. Since the multilin-
gual MLP has never seen the data of the target language, the performance of
the multilingual MLP on the data of the target language might not be the best
performance which can be achieved. Hence, the idea is to use the multilingual
MLP to initialize the MLP training for the new language. By doing so, we ob-
tain a better starting point for optimization compared to randomly generated
initial parameters. Figure 5.2 illustrates the initialization scheme. For the new
language, we select the output from the ML-MLP based on the IPA table and
use it as an initialization of the MLP training. All the weights of the ML-MLP
up to the last hidden layer are taken but only the weights and the output biases
of the selected targets are used.

Figure 5.2: Initialization scheme for MLP training or adaptation using a multi-
lingual MLP. Only the phones of the target language are selected.
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5.3.3 “Open target language” multilayer perceptron

However, it can be difficult to apply the multilingual MLP to any new language,
since even with many languages it is not guaranteed that any new phone in the
target language could be covered by the multilingual phone set. In the follow-
ing example, we use English, French, German and Spanish to train the mul-
tilingual acoustic model. The universal phone set has 81 phones which cover
only about 30% of all the IPA symbols. This shows that we could encounter
difficulties applying this multilingual MLP to a new language, especially, if the
amount of training data is limited. So, we propose a new strategy to train an
“open target language” MLP network and apply it to language adaptation at
feature level. Our idea is to extend the target classes so that we can cover all the
phones of the IPA table. Hence first, the training data for the phones which do
not appear in the available multilingual training data need to be selected. Since
all the phones in IPA are described by their articulatory features, we propose
to use the data from several available phones that have the same articulatory
features as the uncovered target phone.

For some special phones like aspirated phones or diphthongs, the following
steps are applied:

• If the phone is an aspirated phone, use the frames of the begin and middle
state of the main phone (e.g. A: A-b, A-m) and the end state of /h/-e.

• If the phone is a diphthong (consisting of two vowels V1 and V2), the
frames of V1-b, V1-m and V2-e are used.

To ensure the balance of training data between phones, we randomly choose a
subset of the selected data to train the parameters for the new target phones.

After finishing the training data selection for all the new target phones, we first
train a usual MLP with a subset of all the training data to save time and learn
a rough structure of the phone set which can be covered in our training set.
Afterwards, we use this MLP as an initialization and train weights for the new
target phones with all the selected data. Due to the fact, that the new target
classes are not real, it is possible that the MLP network after this step does not
match our real target phones anymore. Hence, we re-train the whole network
using all the training data.

5.3.4 Experiments and Results

To evaluate the proposed approach, we conducted the first experiments in which
a multilingual MLP with four European languages (English, French, German

86



5.3 Multilingual multilayer perceptron and its application to new languages

and Spanish) was trained. Afterwards, we used it to initialize the MLP training
for randomly chosen target languages, in this case Creole and Vietnamese.

Multilingual multilayer perceptron

First, a multilingual MLP was trained with all the English, French, German
and Spanish training data using the QuickNet toolkit [QN] which allows neu-
ral network training with multi-threading on CPU. The MLP has 5 layers and
the topology 143-1500-42-1500-81. For comparison, we also trained different
monolingual MLPs with the same topology (only the number of target phones
was changed). For all the MLP training, we used a learning rate of 0.008 and a
scale factor of successive learning rates of 0.5. Table 5.1 shows the frame-wise
classification accuracy for all MLPs using random and multilingual MLP ini-
tialization on their cross validation data. The multilingual MLP trained with
random values has a frame accuracy rate of 67.61% on its cross validation set
which contains English, French, German and Spanish. Using this multilingual
MLP, the MLP training for English, French, German and Spanish was initialized
and re-trained. We observed overall improvements by using the multilingual
MLP as initialization compared to random initialization on the corresponding
cross validation set. Moreover, the training was accelerated by up to 40% on
average.

Table 5.1: Frame-wise classification accuracy [%] for all MLPs using random and
multilingual MLP initialization on their cross validation data

Languages Random Init Multilingual Init
English (EN) 70.98 73.46
French (FR) 76.73 78.57
German (GE) 63.93 68.87
Spanish (SP) 71.75 74.02

Furthermore, several ASR systems were trained using different BN features for
all the languages. The results in Table 5.2 show that BN features improve the
baseline system trained with traditional MFCC features for all four languages.
Multilingual BN features performed the best in our experiments. In the case of
English and German, we observed about 8% relative improvement compared
to the BN features.
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Table 5.2: WER [%] on the GlobalPhone development set

Systems English French German Spanish
MFCC 11.5 20.4 10.6 11.9
BN 11.1 20.3 10.5 11.6
Multilingual BN 10.2 20.0 9.7 11.2

Language adaptation to Vietnamese

Data selection for MLP training Since not all Vietnamese phones could be
covered by the multilingual universal phone set, we had to train several open
phones using the multilingual training data. Table 5.3 shows all the uncovered
Vietnamese phones and their phonetic features. For uncovered Vietnamese
vowels and consonants, we used the training data from the phone with the
same articulatory features e.g. Plosive, Palatal for consonant /ch/ or Close,
Back for vowel /o3/. For the case of diphthongs such as /ie/, /ua/, and /ua2/,
we used the frames of the first two states (-b and -m) of the first vowel and the
frames of the last state of the second vowel.

Table 5.3: Vietnamese phones which are not covered by the universal phone set and
their articulatory features

VN Articulatory features
/d2/ Plosive, Dental/Alveolar
/tr/ Plosive, Retroflex
/s/ Fricative, Retroflex
/r/ Fricative, Retroflex
/ch/ Plosive, Palatal
/o3/ Close, Back
/ie2/ i-b, i-m, e2-e
/ua/ u-b, u-m, a-e
/ua2/ ir-b, ir-m, a-e

Results For language adaptation experiments, we conducted two different
experiments on the Vietnamese GlobalPhone data set. In the first experiment,
we used all the training data and trained an ASR system using the BN features.
By using random initialization, we achieved 65.13% accuracy on the cross val-
idation set with MLP training and a SyllER of 11.4% on the Vietnamese devel-
opment set. To obtain a better initialization, we applied the multilingual MLP
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from the previous experiment, which led to 67.09% accuracy on the cross val-
idation set and 10% relative improvement in terms of SyllER compared to the
MLP system with random initialization.

Table 5.4: Frame-wise classification accuracy [CVAcc in %] for all MLPs on cross val-
idation data and SyllER [%] from a system trained with 22.5h Vietnamese
data

MLP CVAcc SyllER
MFCC - 12.0
BN 65.13 11.4
Multilingual BN 67.09 10.1

In the second experiment, we assumed to have only a small amount of train-
ing data (about 2 hours) for Vietnamese. We trained the baseline system using
MFCC features and observed a SyllER of 26% on the Vietnamese development
set. Since two hours are not enough for MLP training, we directly used the
multilingual MLP which was trained in the previous experiment to extract the
BN features without any re-training. The SyllER was improved by 0.7% abso-
lute which indicates that useful, language independent information has been
learned during the MLP training. To perform a comparison with our new ap-
proach, we adapted the MLP with 2h of Vietnamese data using the approach
in [TFGK08] when the hidden-to-output weights and output biases were ini-
tialized randomly. The advantage of this approach is that no manual phone
mapping needs to be provided. The results were improved significantly (by
about 20% in terms of cross validation accuracy and 2.5% absolute in terms of
SyllER). After that, we applied the proposed multilingual Bottle-Neck features,
in which we used all the weights and output biases of the multilingual MLP.
We observed 0.8% absolute improvement after adaptation in MLP training and
1.2% absolute improvement in terms of SyllER. It indicates that the last soft-
max layer also contains some language independent information which can be
transferred between languages.

MLP initialization using monolingual MLP vs. multilingual MLP

The success of our experiments described in the last sections raises an impor-
tant question: Do we need a multilingual MLP to initialize the MLP training
for a new language? Or is it enough to use a monolingual MLP? Therefore,
we conducted experiments on Haitian Creole in which we compared different
initialization schemes for MLP training: random initialization, using monolin-
gual, and multilingual MLP, and their impact on the ASR system. We chose
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Table 5.5: Frame-wise classification accuracy [CVAcc in %] for all MLPs on cross
validation set and SyllER [%] from a system trained with 2h Vietnamese
data

Systems CVAcc SyllER
MFCC - 26.0
ML-MLP 37.23 25.3
Adapted ML-MLP 57.54 22.8
Multilingual BN 58.32 21.6

French (FR) for the monolingual MLP since Haiti Creole is related to French.
We applied our approach to train the “open target language” MLP with only
80 hours French data from the BREF database [LGE+91] (Monolingual-BN) and
used it for the MLP training for Haiti Creole. Furthermore, we also applied
the ML-MLP trained in 5.3.4 to initialize the MLP training. Table 5.6 shows
the frame-wise classification accuracy for all the MLPs trained with different
initializations on cross validation data and their WER on the Creole data set.
Using the MLP trained with French data for initialization, we observed a small

Table 5.6: Frame-wise classification accuracy [CVAcc in %] for all MLPs on cross
validation data and WER [%] on Creole database

Systems CVAcc WER
Baseline (MFCC) - 12.3
BN (random init) 73.36 11.6
Monolingual-BN 75.15 11.4
Multilingual-BN 75.38 10.4

improvement in terms of WER (0.2% absolute), but the final performance is still
worse than the system trained with multilingual MLP initialization which gave
1.9% absolute improvement.

Robustness against transcriptions errors

In this paragraph, the robustness of our proposed approach is verified. We
applied the multilingual MLP to initialize the MLP training for Vietnamese in
which the audio data contain transcription errors. Using our multilingual un-
supervised training framework - MUT - (as proposed in Chapter 4), we built
a Vietnamese ASR with 4 different source languages (English, French, German
and Spanish). In total, 10 hours of training data with automatic transcriptions
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which have 16% SyllER could be selected. Based on these transcriptions, the
baseline system using MFCC features has 18.6% SyllER on the evaluation set.
Afterwards, we trained two different ASR systems using Bottle-Neck features
to improve accuracy: one using random initialization and another one using
the multilingual MLP trained in 5.3.4. Table 5.7 shows the frame-wise classifi-
cation accuracy for all the MLPs on cross validation data and the SyllER from
all the systems trained with MUT. The results indicate that initializing an MLP
training with random values can be problematic for the case of automatically
transcribed data (SyllER increases 0.4% absolute) while using the multilingual
MLP as initialization is much more robust (2.0% absolute improvement).

Table 5.7: Frame-wise classification accuracy [CVAcc in %] for all the MLPs on cross
validation data and SyllER [%] from all the systems trained with our Mul-
tilingual Unsupervised Training Framework

Systems CVAcc SyllER
MFCC - 18.6
BN (random init) 61.5 19.0
Multilingual-MLP 65.0 16.6

5.4 Multilingual multilayer perceptron for rapid
language adaptation between and across
language families

In this section, we present our investigations of multilingual multilayer per-
ceptrons (MLPs) for rapid language adaptation between and across language
families. We explore the impact of the amount of languages and data used for
the multilingual MLP training process on the final ASR performance. Further-
more, we aim at finding the effect of the similarity between source and target
languages on the MLP performance and the corresponding ASR performance.
In total, two different experiments were conducted: using all the training data
and using only a small amount of training data of the Czech, Hausa, and Viet-
namese GlobalPhone data set. In both cases, we applied different multilingual
MLPs for the MLP training initialization and also experimented with and with-
out re-training.
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5.4.1 Experimental setup

For this research, we selected French, German, Spanish, Bulgarian, Polish, Croa-
tian, Russian, Czech, Portuguese, Mandarin, Korean, Thai, Japanese, Hausa
and Vietnamese from the GlobalPhone corpus. In addition, we used English
speech data from WSJ0. We used Czech, Hausa, and Vietnamese as target lan-
guages and the remaining ones as source languages. We split the source lan-
guages into three different categories in order to perform the experiments: The
first one called Big4 contains European, resource-rich languages like English,
French, German, and Spanish. The second one consists of four different Slavic
languages, namely Bulgarian, Croatian, Polish and Russian. The last one is
composed of the four Asian languages Chinese, Japanese, Korean and Thai, in
which Chinese and Thai belong to the Sino-Tibetan language family and Korean
and Japanese are from the Altaic language family. However according to dif-
ferent linguistic studies, Korean can also be classified as language isolate, i.e.
having no relationship to any other languages.

5.4.2 Rapid language adaptation for new languages

In the first experiment, we applied different multilingual MLPs to initialize the
MLP training and used all the training data to train the monolingual MLP for
each target language. Table 5.8 shows the frame-wise classification accuracy for
all the MLPs trained with different initializations on cross validation data. Note
that the number of the MLP outputs is the number of the phones from the target
language. All the MLPs for Czech, Hausa and Vietnamese have 42, 34, and 39,
respectively. We observed a significant improvement over the MLP trained
with random initialization. As we increased the number of source languages
and the amount of data to train the multilingual MLP, the final performance of
the target language MLP on the cross validation set increases slightly. However,
we did not observe any impact of using related source languages on the MLP
performance. For all three target languages, the best MLP performance was
obtained by using Big4 MLP to initialize the MLP training.

After finishing the MLP training, all the MLPs were used to extract the BN
features for the ASR experiments. Table 5.9 shows the ASR performance for
Czech, Hausa, and Vietnamese with MFCC features and BN features which
were initialized with different multilingual MLPs. Note that the multilingual
MLPs were trained on speech data from the same and from different language
families compared to the target language. The results show overall improve-
ments of ASR performance compared to the MFCC and the MLP with random
initialization even if the source languages and the target language are not in
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Table 5.8: Frame-wise classification accuracy [%] of the target language MLPs with
different initializations on cross validation data

Initialization Czech Hausa Vietnamese
Random 72.34 73.47 65.13
Big4 (4 languages) 76.62 76.49 67.09
Slavic (4 languages) 76.28 76.38 66.94
Asian (4 languages) 76.05 76.61 67.05
Big4 + Slavic (8 languages) 77.13 76.70 67.56
Big4 + Slavic + Asian (12 languages) 77.62 76.92 68.08

the same language family. However, for the case of Czech, we obtained signif-
icantly better results by using the Slavic source languages which are from the
same language family as the target language. Vietnamese ASR obtained the
best results by using Asian MLP, however, the difference in terms of SyllER be-
tween using Big4 and Asian is very small. Furthermore, it is difficult to draw
a conclusion for Vietnamese, since only two source languages namely Chinese
and Thai are from the same language family - Sino-Tibetan - as Vietnamese. In
the case of Hausa, the word error rate is almost independent of the multilingual
MLP which was used for the initialization process. The results in table 5.8 and
5.9 indicate that there is no correlation between the MLP performance on the
cross validation set and the final ASR performance.

Table 5.9: ER [%] for Czech, Hausa, and Vietnamese ASR using MFCC features and
BN features with different multilingual MLPs between and across language
families for initialization

Systems Czech Hausa Vietnamese
MFCC 19.5 14.6 12.1
BN 19.2 15.4 11.4
Big4 (4 languages) 16.8 14.2 10.1
Slavic (4 languages) 16.3 14.2 10.7
Asian (4 languages) 17.1 14.1 10.0

In the next experiments, we successively increased the number of languages
and, therefore, obviously the amount of data to train different multilingual
MLPs which we used to initialize the MLP for our target languages. Figure 5.3
illustrates the ASR performance on Czech, Hausa, and Vietnamese test data
using those different BN features. The results show that the more languages
and the more data we used to train the multilingual MLP, the better was the
final ASR performance. The improvements tended to be larger, especially if
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Figure 5.3: ER for Czech, Hausa, and Vietnamese ASR trained on all the train-
ing data using MFCC features, and BN features with different
initializations

the source languages and the target language were in the same language fam-
ily. In the case of Czech, the WER dropped from 16.8% to 15.8% when we
added all four Slavic languages in addition to the Big4 source languages. After-
wards, although the four Asian source languages were added, i.e. we increased
the amount of languages and also the data, the WER was improved only very
slightly. In contrast, in the case of Vietnamese, when we added the four Asian
languages, the WER was improved more than by adding Slavic languages, since
the Asian group contains two Sino-Tibetan languages as Vietnamese. The results
indicate that adding related languages into the set of the source languages to
train the multilingual MLP has a strong effect on the ASR performance of the
target language. For the case of Hausa, we also observed improvement even if
all the source languages are very different from the Hausa language based on
the language families.

5.4.3 Rapid language adaptation for low-resource languages

In the second experiment, we assumed to have very little training data (about
10% of the full training data) for Czech, Hausa, and Vietnamese. We trained
the baseline system using MFCC features and obtained an ER of 27.5%, 24.9%
and 26% on the Czech, Hausa, and Vietnamese test set respectively. Since two
hours training data are not enough for an MLP training, we directly used the
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multilingual MLPs which were trained in the previous experiment to extract
the Bottle-Neck features. We also trained an Oracle system for each target lan-
guage by using the best MLP which was trained with the full training data
from the previous experiments. Figure 5.4 illustrates the ASR performance for
Czech, Hausa, and Vietnamese using different multilingual MLPs. Again, the
more languages and the more data we used to train the multilingual MLP, the
better was the final ASR performance. In contrast to our experiments with
the full amount of data, we observed substantial improvements every time we
added more data of other languages to train the multilingual MLP. The results
indicate that if only a very small amount of training data of the target language
is available, the impact of adding more languages and more data is stronger
on the ASR performance than the relativeness between source and target lan-
guages. However, the best performance in the case of Hausa and Vietnamese
is rather far away from the Oracle result, but not for Czech. Since the ASR per-
formance increases almost proportionally with the number of languages used
to train the multilingual MLP, it seems to be very promising to achieve similar
results to the oracle experiments with more languages.

Figure 5.4: ER for Czech, Hausa, and Vietnamese ASR trained on a very small
amount of training data using MFCC features, and BN features with
different initializations without re-training

Furthermore, we also re-trained the multilingual MLP using the available data
of the target language to improve the MLP accuracy. Table 5.10 presents the
frame-wise classification accuracy of the target language MLPs with different
initializations on cross validation data after re-training. We observed a con-
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sistent improvement on the MLP performance by adding more training data
from other languages to train the multilingual MLP. It is notable to observe
that even if the source languages and the target language are not related, we
still obtained additional gain on the MLP performance. Using the BN features

Table 5.10: Frame-wise classification accuracy [%] of the target language MLPs with
different initializations on cross validation data

Initialization Czech Hausa Vietnamese
Big4 (4 languages) 70.58 71.12 58.32
Big4 + Slavic (8 languages) 72.18 72.56 60.12
Big4 + Slavic + Asian (12 languages) 72.38 73.42 62.38

extracted from the re-trained MLP, we re-trained the AM and observed an over-
all improvement compared to the system without MLP re-training. In average,
an improvement of around 4% relative was obtained. Table 5.11 summarizes
the ER for Czech, Hausa, and Vietnamese ASR using MFCC and BN features
with different multilingual MLPs for initialization after re-training.

Table 5.11: ER [%] for Czech, Hausa, and Vietnamese ASR using MFCC features,
and BN features with different initializations after re-training

Systems Czech Hausa Vietnamese
MFCC 27.5 24.9 26.0
Big4 23.8 23.7 22.8
+ Slavic 22.0 22.4 21.7
+ Asian 20.9 21.3 20.3
Oracle 20.2 18.8 18.0

5.5 Visualization of Bottle-Neck features

For a better understanding of the multilingual Bottle-Neck features, we visu-
alized them in a two-dimensional space. To reduce the data dimension of the
multilingual BN features to 2D, we applied t-Distributed Stochastic Neighbor
Embedding (t-SNE) [VdMH08].
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5.5.1 t-Distributed Stochastic Neighbor Embedding

Visualization of high-dimensional data is an important task in many differ-
ent domains, and has to deal with data of widely varying dimensionalities.
Over the last few decades, a variety of techniques for the visualization of such
high-dimensional data have been proposed. One of the latest techniques which
works quite well in many applications is t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) [VdMH08] - an extension of Stochastic Neighbor Embedding
[HR02]. It is a technique which allows visualizing high-dimensional data by
assigning each data point a location in a two or three-dimensional space.

Stochastic Neighbor Embedding (SNE) starts by converting high-dimensional
Euclidean distances between data points into conditional probabilities that rep-
resent similarities. The similarity of data point xj to data point xi is the con-
ditional probability pj|i that xi would pick xj as its neighbor if neighbors were
picked in proportion to their probability density under a Gaussian centered at
xi. For the low-dimensional counterparts yi and yj of the high-dimensional
data points xi and xj , a similar conditional probability qj|i is computed. If
the mapped points yi and yj correctly model the similarity between the high-
dimensional data points xi and xj , the conditional probabilities pj|i and qj|i will
be equal. Based on this observation, SNE aims at finding a low-dimensional
data representation that minimizes the mismatch between pj|i and qj|i. A nat-
ural measure for that is the Kullback-Leibler divergence. SNE minimizes the
sum of Kullback-Leibler divergences over all the data points using a gradient
descent method. The cost function C is given by

C =
∑
i

KL(Pi|Qi) =
∑
i

∑
j

pj|ilog
pj|i

qj|i
(5.1)

in which Pi represents the conditional probability distribution over all other
data points given data point xi, and Qi represents the conditional probability
distribution over all other map points given map point yi. Although SNE con-
structs reasonably good visualizations, the cost function is difficult to optimize.
Also, the authors in [VdMH08] refer to the “crowding problem”, which t-SNE
tries to alleviate. The cost function used by t-SNE differs from the one used
by SNE in two ways: (1) it uses a symmetrized version of the SNE cost func-
tion with simpler gradients and (2) it uses a Student-t distribution rather than a
Gaussian to compute the similarity between two points in the low-dimensional
space. The t-SNE software is provided in [t-S] and used in our further experi-
ments.

97



5 Multilingual Bottle-Neck Features

5.5.2 Visualization

In this section, we applied t-SNE to visualize the multilingual BN features. We
hope to find answers to the following questions:

• What does the multilingual MLP learn?

• Does the BN representation transfer to new languages?

The following paragraphs discuss the visualization of the multilingual BN fea-
tures and possible implications.

What does the multilingual MLP learn? To extract the BN features, we used
the multilingual MLP which has been trained on 12 different languages (see
Section 5.4). Since the number of phones of a language is too large for the
visualization, a subset of phones is selected. In this thesis, we only focus on
visualizing vowels. We chose five different vowels /a/, /i/, /e/, /o/, and /u/
which are covered in many languages. We plotted the multilingual BN features
of these five vowels /a/ (black), /i/ (blue), /e/ (green), /o/ (red), and /u/
(yellow) (on the right in Figure 5.5). The data points were collected by using
French (+), German (�) and Spanish (5) speech data. On the left of Figure
5.5, we show the IPA vowel chart and the vowel-triangle with the five vowels
annotated with corresponding colors. Note that the vowel-triangle expresses
which vowels have which formants on average. Interestingly, an analogy of the
visualization with the other two pictures can be observed. The data points of
the five vowels from the four different languages resemble the relations of the
vowels in the vowel chart and the vowel-triangle. This observation suggests
the following implications:

• An MLP captures important information about the vowel realizations. It
has learned spectral characteristics of different vowels, namely the first
two formants F1 and F2. According to our results, t-SNE allows to visu-
alize that the MLP learned to discriminate different vowels and abstracts
from languages.

• An MLP seems to normalize the language dependent variations of these
vowels. Although the data points are from different languages, they
clearly resemble the pattern of the IPA vowel chart and the vowel-triangle.

Does the BN representation transfer to new languages? As described in
Section 5.4.3, we obtained significant improvements in terms of SyllER by us-
ing the multilingual MLP directly without re-training to extract the BN features
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Figure 5.5: Multilingual BN features of five vowels /a/ (black), /i/ (blue), /e/
(green), /o/ (red), and /u/ (yellow) from French (+), German (�)
and Spanish (5)

for Vietnamese ASR. This indicates that some language independent informa-
tion has been learned by training the multilingual MLP. However, it was not
clear how exactly the language independent information is represented in this
context. In the previous paragraph, we observed that the multilingual MLP
captures the most important information of the vowels, namely F1 and F2 and
normalizes language variations. This can be the explanation for the ASR per-
formance improvement reported in Section 5.4.3.

In this section, we visualize the BN features of Vietnamese data using this mul-
tilingual MLP to obtain a better understanding of the crosslingual transfer ef-
fect. Moreover, we look at two further effects: The language independence of
the BN features and the discriminability of the multilingual BN features for un-
seen languages. The intra-class variance of vectors from different languages
for the same IPA symbol is observed. In particular, we plotted the five vowels
which appear in German, French, Spanish and Vietnamese. Note that German,
French and Spanish data was used to train the multilingual MLP while Viet-
namese is the unseen language in our example. Figure 5.6 shows the multilin-
gual BN features of /a/, /e/, /u/, /i/ and /o/, respectively. In this figure,
data points are color coded corresponding to German (red), Spanish (black),
French (purple) and Vietnamese (yellow) phones.
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5 Multilingual Bottle-Neck Features

Figure 5.6: BN features of five vowels /a/, /i/, /e/, /o/, and /u/ from Ger-
man (red), Spanish (black), French (purple) and Vietnamese (yellow)

We observed two characteristics:

• The data points form a compact class even if they are from different lan-
guages.

• There exists an overlap of data points from different languages. This in-
dicates that the intra-class variance of each class is small.

These two observations indicate that multilingual BN features may be language
independent. However based on these figures, it is not possible to conclude
whether multilingual BN features are also suitable to the classification task
since we only plotted the data points of one class. Therefore, multilingual BN
features of the five Vietnamese vowels are extracted and plotted on the right
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Figure 5.7: BN features of the five Vietnamese vowels /a/ (black), /i/ (blue),
/e/ (green), /o/ (red), and /u/ (yellow) using multilingual MLP
trained with 12 different languages 5.4

hand side of Figure 5.7. Black, blue, green, red and yellow data points corre-
spond to the vowels /a/, /i/, /e/, /o/, and /u/. On the left hand side of
Figure 5.7, we show the vowel chart and the vowel-triangle again. Interest-
ingly, we observed the same effect as by visualizing the multilingual phones
in Figure 5.5. The data points of the five Vietnamese vowels again represent
the relations in the vowel chart and the vowel-triangle. This indicates that the
learned information, in this case the F1 and F2 information, can be transferred
to the new language. This means, the multilingual BN features are language
independent and can be used for feature extraction for an unseen language.

The next question is: How important is the use of multilingual MLP or is it
enough to use a monolingual MLP? To answer this question, we again plot-
ted the BN features of the same Vietnamese vowels as in Figure 5.7. How-
ever, in this case only a monolingual MLP was used to extract the features: A
French MLP trained on French GlobalPhone data with random initialization.
Figure 5.8 illustrates the IPA vowel chart and the vowel-triangle on the left and
on the right the Vietnamese data points. Note that, Vietnamese data was not
used for the MLP training. Again, the same effect as in Figure 5.5 and 5.7 is
observed. The data points of the five Vietnamese vowels illustrate the relations
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Figure 5.8: BN features of five Vietnamese vowels /a/ (black), /i/ (blue), /e/
(green), /o/ (red), and /u/ (yellow) using MLP trained with French
data

in the vowel chart and the vowel-triangle. It indicates that the MLP learned the
spectral characteristics, namely F1 and F2 of different vowels. It can be trans-
ferred to an unseen language independent of whether monolingual or multilin-
gual data are used to train the MLP. However, the analogy between the pattern
in the plotted data points and the vowel charts in Figure 5.7 is more clear than
in Figure 5.8. It can be observed in Figure 5.8 that some data points of phone
/a/ and /e/ are spread and form a pattern close to phone /i/. One possible
explanation for this effect is that the more languages and more data are used
to train the MLP, the stronger is the normalization process between languages
at the phone level. It also explains the ASR performance which we obtained
in Section 5.3.4: Using the French MLP for initialization, the ASR performance
was improved, but the final performance was substantially worse than the sys-
tem trained with multilingual BN features.

Furthermore, we plotted Vietnamese BN features in Figure 5.9 which have been
extracted using the Vietnamese MLP trained on Vietnamese data with random
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Figure 5.9: BN features of five Vietnamese vowels /a/ (black), /i/ (blue), /e/
(green), /o/ (red), and /u/ (yellow) using MLP trained with Viet-
namese data

initialization. We also observed an analogy between the vowel chart and the
data points. Furthermore, in comparison to the visualization in Figure 5.7 and
5.8, the data points of different vowels are clearly separable. It proves the dis-
criminative characteristics of the MLP training process. In this case, it was op-
timized to separate between Vietnamese phones. It also indicates that MLP
training is more effective when trained on the target language. However in
scenarios with limited training data, using our multilingual MLP to initialize
the MLP training is a good way to train the MLP for a new language.

5.6 Summary

This chapter presented our investigations on multilingual Bottle-Neck features
and their application to rapid language adaptation to a new language at fea-
ture level. Our results revealed that using the multilingual MLP to initialize the
MLP training for new languages improved the MLP performance and, there-
fore, the ASR performance. Figure 5.10 summarizes the ASR performance on 15
languages of the GlobalPhone test set using the proposed multilingual Bottle-
Neck features. The ASR performance was improved in all the cases in compar-
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ison to the results with MFCC features which are presented with blue bars in
Figure 5.10 and which were also shown previously in Figure 3.1.
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Figure 5.10: ASR performance on the GlobalPhone test set using multilingual
Bottle-Neck features (c: character, s: syllable, w: word)

Moreover, we investigated the impact of the source languages on the MLP
training and the ASR performance of the target languages. The experimen-
tal results showed that the number of languages and the amount of data used
to train the multilingual MLP has a strong effect on the MLP training and the
ASR performance. More source languages improve the MLP performance for a
new language and the ASR performance. Moreover, depending on the amount
of training data of the target languages, language relation between source lan-
guages and target languages becomes important. If many training data are
available, it helps to use related languages. In contrast, if only a small amount
of training data is available, language similarity does not help but the number
of source languages and the amount of data matters. Multilingual Bottle-Neck
features are language independent and can be used for rapid language adapta-
tion without re-training to improve the ASR performance. However, even with
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a very small amount of training data (one hour of data in our experiment),
MLP re-training helps to improve the ASR performance. Finally, the visualiza-
tion of the output of the hidden layer of the MLP using t-SNE provides useful
information to better understand the multilingual BN features. Our results re-
vealed that multilingual BN features seemed to learn the F1 and F2 formants
which characterize different vowels and normalized their language dependent
variations. Furthermore, the BN features representation transferred to unseen
languages which further indicates their language independence.
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CHAPTER 6

A Study on Using
Multilingual and Crosslingual

Information To Improve
Non-Native ASR

Non-native speech is still a challenging task for state-of-the-art ASR systems.
The word error rate increases significantly on testing data with foreign accents.
This chapter presents the exploration of the effect of using multilingual and
crosslingual information to improve an ASR system for non-native speech.

6.1 Introduction

Another advantage of multilingual systems compared to monolingual systems
is their application to non-native speech recognition. For state-of-the-art ASR
systems, non-native speech is a challenging task. There are many reasons why
an automatic speech recognition (ASR) system which performs well on native
speakers has problems with non-native speech. Two of them are the charac-
teristics of accented speech itself and the lack of speech databases. In [Liv99,
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TW03], some of the speaker-related factors that have negative impact on speech
recognition performance for non-native speech are presented, such as:

• High intra- and inter-speaker inconsistencies of the phonetic realizations

• Different second language acquisition methods and backgrounds, thus
different acoustic or grammatical realizations and proficiency levels,

• The speakers’ perception of the non-native phones

• Reading errors in read speech

• Slower reading with more pauses in read speech.

Due to the high variations among speakers, a large amount of training data is
required to build a robust acoustic model for non-native speech. However, ob-
taining those training data is very difficult, especially for speakers with strong
accent. Hence, the use of multilingual acoustic models is investigated in this
thesis to increase the robustness of the model against accent variations, com-
pensate data spareness and, therefore, improve the ASR performance on non-
native speech.

In this chapter, we explore the use of multilingual and crosslingual information
in different ways. We will use the terms L1 to refer to the native languages of
the speakers, and L2 to refer to the language that the ASR system is trained
to recognize. We investigate the effect of using a bilingual acoustic model
which was trained with L1 and L2 data on non-native speech. For the case
that L1 is unknown or the data of L1 is not available, a multilingual acoustic
model trained without L1 training data is examined. Furthermore, for scenar-
ios, where no adaptation data is available, we propose a new method called
crosslingual accent adaptation which allows, for example, using English with
Chinese accent to improve the German ASR on German with Chinese accent.

6.2 Related work

There are many previous research works on handling non-native speech in
speech recognition. The investigations vary from simply collecting data in the
target accent and training new acoustic models, to various ways of adapting
pronunciation dictionary, acoustic model, and language model to the new ac-
cent.

In [WSW03], different techniques that improve the recognition performance
for non-native speech are compared. The study uses spontaneous German-
accented English and investigates different approaches, such as using a bilin-
gual acoustic model, a model built from mixed (native and non-native) speech,
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maximum a posteriori (MAP) speaker adaptation, acoustic model interpola-
tion, and polyphone decision tree specialization. The authors obtained a great
improvement on German-accented speech but did not achieve any substantial
improvements using bilingual acoustic models. Tomokiyo and Waibel [TW03]
examined Japanese-accented English speech and showed that training on non-
native speech data achieves the biggest gains in performance on accented data.
In both cases, the adaptation was based on the direct use of MAP or maximum
likelihood linear regression (MLLR) to adapt to each test speaker individually
or to a class of accented speakers. In [RGN08, TB07], the authors applied mul-
tilingual weighted acoustic models to improve recognition accuracy for non-
native speech recognition. Bouselmi et. al [BFI+06] showed a great improve-
ment by modifying the acoustic model using phonetic confusion rules which
have been extracted from a non-native speech database for a given L1 and L2
using both the ASR systems of L1 and L2. The results in [RGN08, TB07, BFI+06]
indicate that there is some multilingual information which might be useful to
improve ASR performance on non-native speech.

Beside acoustic model adaptation, there are also many works on modifying the
decoding dictionary so that it reflects the pronunciation differences between na-
tive and non-native speech, such as in [Liv99, Tom00b, GE03, HWP96]. More-
over, the language model can be adapted to non-native speech [TW03]. How-
ever, adapting the pronunciation dictionary or the language model do not form
the focus of the research in this thesis.

6.3 Baseline System

This section describes the English and the German baseline recognizers. The
English system serves as baseline in the experiments in Section 6.4, while the
German system is used as baseline in Section 6.5. They can be described as
follows: Each system uses Bottle-Neck front-end features with a multilingual
initialization scheme as proposed in Chapter 5. In this approach, a multilin-
gual multilayer perceptron (ML-MLP) was trained using training data from
12 languages (Bulgarian, Chinese Mandarin, English, French, German, Croa-
tian, Japanese, Korean, Polish, Russian, Spanish, and Thai). To initialize the
MLP training for the English and German system, we selected the output from
the ML-MLP based on the IPA phone set and used it as starting point for the
MLP training. All the weights from the ML-MLP were taken but only the out-
put biases from the selected targets were used. To rapidly bootstrap the sys-
tem, the phone models were seeded by their closest matches of the multilin-
gual phone inventory MM7 [SW01b] derived from an IPA-based phone map-
ping. The acoustic model used a fully-continuous 3-state left-to-right Hidden-
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Markov-Model. The emission probabilities were modeled by Gaussian Mix-
tures with diagonal covariances. For context-dependent acoustic models, we
trained a quintphone system and stopped the decision tree splitting process
at 2,500 leaves. After context clustering, a merge&split training was applied,
which selects the number of Gaussians according to the amount of data. For
all the models, we used one global semi-tied covariance (STC) matrix after
a Linear Discriminant Analysis (LDA). The language model was built with a
large amount of text data crawled with the Rapid Language Adaptation Toolkit
[RLA12]. The vocabulary size of the English language model is 60k. Table 6.1
summarizes the perplexity, and out-of-vocabulary rate (OOV) of the English
and German language model on the native and non-native test set of English
and German respectively. We only report one PPL and OOV rate for the non-
native English test sets since the read text is the same for all accents.

Table 6.1: PPL and OOV of the language model
Set 3-gram PPL OOV
Native EN test set 274 0.3
EN with non-native accent test set 121 0.05
Native GE test set 552 0.3
GE with non-native accent test set 433 0.06

The vocabulary size of the German language model is 37k. On the native Ger-
man and German with Chinese accent test set, the perplexity is 552 and 433,
and the OOV is 0.3% and 0.06%, respectively.

The English and German ASR obtained a word error rate (WER) of 9.4% and
14.3% on the native data set, respectively. On the non-native speech data set,
our baseline ASR performance varies among 60.0% WER on English data with
Bulgarian accent, 57.6% with Chinese accent, 62.2% with German accent, 67.5
% with Indian accent and 59.6% on German data with Chinese accent. Since
the acoustic conditions of the native and non-native corpus are quite similar,
we assume that the highly drop of WER from the native to non-native speech
test set is due to a phonetic mismatch between non-native and native speech.

We applied MAP and MLLR to our baseline system for each accent to improve
the ASR accuracy. Table 6.2 provides an overview of our baseline system on
English with different non-native accents with and without adaptation. The
results show that, using MAP adaptation we gained a lot of improvements
over the baseline system and much more than using MLLR. The combination
of MLLR and MAP gives the best performance on English with Bulgarian and
Indian accent. Furthermore, the best WER after adaptation on German data
with Chinese accent is 43.2%.
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Table 6.2: Word error rates (WER) on English with non-native accents using a mono-
lingual acoustic model

Accents BG CH GE IN
English ASR (1) 60.0 57.6 62.2 67.5
(1) + MAP 43.1 38.4 43.1 36.1
(1) + MLLR 49.6 46.2 51.7 48.7
(1) + MAP + MLLR 43.0 41.4 43.6 33.1

6.4 Improving ASR performance on non-native
speech using multilingual information

6.4.1 Bilingual L1-L2 acoustic model

Many previous studies [BFI+06, Fle80, Fle87, DC97, FFN97] showed that the
native language L1 has an impact on the pronunciation of L2. Therefore, it is
reasonable to use not only L2 but also L1 audio data to train the acoustic model
which covers the L1 and L2 phonetic space and, therefore, improves the ASR
performance. Hence, we train a bilingual acoustic model for each accent using
English data of WSJ0 and data from the native language in the GlobalPhone
database. We merge all the phones which share the same symbol in the IPA
table and apply the same training procedure as for the training of the baseline
system. To model more contexts, we increase the number of leaves of the deci-
sion tree to 3,000 quintphones. Table 6.3 shows the WER of the bilingual models
on non-native test data. The results show improvements up to 27% for all ac-
cents. On top of the bilingual acoustic models, we applied MAP, MLLR and
their combination for adaptation. Similar to the experiments of the baseline
system, using MAP gained much more improvement than MLLR. However,
in contrast to the baseline system, the combination of MLLR and MAP consis-
tently gives some improvements in terms of word error rate for all the accents.
The reason can lie within the fact that our bilingual L1-L2 acoustic model was
trained with more training data and, therefore has more Gaussians than the
monolingual baseline system. Hence, many Gaussians might not be adapted
using MAP adaptation but might be transformed by MLLR adaptation.

6.4.2 Multilingual acoustic model

In many cases, information about L1 or L1 data is not available. The question
here is whether multilingual information still helps. Hence, we train four dif-
ferent multilingual AMs for each accent in which we omit the L1 speech data.
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Table 6.3: Word error rates (WER) on English with non-native accent using bilingual
acoustic models

Accents BG CH GE IN
English ASR 60.0 57.6 62.2 67.5
Bilingual L1-L2 ASR (2) 53.2 52.2 45.3 60.2
(2) + MAP 38.4 34.3 36.8 34.0
(2) + MLLR 43.3 41.1 41.7 45.3
(2) + MAP + MLLR 37.6 34.1 36.5 31.8

For English with German accent, for example, a multilingual AM is trained on
English, Mandarin, Bulgarian, and Indian speech data. Table 6.4 summarizes
the WER on the test sets of our four different accents. Compared to the mono-
lingual system, we observe improvements in all cases. Except for the case of
Indian accent, the WER is worse than using the bilingual L1-L2 acoustic model
even if the number of parameters of the multilingual acoustic model is higher
than the corresponding bilingual L1-L2 acoustic model. It indicates that L1 has
a strong effect on L2 and, therefore, we can improve the ASR performance by
using L1 speech data. However, we achieved the best WER on English with
Indian accent with 29.6% by using a multilingual acoustic model trained with
Bulgarian, Chinese, German and English data. It corresponds to about 7% rela-
tive improvement over the bilingual L1-L2 AM. The reason could lie within the
fact that the multilingual acoustic model trained with four different languages
might cover more variations in the phonetic space than the monolingual and
also the bilingual English-Tamil acoustic model. Since English with Indian ac-
cent has a lot of variations, it might benefit more than other accents from using
this multilingual model. Although it is not clear whether the improvement is
due to the amount of training data or the multilingual effect, the results show
that non-native data has a lot of phonetic variations. They cannot be covered
by using only monolingual AM trained with L2 speech data. Hence, the re-
sults demonstrated the advantages of the multilingual acoustic model over the
monolingual one.

6.5 Crosslingual accent adaptation

The approaches described in the previous sections rely on the availability of
L2 speech data to adapt the background model. In this section, we describe a
method called crosslingual accent adaption which can be applied when no such
data is available.
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Table 6.4: Word error rates (WER) for English with non-native accents using multi-
lingual acoustic models

Accents BG CH GE IN
English ASR 60.0 57.6 62.2 67.5
Bilingual L1-L2 ASR 53.2 52.2 45.3 60.2
Multilingual ASR (3) 54.0 49.4 51.1 50.8
(3) + MAP 42.0 37.4 39.7 32.3
(3) + MAP + MLLR 41.6 36.2 39.5 29.6

6.5.1 Key idea

Typically, if an HMM/GMM acoustic model is adapted to an accent, the mean
and the variances of all the Gaussians are modified by different methods, such
as MAP or MLLR, to make the acoustic model better suitable to the accent.
This kind of modification is referred to as “transformation” in this section. The
idea of crosslingual accent adaptation is to use the transformation which was
learned to adapt the native language to the non-native one across languages
assuming that the accent stays the same. Figure 6.1 illustrates this proposed

Figure 6.1: Crosslingual accent adaptation approach

approach for a scenario in which English and German acoustic models should
be adapted to English and German with Chinese accent. In this example, the
English with Chinese accent adaptation data is available but no German with
Chinese accent adaptation data is provided. That means, 1) the transformation
T which is used to adapt the English model to English with Chinese accent
can be estimated using the provided adaptation data but 2) there is no chance
to estimate the transformation to adapt the German model to German with
Chinese accent. The key point is that the accent is the same, i.e. L1 stays the
same and the effect of L1 on different L2 languages might share some common
characteristics. Therefore, using T to adapt German models might improve the
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ASR performance on German with Chinese accent. This research idea allows
borrowing transformations across languages for accent adaptation if the target
accent is the same.

6.5.2 Implementation using multilingual AM

Obviously, the main challenge is to determine the context dependent HMM
states in the target language (e.g. in German) which should be adapted us-
ing the borrowed transformation of the source language (e.g from English).
Similar states between languages are a reasonable solution. To decide which
states are similar, there are several possibilities. For example, distance mea-
sures between Gaussian Mixtures, such as Kullback-Leibler distance [Kul87]
can be used. Based on these distances, similar states should be adapted using
the same transformation in the phonetic space. In this thesis, we propose to
train a multilingual model in which the states are shared between languages
(see figure 6.2). The phone set should be merged between languages if they
share the same symbols in the IPA table. By doing that, the context depen-
dent HMM states are merged together if they are similar during building the
context decision tree of the multilingual acoustic model. Therefore, they are im-
plicitly transformed by adapting the multilingual acoustic model to the accent.
The main advantages of this approach are 1) that the similarity of the context
dependent HMM states across languages is determined implicitly during the
training and 2) that the adaptation can be performed automatically for all the
languages. Furthermore, we propose to perform only MAP adaptation since
in contrast to MLLR the Gaussian mixtures of each HMM state are indepen-
dently adapted. This allows us to better understand the crosslingual effect in
which the performance of each shared phone can be analyzed before and after
applying the proposed approach.

Figure 6.2: Crosslingual accent adaptation with multilingual AM
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6.5 Crosslingual accent adaptation

6.5.3 Experiments and Results

For the crosslingual accent adaptation, we conducted two experiments: The
first one assumed that English with Chinese accent was not available. There-
fore, we used German with Chinese accent to improve the background acous-
tic model. In the second experiment, German with Chinese accent was not
available and therefore, English with Chinese accent was utilized for adapta-
tion. Based on the results of the experiments in Section 6.4.1, we used not only
English and German but also Mandarin data to train the multilingual model
which served as the background model in both experiments. This multilin-
gual acoustic model has 5,000 quintphones. In our case, there are 24 phones
which are shared between English and German. They correspond to 1,606 con-
text dependent states which represent 32.12% of all the states. When English
quintphone states are adapted to English with Chinese accent, all the German
quintphone states which are shared with English quintphone states are also
adapted implicitly and vice versa. In the first experiment, when we adapted
the background model on German data with Chinese accent, 2,075 states were
adapted in total. Of those, 1,367 states were shared between English and Ger-
man. Compared to the first experiment, less states were adapted in the second
experiment. More specifically, 1,662 states were adapted using English data
with Chinese accent. 1,195 of them were shared between English and German.
The reason lies within the fact that the amount of German data with Chinese ac-
cent is greater than the English one. Table 6.3 summarizes the WER on English
and German with Chinese accent. The results show that we achieved in total
about 19.8% relative improvement on English with Chinese accent and 11.9%
on German with Chinese accent without using any adaptation data of the target
language compared to the monolingual baseline system. In the case of testing
on English with Chinese accent, the multilingual acoustic model was adapted
with German data and, therefore, more states were adapted than in the case of
testing on German with Chinese accent. Therefore, it can be explained why the
improvement on the English test set with Chinese accent is larger than on the
German data with Chinese accent.

6.5.4 Result analysis

The results indicate that we can share data across L2 languages with the same
accent to improve the ASR system on non-native speech. This can be applied
to the case that we do not have any training or adaptation data of the target
L2 language and the target accent. To obtain a better understanding of the
ASR improvement, we performed an error analysis on phone level in which we
compared the ASR errors of German and English with Chinese accent before
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Figure 6.3: WER on German and English with Chinese accent

77

136

73

93

38

16

73

157

129

345

51
58

110

42

158

58

121

139

251

116

86

245

57

23

71

86

60
65

35

20

60

128

85

277

39 38

95

25

129

49

85

113

216

55

131

43

9

25

0

50

100

150

200

250

300

350

400

b d f g h j k l m n ŋ p s ʃ t v a: e ə i: u aɪ aʊ ɔɪ

Before Cross-lingual Accent Adaptation

After Cross-lingual Accent AdaptationGerman

Figure 6.4: Substitution errors of shared phones before and after using crosslin-
gual accent adaptation for German

and after applying crosslingual accent adaptation. Figures 6.4 and 6.5 show all
24 shared phones and how often they were misrecognized in the German and
English test set with Chinese accent.

In total, we observed consistent improvements of these shared phones after
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Figure 6.5: Substitution errors of shared phones before and after using crosslin-
gual accent adaptation for English

applying the crosslingual accent adaptation approach on the German and English
non-native test set. These results indicate that the L1 language has the same
effect on different L2 languages, i.e. L1 native speakers may not be able to
pronounce or wrongly pronounce the same phones of the L2 languages. Based
on the experimental results and the error analysis, we can conclude that the
improvement in our experiments is predictable. Since L1 native speakers may
pronounce the same phones of L2 in the same way according to their accent,
the accent transformation can be shared among different L2 languages.

6.6 Summary

This chapter presented our latest investigations of using multilingual and crosslin-
gual information to improve automatic speech recognition performance on non-
native speech. Our experimental results revealed that bilingual L1-L2 acoustic
models can improve ASR performance on non-native speech. If L1 is unknown,
multilingual ASR trained without L1 speech data outperforms monolingual
ASR on non-native speech. For the case that no adaptation data for the tar-
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get accent is available, crosslingual accent adaptation provided 15.8% relative im-
provement in average compared to the baseline system.

118



CHAPTER 7

Multilingual Deep Neural
Network Based Acoustic

Modeling For Rapid
Language Adaptation

Deep neural networks (DNNs) have become state-of-art techniques for acous-
tic modeling in the last years. They outperform traditional Gaussian Mixture
Models in various tasks with different data sets. This chapter describes an in-
vestigation on multilingual deep neural network based acoustic modeling in the
context of rapid language adaptation.

7.1 Introduction

Since the late nineties, multilingual acoustic models and their use to bootstrap
ASR systems for unseen languages have become one of the most important
research topics in the speech community. Many interesting research works,
such as [WKAM94, CC97, GG97, SW98a, Köh98, SW98b, SW98b, Köh98] were
conducted in this time period. One of the most important findings was that
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7 Multilingual DNN AM For Rapid Language Adaptation

multilingual acoustic models outperform monolingual ones for the purpose of
rapid language adaptation [SW01b].

Povey et al [PBA+10] proposed a subspace GMM framework which gives a
substantial improvement over the traditional HMM/GMM. Moreover, multi-
lingual Subspace GMM was shown to outperform the monolingual ASR sys-
tem for the first time [BSA+10]. Afterwards, HMM/DNN hybrid systems that
use deep neural networks (DNNs) to estimate the emission probabilities of the
Hidden Markov Model (HMM) states [SLY11, DYDA12, MDH12] were success-
fully applied to large vocabulary ASR and led to significant improvements in
various tasks with different data sets. Many recent studies [SGR12, HLY+13,
HVS+13, GSR13] exploited multilingual data during DNN training in different
unsupervised and supervised ways to improve the monolingual ASR perfor-
mance. In these studies, it was shown that the shared hidden layer is to some
extent language independent and can be used to bootstrap the DNN for a new
language.

To train a multilingual acoustic model training, there are several possible ways:
on a merged universal phoneset based on the international phonetic alphabet
(IPA) chart, i.e. the same IPA symbols are merged across languages, or on a
merged universal phoneset without merging strategies. In this thesis, we com-
pare the two methods in the context of multilingual DNN.

Moreover, multilingual DNNs seem to work particularly well in combination
with Kullback–Leibler divergence based hidden Markov modeling (KL-HMM)
if only small amounts of data are available for the new language [IMGB13].
However, in [IMGB13], only small bilingual DNNs (Afrikaans and Dutch) with-
out pre-training were evaluated.

In this thesis, we investigate the effect of IPA based phone merging on the mul-
tilingual DNN and its application to new languages. We also study multilin-
gual DNNs in combination with KL-HMM on a large scale, involving up to
five hidden layers, up to 6,000 MLP outputs and DNNs trained on up to six
languages. Furthermore, we investigate how different pre-training methods
influence cross-lingual DNN based acoustic modeling in the context of rapid
language adaptation.

Compared to previous studies, the two main contributions of this thesis are:
1) investigating the effect of phone merging on multilingual DNNs, and 2) ex-
tensive exploration of DNN based acoustic modeling in the context of rapid
language adaptation.
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7.2 Related work

7.2 Related work

7.2.1 Multilingual DNN

This section summarizes the most important work on multilingual DNN acous-
tic modeling and its application to bootstrap AMs for new languages. [SGR12]
examined the usability of unlabeled data from one or more languages to im-
prove recognition accuracy of a different, possibly low-resource, language in a
fully unsupervised fashion. They used an unsupervised RBM 2.2.2 trained with
one or multiple languages to initialize the DNN of a new language. Their re-
sults showed no significant improvement between using unsupervised mono-
lingual RBM and multilingual RBM.

The authors in [HLY+13, HVS+13] trained a multilingual acoustic model us-
ing all the multilingual training data. The softmax output layer was trained
separately for each language, however the hidden layers are shared between
languages. Their results showed that the shared hidden layer is language inde-
pendent and can be used to bootstrap the DNN for a new language.

In contrast to other works, the authors in [GSR13] trained the multilingual MLP
sequentially. They trained a network on one language and then replaced the
output layer with the one corresponding to another language, borrowed the
hidden layers, and fine tuned the whole network on the new language. This
process was repeated for several different languages to obtain the multilingual
DNN. Their results showed that the hidden layers can be shared between lan-
guages to improve accuracy.

All these works indicate that the hidden layers save some language indepen-
dent information which could be learned on several languages and transferred
to another language. Due to this fact, a lot of multilingual data could be used to
train a large network. Then, it can be applied to bootstrap the acoustic model
for a new language with only a small amount of training data.

7.2.2 KL-HMM

Recently, Imseng et al. [IMGB13] showed that multilingual DNNs work par-
ticularly well in combination with Kullback–Leibler divergence based hidden
Markov modeling (KL-HMM). However, in their experiments, only small amounts
of data were available for the new language. Furthermore, only DNNs with
three hidden layers were used, pre-training was not applied and the setup was
bilingual (Afrikaans and Dutch) rather than addressing multiple languages.
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7.3 DNN training with KALDI

This section describes the key features of the KALDI DNN training recipe [ZTPK14]
- part of the Kaldi ASR toolkit [PGB+11] - which we used in our study. Cur-
rently Kaldi contains two parallel implementations for DNN training. Both of
these recipes support deep neural networks training which is done on top of
the standard HMM/GMM training recipe. That means, the context dependent
decision tree, the audio alignment and the feature transform (if it is used) are
adopted from the HMM/GMM system. The neural net is trained to predict the
posterior probability of each context-dependent state. During decoding, the
output probabilities are divided by the prior probability of each state to form a
“pseudo-likelihood” that is used in place of the state emission probabilities in
the HMM [BM94].

7.3.1 First Kaldi DNN implementation

The first implementation is described in [VGBP13]. This implementation sup-
ports Restricted Boltzmann Machines (RBM) pre-training [EBC+10] - genera-
tive pre-training, stochastic gradient descent (SGD) training using NVidia graph-
ics processing units (GPUs) and discriminative training.

7.3.2 Second Kaldi DNN implementation

The second Kaldi DNN training recipe supports parallel training on multiple
CPUs. Instead of using Restricted Boltzmann Machine pre-training, the greedy
layer-wise supervised training [BLPL07] or the “layer-wise backpropagation”
of [SLY11] is used. A parameter defines the number of iterations in which the
network should be trained before a new hidden layer is inserted between the
last hidden layer and the softmax layer. This is repeated until a desired number
of layers is reached.

The parallelization of the neural network training is performed on two levels:
on a single machine, and also across machines. The parallelization method on a
single machine involves multiple threads simultaneously updating the param-
eters while simply ignoring any synchronization problems. This is similar to
the Hogwild! approach [NRRW11]. Furthermore, on different machines, mul-
tiple training processes are run independently using SGD on different random
subsets of the data. After processing a specified amount of data, each machine
writes its model to the disk. Afterwards, the averaged model parameters be-
come the starting point for the next iteration of training.
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7.4 Multilingual DNN

The training recipe does also support different methods to stabilize the train-
ing, such as preconditioned SGD and enforcing the maximum change in the
parameters per minibatch.

The initial and final learning rates in the training recipe need be specified by
hand. During training, we decrease the initial learning rate exponentially to
reach the final learning rate for a few epochs at the end. The learning rate
remains unchanged during these last epochs. After the final iteration of train-
ing, the models from the last n iterations are combined via a weighted-average
operation into a single model. The weights are determined via non-linear op-
timization of the cross-entropy on a randomly selected subset of the training
data.

7.4 Multilingual DNN

For our studies, we use multilingual DNNs. We train the multilingual DNNs
in two steps: 1) training on multilingual data using a universal phone set, and
2) performing cross-language model transfer by re-training the output layer on
target language data. To further exploit the (limited amount of) target language
data, we also perform Kullback–Leibler divergence based HMM (KL-HMM)
decoding.

7.4.1 Universal phone set

To train the multilingual DNN, we investigate two different kinds of universal
phone sets. The first multilingual phone set, MUL-SEP, is created by simply
concatenating all the involved monolingual phone sets with a language iden-
tification prefix to ensure that all the phones are distinct among languages. To
create the second universal phone set, MUL-IPA, we merge all the monolingual
phones which share the same symbol in the IPA table. Obviously, the number
of phones in the MUL-SEP phone set is larger than in the MUL-IPA.

To obtain the tied-state targets for the training of the multilingual DNN, we
used the KALDI toolkit. More specifically, for both universal phone sets, we
trained multilingual HMM/GMM systems and built multilingual decision trees
to generate tied-state alignments. Furthermore in all the experiments, we used
the same number of Gaussians to train the MUL-SEP and MUL-IPA acoustic
models in order to provide a fair comparison between the two kinds of multi-
lingual DNNs (Figures 7.1 and 7.2).
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Figure 7.1: Multilingual deep neural network based on a multilingual decision
tree in which the phones are not shared between languages

Figure 7.2: Multilingual deep neural network based on a multilingual decision
tree in which the phones are shared between languages based on
IPA
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7.4.2 Cross-language model transfer

To bootstrap the acoustic model for a new language using multilingual DNN,
the hidden layers of the multilingual DNN are shared and transferred to the
new language. The multilingual softmax layer is simply replaced with a new
output layer corresponding to the target language. All the weights which con-
nect the neurons of the last hidden layer to the last layer and the biases are
randomly initialized.

7.4.3 KL-HMM

In a recent study [IMGB13], it was shown that KL-HMM decoding is particu-
larly useful if ASR systems for low-resourced languages are improved by us-
ing out-of-language data. Therefore in this thesis, we also apply KL-HMM
decoding as an alternative to conventional hybrid decoding. Conventional hy-
brid systems directly use the MLP output to estimate the emission probability
of the HMM states, hence, each HMM state only considers the output of the
corresponding neuron in the softmax layer of the MLP. In contrast, the (deep)
Tandem systems [SGR12] use the whole MLP output vector as speech features.
However, since Tandem systems model the HMM states with Gaussian mix-
tures, the MLP output vector needs to be post processed and usually the di-
mensionality is reduced as well. The KL-HMM acoustic modeling technique
can directly model high dimensional MLP output vectors. The HMM states
are parametrized with reference posterior distributions (categorical distribu-
tions) that can be trained by minimizing the Kullback–Leibler divergence be-
tween the categorical distributions and the MLP output. More details about
training and decoding in the KL-HMM framework can be found in, for in-
stance, [IMBG13].

7.5 Setup

We conducted two different sets of experiments by varying the relation be-
tween the source and the target languages. Furthermore, to verify the general-
ization of the study, the experiments were performed with different implemen-
tations which support two state-of-the-art techniques for deep neural network
training namely RBM pre-training and greedy layer-wise supervised training
(see Section 7.3).
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The first set of experiments is conducted with four Indo-European languages.
Three source languages, namely FR, GE and SP are used to train the multi-
lingual DNN which is then adapted to PO. Note that in this case the target
language is related to the source languages.

The second set of experiments was conducted with speech data from differ-
ent language families. We use EN, BG, GE and SP as representatives of Indo-
European languages, MAN as a Sino-Tibetan language and JP from the Altaic
language family for the multilingual DNN training. The multilingual DNN
is then adapted to three different target languages CZ, HA and VN which
are from three different language families. CZ and VN belong to the Indo-
European and Sino-Tibetan languages, respectively. Both language families are
represented in the source languages. HAU on the other hand is a language
from the Afro-Asiatic language family which is not related to any of the source
languages.

7.6 Results

This section presents all the experimental results of our study. Different DNNs
were trained using different initialization schemes, such as random initializa-
tion (Random-Init), generative pre-training (Gen-PT) or greedy layer-wise su-
pervised training (GL-sup), and served as baseline systems. Furthermore, we
used different universal phone sets (described in Section 7.4 - MUL-SEP and
MUL-IPA) to train the multilingual DNNs that were then used to bootstrap
the monolingual DNNs, which we refer to as DNN-MUL-SEP and DNN-MUL-
IPA respectively. We also performed KL-HMM decoding as an alternative to
conventional hybrid decoding, referred to as DNN-MUL-SEP + KL and DNN-
MUL-IPA + KL.

7.6.1 Experiments with related languages

The first set of experiments was carried out on similar languages and evaluated
(only) on the Portuguese (PO) test set. All the DNNs were trained using the
first DNN implementation of KALDI. We assumed to have different amounts
of PO data available: the full training set (17h), and randomly selected 5h and
1h subsets. All the results are summarized in Table 7.1.

The upper part of the table shows the results without applying pre-training and
the lower part shows results if the DNNs are pre-trained prior to fine-tuning.
System DNN was pre-trained on the PO data. For all the other systems, the
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Table 7.1: Word error rates (WER) on the PO test data. The numbers in the upper part
correspond to experiments without pre-training the DNNs and the numbers
in the lower part to experiments with pre-training

Amount of PO data 17 h 5 h 1 h
No DNN pre-training

DNN (Random-Init) 21.4 25.4 34.1
DNN-MUL-SEP 20.0 23.2 29.4
DNN-MUL-SEP + KL 20.0 22.9 29.0
DNN-MUL-IPA 20.3 23.2 29.4
DNN-MUL-IPA + KL 20.0 23.1 29.0

DNN pre-training
DNN (Gen-PT) 20.7 24.8 33.8
DNN-MUL-SEP 20.4 23.4 29.0
DNN-MUL-SEP + KL 19.9 23.1 28.6
DNN-MUL-IPA 20.4 23.0 29.0
DNN-MUL-IPA + KL 20.4 22.7 27.8

term with or without pre-training refers to the multilingual DNN. Afterwards,
to obtain the PO DNN, the cross-language model transfer is applied.

All the DNNs used in this set of experiments had three hidden layers, each con-
sisting of 2,000 units and were trained from 9 consecutive frames (4 preceding
and 4 following frames) of 39-dimensional Mel-Frequency Cepstral Coefficients
(MFCC) including deltas and double deltas. The first rows correspond to sys-
tems that only used the PO data (baselines). The Portuguese DNN was trained
to estimate posterior probabilities of 2,252 tied-state triphone targets. We also
evaluated cross-language model transfer by bootstrapping the DNNs with hid-
den layers trained on FR, GE and SP data, using MUL-SEP and MUL-IPA phone
sets. The MUL-SEP-DNN and the MUL-IPA-DNN were trained to estimate pos-
terior probabilities of 3,338 and 3,139 tied-state targets, respectively, obtained
from the multilingual decision trees. Note that, for each type of multilingual
DNNs, we trained two different networks, using random initialization and
generative RBM pre-training. We also evaluated KL-HMM based decoding for
each scenario. For the experiments on the whole PO training set, we fixed the
number of KL-HMM states to 20,000. For the subsets of 5 h and 1 h, we used
10,000 and 6,000 KL-HMM states, respectively.

Table 7.1 reveals the following trends: The cross-language model transfer based
on multilingual DNN (DNN-MUL-SEP and DNN-MUL-IPA) consistently out-
performs the PO baseline system (DNN), trained with random initialization or
generative RBM pre-training. However, it is not clear whether using genera-
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tive RBM pre-training to train the multilingual DNN helps to improve the ASR
performance on the target language.

Moreover, using KL-HMM, the performance is the same or better. The ASR per-
formance tends to improve more in case of small amounts of training data while
only marginal performance differences are observed if the whole PO training
set is used. In combination with multilingual DNN which was pre-trained with
RBM, we obtained the best WER on the PO test set. The difference between the
two different universal phone sets seems to be rather small, but in the case of
less training data, using IPA seems to be beneficial.

7.6.2 Experiments with non-related languages

Multilingual DNN

In the second set of experiments, we used the second DNN implementation of
KALDI to train two different multilingual DNN AMs with MUL-SEP and MUL-
IPA phone set using the training data of six different languages (BG, EN, GE, JA,
MAN, and SP). We apply the greedy layer-wise supervised training to train the
multilingual DNN (DNN GL-sup). MFCC features with the first 13 coefficients
concatenated with 5 left and 5 right neighbors were used directly as input of
the DNN after fMLLR transformation. For each multilingual DNN, 6,000 tied-
state triphones were trained. The DNN had 5 hidden layers, each consisting of
1,500 units. We also applied crosslingual model transfer1 re-trained the DNN
for each target language. Table 7.2 shows the results. Crosslingual model trans-
fer consistently improved WER compared to the greedy layer-wise supervised
training and fine-tuned DNN that used the monolingual data only. The DNN-
MUL-IPA systems yielded slightly better performance than the DNN-MUL-SEP
systems in the case of Bulgarian, English and Japanese. For German, Mandarin
and Spanish, the WER is the same.

Rapid language adaptation to new languages

For language adaptation experiments, we conducted two different experiments
on the Czech, Hausa and Vietnamese GlobalPhone data set: with the full amount
of training data and with only small amount of training data. Based on the
result of the first set of experiments from 7.6.1, we applied KL-HMM based

1Note that in this context, the target language was already part of the multilingual DNN train-
ing, hence the term crosslingual model transfer may be misleading. However, the re-training
procedure is as described in Section 7.4.
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Table 7.2: Word error rates (WER) on BG, EN, GE, JA, MAN, and SP test data using
greedy layer-wised supervised training DNN and DNNs which were pre-
trained using multilingual DNNs
Systems BG EN GE JA MAN SP
DNN (GL-sup) 17.4 9.9 6.2 16.8 12.3 14.9
DNN-MUL-SEP 16.8 9.5 5.8 16.2 11.8 14.3
DNN-MUL-IPA 16.7 9.2 5.8 16.1 11.8 14.3

decoding only with small amounts of training data. First, we used all the train-
ing data and trained the DNN for Czech, Hausa and Vietnamese. Table 7.3
summarizes the WER on CZ, HA and VN test data. Again, the crosslingual
model transfer yielded consistent improvements compared to the baseline sys-
tem which was greedy layer-wise supervised trained and fine-tuned only with
monolingual data of the target language.

In this set of experiments, using IPA to merge the phone set of the multilingual
DNN seems to slightly improve the ASR system in the case of CZ and HA.
However, the syllable ER increases a bit in the case of Vietnamese. Note that, in
the case of Hausa, even though the target language and the source languages
are completely unrelated, we observed up to 6% relative improvement.

Table 7.3: ASR performance on CZ, HA, and VN test data trained with full amount of
training data

Systems CZ HA VN
DNN (GL-sup) 9.9 10.1 10.0
DNN-MUL-SEP 9.3 9.8 8.6
DNN-MUL-IPA 9.2 9.5 8.8

Second, we assume that only a small amount of training data - one hour - for
each target language is available. The results in Table 7.4 show that by using
multilingual DNN, we observed larger improvements over the baseline system
than in the previous experiment. This indicates that the multilingual DNN is
very useful if the amount of training data is rather small. The DNN-MUL-IPA is
slightly better than the DNN-MUL-SEP system in the case of Hausa. In the case
of Czech and Vietnamese, the ASR performance is only marginally different.
However, if we use KL-HMM based decoding, we consistently obtained better
ASR performance by using the DNN-MUL-SEP.
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Table 7.4: ASR performance on Czech, Hausa and Vietnamese test data trained with
one hour of training data

Languages CZ HA VN
DNN (GL-sup) 16.9 16.1 32.1
DNN-MUL-SEP 14.0 13.6 27.1
DNN-MUL-SEP + KL 13.1 12.0 26.6
DNN-MUL-IPA 13.9 13.3 27.0
DNN-MUL-IPA + KL 13.4 12.3 26.8

7.7 Summary

This chapter presented an extensive investigation of multilingual DNN based
acoustic modeling in the context of rapid language adaptation. On different
languages, we found that Kullback–Leibler divergence based hidden Markov
models in combination with crosslingual model transfer yields the best per-
formance. The performance improvement is more pronounced in low-resource
scenarios. Table 7.5 summarizes the relative improvement of using crosslingual
model transfer based on multilingual DNN in combination with KL-HMM over
the baseline DNN system. Moreover, our experiments also suggest that it is not

Table 7.5: Relative improvement of using crosslingual model transfer based on multi-
lingual DNN in combination with KL-HMM in low-resource scenarios

Language CZ HA PO VN
Relative improvement (%) 22.5 25.4 17.8 17.1

necessary to manually derive IPA based universal phone sets for multilingual
DNN training.
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CHAPTER 8

Multilingual Language Model
For Code-Switching Speech

Code-Switching speech is a common phenomenon in multilingual communities
which becomes more popular due to the globalization effect. This chapter de-
scribes the investigation of language modeling for Code-Switching speech. The
idea is to analyze textual features which might have potential to predict Code-
Switches and afterwards, integrate those features into state-of-the-art language
models such as recurrent neural network language models (RNNLM) and fac-
tored language models (FLM) for the Code-Switching task. Finally, an investi-
gation of Code-Switching attitudes is presented.

8.1 Introduction

Code-Switching speech is defined as speech that contains more than one lan-
guage (’code’). The switch between languages may happen between or within
an utterance. It is a common phenomenon in many multilingual communi-
ties where people of different cultures and language background communicate
with each other [Aue99a]. For the automated processing of spoken communi-
cation in these scenarios, a speech recognition system must be able to handle
Code-Switches. In general, there are two possible ways to build an automatic
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8 Multilingual Language Model For Code-Switching Speech

speech recognition system for Code-Switching speech. In the first approach,
a language identification system is used to split the Code-Switching speech
into different monolingual parts and, afterwards, monolingual recognizers are
applied to the corresponding speech segments. This method is rather straight-
forward since the monolingual systems may be already available. However, we
lose semantic information between the segments and the mistakes of the lan-
guage identification system cannot be recovered. Especially for short speech
segments (e.g. shorter than 3 seconds), the language identification system per-
formance is not reliable. The second approach applies an integrated system
with multilingual models (acoustic model, dictionary and language model).
Compared to the first approach, the semantic information can be used between
languages. However, there might not be enough bilingual training data. This is
a challenge for the integrated system. While there have been promising re-
search results in the area of acoustic modeling, only few approaches so far
address Code-Switching in the language model. Due to the lack of Code-
Switching text data, language modeling is a challenging task. Traditional n-
gram approaches may not provide reliable estimates. Hence, more general fea-
tures than words should be integrated into the language models.
Recurrent neural networks and factored language models provide the possi-
bility to add different features to each word. Additionally, it has been shown
that recurrent neural network language models (RNNLMs) improve perplexi-
ties and error rates in speech recognition systems in comparison to traditional
n-gram approaches [MKB+10, MKB+11, YPC12]. One reason for that is their
ability to handle longer contexts. On the other hand, factored language models
(FLMs) have been used successfully for languages with rich morphology due
to their ability to process syntactical features, such as word stems or part-of-
speech tags (POS) [BK03, EDSN10].
In this chapter, we describe our approach to develop a multilingual language
model for the Code-Switching task. We apply recurrent neural network lan-
guage models and factored language models in which features, such as POS
tags or language identifiers (LID) are integrated to improve the LM perfor-
mance. Furthermore, a comparison between the models and a detailed analysis
are provided to explain the results. Additionally, we show that the linear inter-
polation of RNNLM and FLM provides the best performance on the SEAME
corpus. Figure 8.1 illustrates our Code-Switching system.
Finally, we show that clustering speakers according to their Code-Switching
attitudes leads to improvements in terms of perplexity for each test speaker.
These improvements also transform into error rate reductions.
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Figure 8.1: Overview: our Code-Switching system

8.2 Related Work

Linguistic analyses of the Code-Switching phenomenon help to better under-
stand the task and challenges and, thus, might help to create an appropriate
language model. Hence, various studies on Code-Switching are described. Fur-
thermore, recent developments in the research on modeling Code-Switching
speech are summarized. Finally, we also give a short overview of using recur-
rent neural network language models and factored language models in other
contexts.

8.2.1 The Code-Switching phenomenon

Linguistic analyses of Code-Switching were already performed in the 1980s and
1990s. Researches mainly covered Spanish-English-Code-Switching in Puerto
Rican communities in the United States [Pop78, Pop80] and Italian-German or
Italian-English-Code-Switching [Aue99b]. This subsection highlights the most
important works and results.
[Pop78] observes different Code-Switching types. The author finds that lan-
guage changes may occur in different contexts, such as between full sentences,
between conjoined sentences, at interjections, between major noun and verb
phrases, between verb and object noun phrases, etc. However, the first few
types which integrate more words of the second language are detected more
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8 Multilingual Language Model For Code-Switching Speech

often than the other types. Furthermore, two linguistic constraints for Code-
Switching are described: The free morpheme constraint and the equivalence
constraint. The author disagrees with statements that Code-Switching occurs
at random points and states that it is rule-governed. Hence, Code-Switching
points may be predictable. Finally, the paper concludes that people speak that
language which they feel most comfortable with. Hence, the greater the knowl-
edge of the speakers, the higher is the integration of a different language into
their mother tongue. Especially with less educated people, pauses, hesitations
or repair mechanisms, such as false starts, appear before language changes.
In a second paper, [Pop80] analyzes the speech of 20 Puerto Rican residents
in the United States. The results fit to the observations and statements of the
first paper: A fluent bilingual may switch the language at different syntactic
points, even intra-sentential, without pauses or hesitations, while a non-fluent
favors switches at sentence boundaries and usually pauses before the switch.
Nevertheless, both speaker groups do not violate the free morpheme or the
equivalence constraint. Furthermore, the combination of the two languages
does not violate grammatical structures. One of the main contributions of the
paper is an analysis of extra-linguistic factors that may effect Code-Switching
behaviors. Especially, the factors gender, age of second language acquisition,
bilingual ability and work place show a statistical significance at a level of 0.001
and can be regarded as independent of other factors. It is, for example, discov-
ered that women significantly favor intra-sentential Code-Switching while men
prefer extra-sentential switches.

8.2.2 Modeling Code-Switching speech

The authors of [SL08a] applied different machine learning algorithms (for in-
stance the Naive Bayes Classifier or Value Feature Interval) trained on textual
features to predict Code-Switching points. As features, they use word form,
language ID, part-of-speech tags and the position of the word relative to the
phrase. The work uses a Spanish-English-Code-Switching corpus containing
40 minutes of conversational speech. However, Spanish and English are not
equally distributed in the corpus. In fact, English is the predominant language.
The authors detect that their machine learning algorithms perform better than
Support Vector Machines, C4.5 decision trees and neural networks on their
task. As evaluation measures, they use precision, recall and F-measure. Fur-
thermore, they artificially generate Code-Switching sentences and ask people
who are familiar with Code-Switching to evaluate their naturalness.
[CCLC06] develop a large vocabulary speech recognition system for Cantonese-
English Code-Switching speech which is common in Hong-Kong. The au-
thors describe two different approaches to a Code-Switching recognition sys-
tem: The first approach involves language boundary detection (using language
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specific phonological and acoustic properties) and a monolingual recognition
afterwards. The second approach uses a cross-lingual ASR system. In their
work, the authors develop a two-pass decoding algorithm. In the first pass, a
syllable/word lattice is generated using a cross-lingual acoustic model and a
bilingual dictionary. Then, a syllable-to-character dictionary is applied to gen-
erate a character graph. Furthermore, language boundaries are detected. In
the second pass, the Chinese character sequence is decoded using a language
model that is based on Cantonese characters (trigram) and a small number of
English word classes. To find an appropriate language model, four different n-
gram models are trained and compared: The first one is a monolingual model
which regards all the foreign words as out-of-vocabulary words (OOV). The
second model provides all the foreign words with the same probability. The
third one gives the foreign words the probability of their translated equivalent.
The last model is class-based and clusters all foreign words into their part-of-
speech classes. The language models are evaluated in a phonetic-to-text con-
version task. The class-based language model performs better than the other
language models. The authors assume that the reason may be training data
sparseness.

8.2.3 Recurrent neural networks language models

In the last years, neural networks have been used for a variety of tasks. [MKB+10]
introduced a refined form of neural networks for the task of language model-
ing. The so-called recurrent neural networks are able to handle long-term con-
texts since the input vector does not only contain the current word but also the
previous values of the neurons of the hidden layer. It is shown that these net-
works outperform traditional language models, such as n-grams which only
contain very limited histories. In [MKB+11], the network is extended by fac-
torizing the output layer into classes to accelerate the training and testing pro-
cesses.
Recently, further information has been added to the recurrent neural network.
Shi et al. [YPC12] augment the input layer to model features, such as topic in-
formation or part-of-speech tags.
Furthermore, language model adaptation has been investigated, such as in [KMKB11].
The authors show that adaptation of recurrent neural network language mod-
els in form of one-iteration re-training on the hypothesis leads to improvements
in terms of word error rate if the adapted models are applied for rescoring.
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8.2.4 Factored language models

A factored language model refers to a word as a vector of features (factors),
such as the word itself, morphological classes, part-of-speech tags or word
stems. Hence, it provides a possibility to integrate syntactical features into
the language modeling process. [BK03] show that factored language models
are able to outperform standard n-gram techniques in terms of perplexity. In
the same paper, generalized parallel back-off is introduced. This technique
can be used to generalize traditional backoff methods and to improve the per-
formance of factored language models. Due to the integration of various fea-
tures, it is possible to handle rich morphology in languages like Arabic or Turk-
ish [DK04, EDSN10].

8.3 Linguistic Analysis

8.3.1 Description of the data corpus

SEAME (South East Asia Mandarin-English) is a conversational Mandarin-English
Code-Switching speech corpus. It has been recorded from Singaporean and
Malaysian speakers by [LTCL10]. It was used for the research project ‘Code-
Switch’ jointly performed by Nanyang Technological University (NTU) and
Karlsruhe Institute of Technology (KIT). The recordings consist of spontanously
spoken interviews and conversations of about 63 hours of audio data. For the
language modeling task, all hesitations are deleted and the transcribed words
are divided into four categories: English words, Mandarin words, particles
(Singaporean and Malaysian discourse particles) and others (other languages).
The average number of language changes between Mandarin and English is
2.6 per utterance. The duration of monolingual segments is very short: More
than 82% English and 73% Mandarin segments last less than 1 second, while
the average duration of English and Mandarin segments is only 0.67 seconds
and 0.81 seconds respectively. In total, the corpus contains 9,210 unique En-
glish and 7,471 unique Mandarin vocabulary words. It is divided into three
disjoint sets (training, development and test set). Table 8.1 lists the statistics of
the SEAME corpus in these sets.

8.3.2 Prediction of Code-Switching points

Similar to the investigations summarized in Section 8.2.1, we perform an anal-
ysis of textual features that trigger language changes in the SEAME data cor-
pus. We concentrate on words and part-of-speech tags because an analysis
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Table 8.1: Statistics of the SEAME corpus
Train set Dev set Eval set

# Speakers 139 8 8
# Utterances 48,040 1,943 1,018
# Token 525,168 23,776 11,294

in [Bur10] showed that those are the most important trigger events. We rank
them according to their Code-Switching rate. The Code-Switching rate for each
word or part-of-speech tag is calculated by the number of occurrences of the
word or tag in front of a Code-Switching point divided by the total number
of occurences in the entire text. In our analysis, we consider only those words
which appear more than 1,000 times in the text, corresponding to more than
0.2% of the entire word tokens.

Trigger words

We analyze which words occur frequently immediately in front of Code-Switching
points. Table 8.2 shows the top five Mandarin and the top five English words
preceding a Code-Switching point.

Table 8.2: Mandarin and English trigger words for Code-Switching points
word frequency CS-rate
那个(that) 5261 53.43 %
我的(my) 1236 52.35 %
那些(those) 1329 49.44 %
一个(a) 2524 49.05 %
他的(his) 1024 47.75 %
then 6183 56.25 %
think 1103 37.62 %
but 2211 36.23 %
so 2218 35.80 %
okay 1044 34.87 %

Part-of-speech tags as trigger

Part-of-speech tagger To be able to assign part-of-speech tags to our bilin-
gual text corpus, we apply the POS tagger described in [Bur10]. It consists of
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two different monolingual (Stanford log-linear) taggers [TKMS03, TM00] and a
combination of their results. While [SL08b] pass the whole Code-Switching text
to both monolingual taggers and combine their results using different heuris-
tics, in this work, the text is splitted into different languages first. The tagging
process is illustrated in figure 8.2 and further described in the following.

„Matrix 
language“ 
= Mandarin

„Embedded 
language“ 
= English

CS-text

Language islands
(> 2 embedded

words)

Remaining
text

POS
tagger for 

English

POS
tagger for 
Mandarin

Output

Output

English
segments

in
remaining

text

Postprocessing Analysis

Figure 8.2: Part-of-speech tagging of Code-Switching speech

First, Mandarin is determined as the matrix language (the main language of
an utterance) and English as the embedded language. If three or more words
of the embedded language are detected, they are passed to the English tagger.
The rest of the text is passed to the Mandarin tagger, even if it contains foreign
words. The idea is to provide the tagger as much context as possible. Since
most English words in the Mandarin segments are falsely tagged as nouns by
the Mandarin tagger, we extend the original approach of [Bur10] with a post-
processing step. We pass all the foreign words of the Mandarin segments to the
English tagger in order to replace the wrong tags with the correct ones.

POS trigger Analysis After having tagged the Code-Switching text, we se-
lect those tags that possibly predict Code-Switching points. The results are
shown in table 8.3. First, we consider only those tags that appear in front of
a Code-Switching point from Mandarin to English. Second, we investigate the
tags preceding a Code-Switching point from English to Mandarin. In each case,
only those tags are counted that occur more than 250 times in the text. It can be
detected that Code-Switching points are most often triggered by determiners
in Mandarin and by nouns in English. This seems reasonable since it is possi-
ble that a Mandarin speaker switches for the noun to English and immediately
afterwards back to Mandarin. It also corresponds to previous investigations as
described in section 8.2.
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Table 8.3: Mandarin and English POS that trigger Code-Switching points
Tag meaning frequency CS-rate
DT determiner 11276 40.44%
DEG associative的 4395 36.91%
MSP other particle 507 32-74%
VC 是 6183 25.85%
DEC 的 in a relative-clause 5763 23.86%
NN noun 49060 49.07%
NNS noun (plural) 4613 40.82%
RP particle 330 36.06%
RB adverb 21096 31.84%
JJ adjective 10856 26.48%

8.4 Language Modeling of Code-Switching Speech

This section describes our Code-Switching language models. We integrate more
general features than words into recurrent neural networks and factored lan-
guage models. As features, we use part-of-speech tags and language identi-
fiers.

8.4.1 Extension of the recurrent neural network language
model for Code-Switching speech

Figure 8.4.1 illustrates the recurrent neural network language model for Code-
Switching speech. Two main extensions of this work are the integration of fea-
tures, such as POS tags into the input layer and the factorization of the output
layer using language information.
Vector w(t) forms the input of the recurrent neural network. It represents the
current word using 1-of-N coding. Thus, its dimension equals the size of the
vocabulary. Vector s(t) contains the state of the network. It is called ‘hidden
layer’. The network is trained using back-propagation through time (BPTT),
an extension of the back-propagation algorithm for recurrent neural networks.
With BPTT, the error is propagated through recurrent connections back in time
for a specific number of time steps t. Hence, the network is able to remember in-
formation for several time steps. The matrices U , V and W contain the weights
for the connections between the layers. These weights are learned during the
training phase. In the work of [MKB+11], the output layer is factorized into
classes to accelerate the training and testing processes. Every word belongs to
exactly one class. The classes are formed during the training phase depending
on the frequencies of the words. Vector c(t) contains the probabilities for each
class and vector y(t) provides the probabilities for each word given its class.
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Figure 8.3: RNNLM for Code-Switching
(based upon a figure in [MKB+11])

Hence, the probability P (wi|history) is computed as shown in equation 8.1.

P (wi|history) = P (ci|s(t))P (wi|ci, s(t)) (8.1)

In our extension, the classes of the output layer do not depend on word fre-
quencies but on languages. We use the language categorization described in
section 8.3.1. Therefore, our model consists of four classes: One class for all En-
glish words, one for all Mandarin words, one for other languages and one for
particles. This corresponds to the Code-Switching task because, first, the prob-
ability of the next language is computed and, second, the probability of each
word given the language. Furthermore, we extend the input layer by concate-
nating vector w(t) with vector f(t) which provides features corresponding to
the current word. According to the analysis described in section 8.3.2, we use
POS tags as features. We do not use trigger words as feature input for the net-
work because they are implicitly modeled by vector w(t). Vector f(t) consists
of 67 elements since the Mandarin words in the vocabulary of the SEAME tran-
scriptions are assigned to 31 POS tags and the English words to 34 POS tags.
In addition, the words classified as other languages and the particles form own
classes. For each word, a relationship to its POS tag is established. Thus, dur-
ing the training and testing phases, not only the current word is activated but
also its feature. Because the POS tags are integrated into the input layer, they
are also propagated into the hidden layer and back-propagated into its history
s(t). Thus, not only the previous feature is stored in the history but also all
features several time steps in the past. In equation 8.1, the term P (ci|s(t)) com-
putes the next language ci using not only information about previous words,
but also about previous features.
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Figure 8.4: Backoff graph of the FLM

8.4.2 Integration of POS and LID into factored language
models

Factored language models (FLM) are another approach to integrate syntacti-
cal features into the language modeling process, such as part-of-speech tags
or language identifiers. Each word is regarded as a sequence of factors which
are used for the computation of n-gram probabilities. If a sequence of factors
has not been detected in the training data, backoff techniques will be applied.
Since the number of possible parameters and backoff paths is rather high, a
genetic algorithm as described by [DK04] is applied. [DK04] show that this
method outperforms both knowledge-based and randomized choices. For our
task of Code-Switching, we develop two different models: One model with
part-of-speech tags as features and one including also language information
tags. Figure 8.4 illustrates the backoff graph which has been obtained by the
genetic algorithm for the case of part-of-speech tags as features. The different
paths are combined by averaging their probability results. The model uses the
last word and the two previous POS tags to calculate the probability of the next
word.

8.4.3 Experimental results

LM performance

Baseline A traditional 3-gram language model will serve as baseline model
in the following experiments. It is trained on the Code-Switching transcriptions
using the SRI language modeling toolkit [Sto02].

141



8 Multilingual Language Model For Code-Switching Speech

RNNLM The first recurrent neural network which we build is a standard model
without additional input features or classes. It is also trained using the Code-
Switching transcriptions. The size of the hidden layer is set to 50 and the BPTT
algorithm runs in a block mode with a block size of ten for five steps. These pa-
rameters have been tuned on the development set. The model has a perplexity
of 246.60 on the development set and 287.88 on the evaluation set.

RNNLM (LID) Second, a recurrent neural network with a factorized output
layer is developed. All the other parameters stay the same as in the baseline
system to ensure comparability. For the output layer, we use language classes
as described in 8.4.1. This approach achieves a perplexity of 239.64 on the de-
velopment set and 269.71 on the evaluation set. Hence, the computation of
the words depending on their languages improves the performance of the lan-
guage model in terms of perplexity.

RNNLM (POS) In another experiment, the input layer of the RNNLM is ex-
tended with POS tags. This achieves a perplexity of 233.50 on the development
set and 268.05 on the evaluation set. Apparently, the RNNLM (POS) system
outperforms the RNNLM (LID) system.

RNNLM (POS+LID) Finally, a network is generated with a combination of
both techniques. It outperforms all previous models. The perplexity of this
language model is 219.85 and 239.21 on the development set and evaluation
set, respectively.
The results indicate that the integration of POS features or LID improves the
RNNLM in Code-Switching task. Combining both features performs the best
on the development set and evaluation set.

FLM (POS) Beside RNNMLs, we also train factored language models. Our
first FLM uses words and part-of-speech tags as factors. Its backoff graph has
been illustrated in figure 8.4. This model has a perplexity of 260.05 and 269.15
on the development set and the evaluation set, respectively.

FLM (POS+LID) For the second factored language model, we also add LID
information into the factor set. By doing so, the performance is improved to
256.78 on the development set and to 265.25 on the evaluation set. However,
the improvement is rather small compared to the results in the experiments
with the RNNLM.
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Table 8.4 summarizes the results of our different models on the development
and test set. It can be noticed that both the RNNLM and the FLM models per-
form better than the traditional 3-gram model. Hence, adding syntactical fea-
tures and language identification improves the word prediction. However, the
RNNLM outperforms the FLM.

Table 8.4: Perplexity results
Model dev set test set
Baseline 3-gram 285.87 285.25
RNNLM 246.60 287.88
RNNLM (LID) 239.64 269.71
RNNLM (POS) 233.50 268.05
RNNLM (POS + LID) 219.85 239.21
FLM (POS) 260.05 269.15
FLM (POS + LID) 256.78 265.25

Backoff level analysis

To understand the different results of the RNNLM and the FLM, a backoff level
analysis similar to the one described in [OSNG12] is performed. For each word,
the backoff level of the n-gram model is observed. Then, a level-dependent
perplexity is computed for each model as shown in equation 8.2.

PPLk = 10
− 1

Nk

∑
wk

log10P (wk|hk) (8.2)

In the equation, k denotes the backoff-level, Nk the number of words on this
level, wk the current word and hk its history. Table 8.5 shows the number of
occurrences of each backoff-level and the level-dependent perplexities of each
model on the development set.

Table 8.5: Backoff-level-dependent PPLs
1-gram 2-gram 3-gram

# occurences 6894 11628 6226
Baseline 3-gram 5,786.24 165.82 28.28
FLM (pos) 4,950.31 147.70 30.99
RNNLM 3,231.02 151.67 21.24

In the case of backoff to the 2-gram, the FLM provides the best perplexity while
for the 3-gram and backoff to the 1-gram, the RNNLM performs best. This may
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be correlated to the better over-all perplexity of the RNNLM in comparison to
the FLM. Nevertheless, backoff to the 2-gram is used about twice as often as
backoff to the 1-gram or the 3-gram.

8.4.4 Language model interpolation

The different results of RNNLM and FLM show that they provide different
estimations of the next word. Thus, a combination of them may reduce the per-
plexities of table 8.4. Hence, we apply linear interpolation to the probabilities
of each two models as shown in equation 8.3.

P (word) = λ · PM1(word) + (1− λ) · PM2(word) (8.3)

PM1 denotes the probability provided by the first model and PM2 the probabil-
ity from the second model. Table 8.6 shows the results of this experiment. The
weights are optimized on the development set. The interpolation of RNNLM
and FLM leads to the best results. This may be caused by the superior backoff-
level-dependent PPLs in comparison to the 3-gram model.

Table 8.6: Perplexities after interpolation
PPL PPL

Model weight on dev on eval
FLM + 3-gram 0.7, 0.3 211.13 227.57
RNNLM + 3-gram 0.8, 0.2 206.49 227.08
RNNLM + FLM 0.6, 0.4 177.79 192.08

8.5 Code-Switching Attitude Dependent Language
Modeling

8.5.1 Speaker dependent analysis

The analysis described in section 8.3.2 shows Code-Switching rates up to less
than 50%. Thus, predictions based on these probabilities might not be reliable.
The reason could be that one speaker switches very often after a specific tag
while other speakers do not. Hence, a speaker dependent analysis should be
performed. The Code-Switching rate for each tag is computed for each speaker.
Then, minimal, maximal, mean values and standard deviations are calculated.
Indeed, the spread between minimal and maximal values is very high for most
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of the tags. Figure 8.5 shows this distribution of the speaker dependent Code-
Switching rates for all the tags that appear more than 250 times in the text.
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Figure 8.5: Distribution of speaker dependent Code-Switching rates

To sum up, whether a part-of-speech tag triggers a Code-Switching event seems
to be speaker dependent. This corresponds to previous investigations as de-
scribed in section 8.2. Hence, a model that combines all the individual devia-
tions cannot be very precise.

8.5.2 Clustering speakers according to their Code-Switching
attitude

As shown in the previous section 8.5.1, Code-Switching attitudes may be speaker
dependent. However, there might be speakers who share similar habits in their
usage of languages. Hence, we cluster the manual transcriptions of all the
speakers of our training data intoK different groups to describe different Code-
Switching attitudes. After that, we are able to adapt our language model to
those classes. Thus, we obtain K different language models that model Code-
Switching more precisely and, therefore, achieve better recognition results.

Text Clustering We apply the k-means algorithm to cluster the training tran-
scriptions. As similarity measure, we choose the cosine similarity because it
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was successfully applied to cluster documents in the past. The following equa-
tion shows the computation of the cosine similarity Sim(d1, d2) and the calcu-
lation of a distance measure Dist(d1, d2) based on this. d1 denotes a vector rep-
resenting the Code-Switching attitude of speaker 1 and d2 a vector for speaker
2.

Sim(d1, d2) = (d1.d2)/(||d1|| · ||d2||)
Dist(d1, d2) = 1− Sim(d1, d2)

(8.4)

For the Code-Switching attitude modeling, we define the vectors d as follows:

d = [fcs(POS1)/f(POS1), ..., fcs(POSn)/f(POSn)] (8.5)

fcs(POSi) denotes the number of switches after part-of-speech tag i of the
given speaker while f(POSi) refers to the number of all occurences of the tag.
Hence, the vector is a collection of speaker-dependent Code-Switching rates.
The most important parameter in the clustering process is the cluster size. Hence,
different sizes are tested and evaluated based on the perplexities of adapted
RNNLMs on the development set. Using the data of the speakers in each clus-
ter, we perform one-iteration re-training of the RNNLM to obtain one Code-
Switching attitude dependent language model per cluster. Table 8.7 shows the
minimum and maximum perplexity for the eight development set speakers in
order to detect the most appropriate cluster size.

Table 8.7: Minimum and maximum perplexity on the development set
Speaker Baseline 2 classes 3 classes 4 classes 5 classes
Spk 1 257.5 234.3 - 270.6 234.1 - 270.6 233.4 - 267.6 237.3 - 275.0
Spk 2 221.0 194.8 - 219.0 194.7 - 219.0 194.4 - 216.5 197.9 - 222.2
Spk 3 253.3 242.9 - 283.2 243.5 - 283.4 242.9 - 280.3 242.0 - 289.0
Spk 4 201.3 186.1 - 213.4 186.7 - 213.6 186.0 - 212.3 188.4 - 217.1
Spk 5 339.5 299.7 - 355.3 299.8 - 355.8 299.6 - 349.8 303.2 - 367.0
Spk 6 151.9 135.0 - 156.8 135.1 - 156.8 134.9 - 156.7 135.5 - 160.8
Spk 7 225.8 222.0 - 251.8 222.0 - 250.7 223.6 - 252.7 220.5 - 279.6
Spk 8 194.4 189.3 - 207.0 189.3 - 206.3 189.0 - 207.6 191.1 - 222.7

It can be noted that the results of two, three and four classes are quite similar
and superior to a cluster size of five. Nevertheless in all cases, there are classes
which lead to an improvement of the perplexity in comparison to the baseline
model. Although the worst result per cluster performs worse than the baseline,
most of the classes of each cluster lead to an improvement. These results sup-
port the speaker dependent analysis: It is possible to adapt the language model
to individual Code-Switching attitudes.
The three best cluster sizes (2 classes, 3 classes and 4 classes) are further eval-
uated regarding their word error rate reduction in the rescoring process. The
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experiment results in a best cluster size of 3 classes. This seems to be reason-
able since two classes might not cover enough different speaker attitudes and
four or more classes might not contain enough training data per class. Hence,
a cluster size of three is chosen for further evaluations.

Analysis The following figures 8.6, 8.7 and 8.8 show for the example of three
classes that the clustering process has helped to decrease the spread of the
Code-Switching attitudes. There are still tags for which the clustered speak-
ers show different attitudes but there are also tags for which their attitude is
quite similar. For example, the spread of the English tag ’NN’ (noun) is dis-
criminated into upper and lower values by the classes.
Further analyses show that, on the one hand, the classes divide different na-
tionalities while, on the other hand, the gender of the speakers or the speaking
style is similar in all the classes. Hence, Code-Switching attitude seems to be
dependent on the nationality but not on the gender or style. Table 8.8 summa-
rizes those results for the example of three classes.

Table 8.8: Analysis of the speakers that are clustered into one class
(f: female, m: male, conv: conversation, interv.: interview)

Class nationalities gender style
1 66 % Malaysia, 34 % Singapour 58 % f., 52 % m. 5 % conv., 95 % interv.
2 7 % Malaysia, 93 % Singapour 55 % f., 45 % m. 47 % conv., 53 % interv.
3 0 % Malaysia, 100 % Singapour 66 % f., 34 % m. 29 % conv., 71 % interv.

8.5.3 Adapted language modeling

Our clustering process results in a division of the SEAME transcriptions into
three different texts (one text for each Code-Switching attitude). With these
data, we adapt the n-gram, FLM and RNNLM to the different Code-Switching
attitudes.
In the case of n-gram and FLM, we build an n-gram LM or FLM with the
clustered text for each attitude and interpolate this language model with the
background n-gram or FLM using the interpolation weight 0.5. For the Code-
Switching attitude dependent RNNLMs, we apply one-iteration re-training with
a small learning rate as described in section 8.5.2. In all cases, we use the same
parameter setup as for the Code-Switching attitude independent models. Ta-
ble 8.9 summarizes the perplexities on the evaluation set speakers of our back-
ground LMs and also adapted LMs. We observe overall improvements by us-
ing the Code-Switching attitude dependent language models.
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Figure 8.6: Distribution of speaker dependent Code-Switching rates after clus-
tering in class 1
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Figure 8.7: Distribution of speaker dependent Code-Switching rates after clus-
tering in class 2
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Figure 8.8: Distribution of speaker dependent Code-Switching rates after clus-
tering in class 3

Table 8.9: Perplexities of the Code-Switching dependent language models on the eval-
uation set speakers

Adapted Adapted Adapted
SPK N-Gram N-Gram FLM FLM RNNLM RNNLM
1 257.67 246.37 223.42 224.67 200.66 197.74
2 236.62 228.08 213.09 215.82 181.60 175.85
3 228.64 220.43 203.01 201.35 187.04 170.92
4 197.40 187.72 193.56 192.88 174.13 160.58
5 382.64 356.18 354.48 340.71 364.59 327.33
6 330.20 307.99 291.26 283.28 275.89 253.67
7 358.22 358.97 314.38 312.45 286.31 286.30
8 298.77 280.71 262.84 262.67 256.99 241.69

8.6 Rescoring Experiments

In this section, we present the experimental results achieved with our speech
recognition system developed for the Code-Switching task.

8.6.1 Code-Switching ASR system

To decode the Code-Switching data of the SEAME corpus, we apply the speech
recognition system (ASR) as described in [VLW+12]. This two-pass system first
applies a speaker independent acoustic model which is trained with bottleneck
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8 Multilingual Language Model For Code-Switching Speech

features. The second acoustic model is developed by applying Speaker Adap-
tive Training (SAT) with Feature Space Adaptation (FSA). To adapt to the Code-
Switching problem and improve accuracy, language identity information is in-
tegrated into the decoding process using a multistream approach [WVT+12].
To obtain a dictionary, the CMU English [Dica] and Mandarin pronunciation
dictionaries [HFT+08] are merged into one bilingual pronunciation dictionary.
The number of English and Mandarin entries in the lexicon is 135k and 130k,
respectively. Additionally, we apply several rules from [CTCL10] which might
delete or change a phone to generate pronunciation variants for Singaporean
English. On the language model side, the SRI Language Modeling Toolkit [Sto02]
is used to build trigram language models from the SEAME training transcrip-
tions containing all the words of the transcriptions. These models are inter-
polated with two monolingual language models that are created from 350k En-
glish sentences from NIST and 400k Mandarin sentences from the GALE project
which have been collected from online newspapers. The vocabulary of 30k en-
tries contains all the words of the transcriptions and the most frequent words
of the monolingual corpora.
Furthermore, characteristics of Code-Switching from the SEAME training tran-
scriptions are analyzed and additional Code-Switching text is generated artifi-
cially as described in [VLW+12]. The resulting language model has a perplexity
of 483.9 and an out-of-vocabulary (OOV) rate of 1.21% on the SEAME devel-
opment set transcriptions. This baseline system achieves an error rate of 35.5%
MER on the SEAME development set.

8.6.2 ASR experiments using n-best rescoring

N-best rescoring We finally present the performance of each model in terms
of mixed error rate when using it for rescoring. In these experiments, we
rescore the 100-best lists of our ASR system with different settings for language
model weights (lz) and word insertion penalties (lp). Equation 8.6 shows how
the score for each hypothesis is computed. |w| refers to the number of words
in the hypothesis and λ to the interpolation weight of the recurrent neural net-
work or factored language model lm2. The decoding language model is de-
noted by lm1. In our experiments, λ is set to 0.5.

scorelm = λ · scorelm2
+ (1− λ) · scorelm1

score = lz · scorelm + scoream + lp · |w|
(8.6)

As performance measure, we have established the Mixed Error Rate (MER)
which applies word error rates to English and character error rates to Mandarin
segments [VLW+12]. Its result is the weighted average over all the English and
Mandarin parts of the speech recognition output. By applying character based
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8.6 Rescoring Experiments

error rates to Mandarin, the performance does not depend on the word seg-
mentation algorithm for Mandarin. Thus, the performance can be compared
across different segmentations. In this case, we use a manual word segmenta-
tion.
An interpolated language model RNNLM (POS + LID) + FLM (POS + LID)
achieves the best rescoring result with a mixed error rate of 34.4% on the de-
velopment set and an error rate of 29.2% on the evaluation set. This is an im-
provement of 3.1% and 2.7% relative to the baseline system as summarized in
table 8.10.

Table 8.10: MER(%) results of different models on the SEAME dev and test set
Model Dev set Eval set
3-gram 35.5 30.0
RNNLM 35.6 29.3
RNNLM (LID) 34.9 29.4
RNNLM (POS) 34.8 29.3
RNNLM (POS + LID) 34.7 29.2
FLM (POS) 35.2 29.7
FLM (POS + LID ) 35.2 29.7
RNNLM (POS + LID) + FLM (POS + LID ) 34.4 29.2

Performance analysis We perform an analysis on the SEAME development
set to investigate why the CS-LM performs better than the standard trigram
model. The analysis shows that the trigram model recognizes 1889 Code-Switching
points (41.11%) correctly, whereas the CS-LM detects 1990 language changes
(43.31%) correctly. In addition, the CS-LM also outperforms the trigram model
on monolingual segments. On English segments, it achieves a word error rate
of 49.07%, while the trigram model has a word error rate of 50.21%. On Man-
darin segments, the character error rates are 30.32% and 30.90%, respectively.

Adaptation results Finally, the adapted models are used for decoding and
rescoring. In the rescoring process, we need to detect the class that fits best to
each speaker (or utterance). We use the RNN language model score for this de-
cision: We choose that class for rescoring that provides the best language model
score. Hence, we show that the language model score for a specific speaker is
correlated to the perplexities of the different clusters: The higher the score, the
lower the perplexity. As correlation measure, the Pearson product-moment cor-

151



8 Multilingual Language Model For Code-Switching Speech

relation coefficient is used. It is shown in equation 8.7.

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
(8.7)

Table 8.11 reports the correlation values for each speaker and also in average. A
correlation value of -1 means perfect negative correlation. A value of 0 means
no correlation. The results indicate a very high correlation between the RNN
language model score and the perplexity of the clustered classes. Therefore, we
can use this score to indicate which adapted language model should be used
for which speaker.

Table 8.11: Correlation values between language model score per speaker and perplex-
ity of the clustered classes (Spk abbreviates the work Speaker)

Spk 1 Spk 2 Spk 3 Spk 4 Spk 5 Spk 6 Spk 7 Spk 8 average
-0.98 -1.0 -1.0 -1.0 -0.99 -1.0 -0.92 -0.96 -0.98

Table 8.12 shows the results on the SEAME development and evaluation set.
Compared to the best Code-Switching independent LMs, we obtained an im-
provement of 0.4% absolute on both sets.

Table 8.12: Mixed error rate results after decoding and rescoring with the adapted
language models
Model Dev set Eval set
SI N-Gram model 35.5% 30.0%
SI RNNLM + FLM 34.4% 29.2%
Adapted N-Gram + RNNLM + FLM 34.0% 28.8%

8.7 Summary

This chapter described our latest investigations of multilingual language mod-
eling applied to Code-Switching speech. First, we presented an analysis of
the manual transcriptions of the Code-Switching corpus SEAME to figure out
which features might have a high potential to predict Code-Switching points.
Then, we extended and applied recurrent neural network language models and
factored language models to Code-Switching speech. Hence, we could inte-
grate not only words but also both POS tags and language identification infor-
mation into the models. The results showed that RNNLM and FLM outperform
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the n-gram LM. Moreover, they provide complementary information as our
backoff-level analysis showed. Hence, an interpolated language model inte-
grating both language model types performed best on our database in terms of
perplexity and also mixed error rate. Finally, we showed that Code-Switching
is a speaker dependent phenomenon. Therefore, we clustered similar Code-
Switching attitudes using cosine-distances and adapted our background lan-
guage models using the corresponding training texts of these clusters. To sum
up, Code-Switching attitude dependent language models provided reductions
in terms of perplexity and also improvements in terms of mixed error rate.
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CHAPTER 9

Conclusion and Future
Directions

During the last decade it is noticeable that speech technology appears more fre-
quently in the daily life in many different applications. Moreover, speech tech-
nology is required to be capable of handling multiple languages and multilingual
challenges, such as non-native and Code-Switching speech. This thesis includes
a wide range of research on multilingual speech recognition including multilin-
gual feature extraction, multilingual acoustic modeling and multilingual lan-
guage modeling. This chapter concludes the most important contributions and
suggests potential future research directions.

9.1 Summary of the Thesis

The most important achievements of this thesis are structured in the following
categories corresponding to the three most important applications of multilin-
gual speech recognition.

• Rapid language adaptation to low-resource languages

• Adaptation to non-native speech

• ASR for Code-Switching speech
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9 Conclusion and Future Directions

The contributions to the first aspect provide techniques to develop ASR systems
for new languages with minimal time effort and reasonable costs. In contrast,
the last two aspects are strongly related to multilingual challenges in which the
linguistic characteristics of two languages impact each other. To sum up, the
main achievement of this thesis is to investigate techniques which allow using
resources from multiple resource-rich languages, such as data and models, to
improve the ASR performance on low-resource languages and accents.

We hope that our research ideas presented in this thesis will have the poten-
tial to influence both practical applications and future research. The following
sections summarize the most important results and show the importance of the
thesis in the context of multilingual speech recognition.

9.1.1 ASR for low-resource languages using multilingual
and crosslingual information

Building an ASR system without transcribed data One of the most im-
portant contributions of this thesis is the multilingual unsupervised training
framework which allows building an ASR system without transcribed data.
The idea is to use several existing ASR systems from different languages in
combination with cross-language transfer techniques and unsupervised train-
ing to iteratively transcribe the audio data of the target language and, there-
fore, bootstrap an ASR system. The key contribution is the proposal of a word-
based confidence score called “multilingual A-stabil”. Compared to state-of-
the-art confidence scores, “multilingual A-stabil” works well not only with well
trained acoustic models but also with a poorly estimated acoustic model, such
as one which is borrowed from other languages in order to bootstrap the acous-
tic model of an unseen language. To evaluate this framework, we conducted
different experiments with increasing levels of difficulty. First, we developed
a Czech ASR system without any transcribed training data using source lan-
guages which are related and non-related to the target language. Second, we
applied our framework to Vietnamese using different European languages as
source languages. All the experimental results showed that we are able to build
an ASR system for a new language without any transcribed data, even if the
source and the target languages are not related.

Multilingual Bottle-Neck features The integration of Multilayer Perceptron
(MLP) features into ASR have become a state-of-the-art technique. Our explo-
ration on multilingual bottle-neck features and their application to rapid lan-
guage adaptation for a new language demonstrated their success in different
tasks with different data sets. Our results revealed that using the multilingual
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MLP to initialize the MLP training for new languages improved the MLP per-
formance and, therefore, the ASR performance. The number of languages and
the amount of data used to train the multilingual MLP has a strong effect on
the MLP training and ASR performance. More source languages improve the
MLP performance for a new language and also the ASR performance. More-
over, depending on the amount of training data of the target language, the
language relation between source languages and target languages becomes im-
portant. If many training data are available, using related languages helps. In
contrast, if only a small amount of training data is available, language simi-
larity does not help but the number of source languages and the amount of
data matters. Multilingual bottle-neck features are language independent and
can be used for rapid language adaptation without re-training to improve the
ASR performance. However, even with a very small amount of training data,
the MLP re-training helps to improve the ASR performance. Visualization of
the BN features using t-SNE shows potential to develop a better understanding
of the multilingual BN features. Furthermore, the visualization suggests that
the MLP seems to learn the F1 and F2 formants, which characterize different
vowels, and to normalize their language dependent variations.

Multilingual deep neural network based acoustic modeling for rapid lan-
guage adaptation This thesis comprises an investigation of multilingual deep
neural network (DNN) based acoustic models and their application to new lan-
guages. We investigated the effect of phone merging on multilingual DNN
in the context of rapid language adaptation. Moreover, the combination of
multilingual DNNs with Kullback–Leibler divergence based acoustic model-
ing (KL-HMM) was explored. Using ten different languages from the Global-
Phone database, our studies revealed that crosslingual acoustic model transfer
through multilingual DNNs was superior to unsupervised RBM pre-training
and greedy layer-wise supervised training. We also found that KL-HMM based
decoding consistently outperformed conventional hybrid decoding, especially
in low-resource scenarios. Furthermore, the experiments indicated that mul-
tilingual DNNs training equally benefits from simple phone set concatenation
and manually derived universal phone sets based on IPA.

9.1.2 Improving ASR for low-resource accents using
multilingual and crosslingual information

Application of multilingual ASR to non-native speech This research pre-
sented our exploration of using multilingual and crosslingual information to
improve the ASR performance on non-native speech. The study started with
an investigation of the effect of multilingual acoustic modeling on non-native
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speech. We showed that a bilingual L1-L2 acoustic model significantly im-
proves the ASR performance. For the case that L1 is unknown or L1 data is
not available, a multilingual ASR system consistently outperforms the mono-
lingual L2 ASR system. The experimental results indicate that a multilingual
acoustic model is more suitable to non-native speech than a monolingual acous-
tic model.

Improving ASR on non-native speech without adaptation data Finally, we
proposed a method called cross-lingual accent adaptation to improve the ASR
performance on non-native speech without any adaptation data. In our experi-
ments, we applied English with Chinese accent to improve the German ASR on
German with Chinese accent. Without using any adaptation data, we achieved
a substantial improvement compared to the monolingual baseline system. This
research work showed that it is possible to improve the ASR system on non-
native speech without adaptation data, which has, to our knowledge, never
been shown in the literature before.

9.1.3 Multilingual ASR for Code-Switching speech

In this thesis, we built an ASR system for conversational Mandarin-English
Code-Switching speech. The system was trained with the SEAME database -
a speech corpus which contained 65 hours of conversational speech recorded
in Malaysia and Singapore. We focused on optimizing the language model for
Code-Switching speech since it is one of the most important and also challeng-
ing components for this task.

Language model for Code-Switching speech Since the text data to build a
robust language model is limited, we investigated the integration of high level
features into the language model. First, a textual analysis was performed and
the results illustrated that there are some trigger words and Part-Of-Speech tags
after which people in Singapore and Malaysia tend to switch between Man-
darin and English. Second, we integrated those features into state-of-the-art
language modeling techniques, such as Recurrent Neural Network and Fac-
tored language models to improve the perplexity and mixed error rate on Code-
Switching speech. Although RNNLMs generally outperformed the FLMs, our
analysis revealed that FLMs were superior in the case of back-off to bigram.
Hence, the interpolated language model between those two LMs gave the best
performance on our database in terms of perplexity and also mixed error rate.
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Code-Switching attitude dependent language modeling Finally, we inves-
tigated the adaptation of Code-Switching language models to different speaker
groups. Our textual analysis on speaker level revealed that Code-Switching
is a speaker dependent phenomenon. Therefore, we clustered similar Code-
Switching attitudes using cosine-distances. Afterwards, we adapted our N-
Gram, FLM and RNN language model using the corresponding training texts
of these clusters. We showed that this approach leads to further reductions in
terms of perplexity and small improvements in terms of mixed error rate.

9.2 Potential Future Research Directions

This thesis addressed a wide range of research related to multilingual speech
recognition. Its results have a potential to make an impact on future prac-
tical applications and research. However, to improve speech technology for
daily life applications and to increase their usage all over the world, further
research needs to be conducted in the future. This section suggests three dif-
ferent research directions related to low-resource languages, and multilingual
challenges, such as non-native and Code-Switching speech.

9.2.1 Unwritten languages

All over the world, there are around 6,900 languages including resource-rich
and low-resource languages. This thesis addressed the challenges of building
ASR systems for low-resource languages which lack resources for speech and
language technology. However, if all the languages in the world should be
investigated, methods to deal with languages without writing systems are re-
quired in the future. Currently in this context, there is a number of interesting
ongoing studies ([BZG06, SBW09, SSVS12, SSVS13]) on the automatic discov-
ery of vocabulary and the corresponding pronunciation dictionary for unwrit-
ten languages. Moreover, speech synthesis for unwritten languages [SPC+13]
gains a lot of attention of the speech community. In the future, it is interesting
to combine all the techniques to develop a speech-to-speech translation system
for unwritten languages.

9.2.2 ASR for native and non-native speech

Non-native speech recognition has become one of the most important and chal-
lenging applications of ASR due to the rapid growth of globalization. Most of
the research on non-native speech including our investigation were performed
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in order to improve the ASR performance on non-native speech without consid-
ering the effect on native speech. Multilingual and adaptation data were used
to train a strong multilingual acoustic model and adapt it to the target accent.
However, those techniques lower the performance on native speech. In prac-
tical applications, systems using speech technology aim at running in speaker
independent mode. Hence, it is not clear whether the speaker is a native or
a non-native speaker. Therefore, techniques are necessary which improve the
ASR performance on native and non-native speech at the same time.

9.2.3 Research on Code-Switching speech

Bilingualism has become more common in many different countries, such as
Singapore, Malaysia, South Africa, USA or India. Therefore, ASR for Code-
Switching speech will gain more attention in the speech research community.
In this thesis, we conducted research on ASR for Code-Switching, especially on
language modeling. The experimental results are limited since the newly de-
veloped methods were only evaluated on Mandarin-English Code-Switching
speech. Obviously, one of the most important lack is missing Code-Switching
speech databases with different language combinations. It complicates research
work and the drawing of a general conclusion for all Code-Switching situa-
tions. In the future, promising research methods on Code-Switching speech
should be investigated and evaluated across Code-Switching databases. It would
be interesting to explore not only the effect by changing the language combina-
tion but also the difference among different geographical areas where the same
language combinations are used.

Although the list of potential future works is surely not complete, we hope that
it provides researchers with advice for further investigations of multilingual
speech recognition.
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[EDSN10] A. El-Desoky, R. Schlüter, and H. Ney. A hybrid morphologically
decomposed factored language models for Arabic LVCSR. In Proc.
of HLT, pages 701–704, 2010.

[ELR12] ELRA. European language resources association (ELRA),
http://catalog.elra.info, Retrieved November 30, 2012.

[EW00] G. Evermann and P. Woodland. Large vocabulary decoding and
confidence estimation using word posterior probabilities. In Proc.
of ICASSP, volume 3, pages 1655–1658, 2000.

163



Bibliography

[FFN97] J.E. Flege, E.M. Frieda, and T. Nozawa. Amount of native-
language (l1) use affects the pronunciation of an l2. Journal of
Phonetics, 25(2):169–186, 1997.

[FGH+97] M. Finke, P. Geutner, H. Hild, T. Kemp, T. Ries, and M. Westphal.
The Karlsruhe-Verbmobil speech recognition engine. In Proc. of
ICASSP, pages 83–86, 1997.

[FJ73] G.D. Forney Jr. The Viterbi algorithm. Proceedings of the IEEE,
61(3):268–278, 1973.

[Fle80] J.E. Flege. Phonetic approximation in second language acquisi-
tion. Language Learning, 30(1):117–134, 1980.

[Fle87] J.E. Flege. The production of new and similar phones in a for-
eign language: Evidence for the effect of equivalence classifica-
tion. Journal of phonetics, 15(1):47–65, 1987.
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[GKKC07] F. Grézl, M. Karafiát, S. Kontár, and J.H. Cernocky. Probabilistic
and bottle-neck features for lvcsr of meetings. In Proc. of ICASSP,
pages IV–757, 2007.

164



Bibliography

[GL94] J.L. Gauvain and C.H. Lee. Maximum a posteriori estimation
for multivariate Gaussian mixture observations of markov chains.
IEEE transactions on Speech and audio processing, 2(2):291–298, 1994.

[Gor] R. G. Gordon. Ethnologue: Languages of the World, volume 15. Dal-
las: SIL International.

[GSR13] A. Ghoshal, P. Swietojanski, and S. Renals. Multilingual training
of deep neural networks. In Proc. of ICASSP, pages 7319–7323,
2013.

[HAH01] X. Huang, A. Acero, and H.W. Hon. Spoken language processing,
volume 15. Prentice Hall PTR New Jersey, 2001.

[HCC04] C. Huang, T. Chen, and E. Chang. Accent issues in large vocabu-
lary continuous speech recognition. International Journal of Speech
Technology, 7(2-3):141–153, 2004.

[HDS00] H. Hermansky, P.W.E. Daniel, and S. Sangita. Tandem connection-
ist feature extraction for conventional HMM systems. In Proc. of
ICASSP, pages 1635–1638, 2000.

[Her90] H. Hermansky. Perceptual linear predictive (PLP) analysis of
speech. The Journal of the Acoustical Society of America, 87:1738,
1990.

[HFT+08] R. Hsiao, M. Fuhs, Y.C. Tam, Q. Jin, and T. Schultz. The CMU-
interACT 2008 Mandarin transcription system. In Proc. of Inter-
speech, pages 1445–1448, 2008.

[HHA96] M.-Y. Hwang, X. Huang, and F. Alleva. Predicting unseen tri-
phones with senones. IEEE Transctions on Speech and Audio Pro-
cessing, 4(6):412–419, 1996.

[HLY+13] J.T. Huang, J. Li, D. Yu, L. Deng, and Y. Gong. Cross-language
knowledge transfer using multilingual deep neural network with
shared hidden layers. In Proc. of ICASSP, pages 7304–7308, 2013.

[HOT06] G.E. Hinton, S. Osindero, and Y.W. Teh. A fast learning algorithm
for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[HR02] G.E. Hinton and Sam T. Roweis. Stochastic neighbor embedding.
Advances in neural information processing systems, pages 833–840,
2002.

[htt12] Appen Butler Hill Pty Ltd http://www.appen.com. Speech and
language resources, 2012.

165



Bibliography

[HVS+13] G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen, M. Ranzato,
M. Devin, and J. Dean. Multilingual acoustic models using dis-
tributed deep neural networks. In Proc. of ICASSP, pages 8619–
8623, 2013.

[HWP96] J.J. Humphries, P.C. Woodland, and D. Pearce. Using accent-
specific pronunciation modelling for robust speech recognition.
In Proc. of ICSLP, pages 2324–2327, 1996.

[IBD10] D. Imseng, H. Bourlard, and M.M. Doss. Towards mixed language
speech recognition systems. In Proc. of Interspeech, pages 278–281,
2010.

[IKHZ00] B. Imperl, Z. Kacic, B. Horvat, and A. Zgank. Agglomerative vs.
tree-based clustering for the definition of multilingual set of tri-
phones. In Proc. of ICASSP, pages 1273–1276, 2000.

[IMBG13] D. Imseng, P. Motlicek, H. Bourlard, and P. N. Garner. Using
out-of-language data to improve an under-resourced speech rec-
ognizer. Speech Communication, pages 142 – 151, 2013.

[IMGB13] D. Imseng, P. Motlicek, P. N. Garner, and H. Bourlard. Impact of
deep MLP architecture on different acoustic modeling techniques
for under-resourced speech recognition. In Proc. of ASRU, 2013.

[Jel05] F. Jelinek. Some of my best friends are linguists. Language resources
and evaluation, 39(1):25–34, 2005.

[Jia05] H. Jiang. Confidence measures for speech recognition: A survey.
Speech Communication, 45(4):455–470, 2005.

[JVS12] M.J. Jose, N.T. Vu, and T. Schultz. Initial experiments with Tamil
LVCSR. In Proc. of Asian Language Processing (IALP), pages 81–84,
2012.

[JVS13] M.J. Jose, N.T. Vu, and T. Schultz. Experiments towards a better
LVCSR system for Tamil. In Proc. of Interspeech, 2013.

[Kat02] K. Katzner. The languages of the world. Routledge, 2002.

[KK02] W. Kim and S. Khudanpur. Using cross-language cues for story-
specific language modeling. In Proc. of Interspeech, 2002.

[KMKB11] S. Kombrink, T. Mikolov, M. Karafiát, and L. Burget. Recurrent
neural network based language modeling in meeting recognition.
Proc. of Interspeech, pages 2877–2880, 2011.

166



Bibliography

[Koh96] J. Kohler. Multi-lingual phoneme recognition exploiting acoustic-
phonetic similarities of sounds. In Proc. of ICSLP, pages 2195–
2198, 1996.
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