1,087 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationWith the explosion of chip transistor counts, the semiconductor industry has struggled with ways to continue scaling computing performance in line with historical trends. In recent years, the de facto solution to utilize excess transistors has been to increase the size of the on-chip data cache, allowing fast access to an increased portion of main memory. These large caches allowed the continued scaling of single thread performance, which had not yet reached the limit of instruction level parallelism (ILP). As we approach the potential limits of parallelism within a single threaded application, new approaches such as chip multiprocessors (CMP) have become popular for scaling performance utilizing thread level parallelism (TLP). This dissertation identifies the operating system as a ubiquitous area where single threaded performance and multithreaded performance have often been ignored by computer architects. We propose that novel hardware and OS co-design has the potential to significantly improve current chip multiprocessor designs, enabling increased performance and improved power efficiency. We show that the operating system contributes a nontrivial overhead to even the most computationally intense workloads and that this OS contribution grows to a significant fraction of total instructions when executing several common applications found in the datacenter. We demonstrate that architectural improvements have had little to no effect on the performance of the OS over the last 15 years, leaving ample room for improvements. We specifically consider three potential solutions to improve OS execution on modern processors. First, we consider the potential of a separate operating system processor (OSP) operating concurrently with general purpose processors (GPP) in a chip multiprocessor organization, with several specialized structures acting as efficient conduits between these processors. Second, we consider the potential of segregating existing caching structures to decrease cache interference between the OS and application. Third, we propose that there are components within the OS itself that should be refactored to be both multithreaded and cache topology aware, which in turn, improves the performance and scalability of many-threaded applications

    Energy Efficient Policies, Scheduling, and Design for Sustainable Manufacturing Systems

    Get PDF
    Climate mitigation, more stringent regulations, rising energy costs, and sustainable manufacturing are pushing researchers to focus on energy efficiency, energy flexibility, and implementation of renewable energy sources in manufacturing systems. This thesis aims to analyze the main works proposed regarding these hot topics, and to fill the gaps in the literature. First, a detailed literature review is proposed. Works regarding energy efficiency in different manufacturing levels, in the assembly line, energy saving policies, and the implementation of renewable energy sources are analyzed. Then, trying to fill the gaps in the literature, different topics are analyzed more in depth. In the single machine context, a mathematical model aiming to align the manufacturing power required to a renewable energy supply in order to obtain the maximum profit is developed. The model is applied to a single work center powered by the electric grid and by a photovoltaic system; afterwards, energy storage is also added to the power system. Analyzing the job shop context, switch off policies implementing workload approach and scheduling considering variable speed of the machines and power constraints are proposed. The direct and indirect workloads of the machines are considered to support the switch on/off decisions. A simulation model is developed to test the proposed policies compared to others presented in the literature. Regarding the job shop scheduling, a fixed and variable power constraints are considered, assuming the minimization of the makespan as the objective function. Studying the factory level, a mathematical model to design a flow line considering the possibility of using switch-off policies is developed. The design model for production lines includes a targeted imbalance among the workstations to allow for defined idle time. Finally, the main findings, results, and the future directions and challenges are presented

    Advanced technologies for productivity-driven lifecycle services and partnerships in a business network

    Get PDF

    Building the knowledge base for environmental action and sustainability

    Get PDF

    Advanced technologies for productivity-driven lifecycle services and partnerships in a business network

    Get PDF

    Utilizing energy opportunity windows and energy profit bottlenecks to reduce energy consumption per part for a serial production line

    No full text

    Simulating the nonlinear QED vacuum

    Get PDF

    Learning, future cost and role of offshore renewable energy technologies in the North Sea energy system

    Get PDF
    The pace of cost decline of offshore renewable energy technologies significantly impacts their role in the North Sea energy transition. However, a good understanding of their remains a critical knowledge gap in the literature. Therefore, this thesis aims to quantify the future role of offshore renewables in the North Sea energy transition and assess the impact of cost development on their optimal deployments. The following findings were observed in this thesis, 1) Fixed-bottom offshore wind is well established in the North Sea region and is already competitive with onshore renewables 2) Floating wind is emerging and their current costs are high, but it can reach about 40 EUR/MWh by early 2040 and would require 44 billion EUR of learning investment.3) Grid connection costs will become a major factor as wind farm moves further away. Policy actions and innovation is needed in this space to avoid increasing integration costs. 4) Offshore wind (fixed-bottom and floating) can play a significant role in the North Sea energy system, comprising 498 GW of deployments in 2050 (222 GW of fixed-bottom and 276 GW of floating wind) and contributing up to a maximum of 51% of total power generation in the North Sea power system. 5) The role of the investigated low-TRL offshore renewables, including the tidal stream, wave technology, and bioethanol, was limited in all scenarios considered, as they remain expensive compared to other mature technologies in the system

    Development of a robust and resilient Supply Chain System for selected companies in Gauteng

    Get PDF
    Abstract: These days, in the extremely competitive nature of business, nearly every big business has to reap the benefits of investing in improvements of its supply chain. The beginning of the upgrades is considered together with the examination concerning profits and most organisations have addressed measures that a supply chain execution and monitor changes in order to drive the benefits of their business. While execution estimation is basic, most organisations either measure excessively or pay little attention to supply chain. Different weaknesses may incorporate; an excessive number of measurements, disconnected measurements, clashing measurements, obsolete measurements, temperamental information, and absence of possession, among others. Some organisations measure incorrect variables in their pursuit of their objectives. This is detrimental to the realisation of these objectives and this affects the organisation. Framework estimations lead to improved framework. "Estimation is the initial step that prompts control and in the long run to progress. In the event that you can't gauge something, you can't get it. On the off chance that you can't get it, you can't control it. On the off chance that you can't control it, you can't improve it" (Harrington, 2012)...M.Ing. (Quality and Operations Management
    • …
    corecore