
Simulating the Nonlinear QED Vacuum

Andreas Maximilian Lindner

München 2023

Simulating the Nonlinear QED Vacuum

Andreas Maximilian Lindner

Dissertation
an der Fakultät für Physik

der Ludwig-Maximilians-Universität
München

vorgelegt von
Andreas Maximilian Lindner

aus Gräfelfing

München, den 05.05.2023

Erstgutachter: Prof. Dr. Hartmut Ruhl

Zweitgutachter: Prof. Dr. Holger Gies

Tag der mündlichen Prüfung: 07.07.2023

Zusammenfassung

Aufgrund von Vakuumfluktuationen, einer Kernvorhersage der Quantentheorie, sind virtuelle

Elektron–Positron Paare omnipräsent im Vakuum der Quantenelektrodynamik (QED) und kön-

nen Photon–Photon Wechselwirkungen vermitteln. Daher verhält sich das Vakuum der QED als

ein nicht-lineares, polarisierbares Medium mit entsprechend quantifizierbaren Effekten.

Die zugehörige, niederenergetische Theorie für die Quantenelektrodynamik ist durch die bekannte

effektive Wirkung nach Heisenberg und Euler gegeben. Diese erweitert in einer Schwachfeldent-

wicklung die Theorie des Elektromagnetismus von Maxwell mit effektiven Photon–Photon Inter-

aktionen.

Rein optische Effekte infolge von Photon–Photon Streuung können durch hochintensive Laser im

Vakuum ausgelöst werden und dabei faszinierende Phänomene auftreten lassen. Da Experimente

bei ausreichend hohen Intensitäten bislang noch nicht existieren, sind diese Phänomene noch nicht

nachgewiesen worden. Die theoretischen Vorhersagen auf diesem Gebiet sollen durch Computer-

simulationen unterstützt werden.

Ein äußerst akkurater, numerischer Solver für die führenden Ordnungen der Schwachfeldentwick-

lung nach Heisenberg und Euler wird in dieser Arbeit präsentiert. Eine Implementierung des

Solvers in C++ ist als Teil des Projekts frei verfügbar veröffentlicht. Der Name der Software lautet

HEWES, welcher für „Heisenberg–Euler Weak-Field Expansion Simulator“ steht.

Der Solver wird in einer Raumdimension anhand von verfügbaren analytischen Ergebnissen zur

Vakuumdoppelbrechung und der Erzeugung höherer Harmonischer validiert. Die Möglichkeiten,

über analytisch lösbare Szenarien hinauszugehen, wird anhand von komplizierteren Rahmenbe-

dingungen in höheren Dimensionen demonstriert.

Der zugrunde liegende Algorithmus besitzt eine nahezu lineare Vakuumdispersionsrelation, selbst

für vergleichsweise kleine Wellenlängen. Des Weiteren gestaltet die Dispersionsrelation das nu-

merische Schema stabil und Aliasing-frei. Die Genauigkeit der vorgestellten Implementierung ist

dabei außergewöhnlich hoch, sowohl bezüglich der Ordnung des numerischen Schemas (dreizehnte

Ordnung), als auch bezüglich der Ordnung der effektiven Entwicklung (bis zu sechs Photonen). Die

Leistung des Solvers wird unter verschiedenen Konfigurationen evaluiert.

Da im Endeffekt realistische Simulationen auf hochauflösenden Gittern verlangt werden, wird

besonderes Augenmerk auf die Skalierbarkeit und eine effiziente Implementierung der Software

gelegt. Der Code ist derart gestaltet, dass er auf stark verteilten Systemen laufen kann und

somit in der Lage ist, großangelegte Simulationen in allen drei Raumdimensionen und der Zeit

durchzuführen.

Abstract

Due to vacuum fluctuations, a key prediction of quantum theory, virtual electron–positron pairs are

omnipresent in the vacuum of quantum electrodynamics (QED) and can mediate photon–photon

interactions as a consequence. Therefore, the vacuum of QED acts as a nonlinear, polarizable

medium with quantifiable effects.

The corresponding low-energy theory for quantum electrodynamics is provided by the famous

Heisenberg–Euler effective action. The latter, in a weak-field expansion, supplements Maxwell’s

theory of electromagnetism with effective light–light interactions.

All-optical effects due to photon–photon scattering can be triggered by high-intensity laser

fields in the vacuum, causing a variety of intriguing phenomena. Due to the lack of sensitive

experiments at sufficiently high intensity, these phenomena have not been accessible thus far.

Theoretical predictions should be supported by computer simulations.

A highly accurate numerical solver for the leading orders of the weak-field expansion due to

Heisenberg and Euler is presented in this work. A C++ implementation of the solver is published

open source as part of the project under the name HEWES which stands for “Heisenberg–Euler

Weak-Field Expansion Simulator”.

The solver is cross-checked in one spatial dimension against a set of already known analytical

results of quantum vacuum effects such as birefringence and harmonic generation. Its power to

go beyond analytically solvable scenarios is demonstrated in more complicated configurations in

higher dimensions.

The underlying algorithm possesses an almost linear vacuum dispersion relation even for com-

parably small wavelengths. The latter further renders the scheme numerically stable and aliasing-

free. The accuracy of the presented implementation is outstandingly high both in the numerical

scheme (order thirteen) and the effective expansion (up to six-photon interactions). A performance

evaluation for different settings is conducted.

Due to the need for realistic simulations on high-resolution lattices, special emphasis is put on

the scalability and efficient implementation of the code. The code is designed to run on massively

distributed computing systems and therewith is capable of conducting costly simulations in full

three spatial dimensions plus time.

Outline

The thesis commences with an introduction to the fundamentals of the quantum vacuum. Subse-

quently, the simulation project is outlined, detailing the algorithm, the software, and a number of

conducted simulations. Afterwards, aspects of the performance and accuracy are discussed, before

lastly future prospects are set forth.

Specifically,

• Chapter 1 introduces the quantum vacuum;

• Chapter 2 introduces the simulation project and outlines the numerical algorithm;

• Chapter 3 introduces HEWES: The Heisenberg–Euler Weak-Field Expansion Simulator;

• Chapter 4 demonstrates simulations performed with the help of HEWES;

• Chapter 5 discusses performance analysis and tuning;

• Chapter 6 goes into some detail about the accuracy of the solver;

• Chapter 7 provides an outlook on ongoing and future projects; and

• Chapter 8 closes the thesis with the conclusion.

Contents

Zusammenfassung i

Abstract ii

Outline iii

1 The Quantum Vacuum 1
1.1 Introduction . 2

1.2 Commonly known quantum vacuum effects . 3

1.3 Matter out of nothing . 3

1.4 Fundamental ramifications and recent breakthroughs 5

1.5 Photon–photon interactions . 6

1.6 The Heisenberg–Euler effective action . 8

1.6.1 QED strong-field regime . 9

1.6.2 Weak-field expansion . 10

1.6.3 Modified Maxwell equations . 11

1.6.4 General approach and motivation . 12

2 The Quantum Vacuum Simulation Algorithm 13
2.1 Introduction . 15

2.2 Equations of motion . 15

2.2.1 A merged partial differential equation . 15

2.2.2 Finite differences . 17

2.3 Dispersion relations . 19

2.3.1 A simple example at first and second order . 19

2.3.2 The fourth order scheme . 21

2.3.3 Dispersion properties of the scheme . 24

2.4 Overview of the implementation . 30

2.5 Comparison to other approaches . 32

2.5.1 The Vacuum Emission Picture . 32

2.5.2 Modified Yee scheme . 33

2.5.3 Conclusion . 35

3 HEWES: The Heisenberg–Euler Weak-Field Expansion Simulator 37
3.1 Introduction . 39

3.2 Description . 39

CONTENTS v

3.3 Usage . 40

3.4 HEWES README . 43

3.4.1 Short user manual . 43

3.5 Installation . 46

4 All-Optical Quantum Vacuum Simulations 49
4.1 Introduction . 51

4.2 Phase velocity in a strong background . 52

4.3 Vacuum birefringence . 52

4.3.1 Vacuum birefringence – parametrical dependencies 56

4.3.2 Vacuum birefringence – extrapolation to the x-ray regime 56

4.4 Harmonic generation . 59

4.4.1 Harmonic generation – analytical results . 62

4.4.2 Harmonic generation – simulation results . 64

4.5 Higher-dimensional simulations . 65

5 Performance Optimization 77
5.1 Introduction . 78

5.2 High-performance computing . 79

5.2.1 Memory access . 81

5.2.2 Core-level . 82

5.2.3 Socket-, node-, and cluster-level . 84

5.3 Performance measurement . 85

5.3.1 Scaling . 86

5.3.2 Code hotspots . 89

5.3.3 Communication load . 92

5.3.4 Memory efficiency . 93

5.4 Parallelization . 96

5.4.1 Vectorization . 96

5.4.2 Multithreading . 99

5.4.3 Multiprocessing . 101

5.4.4 Hybrid parallelization . 106

5.4.5 Parallel I/O . 111

6 Accuracy Considerations 115
6.1 Introduction . 116

6.2 Numerical solution of ODEs . 116

6.2.1 Explicit and implicit methods . 117

6.2.2 Higher-order methods . 118

6.2.3 Multi-step methods . 119

6.3 The CVODE solver . 120

6.3.1 Structure . 120

6.3.2 Methods . 121

6.3.3 Error controlling . 122

6.3.4 SUNDIALS evaluation functionalities . 123

6.4 Accuracy and performance evaluation . 124

vi CONTENTS

6.4.1 Testing the scheme . 125

6.4.2 Testing CVODE . 126

7 Outlook 129
7.1 Introduction . 130

7.2 Dynamic multi-scale simulations . 130

7.2.1 A static resolution barrier . 131

7.3 Phase-space approach to the quantum vacuum . 135

7.3.1 The Dirac–Heisenberg–Wigner formalism . 136

7.3.2 Numerical approach to a seminal work . 138

8 Conclusion 141

A KCS System Information 143

B Code Modernization 150

List of Figures 151

List of Tables 153

List of Listings 153

Bibliography 154

Funding and Data Statement 167

Workshops 168

Publications 169

Acknowledgments 170

Chapter 1

The Quantum Vacuum

Vacuum fluctuations (image credit: NASA/CXC/M.WEISS)

In eighteenth-century Newtonian mechanics,
the three-body problem was insoluble.
With the birth of general relativity around 1910
and quantum electrodynamics in 1930,
the two- and one-body problems became insoluble.
And within modern quantum field theory,
the problem of zero bodies (vacuum) is insoluble. [1]

https://chandra.harvard.edu/photo/2015/quantum/more.html

2 1. The Quantum Vacuum

E

mec
2

- mec
2

Figure 1.1: Fluctuations in the Dirac sea picture. An electron occupying a position in the sea jumps
into the positive energy continuum, leaving a hole (positron) and then returns to its position.

1.1 Introduction

Due to the laws of quantum mechanics the vacuum is not the void of empty space. Uncertainty,

which is inherent in the quantum nature, prohibits the nothing. Particles can and have to appear

out of nothing for very short periods of time, according to Heisenberg’s uncertainty relation with

respect to energy and time 4E ·4t ≥ ħ/2 in conjunction with Einstein’s energy-mass relation E =
mc2. Constrained by symmetry, particles thereby emerge in pairs of particle and antiparticle with

opposite spins, glimpsing up and vanishing again, forming the quantum vacuum fluctuations.

In quantum field theory (QFT) the vacuum therefore manifests itself as a vibrant place of

particle–antiparticle fluctuations. In the language of Feynman diagrams it is formed of closed-

loops consisting of purely virtual processes without external lines. These need nevertheless to be

taken into account and yield profound results.

The pervasive charged-particle fluctuations act as virtual dipoles and thereby render the quan-

tum vacuum a dynamical, polarizable medium. Under the influence of an external electric field, the

vacuum can be polarized. As a consequence of the coupling between electromagnetic radiation and

the charged-particle fluctuations, effective light–light interaction, or photon–photon scattering, can

be mediated.

In quantum electrodynamics (QED) the fluctuations consist of electron–positron pairs. Employ-

ing the somewhat old-fashioned Dirac sea picture, the vacuum would be conceived of as a boiling

Dirac sea. Owing to quantum uncertainty the sea cannot be calm and the vacuum is conferred a

temperature (energy). In other words, it is the vacuum energy that causes a permanent bubbling

in the sea, as depicted in the title image of this chapter and in the animations referenced in [2]. A

suspected relation to dark energy is discussed below.

Bubbles correspond to electrons on the surface of the Dirac sea that jump over the 2me mass-

gap into the positive continuum, leaving holes, and falling back into the sea [3]. A depiction is

given in Figure 1.1.

According to the uncertainty relation with respect to energy and time, these bubbles are tiny

and elapse (annihilate) very quickly. The scales are defined by the Compton length and time of the

particles, here electrons/positrons. This is so quick that these particles are only virtual and can

merely have indirect effects in the form of quantum loop corrections. In this sense, the quantum

vacuum can be understood as being empty of real matter, yet full of virtual matter, which does not

1.2 Commonly known quantum vacuum effects 3

give note to itself unless perturbed.

Outline

The probably best known quantum vacuum phenomena are recapitulated in Section 1.2 before

in Section 1.3 the most intriguing effect of the quantum vacuum, the creation of matter out of

nothing, is introduced. Further fundamental consequences of the quantum vacuum theory and

recent advances in the field are outlined in Section 1.4.

The focus of the present work lies on optical effects. These are introduced in Section 1.5 with

an outline of the paramount Heisenberg–Euler Lagrangian and its weak-field expansion following

in Section 1.6. The latter forms the theoretical basis of the ongoing investigation put forward in

the subsequent chapters.

1.2 Commonly known quantum vacuum effects

Lamb shift

The Lamb shift is among the best known effects of early quantum field theory. It constitutes a

fundamental discovery during the study of atoms that led to a deeper understanding of particles

and in particular quantum fields [4–6]. The effect, absent in Dirac’s relativistic quantum mechanics

[7], can be explained by QED.

Energy levels in atoms, which are supposed to be exactly equal according to Dirac’s theory,

in fact exhibit tiny differences both due to the self-energy of electrons, i.e., the Zitterbewegung
that alters the effective nuclear potential sensed by the electron, and vacuum polarization that

also shields parts of the nuclear potential. This implies that the effective potential acting on the

electron is modified by vacuum polarization effects, leading to a perturbation of the trajectory at

the magnitude of the Compton scale of the electron. Vertex corrections leading to the anomalous

magnetic moment of the electron form another contribution to the Lamb shift.

Casimir effect

The Casimir effect is induced by placing two conducting plates very near to each other in the vac-

uum. Thereby, boundary conditions are imposed onto the virtual photons between the plates, but

not onto those outside. The restriction of allowed wavelengths on the inside limits the number of

possible states there and hence causes a pressure from the unrestricted outside. As a consequence,

the plates are pushed together [8, 9]. The effect has oftentimes been verified experimentally, see,

e.g., [10, 11], and is today under great control [12, 13].

The effect of vacuum polarization is well known, yet there are numerous non-intuitive effects

beside the commonly known Casimir effect and Lamb shift that are due to the quantum nature of

the vacuum.

1.3 Matter out of nothing

Energy is matter and the other way round, according to Einstein’s relation E = mc2. It is therefore

not only possible to produce energy from matter as in fission reactors, but also to produce matter

from energy. The latter happens all the time in particle collider experiments, where particles are

4 1. The Quantum Vacuum

Ecr

𝝺c

Figure 1.2: Vacuum polarization. Left: Unordered virtual electron–positron pairs are created and
annihilated at the Compton scale in the vacuum. Right: An electric field is applied and polarizes
the vacuum. When the critical field strength is reached, a large amount of pairs is torn apart.

accelerated to high momenta and brought to collision. Thereby, large amounts of new particles are

created that can subsequently be detected and analyzed.

Traditionally, QFT is tested with such collider experiments operating in the high-energy but

low-intensity regime, thus called high-energy physics. Another approach is to explore the low-

energy, high-intensity regime of strong-field physics, which owing to a lack of sensitive appara-

tuses at sufficiently high-intensities has not been accessible thus. Dedicated to the vacuum, this

approach might all the same be a path towards the discovery of new physics, since the fluctuations

in quantum field theory generally encompass all existing particles. Hence, the influence of yet

unknown particle fields might be inscribed in quantum vacuum signatures [14–16].

This field of research was opened by a thought related to the idea of particle collisions that

emerged in the early days of quantum field theory: Can matter be created from nothing but pure

energy? The detailed answer was given by Julian Schwinger in 1951 [17], whilst the idea dates

back to the 1930s with Sauter, Euler, Kockel, Heisenberg, and Weisskopf [18–21]. The creation

of real charged-particle pairs can be induced by an external electric field that tears the virtual

particle–antiparticle pairs apart, so far that they do not annihilate each other again, see Figure

1.2.

This sounds mystical: Matter produced by light out of the nothing. For this effect to take place,

however, extremely high intensities of the applied electric field are required. The critical field

strength, where the effect of pair creation becomes dominant, is Ecr ∼ 1018 V m−1, c.f. Section 1.6.1.

The ex-virtual particles soak up the energy for their masses from the applied external field.

The creation of real electron–positron pairs by a strong and (quasi-) static electric field, called

Schwinger effect after its theoretical discoverer, has been a long-standing but long unobserved pre-

diction of early quantum theory. Until only recently. The experimental breakthrough is discussed

in Section 1.4.

Pair production based on vacuum excitation in electrodynamics was described by Schwinger

via the effective action approach. It is a profound effect that inherently unites quantum theory

with ultra-relativistic dynamics. The effective action approach makes use of the Heisenberg–Euler

Lagrangian, discussed in Section 1.6. The imaginary part of the latter causes a non-persistence of

the vacuum state as a consequence of excessive pair creation [22, 23]. By virtue of an exponential

suppression of pair creation in this formalism, it is inferred that only the unprecedented field

strength Ecr is capable of causing a breakdown of the vacuum [24]. That subject not part of the

investigations of the present work, but debated in the outlook in Chapter 7.

To reestablish a connection to high-energy physics, a similar phenomenon as depicted in Figure

1.2 is observable with bound states of two quarks with opposite charge, mesons, when torn apart.

1.4 Fundamental ramifications and recent breakthroughs 5

With an electric field of sufficient strength the quarks can only be separated at the cost of the

simultaneous creation of two further quarks, such that the final product are two separate mesons.

Hence, the energy supplied by the electric field has to be at least as much as to create the extra

masses.

1.4 Fundamental ramifications and recent breakthroughs

QED in vacuum is generally considered to be the most successful physical theory in terms of agree-

ment with experiments [25]. For an overview of the first steps towards the nonlinear QED vacuum

and the ensuing historical development, see [26]. In [27] an introduction to QED and QFT is given,

beginning with the concept of vacuum fluctuations. This vividly makes clear once more the deep,

fundamental level the fluctuations constitute to quantum theory.

Relation to fundamental physics

The quantum vacuum is the fundamental ground state of nature as described by quantum field

theory. With quantum fields dominating the universe, the latter can be considered having its own

zero-point energy attributable to the uncertainty principle. The accelerating expansion of the uni-

verse caused by dark energy may be a consequence of vacuum fluctuations, with the microscopic

vacuum activity conferring space the dark energy [28, 29]. The dark energy factor, the cosmolog-

ical constant, is modeled as a universal field of energy in empty vacuum [30]. However, there is

the unnatural disparity between the cosmological constant of general relativity, measured via the

expansion rate of the universe, and the QFT prediction for vacuum energy, calculated via the vac-

uum loop processes mentioned above [31, 32]. The calculation of Feynman diagrams generates an

extraordinary large value for the zero-point energy, but fortunately the expansion of the universe

is much slower than that prediction.

Vacuum fluctuations are at the origin of Hawking radiation [33]. Fluctuations at the event

horizons of black holes are torn apart, real particles come into existence, taking the required en-

ergy from the black hole that slowly evaporates. Vacuum fluctuations are similarly connected to

the Unruh effect. A constantly accelerated observer might witness real particles where quantum

fluctuations are present to still observers [34, 35].

Random quantum fluctuations in the early universe could have been stretched by inflation,

giving rise to the observable inhomogeneities in density and the cosmic background radiation.

Tiny temperature differences in the cosmic microwave background are thus the scars of vacuum

fluctuations in the early universe. As a consequence, the vacuum fluctuations are suspected to be

responsible for the formation of vast galaxy clusters there are today [36].

A currently hot topic is the anomalous magnetic moment of the muon that quantum vacuum

polarization is suspected to be a key contribution to [37–42]. Many, and possibly yet unknown,

particles in virtual form affect the magnetic moment. This underlines the fact that via the quantum

vacuum new physics can be investigated.

Recent experimental advances

Only recently, the Schwinger effect has finally been observed in graphene superlattices [43] and

light–light interactions have been detected in crystals [44]. This form of research constitutes the

basis of nonlinear optics. The effects have not been observed in the quantum vacuum, though.

6 1. The Quantum Vacuum

The Schwinger effect is to be distinguished from the Breit-Wheeler process [45–47] and general

multi-photon pair production [48, 49], where the pairs are created dynamically through photon col-

lisions or decays, with photons of frequencies higher than the Compton frequency of the electron.

While in the Schwinger case high field strengths are required, the latter case requires high ener-

gies. The former is “creation of matter from nothing”, the latter “from light”. The distinction in an

experiment can be more easily achieved, e.g., via the additional use of time-dependent magnetic

fields instead of employing merely an electric field triggering the effects [50].

An investigation of the comparatively small energy density of the vacuum discussed above is

in progress with the goal of measuring the “weight” of the vacuum [51]. The ansatz is to measure

the weight of virtual particles in the vacuum with the help of the Casimir force in relation to the

gravitational force. That would be another important step towards a possible reconciliation of the

big theories of the large and the small scales.

Effects of the quantum vacuum have even become visible to humans. Lasers trying to focus

discrete photons to accurate positions increase the uncertainty in photon number. In a remark-

able experiment at room temperature, the resulting fluctuation force pushed mirrors such that it

was noticeable with a human eye [52]. Remarkably, the quantum vacuum even pushes the 40 kg

mirrors of the LIGO experiment [53].

Experiments have verified heat transfer through the vacuum via fluctuations [54] and the fluc-

tuations are suspected to cause friction [55]. Even though it has not made its way into experi-

ments, the NASA investigated the idea of using Casimir forces enabling propulsion techniques for

vacuum-powered spacecrafts [56].

Finally, the arrow of time might not be a result of initial conditions and sheer statistics, but

in fact vacuum effects down to the Planck scale might influence trajectories even of macroscopic

objects and make reversions impossible, as simulations of a system of three black holes suggest

[57]. The universe is a chaotic system, such that even the tiniest fluctuations of particles may un-

foreseeably influence the trajectories of the largest existing objects. Yet, the quantum fluctuations

may not occur purely at random, there is evidence for correlations [58].

1.5 Photon–photon interactions

The vacuum can be excited, e.g., by external fields. Within the Standard Model, the leading effect

arises from the effective coupling of electromagnetic fields via virtual electron–positron pairs, and

thus is governed by quantum electrodynamics [23].

One kind of quantum vacuum effects of particular interest for laboratory experiments is the

class of optical effects. While direct tree-level photon–photon interactions are strictly forbidden in

quantum electrodynamics, virtual particle–antiparticle pairs can mediate interactions of photons.

Radiation on the other hand can influence the behavior of the particle–antiparticle dipoles in the

vacuum. This has already been set forth in the introduction, depictions are given in Figures 1.2

and 1.3.

Nonlinear interactions can be triggered by high intensities of the external radiation field and

cause a variety of phenomena manifesting the dynamic structure of the quantum vacuum because

of the profound consequence for the equations of motion of electromagnetism. Maxwells linear the-

ory of vacuum electrodynamics [59] is extended by effective nonlinear self-interactions, violating

the classical superposition principle, at least for electromagnetic fields that are strong enough to

1.5 Photon–photon interactions 7

Figure 1.3: Photon–photon interaction via virtual electrically charged pairs in the vacuum.

excite the vacuum. Consequently, there are also quantifiable effects in the dynamics of electromag-

netic waves due to the presence of virtual particle pairs in the vacuum.

A low-energy effective theory governing the nonlinear dynamics of strong classical electromag-

netic fields in the quantum vacuum as a medium was famously devised by Euler, Kockel, Heisen-

berg, and Weisskopf [19–21]. Schwinger incorporated the theory into the larger QED picture [17].

The so-called Heisenberg–Euler Lagrangian, outlined in Section 1.6, constitutes the one-loop ef-

fective theory of QED, taking the radiation as classical background field which ought to vary over

much larger scales than the Compton scale of the electron in space and time.

There are numerous optical effects attributable to the quantum nature of the vacuum. In gen-

eral, these are based on light-by-light scattering phenomena [19, 60–73]. There is vacuum bire-

fringence, caused by a preferred direction for charged particles in a strong electromagnetic field

[74–92], which in inhomogeneous fields is a consequence of broken translational invariance accom-

panied by vacuum diffraction [80, 93–97]. A peculiar effect is quantum reflection with photons

[98, 99]. Further, there are photon merging [100–103] with the generation of higher harmonics

[104–115], and photon splitting [103, 116–123].

A promising approach to their detection is the investigation of the asymptotic dynamics of probe
photons after passing through a strong-field region in the form of a high-intensity laser pump pulse.

Probe photons traversing a strong field region can indirectly sense the applied strong pump field

via the quantum fluctuations which couple to both probe and pump fields [85]. Due to the nonlinear

interaction with the power pulses, signal photons of the probe field scatter in such a way that their

dynamics or polarization distinguishes them from the main pulses. Properties and dynamics of the

quantum vacuum, in turn, are hereby encoded into the signal photons.

This class of quantum vacuum experiment, where one electromagnetic field drives the nonlin-

ear effect while the other carries its signature, is called all-optical. These experiments at the high-

intensity frontier promise unprecedented detail in the study of the quantum vacuum in the near

future. The aspiration is that the rapid and steady advancements in ultra-intense laser physics

[124, 125] combined with theoretically optimized specifications will soon facilitate the experimen-

tal discovery [126–128]. Predictions from analytical calculations are idealized and make use of

sufficiently simple interaction scenarios, which exposes the need for the versatility that is provided

by numerical solvers.

For general reviews of the quantum vacuum, see [22, 26, 126–134]. A review of strong-field

vacuum effects can be found in [135]. A concise overview of probing the nonlinear vacuum with

laser experiments and a short survey of all kinds of quantum vacuum effects is given in [126]. For

recent and future experimental developments of high-field fundamental physics, see [136].

8 1. The Quantum Vacuum

1.6 The Heisenberg–Euler effective action

Unlike the strongly coupled QCD vacuum, where fermions condense, the vacuum of QED can ef-

ficiently be accessed perturbatively. Employing the perturbative effective action approach, the

complete quantum theory is considered as a classical description of the low-energy degrees of free-

dom relevant to the vacuum [22]. The low-energy degrees of freedom are given by photons with

wavelengths below the Compton length of the electron λC ∼ 10−12 m. The effective field theory

is described by the Heisenberg–Euler Lagrangian and corresponds to QED in a constant electro-

magnetic background field after integrating out the high-energy degrees of freedom to the one-loop

order [20, 130]. In consideration of the fact that considered radiation fields vary slowly compared

to the Compton wavelength of the electron, it is assumed that the locally constant field approxi-

mation is valid [133, 137, 138]. Comprehensive reviews including the historical development and

discussing the historic works are given in [26, 130].

In a convenient form the Heisenberg–Euler Lagrangian reads [130]

LHE =− c5m4
e

8ħ3π2

∫ ∞

0

e−s

s3

(
s2

3
(
a2 −b2)−1+abs2 cot(as) coth(bs)

)
ds , (1.1)

where

a =
√√

F 2 +G 2 +F , b =
√√

F 2 +G 2 −F , (1.2)

F =− c2FµνFµν

4E2
cr

, G =−
c2FµνF∗

µν

4E2
cr

, (1.3)

Ecr =
m2

e c3

eħ = 1.323×1018 V m−1 , (1.4)

c is the vacuum speed of light, ħ the reduced Planck constant, and e, me are the charge and mass of

the electron. The quantities F and F∗ denote the electromagnetic field strength tensor and its dual

and Ecr is the above mentioned critical field strength, which marks the scale where the magnitude

of the vacuum nonlinearities becomes dominant.

Combining the classical Maxwell Lagrangian, with the nonlinear quantum vacuum corrections

captured in the Heisenberg–Euler theory, yields a Lagrangian for the QED vacuum

L =LMW +LHE . (1.5)

The Maxwell Lagrangian is given by

LMW =− 1
4µ0

FµνFµν =
E2

cr

c2µ0
F , (1.6)

with the vacuum permeability

µ0 = 1.257×10−6 N A−2 . (1.7)

With the Maxwell vacuum referred to as the linear vacuum, where the superposition principle

holds for the linear differential equations, the Heisenberg–Euler Lagrangian extends the theory by

nonlinear terms, light–light interactions, and the vacuum is referred to as the nonlinear vacuum.

The latter covers all quantum effects of vacuum polarization arising in a background electromag-

netic field to the one-loop order.

1.6 The Heisenberg–Euler effective action 9

1.6.1 QED strong-field regime

A short summary of the parameters that define the strong-field QED regime is in order. SI units

are used throughout this work. Vacuum nonlinearities of QED are suppressed by inverse powers

of the electron mass in the effective action approach. To produce electron–positron pairs in vast

amounts, the Schwinger limit has to be accessed. The electron mass and charge are given by [139]

me =9.109×10−31 kg , (1.8)

e =1.602×10−19 C . (1.9)

Further, the vacuum speed of light and the Planck constant are given by

c =2.998×108 m s−1 , (1.10)

h =6.626×10−34 J s . (1.11)

The Compton length and time of the electron are given by

λC = h
me c

= 2.426×10−12 m , (1.12)

tC = λC

c
= h

me c2 = 8.093×10−21 s (1.13)

and the reduced Compton length and time of the electron by

λC,red = ħ
me c

= 3.862×10−13 m , (1.14)

tC,red = ħ
me c2 = 1.288×10−21 s . (1.15)

The critical field strengths that form the Schwinger- or Sauter-limit are then given by [18]

Ecr =
c3m2

e
eħ = 1.323×1018 V m−1 , (1.16)

Bcr = Ecr

c
= c2m2

e
eħ = 4.414×109 T . (1.17)

For the Schwinger effect only an electric field is required. The critical field strength corresponds to

the electric field that over the length of the reduced Compton wavelength exposes the electron rest

energy

λC,red e Ecr = me c2 , (1.18)

or, equivalently, over twice that length the rest energy of an electron–positron pair, see also Figure

1.2.

Electric fields with the required critical field strength Ecr open up a new regime of strong-

field QED, where the properties of the vacuum are substantially different [17, 18, 140]. At the

corresponding intensity of

Icr = ε0 c E2
cr = 4.648×1033 W m−2 (1.19)

the vacuum is no longer stable. It is said to break down because fluctuating pairs are torn apart

10 1. The Quantum Vacuum

= + + + + + ...

Figure 1.4: Depiction of the Heisenberg–Euler effective action of QED. The double-lined loop to the
left represents the irradiated electron–positron loop, denoting the coupling of the external field to
the fermion loop to all orders in the field strength. The diagrams to the right represent the linear
Maxwell theory, the one-loop correction to it due to vacuum polarization, and the four-, six-, and
eight-photon contributions in the Heisenberg–Euler weak-field expansion.

and real electron–positron pairs are expected to be produced in a vast amount. This will cause an

attenuation of the external field, an intricate feedback mechanism that is picked up in Chapter 7.

1.6.2 Weak-field expansion

For field strengths below the critical value a weak-field expansion can be performed that yields

higher order interactions consecutively. The term “weak” is relative, since Ecr can be considered

a very high field strength such that the weak-field expansion is valid even for the maximal field

strengths attainable in the laboratory today, which range up to 10−3Ecr [141]. The weak-field

expansion of the Heisenberg–Euler Lagrangian (1.1) up to fourth order in F and G is given by

LHE ≈ 4ε0
E2

crα

360π
(
4F 2 +7G 2)

(1.20a)

−4ε0
E2

crα

630π
(
8F 3 +13FG 2)

(1.20b)

+4ε0
E2

crα

945π
(
48F 4 +88F 2G 2 +19G 4)

, (1.20c)

with the vacuum permittivity

ε0 = 8.854×10−12 A s V−1 m−1 (1.21)

and the fine-structure constant

α= e2

4πε0ħc
≈ 1

137
. (1.22)

A Feynman-diagrammatic depiction of the weak-field expansion is given in Figure 1.4.

It should be noted that the Heisenberg–Euler Lagrangian solely depends on the electromagnetic

field invariants F and G , and subsequently (1.20a) is of the order O ((E/Ecr)4). At one-loop order of

the quantum corrections to Maxwell’s equations, couplings of the vacuum only to even orders of the

radiation field are identified as a consequence of Furry’s theorem (charge conjugation symmetry)

[26, 142].

The effective theory generates the whole perturbative expansion in terms of the external pho-

ton legs at once and can be graphically represented by a dressed loop, representing the irradiated

electron–positron vacuum loop, as in Figure 1.4 [113, 133]. Hence, (1.20a) represents the four-

photon contributions, (1.20b) the six-photon contributions, and (1.20c) the eight-photon contribu-

tions to the closed double-lined loop. Since the field strengths are constrained to be weaker than

the critical field strength, c|Fµν| < Ecr, higher order terms can be neglected in the low-intensity

1.6 The Heisenberg–Euler effective action 11

−→ , −→ , −→

Figure 1.5: Effective vertices for photon–photon coupling in the vacuum due to the Heisenberg–
Euler weak-field expansion. Above the Compton scale of the electron, the effective couplings can
be described as direct, local interactions.

regime.

It has to be stressed again that pair production is exponentially suppressed in the Heisenberg–

Euler Lagrangian. Therefore, in the weak-field limit the properties of the nonlinear vacuum can

be described exclusively by radiation fields. The effective photon–photon vertices after integrating

out the matter field are shown in Figure 1.5.

For the validity of the Heisenberg–Euler weak-field expansion the regime restriction is there-

fore two-fold. Energies need be below the electron mass and field strengths below the critical

values. Well below these scales, it is solid to employ the Heisenberg-Euler Lagrangian LHE in

weak-field expansion. This has been proven both analytically [137] and numerically [138].

1.6.3 Modified Maxwell equations

The classical Maxwell–Ampère circuital law in media

∂t

(
~E
c2 +µ0 ~P

)
=∇×

(
~B−µ0 ~M

)
(1.23)

can be compared to the modifications resulting from the Heisenberg–Euler weak-field expansion to

infer macroscopic polarization and magnetization terms of the quantum vacuum.

To obtain the nonlinear modifications to the linear Maxwell equations, an explicit rescaling of

the electric and magnetic fields ~E and ~B to the critical field strengths is instructive, such that the

field strengths are given in units of Ecr,

~E →
~E

Ecr
, ~B →

~B
Ecr

. (1.24)

From the Lagrangian of the quantum vacuum (1.5) the equations of motion are obtained with the

help of the Euler–Lagrange equations with respect to the normalized fields, yielding the modified

Maxwell–Ampère law

∂t

(
~E
c2 +µ∂LHE

∂~E

)
=∇×

(
~B−µ∂LHE

∂~B

)
, (1.25)

with the definition

µ= µ0

E2
cr

. (1.26)

Comparing the modifications due to the effective Heisenberg–Euler theory (1.25) to those in a

generic (nonlinear) medium (1.23) is then possible. Effective photon–photon interactions hence

imply the appearance of macroscopic nonlinear polarization and magnetization terms of the QED

12 1. The Quantum Vacuum

vacuum given by

~P = µ

µ0

∂LHE

∂~E
= 1

E2
cr

∂LHE

∂~E
and ~M = µ

µ0

∂LHE

∂~B
= 1

E2
cr

∂LHE

∂~B
. (1.27)

These can be straightforwardly computed in the weak-field expansion (1.20).

This clarifies that, as described in Section 1.5, the resulting equations of motion supplement

Maxwell’s linear equations of electromagnetism by nonlinear photon–photon interactions that can

be triggered by high-intensity laser pulses.

1.6.4 General approach and motivation

There exists an abundance of perturbative analytical treatments of the Heisenberg–Euler model in

weak-field approximation. Since these approaches are limited to approximations and manageable

configurations and at the same time experimental requirements for the detection of these signals

are high, the need for support from the numerical side is apparent. A numerical algorithm and

simulation code for the nonlinear effective light–light interactions in the weak-field expansion of

the Heisenberg–Euler theory of quantum electrodynamics is presented in this thesis.

The typical idea is to approach, or probe, the vacuum loops via external lines. External per-

turbations are electromagnetic field lines, i.e., probe photons. Signatures of the quantum vac-

uum nonlinearities are inscribed in the properties of the outgoing probe photon, the signal photon.

Throughout the present work so-called probe–pump scenarios described in Section 1.5 will be con-

sidered, where a probe pulse is influenced by vacuum nonlinearities induced by a stronger pump

pulse.

Since the measurement is performed distant from the interaction region, it is the asymptotic

state of a probe that is commonly investigated [111]. Nonetheless, a full picture Heisenberg–Euler

solver even enables the time-resolving of nonlinear interactions.

Recent advances in laser and detector technology spur the hope that novel quantum vacuum

signals in the all-optical regime can be detected in the near future.

Chapter 2

The Quantum Vacuum Simulation
Algorithm

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x [m]

Am
pl

itu
de

= 3.125 10 7m 0.5fNy

t = 0 s
t = 0.8 m/c
t = 10 m/c
t = 20 m/c

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x [m]

Am
pl

itu
de

= 1.5625 10 7m fNy

t = 0 s
t = 0.4 m/c

Dispersion relations and damping effects

14 2. The Quantum Vacuum Simulation Algorithm

Links

Journal of Computational Physics: X paper
https://doi.org/10.1016/j.jcpx.2023.100124

arXiv paper
https://doi.org/10.48550/arXiv.2202.09680

Wolfram Notebook Archive notebook with Mathematica analyses
https://notebookarchive.org/2022-08-eb2cjxb.

GitLab code repository
https://gitlab.physik.uni-muenchen.de/ls-ruhl/hewes

Code reference
https://gitlab.physik.uni-muenchen.de/ls-ruhl/hewes/-/blob/main/docs/ref.pdf

Highlights

• 13th order of accuracy stable numerical scheme

• Dispersion relation with vacuum-like behavior even for small wavelengths

• Incorporation of a nonphysical modes filter

https://doi.org/10.1016/j.jcpx.2023.100124
 https://doi.org/10.48550/arXiv.2202.09680
https://notebookarchive.org/2022-08-eb2cjxb
https://gitlab.physik.uni-muenchen.de/ls-ruhl/hewes
https://gitlab.physik.uni-muenchen.de/ls-ruhl/hewes/-/blob/main/docs/ref.pdf

2.1 Introduction 15

2.1 Introduction

Wave equations in the nonlinear Heisenberg–Euler weak-field model can only be solved analyti-

cally for restrictive assumptions. Almost all analytical approaches to compute nonlinear vacuum

effects, as found in the literature cited in Section 1.5, have shortcomings. Consequentially, these

attempts are still limited to simple scenarios, impeding experimental verification. Approximations

limit the accuracy of predictions and the precision the theory can be tested with. Precision tests

require accurate theoretical predictions for arbitary laser field configurations [143].

The present chapter introduces a numerical algorithm for the solution of the modified Maxwell

equations in the Heisenberg–Euler weak-field approximation. The work is based on the numerical

scheme outlined in one spatial dimension in [111–113] and extended to three dimensions in [144,

145]. The implemented solver for up to three-dimensional simulations is presented in [146–148].

The algorithm is numerically stable and aliasing-free with a well-behaved dispersion relation.

Specifically, the crucial dispersion relation of the algorithm renders it: I) real vacuum-like in a

large range of wavenumbers, II) stable for any frequency, and III) aliasing-free, i.e, annihilating

nonphysical grid modes.

The accuracy of the numerical scheme relies on the assumptions that the fields vary on scales

larger than the Compton scale of the electron and the field strengths involved are below the critical

field for pair creation in the vacuum. In addition, a viable numerical algorithm is restricted by the

computational load it generates, even more so in the realm of high frequencies. The advantage of

a numerical approach, however, is that it can principally solve almost any interaction scenario for

nearly any arrangement of laser pulses. Limitations are discussed in Chapters 4 and 6.

Outline

In Section 2.2, the numerical scheme that solves the nonlinear Maxwell equations in 3+1 dimen-

sions is outlined. First, the nonlinear modifications to Maxwell’s equations due to the Heisenberg–

Euler theory are formulated in terms of a matrix partial differential equation. With the help of

finite differences for spatial derivatives, the system of partial differential equations is turned into

a system of ordinary differential equations. Dispersion effects on the lattice are discussed in Sec-

tion 2.3. Finally, a comparison to other numerical approaches to the Heisenberg–Euler theory in

weak-field expansion is drawn in Section 2.5.

2.2 Equations of motion

2.2.1 A merged partial differential equation

The modified Maxwell–Ampère circuital law (1.23) with the polarization and magnetization terms

in (1.27) from Section 1.6.3 is merged with the Maxwell–Faraday law of induction

∂t~B =−∇×~E , (2.1)

16 2. The Quantum Vacuum Simulation Algorithm

which persists in the nonlinear vacuum, such that a single partial differential equation describing

the whole dynamics of the system is formulated. First, the curl of (~B− ~M) can be written as

∇× (~B− ~M)=

0 0 0

0 0 −1

0 1 0

︸ ︷︷ ︸

Qx

∂x (~B− ~M)+

0 0 1

0 0 0

−1 0 0

︸ ︷︷ ︸

Qy

∂y (~B− ~M)

+

0 −1 0

1 0 0

0 0 0

︸ ︷︷ ︸

Qz

∂z (~B− ~M)= ∑
j∈{x,y,z}

Q j∂ j (~B− ~M) .

(2.2)

With the help of the vector
~f =

(
~E/c,~B

)T
(2.3)

the Maxwell equations (1.23) and (2.1) can then be expressed as

(16 +A)
∂t

c
~f = ∑

j∈{x,y,z}
Z j∂ j~f , (2.4)

with the 6×6 identity matrix 16 and the matrices A and Z j are given by

A=
(
J~P

(
~E

)
J~P

(
~B

)
03 03

)
, Z j =

(
−Q jJ~M

(
~E

)
Q j −Q jJ~M

(
~B

)
−Q j 03

)
, (2.5)

where 03 is the 3×3 zero matrix and

J~P (~E)= ε0
∂~P

∂~E
, J~P (~B)=µ0c

∂~P

∂~B
, J~M(~E)=µ0c

∂~M

∂~E
, J~M(~B)=µ0

∂~M

∂~B
, (2.6)

with matrix elements (
J~P (~E)

)
i j
= ε0

∂Pi

∂E j
. (2.7)

Equation (2.4) contains the full dynamics of electromagnetic fields in the weak-field approximation

of the Heisenberg–Euler model.

For illustrative purposes, first the linear vacuum is considered by setting ~P = ~M = 0, leading to

∂t

c
~f = ∑

j∈{x,y,z}
Zlin

j ∂ j~f , Zlin
j =

(
03 Q j

−Q j 03

)
. (2.8)

Zlin
j is diagonalized using the matrices

Rx = 1p
2

p
2 0 0 0 0 0

0 1 0 0 0 −1

0 0 1 0 1 0

0 0 0
p

2 0 0

0 1 0 0 0 1

0 0 1 0 −1 0

, Ry = 1p

2

0
p

2 0 0 0 0

−1 0 0 0 0 −1

0 0 −1 1 0 0

0 0 0 0
p

2 0

−1 0 0 0 0 1

0 0 −1 −1 0 0

, (2.9)

2.2 Equations of motion 17

Rz = 1p
2

0 0
p

2 0 0 0

1 0 0 0 −1 0

0 1 0 1 0 0

0 0 0 0 0
p

2

1 0 0 0 1 0

0 1 0 −1 0 0

,

so that for Zlin
j the expressions

Zlin
j =RT

j

0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

R j =RT

j diag(0,1,1,0,−1,−1)R j (2.10)

are obtained. The diagonalization helps to identify modes with specific propagation directions,

which becomes important in the construction of the numerical scheme. Equation (2.8) becomes

∂t

c
R j ~f (x, y, z; t)= diag(0,1,1,0,−1,−1)∂ j R j ~f (x, y, z; t) , (2.11)

where

Rx~f = 1p
2

p
2Ex

E y −Bz

Ez +Byp
2Bx

E y +Bz

Ez −By

, Ry~f = 1p

2

p
2E y

−Bz −Ex

Bx −Ezp
2By

Bz −Ex

−Bx −Ez

, Rz~f = 1p

2

p
2Ez

−By +Ex

Bx +E yp
2Bz

By +Ex

−Bx +E y

. (2.12)

Equations (2.11) and (2.12) imply backward propagation in x-direction of the field components

(E y −Bz) and (Ez +By), forward propagation of the field components (E y +Bz) and (Ez −By), and

non-propagation of the first and fourth component. The components for the other propagation

directions can be read off analogously.

2.2.2 Finite differences

For demonstration purposes only the x-direction is considered in the following. In order to trans-

form the partial differential equation into an ordinary one, finite difference approximations are

introduced. The spatial derivative ∂x is thereby replaced by finite differences

∂x

(
Rx~f

)
(x, y, z)≈Dx

(
Rx~f

)
(x, y, z) , (2.13)

18 2. The Quantum Vacuum Simulation Algorithm

where

Dx

(
Rx~f

)
(x, y, z)=

∑
ν

1
∆x

Sν

(
Rx~f

)
(x+ν∆x, y, z) . (2.14)

The Sν are stencil matrices and ∆x is the spatial resolution. The stencil matrices Sν are derived

with the help of a Taylor expansion of a generic function g(x+ν∆x) around ν∆x = 0. The Taylor

expansion up to accuracy order six is given by

g(x+ν∆x)= g(x)+ (ν∆x) g′(x)+ 1
2

(ν∆x)2 g′′(x)+ 1
6

(ν∆x)3 g′′′(x)+ 1
24

(ν∆x)4 g(4)(x)

+ 1
120

(ν∆x)5 g(5)(x)+ 1
720

(ν∆x)6 g(6)(x)+O
(
(ν∆x)7

)
.

(2.15)

For the finite differences approximations of derivatives, forward and backward steps can be made

use of. For the values ν ∈ {−3, ...,3} the expansion in matrix form reads

g(x−3∆x)

g(x−2∆x)

g(x−∆x)

g(x)

g(x+∆x)

g(x+2∆x)

g(x+3∆x)

=

1 −3 9/2 −9/2 27/8 −81/40 81/80

1 −2 2 −4/3 2/3 −4/15 4/45

1 −1 1/2 −1/6 1/24 −1/120 1/720

1 0 0 0 0 0 0

1 1 1/2 1/6 1/24 1/120 1/720

1 2 2 4/3 2/3 4/15 4/45

1 3 9/2 9/2 27/8 81/40 81/80

·

g(x)

∆x g′(x)

∆2
x g′′(x)

∆3
x g′′′(x)

∆4
x g(4)(x)

∆5
x g(5)(x)

∆6
x g(6)x)

(2.16)

and can be extended to larger ranges of ν and inverted to obtain approximations for the derivatives

taking into account more distant points. Recall that only the first derivative is required for the

merged equation of motion (2.4).

To illustrate how the finite difference approximation of the first derivative is calculated, ν ∈ {0,1}

is considered for simplicity. It is obtained(
g(x)

g(x+∆x)

)
=

(
1 0

1 1

)
·
(

g(x)

∆x g′(x)

)
, (2.17)

which leads to the first derivative of g given by

g′(x)≈ g′
ν∈{0,1} =

g(x+∆x)− g(x)
∆x

. (2.18)

The derivative g′
ν∈{0,1} in (2.18) is called first order forward discrete derivative. In the same way

the first order backward discrete derivative g′
ν∈{−1,0} is obtained with the help of

(
g(x−∆x)

g(x)

)
=

(
1 −1

1 0

)
·
(

g(x)

∆x g′(x)

)
, (2.19)

where

g′
ν∈{−1,0} =

g(x)− g(x−∆x)
∆x

. (2.20)

In order to obtain specific dispersion properties and numerical stability of the discretized ver-

2.3 Dispersion relations 19

sion of Equation (2.11), it is necessary to introduce forward and backward finite differences for Dx.

Dispersion properties and stability are detailed in Section 2.3.

With Equation (2.14) the full expression for the spatial derivatives for distinct propagation

directions is formulated

∂x~f (x, y, z)=RT
x ∂x Rx~f (x, y, z)≈RT

x
∑
ν

1
∆x

Sν

(
Rx~f

)
(x+ν∆x, y, z)=RT

x Dx

(
Rx~f

)
(x, y, z) . (2.21)

Setting aside non-propagation of modes, the first three elements of the rotated field vector Rx~f rep-

resent forward-propagating electromagnetic modes, while the last three components of the latter

represent backward-propagating ones, as discussed at the end of Section 2.2.1. This understanding

is adopted for the discussion of dispersion relations in Section 2.3.

For the nonlinear vacuum the system of ordinary differential equations is obtained from the

merged equation of motion (2.4) and Equation (2.21) to be

∂t

c
~f = (16 +A)−1 ∑

j∈{x,y,z}
Z j RT

j D j R j ~f . (2.22)

The inversion of (16 +A) is an expensive operation. An approximation in terms of a truncated

geometric series is not satisfying since also larger nonlinear corrections ought to be taken into

account. The problem of inverting the matrix can be reduced from a 6×6-dimensional problem to a

3×3-dimensional one by making use of the block form in (2.5) such that [145]

(16 +A)−1 =
(
13 +J~P

(
~E

)
J~P

(
~B

)
03 13

)
=

(
C−1 −C−1J~P

(
~B

)
03 13

)
, (2.23)

with

C= 13 +J~P
(
~E

)
. (2.24)

This 3×3 matrix can be inverted explicitly.

The finite differences scheme can be implemented on a grid, revealing properties that are eval-

uated in Section 2.3. An open source numerical solver to be introduced in Chapter 6 is responsible

for the time integration of the system of ordinary differential equations (2.22).

2.3 Dispersion relations

2.3.1 A simple example at first and second order

To investigate dispersion effects in the finite differences approximation, an elementary example is

worked out in the following. For the values ν ∈ {−1,0,1} the expansion of g(x) in matrix form is

given by
g(x−∆x)

g(x)

g(x+∆x)

=

1 −1 1/2

1 0 0

1 1 1/2

 ·

g(x)

∆x g′(x)

∆2
x g′′(x)

 . (2.25)

20 2. The Quantum Vacuum Simulation Algorithm

It has to be noted that Equation (2.25) is not restrictive to one specific kind of finite difference

method. To obtain an expression for the first derivative, the matrix in (2.25) has to be inverted.

This leads to
g(x)

∆x g′(x)

∆2
x g′′(x)

=

0 1 0

−1/2 0 1/2

1 −2 1

 ·

g(x−∆x)

g(x)

g(x+∆x)

 . (2.26)

Assuming that g(x) is one of the two polarizations of an electromagnetic mode that propagates

in positive (+) or negative (−) x-direction in 1D, the corresponding equation of motion reads

(∂t ± c∂x) g±(x; t)= 0 . (2.27)

Making use of (2.26), Equation (2.27) becomes for symmetric forward and backward differentiation

∂t g±(x; t)± c
2∆x

(g±(x+∆x; t)− g±(x−∆x; t))= 0 , (2.28)

where the spatial derivative of g is accurate up to second order in ∆x. Equation (2.28) can be solved

analytically by a plane wave ansatz

g±(x; t)= e−iωt+ik±x , (2.29)

where k+ > 0 and k− < 0, to obtain

− (Re(ω)+ iIm(ω))± c
∆x

sin(k±∆x)= 0 , (2.30)

⇒ ω=± c
∆x

sin(k±∆x) . (2.31)

The derivative in (2.27) can also be approximated for a forward-propagating mode g+ by a first

order forward finite difference. In this case, Equation (2.28) can be written as

∂t g+(x; t)+ c
∆x

(g+(x+∆x; t)− g+(x; t))= 0 , (2.32)

where the solution of (2.32) with ω ∈C reads

−ω+ c
∆x

(sin(k+∆x)+ i− i cos(k+∆x))= 0 , (2.33)

⇒ Re(ω)= c
∆x

sin(k+∆x) , (2.34)

⇒ Im(ω)= c
∆x

(1−cos(k+∆x)) . (2.35)

Further, the derivative in (2.27) for the backward-propagating part can be approximated by a

first order backward finite difference. In this case, Equation (2.28) can be approximated for the

backward-propagating case as

∂t g−(x; t)− c
∆x

(g−(x; t)− g−(x−∆x; t))= 0 (2.36)

2.3 Dispersion relations 21

with the solution

−ω− c
∆x

(sin(k−∆x)− i+ i cos(k−∆x))= 0 , (2.37)

⇒ Re(ω)=− c
∆x

sin(k−∆x) , (2.38)

⇒ Im(ω)= c
∆x

(1−cos(k−∆x)) . (2.39)

The dispersion relations connect a simulated wave with a specified wavelength to its phase

velocity on the lattice. While in the case of symmetric differentiation there is no imaginary part of

ω, it does emerge for biased differentiation. The derived dispersion relations are shown in the top

row of Figure 2.1.

On a discretized space with the grid spacing given by ∆x, modes can only be sampled up to

a threshold frequency, where the wavelength is twice as long as the grid spacing. The threshold

frequency is known as the Nyquist frequency [149]. Here it is given by

fNy =∆−1
x /2 , (2.40)

corresponding to

k ·∆x =π . (2.41)

It marks the point where Re(ω) = 0 for k 6= 0 in all cases. Implications of this barrier are further

discussed in Section 2.3.3.

The imaginary part amplifies the wave and thus makes this scheme unstable. By differenti-

ating biased against the propagation direction, however, the imaginary part switches signs and

has a damping effect. The calculations are straightforward and the result is shown at the bot-

tom of Figure 2.1. This behavior can be tuned with higher order schemes in order to obtain a

more vacuum-like real part and at the same time to defer the imaginary part, such that the latter

becomes relevant only for short wavelengths.

As the real part of ω eventually decreases in any scheme when it approaches the Nyquist fre-

quency, the damping of high-frequency modes is an anti-aliasing effect, annihilating nonphysical

modes. This is demonstrated in the following sections.

2.3.2 The fourth order scheme

The imbalanced coefficients for the first order discrete derivative in fourth order accuracy in ∆x,

g′
ν∈{−3,1} and g′

ν∈{−1,3} in the above notation, can be formulated with the help of Equation (2.16).

This results in

∆x g′
ν∈{−3,1} =

(
−1/12 1/2 −3/2 5/6 1/4

)

g(x−3∆x)

g(x−2∆x)

g(x−∆x)

g(x)

g(x+∆x)

 , (2.42)

22 2. The Quantum Vacuum Simulation Algorithm

ω·Δ

ωlin·Δ

-π -
3π

4
-
π

2
-
π

4
0

π

4

π

2

3π

4
π

k·Δ

1

2

3
ℜ(ω)·Δ

ℑ(ω)·Δ

ωlin·Δ

-π -
3π

4
-
π

2
-
π

4
0

π

4

π

2

3π

4
π

k·Δ

1

2

3

ℜ(ω)·Δ

ℑ(ω)·Δ

ωlin·Δ

-π -
3π

4
-
π

2
-
π

4

π

4

π

2

3π

4
π

k·Δ

-2

-1

1

2

3

Figure 2.1: Dispersion relations obtained with low-order finite differences for a plane wave propa-
gation. Here c = 1. Top left: for a second order symmetric forward and backward finite differences
scheme. Top right: for a first order forward finite difference for the forward-propagating mode and
a first order backward finite difference for the backward-propagating mode. Bottom: for a first or-
der forward finite difference for the backward-propagating mode and a first order backward finite
difference for the forward-propagating mode. The linear vacuum ω= c ·k is given by the black lines
with the vacuum speed of light c set to unity. Note that all stencils result in a symmetric dispersion
relation. The phase velocity is the same for both directions.

2.3 Dispersion relations 23

∆x g′
ν∈{−1,3} =

(
−1/4 −5/6 3/2 −1/2 1/12

)

g(x−∆x)

g(x)

g(x+∆x)

g(x+2∆x)

g(x+3∆x)

 . (2.43)

To make the connection to Equation (2.11), g is replaced by the components of Rx~f . As explained

above, Rx~f has components propagating in different directions that are differentiated with biases

in the respective opposite direction. This implies that the first three components of Rx~f are dif-

ferentiated in the same way as g in Equation (2.42) and the last three components of Rx~f are

differentiated as g in Equation (2.43). Following these instructions for Equation (2.14) yields

Dx

(
Rx~f

)
(x, y, z)=

3∑
ν=−3

1
∆x

Sν

(
Rx~f

)
(x+ν∆x, y, z) , (2.44)

with the fourth order stencils given by

S4
+3 = diag(1/12,1/12,1/12,0,0,0) , S4

−3 = diag(0,0,0,−1/12,−1/12,−1/12) ,

S4
+2 = diag(−1/2,−1/2,−1/2,0,0,0) , S4

−2 = diag(0,0,0,1/2,1/2,1/2) ,

S4
+1 = diag(3/2,3/2,3/2,1/4,1/4,1/4) , S4

−1 = diag(−1/4,−1/4,−1/4,−3/2,−3/2,−3/2) ,

S4
0 = diag(−5/6,−5/6,−5/6,5/6,5/6,5/6) .

(2.45)

In view of symmetry and redundancy, it is instructive to rewrite the stencil matrices in terms

of its components applied to forward- and backward-propagating modes. The fourth order stencil

matrices can be expressed as

S4
ν = diag(s4

b[ν], s4
b[ν], s4

b[ν], s4
f [ν], s4

f [ν], s4
f [ν]) , (2.46)

where the components applied to forward- and backward-propagating modes s4
f and s4

b are given

by

s4
f
∣∣
ν=−3,...,1 =

{
− 1

12
,
1
2

,−3
2

,
5
6

,
1
4

}
,

s4
b
∣∣
ν=−1,...,3 =

{
−1

4
,−5

6
,
3
2

,−1
2

,
1

12

}
,

(2.47)

and s4
f /b = 0 for out-of-range values of ν. Utilizing the obvious remaining symmetry, the stencil

matrix can also be written as

S4
ν = diag(−s4

f [−ν],−s4
f [−ν],−s4

f [−ν], s4
f [ν], s4

f [ν], s4
f [ν]) , (2.48)

for the whole range ν=−3, ...,3.

The solver has implementations of the scheme up to order thirteen. In the ongoing investiga-

tions the currently maximal available accuracy is used. Besides the high accuracy, this has another

advantage. Considering the fourth order scheme above, the imbalance between steps in the one and

the other direction is three to one. In contrast, the thirteenth order facilitates to take seven steps

of ∆x forward and six steps backward in the forward-biased differentiation and vice versa in the

backward-biased case. Hence, the imbalance can be kept much smaller. The components of the

minimal-bias stencils up to order thirteen are listed in Section 2.3.3.

24 2. The Quantum Vacuum Simulation Algorithm

2.3.3 Dispersion properties of the scheme

Derivation of the dispersion relations

For a single plane wave the Heisenberg–Euler Lagrangian reduces to the Maxwell Lagrangian,

since in this case F =G = 0 holds and there are no vacuum nonlinearities. Inserting a plane wave,

without loss of generality propagating on the x-axis,

~E(x; t)= ~A e−i(ωt−kx) , (2.49)

into the propagation equation (2.22) yields

−iω16 =Zlin
x RT

x
∑
ν

1
∆x

Sνeiνk∆x Rx . (2.50)

Since the stencil matrices are diagonal, this can be written as

−iω16 =Zlin
x RT

x Rx
1
∆x

∑
ν

Sνeiνk∆x , (2.51)

which, when multiplied with Rx from the left, gives

−iRxω= diag(0,1,1,0,−1,−1)Rx
1
∆x

∑
ν

Sνeiνk∆x . (2.52)

Inserting the stencil matrices expressed in terms of their components applied to forward- and

backward-propagating modes s f and sb results in

−iRxω= diag(0,1,1,0,−1,−1)Rx
1
∆x

∑
ν

diag
(
sb[ν], sb[ν], sb[ν], s f [ν], s f [ν], s f [ν]

)
eiνk∆x . (2.53)

It can be seen that the equation above holds irrespectively of the axis of propagation since Rx can

be canceled. Hence, the equation becomes

ω∆= idiag(0,1,1,0,−1,−1)
∑
ν

diag
(
sb[ν], sb[ν], sb[ν], s f [ν], s f [ν], s f [ν]

)
eiνk∆ . (2.54)

There are the distinct cases of forward- and backward-propagating modes, and non-propagating

ones. It is obtained for

• a forward-propagating mode (implying k > 0):

ω∆=∑
ν

s f [ν] (−i cos(νk∆)+sin(νk∆)) ; (2.55)

• a backward-propagating mode (implying k < 0):

ω∆=∑
ν

sb[ν] (i cos(νk∆)−sin(νk∆))=
∑
ν

s f [−ν] (−i cos(νk∆)+sin(νk∆)) ; (2.56)

and

• a non-propagating mode (implying k = 0) :

ω= 0 . (2.57)

2.3 Dispersion relations 25

ℜ(ω)·Δ

-ℑ(ω)·Δ

ωlin·Δ

π

4

π

2

3π

4
π

k·Δ

π

4

π

2

3π

4

π

ℜ(ω)·Δ

-ℑ(ω)·Δ

ωlin·Δ

π

4

π

2

3π

4
π

k·Δ

π

4

π

2

3π

4

π

Figure 2.2: Dispersion relations of the numerical scheme for minimally biased finite differences at
order four (left) and order thirteen (right). The black lines represent the real vacuum dispersion
relation with c = 1. ∆ is the grid spacing, the physical distance between lattice points. For better
visibility of the symmetric plots only the values for k ≥ 0 are shown.

At the end of this section the stencil components up to order thirteen are listed and plots of

the dispersion relations are shown. The results for orders four and thirteen are visualized and

explained in Figure 2.2; the latter being the order used for all simulations in this work, where it

is not mentioned otherwise. The minimal resolvable distance ∆ is the spacing between the lattice

points. It is the decisive parameter to tune the dispersion effects for a given wavelength and is

given by the ratio of physical length and lattice points.

The real parts of ω start in the vicinity of the black line and deviate from it for shorter wave-

lengths or smaller grid resolutions. There is less deviation at higher orders. The imaginary part of

ω starts with values close to zero for large wavelengths/high grid resolutions and decreases until

the Nyquist frequency is reached. The negative imaginary part in this scheme has the positive ef-

fect to promptly annihilate those modes that deviate strongly from the vacuum dispersion relation.

At higher orders, the damping effect of the imaginary part is deferred to shorter wavelengths

and is overall smaller. It can further be seen that for higher orders the real part stays closer to

the linear vacuum for smaller wavelengths. A relatively strong bias as in the fourth order scheme,

(2.42) and (2.43), causes a superluminal phase-velocity in a given k·∆ range, a critical regime where

the dispersion relation deviates remarkably from the linear vacuum. The well-balanced order

thirteen scheme has a smaller critical regime and is well-behaved for a larger range of wavelengths.

For small wavelengths the curve showing the real part of ω falls off and the imaginary part of ω

causes a damping. As a result, there are two k’s for each Re(ω). At the wavelength corresponding

to the Nyquist frequency, k ·∆=π, Re(ω) is zero, as in the simple scenarios visualized in Figure 2.1.

Stability of the scheme

The high-k values cause nonphysical standing waves with Re(ω)/k → 0. This would cause a self-

heating of the system if the damping did not take care of the quick annihilation of these modes.

The superluminosity that can be seen in the fourth order finite difference differentiation is thus

an acceptable deviation of the real vacuum dispersion to the favor of a damping of nonphysical

modes. By increasing the accuracy further and thereby generating a better balance, as in the order

thirteen scheme, there is no superluminal range left. Yet, the nonphysical modes filter is still

active, and in this way higher order schemes bear clear benefits.

In the numerical investigation it is demonstrated that the damping has noticeable effects al-

ready at an earlier stage than a first look at the above plot would suggest. Note that the Nyquist

26 2. The Quantum Vacuum Simulation Algorithm

1 2 3 4 5 6 7 8 9 10
x/Δ

-1.

-0.5

0.5

1.

cos(x) cos(4x)

Effect of overshooting the Nyquist frequency. Left: two
cosine functions that, when periodically evaluated at
multiples of the distance ∆ = 0.4π, have the same val-
ues. Right: simulations to verify the behavior on the
grid. On a 1D line with point spacing ∆ = 0.1µm, two
waves with wavelengths 5∆ and 5/4∆ are simulated,
corresponding to the analytical scenario on the left. It
can be observed that the discretization makes no dif-
ference between the two cases. The simulated waves
are shown in the initial state (top right) and after they
have propagated the distance of 90 periods (bottom
right). The damping effect due to the imaginary part
of ω is the same for both waves.

0 5 10 15 20
x/

1.0

0.5

0.0

0.5

1.0

Initial State
= 5
= 5/4

0 5 10 15 20
x/

1.0

0.5

0.0

0.5

1.0

After 90 Periods
= 5
= 5/4

Figure 2.3: On the Nyquist frequency.

frequency (2.40), on the other hand, is not the limiting factor for wave modeling in this scheme.

In order to accurately time-evolve modes, the grid spacing must be chosen such that f ¿ fNy, c.f.

Equation 2.40. A stricter quantification is given below.

Beneficially, the simulation of a high-frequency wave does not overshoot the Nyquist limit, as it

would then be sampled on the grid as a wave with lower frequency. This is explicitly demonstrated

in Figure 2.3. The relevant frequency scale of the dispersion relation in Figure 2.2 thus ranges only

to the Nyquist limit and the scheme is generally stable for any frequency.

Damping of modes

It has to be noted that energy is not conserved on the grid as a consequence of the amplitude damp-

ing during the propagation. The imaginary part of ω and with it the damping effect might be small

if the grid resolution is high, but there is a trade-off since high grid resolutions are computationally

more expensive.

To visualize the effects of the dispersion relation at varying wavelengths the propagation of a

2.3 Dispersion relations 27

0.0 0.1 0.2 0.3 0.4 0.5
 k

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x [m]

Am
pl

itu
de

= 1 10 6m

t = 0 s
t = 3.2 m/c
t = 32 m/c

Figure 2.4: Numerical tests of the dispersion for low frequencies. Left: numerical results of dis-
persion relation tests. Simulation results (blue dots) are in agreement with the free vacuum (black
line) for wavelengths from 20 µm to 1 µm. Right: the plane wave corresponding to the rightmost
point of the left figure with λ= 1µm at different time steps. The wave is not that smoothly modeled
anymore but still does not noticeably lose energy in the given amount of time – the amplitude stays
the same. Even after 32 periods the wave is perfectly overlapping with its initial state.

plane wave in one direction of a two-dimensional square grid with side length 80 µm, divided into

1024×1024 points, is investigated. The grid resolution is thus given by ∆ = 80µm/1024, ∆−1 =
128×105 m−1.

From Figure 2.4 it can be deduced that the waves are well-behaved and quite well-modeled

for k ·∆. 0.5. From Figure 2.5, it can be inferred that already at half the Nyquist frequency the

damping is non-negligible for relevant time scales. The Nyquist frequency in this scenario is given

by fNy = 64×105 m−1 (λ= 1.5625×10−7 m).

A video demonstrating the evolution of a plane wave on the lattice with a wavelength corre-

sponding to half of the Nyquist frequency can be found in the Mendeley Data repository [150]. The

conclusion is that for a proper modeling and to avert damping effects, one is obliged to adapt the

grid resolutions to the lowest wavelength such that

∆. 1/12λ (2.58)

for the order thirteen scheme.

While this relation is not a hard limit and can be relaxed in many cases without detriments,

it poses a safe rule of thumb for long-time simulations. A sufficiently fine grid resolution is perti-

nent for a clean analysis of the polarization flipping and harmonic generation effects presented in

Chapter 4. A more detailed analysis of the accuracy is provided in Chapter 6.

Since the external ODE solver introduced in Chapter 6 takes care of the time integration with

high accuracy, the size of a time step can be defined quite openly. In this work a time step varies in

the range of 1 fs to 6 fs, or equivalently 0.3 µm/c to 2 µm/c .

Stencils and dispersion relations up to order thirteen

Solutions to the dispersion relation for all given orders are visualized in Figure 2.6. As already

mentioned in the caption of Figure 2.2, the dispersion relation is symmetric in k for all stencils and

the phase velocity is equal in both directions. Higher orders defer and decrease the rise of the imag-

28 2. The Quantum Vacuum Simulation Algorithm

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x [m]

Am
pl

itu
de

= 3.125 10 7m 0.5fNy

t = 0 s
t = 0.8 m/c
t = 10 m/c
t = 20 m/c

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x [m]

Am
pl

itu
de

= 1.5625 10 7m fNy

t = 0 s
t = 0.4 m/c

Figure 2.5: Numerical tests of the dispersion for high frequencies. Left: a plane wave with λ =
312.5nm at different time steps. The grid resolution is given by ∆= 80µm/1024 in the propagation
direction. In the free vacuum the corresponding frequency is to be associated to half of the Nyquist
frequency. 32 periods have passed after 10 µm/c and 64 periods after 20 µm/c. The damping and
the barely subluminal phase velocity are, after the indicated propagation times, noticeable even at
this wavelength. The initial peak position has clearly shifted after 20 µm/c. Right: a plane wave
with λ = 156.25nm at different time steps with the same grid settings. In the free vacuum the
corresponding frequency is to be associated to the Nyquist frequency. The wave is standing and the
damping is strong, resulting in a rapid annihilation.

inary part. A stronger bias causes more absorption and the phase velocity to become superluminal.

This can be seen in Figure 2.6 for the even orders of accuracy that are more imbalanced.

For completeness, the elements of the minimally biased stencil matrices Sν from order one to

thirteen, listed in the form of the array components as in Equation (2.47) for the fourth order, are

given by

s1
f
∣∣
ν=−1,0 = {−1,1} ,

s2
f
∣∣
ν=−2,−1,0 =

{
1
2

,−2,
3
2

}
,

s3
f
∣∣
ν=−2,...,1 =

{
1
6

,−1,
1
2

,
1
3

}
,

s4
f
∣∣
ν=−3,...,1 =

{
− 1

12
,
1
2

,−3
2

,
5
6

,
1
4

}
,

s5
f
∣∣
ν=−3,...,2 =

{
− 1

30
,
1
4

,−1,
1
3

,
1
2

,− 1
20

}
,

s6
f
∣∣
ν=−4,...,2 =

{
1

60
,− 2

15
,
1
2

,−4
3

,
7
12

,
2
5

,− 1
30

}
,

s7
f
∣∣
ν=−4,...,3 =

{
1

140
,− 1

15
,

3
10

,−1,
1
4

,
3
5

,− 1
10

,
1

105

}
,

s8
f
∣∣
ν=−5,...,3 =

{
− 1

280
,

1
28

,−1
6

,
1
2

,−5
4

,
9

20
,
1
2

,− 1
14

,
1

168

}
,

s9
f
∣∣
ν=−5,...,4 =

{
− 1

630
,

1
56

,− 2
21

,
1
3

,−1,
1
5

,
2
3

,−1
7

,
1

42
,− 1

504

}
,

s10
f

∣∣
ν=−6,...,4 =

{
1

1260
,− 1

105
,

3
56

,− 4
21

,
1
2

,−6
5

,
11
30

,
4
7

,− 3
28

,
1

63
,− 1

840

}
,

s11
f

∣∣
ν=−6,...,5 =

{
1

2772
,− 1

210
,

5
168

,− 5
42

,
5

14
,−1,

1
6

,
5
7

,− 5
28

,
5

126
,− 1

168
,

1
2310

}
,

2.3 Dispersion relations 29

Figure 2.6: Dispersion relations up to order thirteen. Real and imaginary parts are shown in
the same color and can be distinguished by their form. The black dotted line represents the real
vacuum dispersion relation. Top: even orders. Bottom: uneven orders.

30 2. The Quantum Vacuum Simulation Algorithm

s12
f

∣∣
ν=−7,...,5 =

{
− 1

5544
,

1
396

,− 1
60

,
5

72
,− 5

24
,
1
2

,−7
6

,
13
42

,
5
8

,− 5
36

,
1
36

,− 1
264

,
1

3960

}
,

s13
f

∣∣
ν=−7,...,6 =

{
− 1

12012
,

1
792

,− 1
110

,
1

24
,− 5

36
,
3
8

,−1,
1
7

,
3
4

,− 5
24

,
1

18
,− 1

88
,

1
660

,− 1
10296

}
.

If centered (unbiased) stencils were used at even order, that would result in ω having no imag-

inary part, as discussed in Section 2.3.1. A Mathematica [151] analysis of the dispersion relations

can be found in [152].

2.4 Overview of the implementation

Simulations are performed on a lattice, which is subdivided into patches that communicate their

boundary values to each other. The width of the boundaries are determined by the order of the

finite differences scheme, i.e., the neighboring lattice points required for the calculation of spatial

derivative approximations. The regions on the patches containing the boundary values will be

interchangeably called ghost cells or halos throughout this work.

The algorithm is implemented in C++. On a computer, each patch is processed by one core of

a processing unit. This approach enables the scalability on high-performance computing systems.

The lattice decomposition and the cluster computer communication is detailed in Section 5.3.1.

The lattice forms a class. A member vector of the Lattice class is holding the field values
~f of Equation (2.3) for all lattice points. Another class, the Simulation class, passes on the

construction parameters for the lattice and instructions for other configuration settings at the

start of the simulation. This class is responsible for the overall coordination, see Listing 2.1.

1 // Initialize the simulation, set up the cartesian communicator

2 Simulation sim(patches[0], patches[1], patches[2],

3 StencilOrder, periodic); // Simulation object with slicing

4

5 // Create the SUNContext object associated with the thread of execution

6 sim.setPhysicalDimensionsOfLattice(phys_dims[0], phys_dims[1],

7 phys_dims[2]); // spacing of the box

8 sim.setDiscreteDimensionsOfLattice(

9 disc_dims[0], disc_dims[1],

10 disc_dims[2]); // Spacing equivalence to points

11 sim.initializePatchwork(patches[0], patches[1], patches[2]);

12 //sim.initializeGhostCells();

13

14 // Add em-waves

15 for (const auto &plane : planes)

16 sim.icsettings.addPlaneWave3D(plane.k, plane.p, plane.phi);

17 for (const auto &gauss : gaussians)

18 sim.icsettings.addGauss3D(gauss.x0, gauss.axis, gauss.amp, gauss.phip,

19 gauss.w0, gauss.zr, gauss.ph0, gauss.phA);

20

21 // Check that the patchwork is ready and set the initial conditions

22 sim.start();

23

24 // Initialize CVode with abs and rel tolerances

25 sim.initializeCVODEobject(CVodeTol[0], CVodeTol[1]);

26

27 // Configure the time evolution function

28 TimeEvolution::c = interactions;

2.4 Overview of the implementation 31

29 TimeEvolution::TimeEvolver = nonlinear3DProp;

30

31 // Configure the output

32 sim.outputManager.generateOutputFolder(outputDirectory);

33 if (!myPrc) {

34 std::cout << "Simulation code: " << sim.outputManager.getSimCode()

35 << std::endl;

36 }

37 sim.outputManager.set_outputStyle(outputStyle);

38

39 // Conduct the propagation in space and time

40 for (int step = 1; step <= numberOfSteps; step++) {

41 sim.advanceToTime(endTime / numberOfSteps * step);

42 if (step % outputStep == 0) {

43 sim.outAllFieldData(step);}

Listing 2.1: Excerpt of the newly created coordinating C++ file. The Simulation object is responsible

for all steps and the overall configuration. First, the physical dimensions of the lattice and the

resolution in terms of lattice points are defined. Subsequently, the number of patches relevant for

parallelization are set, discussed in Chapter 5. Then, the electromagnetic waves are added. With

the start of the simulation the settings of the solver are configured and the folder for data output

is generated. Finally the waves are propagated and the desired states written to disk.

The initial conditions of the electromagnetic fields are formed by the parameters of the waves

the user decides to simulate. The latter are objects of the various electromagnetic wave classes

with individual member functions to initialize the six-dimensional field data vector. Another class,

called ICSetter, is responsible to fill the lattice data vector with the initial field conditions via a

loop evaluating the electromagnetic field components on all lattice points.

An auxiliary vector is thereby created for the operations of the scheme discussed in Section

2.2. The auxiliary vector obtains the rotated field data, c.f. Equation (2.12), that are used for the

derivative operation with the help of the finite difference scheme at the chosen order, c.f. Equation

(2.13). The result is rotated back and stored in a vector holding the data in spatially derived form

as in Equation 2.21.

This is finally used in a propagation function that makes use of the outlined scheme to obtain

Equation (2.22) with the temporally derived field data on the left, which is contained in a further

vector. The time integration is then performed with an external software to be detailed in Chapter

6.

Directed by the settings passed via the Simulation class, the OutputManager class takes

care of writing data to disk. The solver as a software is outlined in Chapter 3, a code reference

generated with the help of Doxygen [153] is available in the code repository [148].

32 2. The Quantum Vacuum Simulation Algorithm

2.5 Comparison to other approaches

There exist other approaches to simulate all-optical QED vacuum effects. Currently, there are two

other groups working in the field of numerical approaches to the QED nonlinear vacuum, one in

Jena and one in Lisbon.

The group in Jena makes use of the so-called Vacuum Emission Picture [154] as the basis for

its algorithm. In this framework the effect-generating laser pulses are propagated by a linear

Maxwell solver. Via a scattering amplitude, the vacuum subjected to the lasers forms a source

term for outgoing photons that carry signals of nonlinear interactions. Back-reactions into the

laser pulses are neglected.

The group in Lisbon constructed a generalized Yee scheme [155] of second order accuracy in

space and time. Its dispersion relation is not overall stable.

Only the first order of the weak-field expansion is included in these solvers.

2.5.1 The Vacuum Emission Picture

The algorithm outlined in [156] and the solver presented in [143] are based on the Vacuum Emis-

sion Picture. This approach differs substantially from the one presented in the previous sections

and there are vast differences in capabilities.

In the Vacuum Emission Picture the fields are split into strong background and weak signal

fields Fµν → Fµν+ f µν. The Heisenberg–Euler Lagrangian is expanded to the four-photon order in

the weak-field expansion (1.20a) and is subsequently expanded to linear order in the signal field

strength,

LHE,4γ ≈
∂LHE,4γ

∂Fµν
f µν , (2.59)

neglecting terms with more than one signal photon.

The core feature of the Vacuum Emission Picture is the use of transition matrices in the pres-

ence of strong fields in the Heisenberg–Euler weak-field approximation. The scattering amplitude

maps between the vacuum state |0〉 and a signal photon state |γ〉 with the interaction Lagrangian

(2.59),

S = 〈γ|
∫

d4x
∂LHE,4γ

∂Fµν
f µν|0〉 . (2.60)

This approach is very efficient and allows the analysis of experimentally realistic configura-

tions. It provides direct access to relevant quantities such as polarization- and energy-resolved

differential numbers of signal photons to be detected outside the interaction volume.

With regard to a numerical implementation, one of the strengths of this formalism is that it

essentially only requires the evaluation of Fourier transforms for the calculation of the scattering

amplitude. A fast Fourier transform analysis is the essential ingredient of the algorithm. This also

requires a grid spacing adapted to the frequencies of the involved electromagnetic fields.

In the Vacuum Emission Picture pump and probe lasers are viewed as macroscopic classical

electromagnetic fields whose propagation is governed by the linear Maxwell equations. The strong

electromagnetic fields driving the nonlinear effects are thus propagated in the absence of vacuum

nonlinearities by means of a Maxwell solver detailed in [157]. The vacuum subjected to the strong

electromagnetic fields is interpreted as a source term for outgoing photons. Using the Heisenberg–

Euler Lagrangian in weak-field expansion to describe the interaction, the scattering amplitude

2.5 Comparison to other approaches 33

(2.60) is obtained. From this perspective, the induced photon states correspond to the signal pho-

tons imprinted by the effective nonlinear interaction.

The effects of quantum vacuum nonlinearities are thus encoded in the signal photons emitted

from the strong-field region and thereby constitute a distinct signal. The picture can hence be

interpreted as describing laser-stimulated signal photon emission from the vacuum. All informa-

tion about the asymptotic signal photon is carried in the vacuum emission amplitude. In certain

configurations excellent signal to background separation can be achieved with the induced photons

emitted from the strong-field region to be detected in the field-free region.

The emission of signal photons from a single pulse and colliding pulses are investigated in

[143]. Studies of specific laser pulse collision processes with stimulated single photon emission

from the vacuum are conducted. Signal photon number estimations can be performed and from the

properties of the former conclusions can be drawn on polarization flipping probabilities.

However, it does not permit the investigation of time-dependent phenomena. There is fur-

ther no feedback on the effect-generating electromagnetic fields themselves by the response of the

quantum vacuum taken into account. Hence, there is no notion of pump and probe laser fields in

contrast to the scenarios considered throughout the present work.

The Vacuum Emission Picture is capable of making predictions for asymptotic states of ultra-

short emission wavelengths, while the solver outlined in Chapter 3 is limited by the affordable grid

resolution. In that sense, the Vacuum Emission Picture represents an analytical scale separation

at the expense of losing some of the processes, but with the advantage to predict short wavelength

photon emission with sufficient accuracy.

Simulations of high-frequency pulses are currently not possible with the Heisenberg–Euler

solver detailed in the present work owing to the limitations of the grid. In the outlook in Chapter 7

a plan for the future is outlined to render high-frequency pulses feasible. Relying on the numerical

integration of scattering amplitudes, the Vacuum Emission Picture solver on the other hand is op-

timally suited for this task. As presented in [143], the solver is not yet equipped with a parallelized

implementation for distributed computing.

Numerous analytical works are based on the Vacuum Emission Picture [16, 23, 83, 85, 92, 158–

162]. In addition, the solver based on the Vacuum Emission Picture has already been employed in

some studies of optical signatures of the quantum vacuum [72, 163, 164].

Besides vacuum birefringence, the approach has also been employed to photon–photon scatter-

ing as well as merging and splitting processes. The emission process is not restricted to cubic order

in the background field [102, 103]. Hence, multi-photon emission processes can also be incorporated

in the description.

2.5.2 Modified Yee scheme

As the scheme outlined in Section 2.3, the QED vacuum polarization solver of [165] likewise relies

directly on the modified Maxwell equations due to the Heisenberg–Euler weak-field expansion, c.f.

Section 1.6.3. It makes use of a finite-difference time-domain generalized Yee scheme of second

order accuracy in space and time, a modification of the standard algorithm to solve Maxwell’s

equations [166]. As opposed to that, the accuracy order of the numerical scheme discussed in

the previous sections is arbitrary and implementations from the first to the thirteenth order are

available, see Chapter 3.

The main problem with the Yee scheme approach is that due to staggering the nonlinearities

34 2. The Quantum Vacuum Simulation Algorithm

at every point require interpolations in space and extrapolations in time [145]. The alternative

to staggered fields in the modified scheme is to evaluate all fields at every position to accurately

compute the electromagnetic field invariants in the presence of nonlinear couplings. Moreover, the

nonlinear propagation of the electric field according to the modified Ampère law (1.25) requires the

knowledge of future quantities. In an effort to mainly address the latter problem, a method alike

the predictor-corrector methods for integration discussed in Chapter 6, is developed.

In the modified Yee scheme put forward in [165], the Yee scheme is first applied to the lin-

ear vacuum to advance the fields and obtain predicted values for the next time step. It is then

made use of interpolation methods over all grid points to enable the calculation of the required

electromagnetic invariants to be used in the modified Ampère law (1.25) in order to propagate the

electric field under the influence of vacuum nonlinearities. The electric field values are updated

iteratively, reinserting them into the expressions of the electromagnetic field invariants until the

desired accuracy is reached. After convergence, Faraday’s law is used to advance the magnetic

field. In order to overcome precision asymmetries with respect to field invariants in the Yee grid

cells, the fields are evaluated at the positions of higher precision with the help of interpolations.

Additional re-interpolations are carried out to compute the invariants at the other grid cell points.

The dispersion relations of the numerical scheme of [165] and those outlined in Section 2.3.3

are fundamentally disparate. The dispersion relation outlined in [165] has an imaginary part that

can lead to the amplification of nonphysical modes and requires a high grid resolution for a given

wavelength. This might be the reason why results have been presented only in one and two spatial

dimensions.

The dispersion relations shown in Figure 2.6 have imaginary parts that always damp nonphys-

ical modes and can afford lower grid resolution at high integration orders. As per the discussed

properties of the dispersion relation the solver of the present work can be considered very efficient.

Moreover, Chapter 5 details that the implementation is well scalable on cluster computers.

The authors of [165] state that their solver is numerically stable in spite of the amplifying

imaginary part. To this end, the grid has to be configured with an ample resolution. The scheme

discussed in Section 2.3 is in contrast overall numerically stable and by virtue of higher orders

the accuracy is kept for lower grid resolutions in relation to the simulated wavelengths. While

in [165] simulations with the small spatial grid spacings of k ·∆ = π/100 are performed, in the

present work k ·∆=π/6 is sufficient. The authors of [165] nevertheless believe that their approach

is computationally more efficient than the one presented in this work.

Due to the fact that the simulations in [165] are performed on an HPC system and that the

authors claim the possibility of massively parallel simulations, it can be supposed that the im-

plementation is scalable as well. However, for 1D and 2D simulations, which they present, no

supercomputer would be required for the solver of the present work – resource occupation is taken

up in Chapter 3.

In [165] basically similar simulations as conducted in Chapter 4 are presented. In the future

the authors plan to simulate higher order processes and 3D simulations as well.

First, the authors check the refractive indices in 1D in an eternal background. Different the-

oretical 1D setups for birefringence in pulse collisions are investigated. Harmonic generation is

simulated in 2D with coaxial and orthogonal pulses, yet only with four-photon processes, which

marks the main difference to the simulations of Chapter 4 in the end result. Remarkably, they

calculate up to the fifth harmonic analytically and as laser experts the authors discuss real world

2.5 Comparison to other approaches 35

experimental influences on the pulse parameters, such as laser misalignment.

It is made use of the same technique as in Chapter 4 of artificially increasing the field strengths

in comparison to analytical benchmarks for simulations of vacuum birefringence. The use of high

field strengths is beneficial to resolve the nonlinear effects from the numerical noise.

2.5.3 Conclusion

At the bottom line, it can be concluded that the Heisenberg–Euler solver is principally capable

of capturing more interesting physics in comparison to the VEP solver, while it still has practical

resolution limits that render some important simulations in the high-frequency realm unfeasible.

The VEP is not dynamic but benefits from an analytical separation of scales. Hence, it is able to

make predictions for the probability of photon emission for ultra short wavelengths, while it lacks

the nonlinear physics of interacting power pulses.

The Heisenberg–Euler solver in the weak-field approximation presented in Chapter 3 can prin-

cipally describe all conceivable interaction scenarios between the probe and power pulses. For a

complete picture the full nonlinear dynamics of the vacuum is required.

The solvers in [165] and [143] both include only the four-photon order of the weak-field expan-

sion of the Heisenberg–Euler interaction, while the present work outlines an implementation for

up to six-photon interactions. Some all-optical nonlinear vacuum effects are tiny. Hence, high-

order, high-precision numerical solvers may bear advantages.

High-dimensional and high-resolution grids are subject to the curse of dimensionality. Some

applications require the modeling of high-frequency waves and therefore extraordinary high res-

olutions. These easily reach beyond the limits of any computing system and thus extrapolation

techniques have to be employed. It is therefore beneficial to rely on an algorithm with a very

vacuum-like dispersion relation for high frequencies to minimize the required grid size. The bene-

ficial dispersion properties outlined in Section 2.3 form the strongest contrast to the QED vacuum

polarization solver of [165].

An implementation for distributed computing systems of the scheme discussed in the present

work is at hand and allows costly simulations in full three spatial dimensions plus time. Such have

not yet been presented with the help of the QED vacuum polarization solver of [165].

36 2. The Quantum Vacuum Simulation Algorithm

Chapter 3

HEWES: The Heisenberg–Euler
Weak-Field Expansion Simulator

HEWES: Heisenberg-Euler Weak-Field Expansion Simulator

3D
Simulations

Harmonic
generation

for varying
pulse
configura-
tions

Chair for
Computational

Physics

A. Lindner
B. Oelmez

H. Ruhl

Benign
disper-
sion
relation

Graphical abstract of HEWES: Heisenberg–Euler weak-field expansion simulator [148]

38 3. HEWES: The Heisenberg–Euler Weak-Field Expansion Simulator

Links

Software Impacts paper
https://doi.org/10.1016/j.simpa.2023.100481

Papers With Code paper
https://physics.paperswithcode.com/paper/hewes-heisenberg-euler-weak-field-expansion

Software Impacts code repository
https://github.com/SoftwareImpacts/SIMPAC-2023-33

Code metadata

Current code version v0.2.5
Link to code/repository https://gitlab.physik.uni-muenchen.de/ls-

ruhl/hewes
Link to Reproducible Capsule https://codeocean.com/capsule/3187285/

tree
Legal Code License BSD 3-Clause License
Code versioning system used git
Software code languages, tools, and ser-
vices used

C++20, (MPI-3.1, OpenMP v4.5)

Compilation requirements, operating envi-
ronments & dependencies

CMake ≥ v3.21

Link to code reference https://gitlab.physik.uni-muenchen.de/ls-
ruhl/hewes/-/blob/main/README.md
https://gitlab.physik.uni-muenchen.de/ls-
ruhl/hewes/-/blob/main/docs/ref.pdf

Support email for questions and.lindner@physik.uni-muenchen.de

Table 3.1: Code metadata

https://doi.org/10.1016/j.simpa.2023.100481
https://physics.paperswithcode.com/paper/hewes-heisenberg-euler-weak-field-expansion
https://github.com/SoftwareImpacts/SIMPAC-2023-33
https://gitlab.physik.uni-muenchen.de/ls-ruhl/hewes
https://gitlab.physik.uni-muenchen.de/ls-ruhl/hewes
https://codeocean.com/capsule/3187285/tree
https://codeocean.com/capsule/3187285/tree
https://gitlab.physik.uni-muenchen.de/ls-ruhl/hewes/-/blob/main/LICENSE
https://gitlab.physik.uni-muenchen.de/ls-ruhl/hewes/-/blob/main/README.md
https://gitlab.physik.uni-muenchen.de/ls-ruhl/hewes/-/blob/main/README.md
https://gitlab.physik.uni-muenchen.de/ls-ruhl/hewes/-/blob/main/docs/ref.pdf
https://gitlab.physik.uni-muenchen.de/ls-ruhl/hewes/-/blob/main/docs/ref.pdf
mailto:and.lindner@physik.uni-muenchen.de

3.1 Introduction 39

3.1 Introduction

This chapter presents the solver as an open source software. It constitutes a highly accurate nu-

merical solver for the leading weak-field Heisenberg–Euler corrections to classical Maxwell the-

ory arising as a consequence of quantum vacuum polarization. The solver is named HEWES, for

“Heisenberg–Euler Weak-Field Expansion Simulator”.

The solver relies on the algorithm put forward in Chapter 2. A short recapitulation is in order. It

is equipped with a high-order finite differences scheme for the approximation of spatial derivatives

on a lattice. The modified Maxwell equations, partial differential equations (PDEs) in space and

time, are thereby turned into ordinary differential equations (ODEs) in time. Time integration is

performed by an external solver package.

The present code implementation reaches an accuracy of up to order thirteen in the numerical

scheme and notably takes into account up to six-photon interactions, c.f. Section 1.6.2 with Figure

1.4. Depending on the chosen order of the numerical scheme, it possesses an almost linear vacuum

dispersion relation even for smaller wavelengths. This allows the use of comparatively small grids.

Moreover, an imaginary part in the dispersion relation annihilates nonphysical modes, see Section

2.3 with Figures 2.2 and 2.6.

Since theoretical approaches are limited to approximations and manageable configurations,

and the experimental requirements for the detection of these signals are high, the need for support

from the numerical perspective is apparent. In preference to analytical calculations, the numerical

solver is agnostic to the specific scenarios and thus in principle superior in most situations. It has

other practical limitations that have been discussed in Sections 1.6 and 2.5. Shifting these limits

is part of the work detailed in Chapter 5 and future research outlined in Chapter 7.

The simulator is envisaged to become a tool seconding experimentalists efforts with simulation

data. With the working and established simulator at hand, expedient simulations can be conducted

in the future.

The code works in one to three spatial dimensions. Whereas 1D and 2D results can be easily

attained on personal computers, the numerical load for meaningful full-scope 3D simulations re-

quires the use of supercomputers. The code is therefore tuned for high-performance computing, see

Chapter 5.

A code documentation is created with the help of Doxygen [153]. Besides the linked, public

repository, there is a non-public repository for development and testing, which is employed for the

analyses in Chapters 5 and 6.

Outline

A short description of the software is given in Section 3.2 with the usage outlined in Section 3.3, and

to be detailed in the incorporated README file in Section 3.4. The installation process, issues, and

an online code platform for researchers, where the code is available for direct use, are explained in

Section 3.5.

3.2 Description

Hyperparameter values at the user’s option determine the overall accuracy. These are the order of

the finite difference scheme – ranging from one to thirteen – the lattice resolution, and the error

40 3. HEWES: The Heisenberg–Euler Weak-Field Expansion Simulator

tolerances of the employed ODE solver.

The SUNDIALS [167, 168] package is used for the numerical solution of the resulting system

of nonstiff, nonlinear differential equations for ~f in Equation (2.22). Explicitly, the CVODE solver

[169] from the SUNDIALS family of solvers is employed, configured to use the implicit Adams

method (Adams-Moulton formula) in conjunction with a fixed-point iteration [170, 171]. This is

detailed in Chapter 6.

The numerical time integration error is controllable with CVODE by setting relative and ab-

solute integrator tolerances per user-defined step size. CVODE adapts its internal time step sizes

according to the system’s dynamics guided by the tolerances. Larger time steps are performed in

quiet regions and shorter steps in highly dynamic regions. Errors per step accumulate to a global

error. Tolerances are set to below 10−12 for the simulations presented in Chapter 4.

The computation time is approximately independent of the stencil order, but the correct phys-

ical solution is rather approached with a higher stencil order. This is demonstrated in Chapter 6,

within an investigation of trade-offs concerning scheme order, solver tolerances, grid resolution,

and performance. Only for simulations on distributed systems the order of the numerical scheme

becomes relevant for the communication load, which is discussed in Section 3.4 and in more detail

in Chapter 5.

Output data are written at each user-defined time step optionally into convenient comma-

separated values (CSV) files or a compact and efficient file in binary format. A CSV output file

contains six columns for the field components Ex , E y , Ez , Bx , By, and Bz; each column contain-

ing all grid values of the corresponding field component. A binary output file aligns all six field

components for every lattice point.

Cluster computer communication for large-scale simulations with distributed memory can be

achieved with multiprocessing, guided by the Message Passing Interface (MPI) [172] on a virtual

Cartesian topology. To this end, an MPI implementation has to be available, see Section 3.5. The

implementation of multiprocessing in the code is detailed in Chapter 5. The boundary conditions

are periodic.

Use of OpenMP [173] is likewise optional to enforce more vectorization and to enable multi-

threading. The latter is beneficial for performance only at a scale of about 1000 compute cores.

Details are discussed in Chapter 5.

The software is coded in C++ with features up to the C++20 standard [174]. To this end, it

has undergone some modernization, partly making use of tools. A short overview can be found in

Appendix B.

3.3 Usage

This section gives an overview of the usage, with details provided in the README file in Section

3.4.

Execution

Executable Bash and Windows Powershell example run scripts are provided in the software repos-

itory. An excerpt of a Bash run script for a 3D simulation is given in Listing 3.1.

1 #!/bin/bash

2

3.3 Usage 41

3 # Script to run executables built with CMake in the "src/build" directory

4 export EXECUTABLE="./build/hewes"

5

6 # Exporting MPI and OpenMP environment variables

7 export MPI_NUM_PROCESSES=64

8 export OMP_NUM_THREADS=8

9

10 # Specify the parameters

11 parameters=(\

12 ‘# ---- General simulation settings -----‘\

13 $SCRATCH/outputs ‘# output directory‘\

14 3 ‘# spatial dimensions of simulation space‘\

15 1.0e-12 ‘# CVode relative tolerance‘\

16 1.0e-12 ‘# CVode absolute tolerance‘\

17 13 ‘# stencil order‘\

18 80e-6 ‘# physical length of the simulation box in x-direction‘\

19 80e-6 ‘# physical length of the simulation box in y-direction‘\

20 20e-6 ‘# physical length of the simulation box in z-direction‘\

21 1600 ‘# number of lattice points in x-direction‘\

22 1600 ‘# number of lattice points in y-direction‘\

23 200 ‘# number of lattice points in z-direction‘\

24 8 ‘# patches in x-direction‘\

25 8 ‘# patches in y-direction‘\

26 1 ‘# patches in z-direction‘\

27 3 ‘# linear vacuum (0), four-photon (1), six-photon (2), 4- and 6-photon (3)

processes‘\

28 10e-6 ‘# simulation time in meters‘\

29 10 ‘# number of simulation steps performed by CVode‘\

30 10 ‘# output step multiples‘\

31 binary ‘# output style; binary or csv‘\

32 ...

33 ‘# ---- Parameters for 2D/3D Gaussian pulses -----‘\

34 1 ‘# use of 2D/3D Gaussian pulse(s) yes (1) or no (0)‘\

35 2 ‘# number of 2D/3D Gaussian pulses; 0, 1, or 2‘\

36 40e-6 ‘# center of 2D/3D Gaussian 1 in x-direction‘\

37 40e-6 ‘# center of 2D/3D Gaussian 1 in y-direction‘\

38 10e-6 ‘# center of 2D/3D Gaussian 1 in z-direction‘\

39 1. ‘# x-component of normalized direction from which 2D/3D Gaussian 1 approaches

the center‘\

40 0. ‘# y-component of normalized direction from which 2D/3D Gaussian 1 approaches

the center‘\

41 0.05 ‘# amplitude of 2D/3D Gaussian 1‘\

42 0. ‘# polarization rotation from TE-mode (z-axis) in mulitples of pi/4‘\

43 2.3e-6 ‘# taille of 2D/3D Gaussian 1‘\

44 16.619e-6 ‘# Rayleigh length of 2D/3D Gaussian 1‘\

45 2e-5 ‘# shift from center in negative propagation direction of 2D/3D Gaussian 1‘\

46 0.45e-5 ‘# beam length of 2D/3D Gaussian 1‘\

47 40e-6 ‘# center of 2D/3D Gaussian 2 in x-direction‘\

48 40e-6 ‘# center of 2D/3D Gaussian 2 in y-direction‘\

49 10e-6 ‘# center of 2D/3D Gaussian 2 in z-direction‘\

50 0. ‘# x-component of normalized direction from which 2D/3D Gaussian 2 approaches

the center‘\

51 1. ‘# y-component of normalized direction from which 2D/3D Gaussian 2 approaches

the center‘\

52 0.05 ‘# amplitude of 2D/3D Gaussian 2‘\

53 0. ‘# polarization rotation from TE-mode (z-axis) in mulitples of pi/4‘\

42 3. HEWES: The Heisenberg–Euler Weak-Field Expansion Simulator

54 2.3e-6 ‘# taille of 2D/3D Gaussian 2‘\

55 16.619e-6 ‘# Rayleigh length of 2D/3D Gaussian 2‘\

56 2e-5 ‘# shift from center in negative propagation direction of 2D/3D Gaussian 2‘\

57 0.45e-5 ‘# beam length of 2D/3D Gaussian 2‘\

58)

59

60 # Run it

61 mpirun -np $MPI_NUM_PROCESSES $EXECUTABLE "${parameters[@]}"

Listing 3.1: Excerpt of a Bash run script for a 3D simulation. This is a minimal version. The

number of MPI processes and OpenMP threads are defined, to be detailed in Chapter 5. A number

of parameters to configure the setting must be provided, starting with the lattice construction,

accuracy and output decisions, followed by the parameters of the electromagnetic waves.

The passed time for each simulation step after starting is written to stdout, see Listing 3.2.

1 Simulation code: 23-03-11_10-09-43

2

3 Step 1 Elapsed time: 18.780211s

4

5 Step 2 Elapsed time: 35.193428s

6

7 Step 3 Elapsed time: 51.673806s

8

9 Step 4 Elapsed time: 68.332443s

10

11 Step 5 Elapsed time: 84.671380s

Listing 3.2: Excerpt of the shell output for a standard 2D simulation as to produce the results to

be shown in Section 4.5. The execution of a run script first produces the starting time step, which

forms the name of the simulation and the folder where the output data are written to. For each

simulation step the number of seconds wall clock time are written to stdout.

General settings

Simulations can be performed on a one- to three-dimensional lattice. It can be decided whether to

simulate in the linear Maxwell vacuum, the linear vacuum plus four-photon interactions, the linear

vacuum plus six-photon interactions, or the linear vacuum plus four- and six-photon interactions.

The accuracy of the CVODE integrator and the order of the numerical scheme can be defined.

For the absolute and relative error tolerances of the CVODE solver, 10−12 or lower are suitable

choices, see Chapter 6. The implicit Adams method is preset to use the highest available order

(twelve). The number of steps performed within the total physical propagation time should be

chosen such that the step size is not larger than 2 µm. To fully exploit the beneficial dispersion

properties, it is recommended to use the highest available order (thirteen) of the scheme.

Implementations of Gaussian laser pulses are available and their parameters can be configured.

Higher than realistic amplitudes are commonly used in order to reduce the numerical noise, as

mentioned in Section 2.5. This procedure is applied in Chapter 4.

The configuration of the grid and the decomposition into MPI processes becomes relevant in

higher dimensions. For example, a 3D simulation to produce the results shown in Chapter 4,

Figure 4.23 can be performed on a grid with 1400×1400×200 points in less than four hours on

about 400 compute cores. The output size amounts to nearly 20 gigabytes for one time step. A

3.4 HEWES README 43

weak scaling test for such 3D simulations is demonstrated in Section 5.3.1. The computational

load scales linearly with the grid size and the simulation time varies only slightly when the load is

equally distributed on up to about 1000 cores.

Postprocessing

The postprocessing of the data for the present work is done with the help of Python scripts, Jupyter
notebooks [175] employing the SciPy library [176], and with the help of Mathematica [151] and

ParaView [177]. Python modules are provided in the code repository to read the electromagnetic

field components from the CSV or binary file into NumPy arrays for the ensuing analysis. Example

analyses are provided in the code repository and in a Mendeley Data repository [150].

3.4 HEWES README

The Heisenberg–Euler Weak-Field Expansion Simulator is a solver for the all-optical QED vac-

uum. Vacuum polarization, due to omnipresent quantum fluctuations, supplements Maxwell’s lin-

ear equations of electromagnetism by nonlinear photon–photon interactions. HEWES solves the

nonlinear equations of motion for electromagnetic waves in the weak-field limit of the Heisenberg–

Euler effective theory of QED with up to six-photon processes.

There is a paper that outlines the algorithm [147], a paper that introduces the software [148],

and a Mendeley Data repository [150] with extra and supplementary materials.

Required software

CMake is used for building and a recent C++ compiler version is required since features up to the

C++20 standard are used.

An MPI implementation supporting the MPI 3.1 standard is strongly recommended to make

use of multiprocessing.

OpenMP is optional to enforce more vectorization and enable multithreading. The latter extra

layer of parallelization is useful for performance only when a very large number of compute nodes

is occupied.

The CVODE solver is fetched on-the-fly through CMake.

If CVODE (or the whole SUNDIALSpackage) is installed manually: The SUNDIALS_DIR vari-

able in the CMakeLists.txt has to be set to the installation directory.

Version 6 is required, the code is presumably compliant with the upcoming version 7. Enable

MPI and OpenMP, if desired. For optimal performance the CMAKE_BUILD_TYPE should be "Re-

lease".

3.4.1 Short user manual

In order to build the executable with CMake, execute, e.g., in the src directory, cmake -S.

-Bbuild and then cmake --build build. On Windows a subsequent installation of the

SUNDIALS modules is required. With CMake this can be done via cmake --install build

--config Debug. The installation type has to be "Debug" with MSVC attributable to an issue

with SUNDIALS. MSMPI is required, even though it only complies with MPI-2.0.

There is full control over all high-level simulation settings via command line arguments.

44 3. HEWES: The Heisenberg–Euler Weak-Field Expansion Simulator

• First, the general settings are specified:

– The path to the project directory. Therein, a SimResults folder is created and therein

a folder named after the timestamp of the start of the simulation.

– Whether to simulate in 1D, 2D, or 3D.

– The relative and absolute integration tolerances of the CVODE solver. Recommended

values are between 1e-12 and 1e-16.

– the order of accuracy of the numerical scheme (the stencil order). An integer in the

range 1–13 can be chosen.

– The physical side lengths of the grid in meters.

– The number of lattice points per dimension.

– The slicing of the lattice into patches (relevant only for 2D and 3D simulations, auto-

matic in 1D). This determines the number of patches and therefore the required distinct

processing units for MPI. The total number of processes is given by the product of slices

in any dimension. Note: In the 3D case patches should be chosen cubic in terms of

lattice points. This is decisive for computational efficiency.

– Whether to simulate in the linear vacuum (0), on top of the linear vacuum only 4-photon

processes (1), only 6-photon processes (2), or 4- and 6-photon processes (3).

– The total time of the simulation in units c=1, i.e., the distance propagated by the light

waves in meters.

– The number of time steps that will be solved stepwise by CVODE. In order to keep

interpolation errors small, this number should not be chosen too small. One micro meter

is appropriate.

– The multiple of steps at which the field data will be written to disk.

– The output format. It can be CSV (comma-separated values) or binary. For CSV format

the name of the files written to the output directory comprise the time step and the

writing process in the form {step_number}_{process_number}.csv. For binary

output all data per step are written into one file and the name of the file is given by the

step number.

• Second, the electromagnetic waves are chosen and their parameters specified. It can be cho-

sen between plane waves (not much physical content, but useful for checks) and implemen-

tations of Gaussian pulses in 1D, 2D, and 3D. To identify which command line argument is

exactly which parameter, see the comments in the short example Bash run scripts which are

preconfigured for 1D, 2D, and 3D simulations. (One example is also provided as a Windows
Powershell script.) Amplitudes are given in units of the critical field strength (Schwinger

limit). Position and propagation parameters on the y- and z-axis are only effective if the grid

has an extend in the corresponding dimension. A description of the wave implementations is

given in the Doxygen-generated code reference. Note that the 3D Gaussians, as they are im-

plemented up to now, are propagated only in the xy-plane. More waveform implementations

will follow in subsequent versions of the code.

The boundaries are periodic. It has to be kept in mind that in 2D and 3D simulations the

number of MPI processes has to coincide with the actual number of patches, as described above.

An error will be thrown at startup otherwise.

If the program was built with OpenMP support, the environment variable OMP_NUM_THREADS

needs to be set.

3.4 HEWES README 45

It can be useful to save the run script along with the output as a log of the simulation settings

for later reference.

stdout and stderr should be monitored during the run (or redirected into files). The starting

timestamp, the process steps, and the used wall times per step are printed on stdout. Errors are

printed on stderr.

Note: Convergence of the employed CVODE solver cannot be guaranteed and issues of this kind

can hardly be predicted. On top, they are even system-dependent. Piece of advice: Only decimals

should be used for the grid settings and initial conditions, not, e.g., sqrt expressions. CVODE
warnings and errors are reported on stdout and stderr, respectively.

Note on simulation settings

A typical starting point is to use two Gaussian pulses in 1D colliding head-on in a probe–pump

setup. For this event, a high-frequency probe pulse has to be specified with a low amplitude and

a low-frequency pump pulse with a high frequency. Both frequencies should be chosen to be below

a sixth of the Nyquist frequency to minimize nonphysical dispersion effects on the lattice. The

amplitudes should be below unity, the critical field strength, for the weak-field expansion to be

valid.

Arising higher harmonics can then be investigated in frequency space via a Fourier analysis.

The signals from the higher harmonics can be highlighted by subtracting the results of the same

simulation in the linear Maxwell vacuum, such that only the nonlinear effects are left. Choosing

the probe pulse to be polarized with an angle to the polarization of the pump, one may observe a

fractional polarization flip of the probe in response of the nonlinear interaction. It has to be decided

beforehand which steps should be written to disk for the ensuing analysis.

Example scenarios of colliding Gaussians are preconfigured for any dimension in the example

scripts. Sensible configurations are listed in tables in Chapter 4.

Note on resource occupation

The computational load depends mostly on the grid size and resolution. The order of accuracy of

the numerical scheme and CVODE are rather secondary, except for simulations running on many

processing units. In the latter case, the communication load plays a major role, which in turn

depends on the order of the numerical scheme. This is because the order of the scheme determines

how many neighboring grid points are taken into account for the finite differences derivatives.

Simulations in 1D are relatively cheap and can easily be run on a modern notebook within

some seconds. The output size per step is less than a megabyte. Simulations in 2D with about one

million grid points are still feasible for a personal machine and take only a number of minutes. The

output size per step is in the range of some dozen megabytes.

Sensible simulations in 3D require large memory resources and therefore need to be run on

distributed systems. This implies an increased communication load. Even hundreds or thousands

of cores can be kept busy for many hours. The output size rapidly amounts to hundreds of gigabytes

for just a single state, if a high resolution is chosen. This hurdle forms a practical limit to the grid

resolution.

Some scaling tests are shown in Section 5.3.1.

If the output is in binary form, the size can be easily calculated. Per step, it is given by the

number of grid points times six (the number of field components) times 8 bytes.

46 3. HEWES: The Heisenberg–Euler Weak-Field Expansion Simulator

Note on the output analysis

The field data are either written in CSV format to one file per MPI process, the ending of which

(after an underscore) corresponds to the process number, as described above. This is the simplest

solution for smaller simulations and a portable way that also works fast and is straightforward to

analyze. Or, the option strictly recommended for larger write operations, in binary format with a

single file per output step. Raw bytes are written to the files as they are captured in memory.

The latter option is more efficient and achieved with the help of MPI IO, and hence only possible

if MPI is used. However, there is no guarantee of portability; postprocessing/conversion is required.

The file name is given by the step number.

A SimResults folder is created in the chosen output directory if it does not exist and therein a

folder named after the starting timestamp of the simulation (in the form yy-mm-dd_hh-MM-ss)

is created. This is where the output files are written into.

There are six columns in the CSV files, corresponding to the six components of the electromag-

netic field: Ex, E y, Ez, Bx, By, Bz. Each row corresponds to one lattice point. Postprocessing is

required to read in the files in order. A Python module taking care of this is provided. Likewise,

another Python module is provided to read the binary data of a selected field component into a

NumPy array. For its use, the byte order of the reading machine has to be the same as that of the

writing machine.

More information describing settings and analysis procedures used for actual scientific results

are given in Chapter 4 and a collection of corresponding analysis notebooks are uploaded to a

Mendeley Data repository [150]. Some concise example Python analysis scripts can be found in the

examples in the respository. The first steps therein demonstrate how the simulated data is correctly

read in from disk to NumPy arrays using the provided get field data module. Harmonic

generation in various forms is sketched as one application exhibiting nonlinear quantum vacuum

effects. Analyses of 3D simulations are more involved due to large volumes of data. A script with

the purpose to extract the ratio of polarization flipped photons of a laser pulse as a consequence of

vacuum birefringence can also be found in the examples. Visualization requires tools like ParaView
[177].

3.5 Installation

Automated building

Automated building is new to code version 0.2.2. The build process of the application is automated

with the CMake build generator [178], which is platform- and compiler-agnostic with great porta-

bility. The installation is performed with two simple commands, as described in the README

file.

For a simple project like this, CMake may introduce complexity and problems for the user with-

out real advantages over a simple Makefile as it was used before. One could argue to rather keep it

simple. However, the ease of use becomes even more pronounced with the on-the-fly dependency in-

stallation and the outstanding cross-platform compatibility. The installation has been successfully

tested on various different hardware architectures and compilers.

Without its use, SUNDIALS would have to be manually installed by the user, in the specific

configuration used for the project. Experience showed that this alone can pose an obstacle.

3.5 Installation 47

Furthermore, CMake enables straightforward optional use of MPI and OpenMP, based on their

availability on the system and the user’s choice. With this flexibility and automation, it is possi-

ble to run simulations not only on dedicated systems, but on any device provided with at least a

sufficiently up-to-date C++ compiler and CMake installation.

As explained in the README file in Section 3.4, MPI is recommended, not only on cluster

computers. Therefore, an MPI implementation should be installed on the device such that CMake
can find it. On an HPC system, the desired and required software needs to be loaded first, see

Appendix A.

To render the code Windows-compatible, preprocessor definitions are used that create a specific

version. The code is therefore customized to some extend to fit different systems and software.

Once the executable is built, the high-level settings are straightforwardly controlled with com-

mand line arguments.

Using HEWES on Windows systems

Employing CMake is especially comfortable for Windows systems, where the build system differs

substantially from Unix-based ones. Installing requirements can be more difficult on the former

and some software might not be available in the desired version.

Since MSMPI (Microsoft MPI) as of writing only complies with the older MPI 2.0 standard and

MPI is crucial for performance, some MPI-related code parts have to be replaced with MSMPI-

compliant routines for Windows systems. This is achieved with the help of preprocessor directives.

As mentioned in the README, owing to a known bug the SUNDIALS library only installs in

“Debug” mode on Windows at the time of writing. Accordingly, the whole build and installation

processes are performed in “Debug” mode, which degrades the performance.

Reproducible code capsule

Code Ocean [179] is a digital laboratory, a platform for computational research. It aims to over-

come the problem of differing computing environments in order to make computational experi-

ments rigorously reproducible. To this end, container technology is used, realizing a persistent and

reproducible computing environment, the Reproducible Compute Capsule.

A software project can be released with access to the scientific community by depositing the

code in a reproducible capsule verified by Code Ocean. Upon verification, the software is added to

the Code Ocean Open Science Library. Registered scientists can execute the code directly in the

cloud or download the self-contained capsule.

Code Ocean enables collaboration and versioning. There is a reproducible compute capsule of

HEWES published on Code Ocean [180], preconfigured to run a 1D simulation by hitting “Repro-

ducible Run”, see Figure 3.1.

The capsule showcases how the code can be executed even on slightly outdated host systems.

The installation from source of required software components, such as a sufficiently recent C++
compiler and CMake version, are demonstrated for a Linux distribution in the “environment” sec-

tion.

A highlighted run script leads through the subsequent execution steps. Hence, the reproducible

compute capsule also functions as a tutorial. Researches are provided with a sufficient amount of

free computing hours to conduct their own simulations in the cloud.

48 3. HEWES: The Heisenberg–Euler Weak-Field Expansion Simulator

F
igure

3.1:
Screenshot

ofthe
C

om
pute

C
apsule

on
C

ode
O

cean.
O

n
the

top
right,a

reproducible
run

can
be

started.
It

is
preconfigured

to
a

1D
sim

ulation.
T

he
output

is
stored

under
“results”

on
the

left.In
that

left
panelthe

code
can

be
brow

sed
and

the
softw

are
environm

ent
be

listed.

Chapter 4

All-Optical Quantum Vacuum
Simulations

Simulations of the Heisenberg-Euler Quantum Vacuum

Harmonic
Generation

in higher dimensions

Stable
algorithm
where the
dispersion
relation
takes care of
unphysical
modes

Chair for
Computational

Physics
A. Lindner
B. Oelmez

H. Ruhl

Polari-
zation
Rotation
at pulse
collision
s

Graphical abstract of Nonlinear simulations of the quantum vacuum in the Heisenberg–
Euler weak-field expansion [147]

50 4. All-Optical Quantum Vacuum Simulations

Links

Research Unit FOR 2783: Probing the Quantum Vacuum at the High-Intensity Frontier
http://www.quantumvacuum.org

Reproducible Compute Capsule on Code Ocean
https://doi.org/10.24433/CO.5672141.v1

Mendeley Data Repository with analysis scripts and extra material
https://doi.org/10.17632/f9wntyw39x.3

Highlights

• Universality with respect to pulse configurations in contrast to analytical treatments

• Scalability on distributed computing systems and 3D capability

• Inclusion of up to six-photon processes in the Heisenberg–Euler weak-field expansion

http://www.quantumvacuum.org
https://doi.org/10.24433/CO.5672141.v1
https://doi.org/10.17632/f9wntyw39x.3

4.1 Introduction 51

4.1 Introduction

As outlined in Chapter 1, the QED vacuum can be understood as a nonlinear, polarizable medium.

Accordingly, nonlinear optical effects should in principle be observable, but the violations of the

superposition principle for electromagnetic fields become noticeable only at unparalleled high in-

tensities of the involved light sources.

Experimental and financial hurdles for the detection of such effects are thus very high. Facili-

ties need to be equipped with high-intensity laser pulses and likewise ultra sensitive detectors. To

gain a clear vision, such endeavors are nowadays backed by computer simulations. Consequently,

advanced numerical frameworks are relevant to simulate future QED experiments. The present

simulation project is part of a research unit dedicated to the investigation of the nonlinear optical

properties of the quantum vacuum.

The capabilities of HEWES are demonstrated by solving various scenarios of nonlinear vac-

uum phenomena and by successfully cross-checking with analytical results where they exist. The

prominent probe–pump approach outlined in Section 1.5 is the main constellation to be considered

for the detection of nonlinear vacuum effects.

Tiny nonlinear effects can be successfully extracted by a proper postprocessing of the simula-

tion results with remarkable accuracy. Up to six-photon processes can be simulated, where a useful

feature of the code is that the different order processes can be simulated separately. The contribu-

tions of different orders of the weak-field expansion can thus be singled out. Full 3D capability has

been worked out and first results can be presented.

The numerical predictions of the presented solver are cross-checked with analytical predictions

for birefringence as calculated in [82, 83] and the generation of higher harmonics as predicted in

[111].

Outline

In Section 4.2 the phase velocity reduction of a probe pulse propagating through a strong elec-

tromagnetic background is successfully compared to analytical predictions for sufficiently large

background field strengths.

In Section 4.3 the phenomenon of vacuum birefringence is investigated with the help of probe–

pump setup simulations. The theoretical prediction for the polarization flipping probability in

plane wave backgrounds and its scaling with various parameters is verified. An extrapolation of

the results to wavelengths in the x-ray regime is performed.

In Section 4.4 the capability of simulations to predict higher harmonics generated by vacuum

nonlinearities is demonstrated. It is shown that in 1D available analytical results are accurately

reproduced. Examples of harmonic generation in 2D and 3D simulations are presented in Section

4.5. The latter are hard, if not impossible, to obtain by analytical means and are used for compar-

ison with the previous 1D simulations. Higher-dimensional simulations enable the investigation

of complicated scenarios that cannot be solved analytically in the near future but are extremely

pertinent to master the experimental challenges.

52 4. All-Optical Quantum Vacuum Simulations

4.2 Phase velocity in a strong background

A probe plane wave is propagated along the x-axis,

~E(x; t)= ~Ap cos(kx−kvt) , (4.1)

through a linearly polarized strong electromagnetic background with field strength Ab. The polar-

ization of latter breaks the isotropy of space, giving rise to different refractive indices [74, 75, 117,

181]

n± = 1+ α

45π
(11±3)

A2
b

E2
cr

= 1+δn± (4.2)

for a probe polarization orthogonal (+) and parallel (-) to the background polarization. Since Equa-

tion (4.2) only takes into account the four-photon interaction contribution, i.e., it neglects all but

the first nonlinear term in the weak-field expansion (1.20), the results are verified turning off six-

photon processes in the simulations.

The resulting phase velocity change vnli from the vacuum speed of light, given by

vnli

c
= v

c
−1= 1

n±
−1=− δn±

1+δn±
, (4.3)

can be extracted with the help of a Fourier analysis of a time-propagated wave. When the passed

time of propagation is chosen to be an integer multiple of λ, it is obtained with l ∈N [145]

~E(x; l ·λ/c)= ~Ap cos(2πx/λ−2πl vnli)= ~Ap cos(2π(x/λ− l vnli)) . (4.4)

The nonlinear phase velocity contribution can then be extracted from the phase after a spatial

Fourier transformation evaluated at λ−1. This results in

vnli

c
=− 1

2πl
arg

(
FT[E(x; tl)](λ−1)

)
, with c · tl = l ·λ . (4.5)

The spatial Fourier transformation in Equation (4.5) can be replaced by a Fast Fourier Transfor-

mation in the analysis.

To analyze the phase velocity variation numerically, the background field strength is varied.

In a second step the relative polarization of the waves is changed from parallel to orthogonal.

The configurations are given in Table 4.1. The total simulation time is chosen to be 200 µm/c,

conveniently divided into 100 steps of 2 µm – the chosen wavelength of the probe wave.

It can be seen that the nonlinear interactions give note to themselves in a reduction of the phase

velocity of the simulated waves in Figure 4.1. For sufficiently large background field strengths the

numerical values are in very good agreement with the analytical predictions.

4.3 Vacuum birefringence

Polarization, or helicity, flipping of a fraction of photons in a probe pulse propagating through a

strong background pump pulse is a result of vacuum birefringence. The origin of the effect is again

the breaking of the isotropy of space by the polarization of the strong background. The refractive

4.3 Vacuum birefringence 53

Table 4.1: Settings for phase velocity variation tests. The background amplitudes and the relative
polarizations are varied. The large wavelength of the background manifests itself as an ever-
persistent static background.

Grid Length 100 µm

Lattice Points 1000

Background ~A (0,3,0)×10−6 Ecr up to (0,0.9,0)Ecr

λ 1 Pm

Probe ~A (0,1,0)×10−6 Ecr and (0,0,1)×10−6 Ecr

λ 2 µm

10 6 10 5 10 4 10 3 10 2 10 1 100

Ab/Ecr

10 15

10 13

10 11

10 9

10 7

10 5

10 3

v n
li/

c

Analytical, = /2
Analytical, = 0
Simulated, = /2
Simulated, = 0

Figure 4.1: Nonlinear contribution to the phase velocity slow-down in a background with varying
field strength. The simulation results converge to a value of vnli ≈ 2×10−12 for small background
field strengths. This is the phase velocity reduction caused by numerical errors, which are getting
larger than the physical effect for background field strengths Ab < 10−4Ecr. Deviations from the an-
alytical expectation are higher for lower background field strengths. The error at Ab = 3×10−4Ecr
is still 6.1% for parallel and 4.5% for orthogonal relative polarization of the probe. This difference
originates in the probe wave not being a perfect “probe” as in the idealized theoretical scenario and
thus is contributing with its own polarization of Ap = 3×10−6Ecr. The values for background field
strengths larger than 10−4Ecr have a mean absolute percentage error, c.f. Equation (6.15), of 1.8%
for parallel relative polarization and 1.2% for orthogonal relative polarization of the probe.

54 4. All-Optical Quantum Vacuum Simulations

~kp

~kb

~k′
p

z

y

~εb ~ε∥

~ε⊥

x

Figure 4.2: Qualitative depiction of the electric fields in a coaxial probe–pump experiment for
the measurement of vacuum birefringence. The probe (green) traverses the counter-propagating
pump (blue), experiencing a polarization rotation due to different refractive indices. The originally
linearly polarized probe is afterwards marginally elliptical (turquoise). The effect is depicted sig-
nificantly exaggerated for visibility. This effect is results from the fact that the isotropy of space
for the charged particle–antiparticle fluctuations in the vacuum is broken by the polarization of
the strong background pulse. The coupling of these fluctuating particles in turn to the probe pulse
results in different refractive indices for the polarization modes of the probe, as given in Equation
(4.6).

indices from above,

n− = 1+ 8α
45π

E2

E2
cr

and n+ = 1+ 14α
45π

E2

E2
cr

, (4.6)

generate a difference in optical path length for the probe pulse polarization components parallel

and orthogonal to the pump polarization, which results in birefringence. On a microscopic level, a

portion of the probe pulse’s quanta flip their polarization. Macroscopically, the overall polarization

experiences a tiny rotation. There are facilities constructed with the purpose to detect vacuum

birefringence [182, 183].

A typical probe–pump scenario devised for the observation of helicity flips is sketched in Figure

4.2. A probe pulse propagates through a strong low-frequency pump field in which spatial isotropy

is broken. While propagating through a pump field a fraction of probe pulse photons flips their

polarization by 90° which results in a tiny ellipticity of an initially linearly polarized probe pulse.

A corresponding simulation configuration showing one polarization direction is shown in Figure

4.3.

In order to backtest the numerical solver, firstly, in Section 4.3.1, parametric checks of the

flipping probability as derived in [82] are performed. The settings given in Table 4.2 are chosen

to this end with Gaussian pulses given by Equation (4.8) below. With that result being verified,

secondly, in Section 4.3.2, the parametric scaling properties are made use of to extrapolate results

to wavelenghts in the x-ray regime. This is compared to a calculation for a realistic polarization

flipping scenario calculated in [83]. The parameters for that setup are listed in Table 4.3.

For both cases the normalized vectors parallel and orthogonal to the initial probe polarization

4.3 Vacuum birefringence 55

10 20 30 40 50 60
x [μm]

-0.03

-0.02

-0.01

0.01

0.02

0.03

Ez [Ecr]

Figure 4.3: Sketch of the pulse configuration for the simulation of polarization flipping as shown in
Figure 4.2. On the left is the weaker probe pulse which propagates to the right; on the right is the
strong pump pulse propagating leftwards. Note that in actual simulations (parameters in Table
4.2) the probe field strength and wavelength are significantly smaller. Adjustments are made here
for better visibility.

are given by

~ε∥ = (0,1/
p

2,1/
p

2) and ~ε⊥ = (0,−1/
p

2,1/
p

2) . (4.7)

For the simulations, 1D Gaussian pulses are used in the form

~E = ~A e−(~x−~x0)2/τ2
cos

(
~k ·~x

)
, with ~k = 2π

λ
k̂ , and ~B = k̂×

~E
c

, (4.8)

where the vector ~A comprises amplitude and polarization,~x0 is the center of the pulse, τ its width,

λ the wavelength, and k̂ the unit propagation direction vector.

Pulses are implemented in space without explicit time dependence. With spatial derivatives via

the finite differences scheme, the ODE system in time (2.22) from Chapter 2 is formulated, which

is solved by CVODE for the time evolution. For convenience, the normalized vector k̂ indicating

the propagation direction is stated in the parameter tables.

Since analytical estimates for polarization flipping such as in [83] make use of a photon picture,

while the numerical simulations presented in the present work propagate coherent modes, the

mapping
N⊥
N

= ħωN⊥
ħωN

= E⊥
Etot

(4.9)

is used. The energies in the respective polarization directions are proportional to the electric field

strength projections squared,

E⊥ ∼ ∑
xi∈C

(
~E(xi) ·~ε⊥

)2
, E∥ ∼

∑
xi∈C

(
~E(xi) ·~ε∥

)2
, Etot =E⊥+E∥ . (4.10)

All other factors in (4.9) cancel out. It has to be mentioned that Equation (4.9) implies that the

frequencies of the signal photons equal that of the probe pulse. However, as is shown in Section

4.4, the nonlinear interaction results in a small fraction of photons with altered frequency.

56 4. All-Optical Quantum Vacuum Simulations

4.3.1 Vacuum birefringence – parametrical dependencies

For a probe pulse coaxially counter-propagating to a plane wave background field, the polarization

flipping probability, taking into account again only up to four-photon interactions, in the low-energy

approximation, is given by [82]

Pflip = N⊥
N

= α2

255λ2
p

sin2(2σ)
(∫

dx
Ab(x)2

E2
cr

)2

, (4.11)

where σ is the initial angle between the probe and pump polarizations, λp the wavelength of the

probe pulse, and Ab the amplitude of the background pulse. The propagation direction of the

probe is assumed to be perpendicular to the pump polarization and the probe field strength to be

negligible compared to the pump. The probability directly translates to the flip ratio,

N⊥ = Pflip ·N . (4.12)

Formula (4.11) yields all the parametric dependencies for the probability of polarization flips and

indirectly excludes other parameters. There is a the strong dependence on the optical path of

the pump pulse and on the probe wavelength. Notably, the ratio is independent of the shapes of

the pulses. Limitations of the above formula for focused background pulses are discussed in the

following section. In 1D simulations the background can be modeled as a Gaussian pulse. To

investigate the scaling properties of the numerical solver the settings in Table 4.2 are used, where

only those parameters affecting Equation (4.11) are actually relevant. A time-resolved flipping

process for those parameters is depicted in Figure 4.4. The results of the parametric scaling tests

are visualized in Figure 4.5. There is perfect agreement between the 1D simulation results and

formula (4.11).

Neglecting the signals for σ = 0, π/2, where Pflip = 0 analytically, which cannot be respected in

a relative error calculation when the true values serve as baseline, the mean absolute percentage

errors for each scaling test are below 0.1%. A Mathematica [151] analysis of the parametric scaling

properties of Equation (4.11) and the comparison to numerical results can be found in [152].

With these scaling properties being verified in the algorithm, hereinafter the analytical result

in case (a) of [83], where a small probe pulse traverses a strong pump field, is compared to an

extrapolation of simulation results.

4.3.2 Vacuum birefringence – extrapolation to the x-ray regime

Simulations of birefringence effects are computationally expensive in higher dimensions for the

small wavelengths and field strengths targeted in experiments. Making use of the scaling proper-

ties in Equation (4.11), the phenomenon of birefringence can still be predicted for the parameters

accessible in planned near future experiments by simulating numerically feasible, quasi-1D setups

with consecutive extrapolation.

To this end this approach is used to reproduce an analytical result for a coaxial probe–pump

setup with Gaussian laser pulses in a realistic scenario by considering case (a) of [83]. In this case

the radius of the probe pulse is taken to be much smaller than the waist of the pump beam, such

that the probe does not sense the transverse structure of the pump. This scenario thus amounts to

a 1D case. The settings for the simulation of the scenario described in case (a) in [83] are given in

4.3 Vacuum birefringence 57

Table 4.2: Parameters for probe and pump
beams chosen to test the parametric depen-
dencies of polarization flipping in Equation
(4.11). The probe wavelength, the pump field
strength, and their relative polarizations are
varied to obtain the parametric scaling re-
sults of Figure 4.5.

Grid Length 80 µm

Lattice Points 60×103

Pump ~A (0,0,34)×10−3Ecr

k̂ (-1,0,0)

λ 800 nm

~x0 58 µm

τ 3.5 µm

Probe ~A (0,50,50)×10−6Ecr

k̂ (1,0,0)

λ 25 nm

~x0 22 µm

τ 4.0 µm

0 20 40 60 80 100 120
t [fs]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
/N

[1
0

9]

Figure 4.4: Time evolution of the polariza-
tion flipping ratio for the parameters pre-
sented in Table 4.2. A simulation time of
30 µm divided into 100 steps, so 1 fs per step
is used. The settings used here provide an
interaction time of 25 fs, indicated by the red
vertical lines. The red horizontal line corre-
sponds to the asymptotic relative flip ratio.

Table 4.3: Parameters for probe and pump
beam adapted to [83]. The pump field
strength is obtained as the square root of the
ratio of intensity to critical intensity. The
pump pulse duration is 30 fs (2τ in the 1/e2

criterion).

Grid Length 80 µm

Lattice Points 80×103

Pump ~A (0,0,0.34)×10−3Ecr

k̂ (-1,0,0)

λ 800 nm

~x0 58 µm

τ 4.5 µm

Probe ~A (0,50,50)×10−6Ecr

k̂ (1,0,0)

λ 96 pm

~x0 22 µm

τ 3.4 µm

0 20 40 60 80 100 120
t [fs]

0

1

2

3

4

5

N
/N

[1
0

9]

Figure 4.6: Time evolution of the polariza-
tion flipping probability for an adaptation of
the parameters presented in Table 4.3. One
time step corresponds to 1.5 fs. The adapta-
tions are: The pump field strength is mag-
nified by a factor of 100 to 34×10−3Ecr in
order to reduce numerical noise. The probe
wavelength is enlarged to a computationally
acceptable value of 25 nm. The distance be-
tween the vertical red lines is the total in-
teraction time tI = 24fs. The horizontal red
line denotes the asymptotic flip ratio.

58 4. All-Optical Quantum Vacuum Simulations

10
-4

0.001 0.010 0.100 1
Ab/Ecr

10
-17

10
-14

10
-11

10
-8

10
-5

0.01
N⟂/N

0
π

16

π

8

3π

16

π

4

5π

16

3π

8

7π

16

π

2

σ

5. ×10
-10

1. ×10
-9

1.5 ×10
-9

2. ×10
-9

2.5 ×10
-9

N⟂/N

4. ×1014
1.6 ×1015

6.4 ×1015
λ
-2[m-2]

5. ×10-10

1. ×10-9

5. ×10-9

1. ×10-8

N⟂/N

10
16

10
18

10
20

λ
-2[m-2]

10
-16

10
-14

10
-12

N⟂/N

Figure 4.5: Scaling of the polarization flipping probability with variations of the parameters given
in Table 4.2. The solid lines are the analytical curves obtained with the help of Equation (4.11).
The red dots are simulation results. Top left: varying the background field strength. Top right:
varying the relative polarization angle of probe and pump. Bottom left: varying the probe wave-
length. Bottom right: combining the scaling of the pump field strength and probe wavelength; Ab
is scaled down by a factor of 100 compared to the parameter in Table 4.2 and simultaneously an
extrapolation to frequencies in the x-ray regime is performed. This last way of combining scaling
properties is useful in order to extrapolate to relevant probe frequency regimes, while keeping the
numerical accuracy high and the computational load low.

4.4 Harmonic generation 59

1014 1015 1016 1017 1018 1019 1020 1021
2 [m 2]

10 17

10 16

10 15

10 14

10 13

10 12

10 11

N
/N

Simulated
Analytical (VEP)
Extrapolation

Figure 4.7: Extrapo-
lation of polarization
flipping ratios to the x-
ray regime and com-
parison to a result ob-
tained via the vac-
uum emission picture
in [83] (red dot). The
blue line is an extrapo-
lation of simulation re-
sults (blue dots) with
various probe wave-
lengths.

Table 4.3. The calculation in [83] is performed in the vacuum emission picture [154].

Some parameters in [83], devised for experimental verification, impair the numerical approach.

First, the pump field strength is too low to extract the flipping process from the numerical noise.

To combat this, the field strength scaling properties can be used to simulate with a larger back-

ground amplitude. Second, the probe wavelength of λp = 96pm is in the x-ray regime to amplify

the effect, c.f. Equation (4.11), and is therefore problematically small for modeling on a discrete

grid. An extremely fine grid would be necessary to model that pulse. To evade computations that

expensive, the wavelength scaling properties can be made use of. The resulting extrapolation is

thus a combination of two scaling methods in the way shown in the bottom right of Figure 4.5 and

described in that caption.

Figure 4.7 shows that the extrapolated flipping ratio of 2.72×10−12 is almost twice as high

as the flipping ratio of 1.39×10−12 obtained in [83]. This is attributable to the neglect of a lon-

gitudinally localizing term with the Rayleigh length in the pulse form in Equation (4.8), c.f. the

higher-dimensional Gaussian pulse in Equation (4.30). This yields an estimated further suppres-

sion of about a factor of two. Accordingly, the value obtained at the corresponding probe frequency

via formula (4.11) is 2.73×10−12 and agrees with the simulations.

It is of course possible to carry out simulations of birefringence processes in higher spatial

dimensions with increased computational load. Part of a parallel project is the investigation of

polarization flipping in extreme cases in 1D and 2D. Full 3D simulations are left for future work.

A principal simulation scenario for future prospects regarding polarization flipping is given at the

end of the chapter in Figure 4.26.

4.4 Harmonic generation

To further crosscheck the solver, the prominent probe–pump scenario for the detection of nonlinear

vacuum signatures shown in Figure 4.8 is considered again with two head-on colliding pulses, a

strong background pulse and a weaker probe pulse. For this analysis, the former pulse is assumed

to have zero frequency. The initial settings are listed in Table 4.4.

Approximate analytical results for this scenario are derived in [111, 113]. The effective vertices

for four- and six-photon scattering in Figure 4.9 (a) can produce outgoing photons with higher fre-

quency by photon merging. For example, in Figure 4.9 (b) two probe photons and a zero-frequency

60 4. All-Optical Quantum Vacuum Simulations

Table 4.4: Initial settings to observe har-
monic generation in 1D simulations, see Fig-
ure 4.8.

Grid Length 300 µm

Lattice Points 4000

Pump ~A (0,20,0)×10−3Ecr

k̂ (-1,0,0)

λ 1 m

x0 200 µm

τ 12.8 µm

Probe ~A (0,5,0)×10−3Ecr

k̂ (1,0,0)

λ 2 µm

x0 100 µm

τ 10 µm

50 100 150 200 250 300
x [μm]

-0.005

0.005

0.010

0.015

0.020

Ey [Ecr]

Figure 4.8: Visualization of the pulse con-
figuration to detect higher harmonics with a
zero-frequency background pulse, see Table
4.4.

ωb

ωb ωp

ωp

ωp

ωb

ωp

ωb ωp

ωb

(a) Effective vertices for four- and six-photon scatter-
ing.

ωb

ωp

2ωpωp

(b) Example of high-harmonic
generation with a zero-
frequency background.

Figure 4.9: Feynman diagrams for harmonic generation with a probe (subscript p) and background
(subscript b) wave. In (b) there is an implicit time axis from left to right.

background photon merge into an outgoing photon with frequency 2ωp. The possible contributions

of two-wave scattering that result from the first orders of the weak-field expansion are listed in

Figure 4.10.

In the present case of ωb = 0, there are for four-photon processes

• the scattering of a background and a probe photon contributing with one photon to the zeroth

harmonic (ωr = 0), also called dc component, and with one to the first harmonic (ωr =ωp), also

called fundamental harmonic;

• two background photons and one probe photon merging to produce a photon of the funda-

mental harmonic (ωr =ωp); and

• two probe photons and one background photon merging to produce a photon of the second

harmonic (ωr = 2ωp).

For six-photon processes it is obtained

4.4 Harmonic generation 61

±ωb

±ωb ±ωr

±ωp ±ωr

±ωb ±ωp

±ωp

(a) ωr ∈ωb,2ωp ±wb,ωp,ωp ±2ωb

±ωp

±ωb

±ωp

±ωb ±ωr

±ωb

±ωp

±ωr

±ωp

±ωb ±ωp

±ωb

(b) wr ∈ ωb,3ωb,ωp + 3ωb,2ωp ∓ 2ωb,ωp,ωp ∓
2ωb,3ωp ∓2ωb

Figure 4.10: Allowed vertices of Figure 4.9 with resulting frequencies ωr for (a) four-photon and
(b) six-photon processes in a probe–pump setup [113]. ± indicates in-/outgoing photons. Further
restrictions are posed upon the asymptotic states by energy conservation.

• the sheer scattering of background and probe photons contributing to the dc component and

the fundamental harmonic;

• two background and two probe photons merging and producing one photon contributing to

the second harmonic and one contributing to the dc component;

• two background and two probe photons merging and producing two photons contributing to

the fundamental harmonic;

• two background photons and three probe photons merging and producing a photon contribut-

ing to the third harmonic (ωr = 3ωp); and

• the merging of three background and two probe photons producing a photon contributing to

the second harmonic.

A visualization of the contributions at selected points in time is provided with Figure 4.11.

These simulations are strictly 1D and the use of plane waves leads to strong constraints. It can

be seen that the asymptotic contribution to the second harmonic is only due to six-photon processes.

That is because wave-mixing – resulting pulses that are combined of photons of both pulses – is

not allowed asymptotically. The reason behind this is energy conservation, since for coaxial pulses

and a photon resulting of wave-mixing it is found

kµr = npωp (1, k̂)+nbωb (1,−k̂) and (kµr)2 = 0 ⇒ np nb
!= 0 , (4.13)

where np and nb are the numbers of the contributing photons and k̂ is the unit propagation di-

rection vector of the probe pulse. These states are thus only visible in the overlap position. The

six-photon process, on the other hand, can produce second harmonics without wave-mixing, see the

second point for six-photon processes above.

As discussed in the context of birefringence in Section 4.3, the 1D case corresponds to a simpli-

fied handling of the experimentally relevant scenario of counter-propagating pulses.

For the highest generated harmonic, the short-lived third harmonic, the rule-of-thumb resolu-

tion limit for the grid (2.58) is slightly exceeded. This comes without noticeable accuracy problems

as is demonstrated in the following Sections.

62 4. All-Optical Quantum Vacuum Simulations

6 4 2 0 2 4 6
p

Am
pl

itu
de

Initial State

6 4 2 0 2 4 6
p

Am
pl

itu
de

Overlap State

6 4 2 0 2 4 6
p

Am
pl

itu
de

Final State

6 4 2 0 2 4 6
p

Am
pl

itu
de

Initial State (only nonlinear effects)

6 4 2 0 2 4 6
p

Am
pl

itu
de

Overlap State (only nonlinear effects)

4- and 6-photon
6-photon

6 4 2 0 2 4 6
p

Am
pl

itu
de

Final State (only nonlinear effects)

4- and 6-photon
6-photon

Figure 4.11: Log-scale plot making the higher harmonics visible in frequency space. Top: a full sim-
ulation in the linear vacuum supplemented by four- and six-photon nonlinear interactions. Bottom:
after subtraction of the linear vacuum. The initial state contains only the main signals of the pulses
with no nonlinear interaction yet present. The overlap state denotes the time step where the pulses
are directly overlapping, at the final state they have separated again – the asymptotic field is left.
It can be deduced that the third harmonic and the asymptotic part of the second harmonic are
solely ascribable to six-photon processes.

4.4.1 Harmonic generation – analytical results

Analytical methods in [111, 113] contain a derivation of iterative solutions to the nonlinear equa-

tions of motion for zero-frequency backgrounds. With the probe (p) and background (b) pulses as

time-dependent 1D Gaussian pulses with the parameters of Table 4.4 the pulses are given by, c.f.

Equation (4.8),

~Ep(x; t)=~εp Ap e−(kµp xµp)2/(ωpτp)2 cos(kµpxµp) and ~Eb(x; t)=~εb Ab e−(kµb xµb)2/(ωbτb)2 , (4.14)

with kµj x jµ =ω j t−~k j~x j. The shifted coordinates of probe and background field read

~xp = (x−100µm,0,0) and ~xb = (x−200µm,0,0) . (4.15)

Writing a combined electric field as
~E = ~Ep +~Eb , (4.16)

the inhomogeneous wave equation in 1D can be written as

(∂2
t /c2 −∂2

x)~E = T[~E] . (4.17)

The source term T[~E] comprises the nonlinear Heisenberg–Euler interactions. Decomposing the

electric field into
~E = ~E(0) +~E(1) + ... , (4.18)

4.4 Harmonic generation 63

where ~E(0) solves the free vacuum wave equation (∂2
t /c2 − ∂2

x)~E(0) = 0, an iterative procedure is

obtained [111, 113] in which

(∂2
t /c2 −∂2

x)~E(1) = T[~E(0)] . (4.19)

With the polarization for both fields given by~ε= (0,1,0) and defining the shorthands

κp = kµpxµp

ωpτp
and κb =

kµbxµb

ωbτb
, (4.20)

it is then obtained for the solution to the nonlinear wave equation (4.19) at the first iterative order

for [111, 113]

• the dc component:

the overlap field
~E(1)

0,o =− 8α
180π

A2
p
~Eb(x; t) e−2κ2

p~ε (4.21)

and the asymptotic field

~E(1)
0,a = 8α

180π
A2

p

√
π

2
τpκb

τb
(1+erf(

p
2κb)) Ab e−κ

2
b~ε ; (4.22)

• the fundamental harmonic:

the overlap field
~E(1)

1,o =− 8α
90π

Ap e−κ
2
p ~Eb(x; t)2 cos(kµpxpµ)~ε (4.23)

and the asymptotic field

~E(1)
1,a = 8α

90π
Ap e−κ

2
p A2

b

√
π

2
ωpτb

1+erf(
p

2κb)
2

sin(kµpxpµ)~ε ; (4.24)

• the second harmonic:

the overlap field

~E(1)
2,o =−A2

p e−2κ2
p

[
8α

180π
~Eb(x; t)2 + 96α

630π
~Eb(x; t)3

]
cos(2kµpxpµ)~ε (4.25)

and the asymptotic field

~E(1)
2,a = 96α

315π
A2

p e−2κ2
p A3

b

√
π

3
ωpτb

1+erf(
p

3κb)
2

sin(2kµpxpµ)~ε ; and (4.26)

• the third harmonic:

the overlap field

~E(1)
3,o =− 96α

1260π
A3

p e−3κ2
p ~Eb(x; t)2 cos(3kµpxpµ)~ε (4.27)

and the asymptotic field
~E(1)

3,a = 0 . (4.28)

64 4. All-Optical Quantum Vacuum Simulations

Figure 4.12: Thumbnail of animations available in the Mendeley Data repository [150] showing the
time evolution of the various harmonics in 1D resulting form a pulse collision with the specifica-
tions of Table 4.4 with nonlinear four-photon and six-photon interactions.

Using the values from Table 4.4, the solid lines in Figure 4.13 are obtained. Those are employed to

scrutinize the correctness of the simulation results.

A Mathematica [151] analysis of the analytical results for harmonic generation can be found

in [152]. Animations of the arising and evolution of the various harmonics are provided in the

Mendeley Data repository [150] (thumbnails and description in Figure 4.12).

4.4.2 Harmonic generation – simulation results

To put the focus on the nonlinear contributions to the generation of harmonics, each setting is

simulated three times with varying combinations of interactions included: once including only the

nonlinear effects of four- and six-photon contributions; once including only six-photon processes;

and once excluding all nonlinear interactions, i.e., keeping only the linear vacuum. By subtracting

the dynamics in the linear vacuum from the full dynamics, the higher order processes of the weak-

field expansion are extracted. Furthermore, the simulations of six-photon processes permit to

isolate their sole contribution, as is shown in Figure 4.11. It is a fruitful feature of the simulation

code that the contributions of four- and six-photon diagrams can be turned on and off to make them

separately visible.

In order to extract the amplitudes of the various arising harmonics and their time evolution,

their respective frequencies have to be filtered in Fourier space and then transformed back to

position space [145]. The amplitude is then obtained as the maximum norm. Its time evolution

can be observed, in this case with a chosen resolution of a time step of 1 µm/c. The results for the

zeroth harmonic, first harmonic, second, and third harmonic are displayed in Figure 4.13.

As can be seen in Figure 4.13, there is good agreement between the analytical approximation

4.5 Higher-dimensional simulations 65

0 20 40 60 80 100
t c [m]

0

10

20

30

40

50

60
 A

m
pl

itu
de

 [1
0

12
E c

r]
DC Component

Ana., 4+6-photon
Sim., 4+6-photon
Sim., 6-photon

0 20 40 60 80 100
t c [m]

0

5

10

15

20

Am
pl

itu
de

 [1
0

9 E
cr

]

Fundamental Harmonic
Ana., 4+6-photon
Sim., 4+6-photon
Sim., 6-photon
Sim., 6-photon (x105)

0 20 40 60 80 100
t c [m]

0

10

20

30

40

50

Am
pl

itu
de

 [1
0

12
E c

r]

Second Harmonic
Ana., 4+6-photon
Sim., 4+6-photon
Sim., 6-photon

0 20 40 60 80 100
t c [m]

0

2

4

6

8

Am
pl

itu
de

 [1
0

15
E c

r]

Third Harmonic
Ana., 4+6-photon
Sim., 4+6-photon
Sim., 6-photon

Figure 4.13: Amplitude evolution of the nonlinearly generated harmonics. Shown are the simu-
lation results for harmonics caused by four- and six-photon processes combined (blue dots) and by
only six-photon processes (red dots), all without the linear vacuum contributions. The analytical
approximations summarized in (4.21)-(4.28) are underlying (light green curve).

and the simulation results. Small systematic errors are unavoidable in view of the back and forth

Fourier transformation and slicing of frequency ranges. The mean absolute percentage errors of

the simulation results are calculated to be less than 1% in the regions where the amplitudes are

non-vanishing.

Asymptotic states are constrained by energy-momentum conservation, while the overlap state

has a richer spectrum. The overlap spectrum becomes more pronounced and versatile when the

pulses collide at a non-zero angle in higher dimensions. Some results are demonstrated in Section

4.5, where also the zero-frequency background restriction is relaxed. Signals, which are degenerate

in the case of a non-zero-frequency pulse, split up in that case.

Simulations in higher dimensions provide a powerful means to analyze varying collision con-

figurations. Situations that pose no further difficulty to the numerical code are considerably hard

to cope with analytically. Employing simulations of the solver it is possible to track harmonic fre-

quencies in time and space for scenarios of arbitrary pulse parameters – with the only restrictions

posed by the applicability of the Heisenberg–Euler weak-field expansion and, of course, computa-

tional feasibility.

4.5 Higher-dimensional simulations

For simulations in 2D a special adaptation of 3D Gaussian pulses is used to model the diffusion

behavior. The pulse is assumed to propagate along the z-axis. The widening of the beam with

66 4. All-Optical Quantum Vacuum Simulations

respect to the longitudinal coordinate z is given by the waist

w(z)= w0

√
1+

(
z− z0

zR

)2
(4.29)

with w0 the waist of the beam at position z0, where the amplitude is 1/e of the initial value. The

cross-sectional area in 1D is a point, in 2D is a line, and in 3D is an area. The field intensity scales

with w0/w(z) and with the surface area ∼ z2 in 3D. Lateral dispersion has to be taken into account

for the 2D Gaussian pulses, where the surface scales as ∼ z. Hence, the factor w0/w(z) appearing

as prefactor in the Gaussian pulses gets a square root in the lower-dimensional case. The pulse

can thus be written as

~E(r, z(t))= A~ε
√

w0

w(z)
e−(r/w(z))2 e−((z−zτ)/τz)2 cos

(
k r2

2R(z)
+ζ(z)−kz

)
. (4.30)

It is further defined

• the parameter A determining the peak pulse amplitude and the polarization~ε ;

• the distance to the propagation axis (here taken to be z) r =
√

x2 + y2 ;

• the wavenumber k = 2π/λ ;

• the pulse width in z-direction τz (pulse duration) and the envelope center zτ ; and

• the Rayleigh length zR = πw2
0/λ as the longitudinal distance from z0 at which the waist has

increased by a factor of
p

2 , which is contained in

• the Gouy phase ζ(z)= arctan(z/zR) , and

• the radius of curvature R(z)= z(1+ (zR /z)2) .

The settings used for 2D simulations, which are confined to the xy-plane for propagation, are listed

in Table 4.5.

For coaxial pulse collisions there is a correspondence to 1D with respect to the harmonics gener-

ated. Comparing a head-on collision in 1D (Figure 4.11) and 2D (Figure 4.14), a similar frequency

spectrum is found at the different states in time. Contributions of different orders in the weak-field

expansion are demonstrated again (Figure 4.15), with the same reasoning as in Section 4.4. The

main difference stems from the fact that the two conceptually equal pulses have the same non-zero
frequency ωp. There is still a degeneracy of signals present by virtue of the equal frequencies.

A feature that is not present in 1D simulations is a lateral broadening of the pulses in frequency

space. This effect arises during the interaction and remains, as can be seen in the simulation

videos 4.20 [150]. The presence of a lateral beam profile of the pulses is a prerequisite to invoke

this outcome. This results in outgoing signal photons with transverse momentum components,

effectively yielding a diffraction effect [80]. Diffraction spreading opens up the opportunity to

detect signal photons off the beam axis with a background free measurement. The scattering of

polarization-flipped signal photons outside the forward cone of a probe beam may thus constitute

an essential key ingredient for the detection of vacuum birefringence [83].

Correspondingly, from the position space point of view, the transversal momenta might imply

a slight focusing of the pulses. This can be explained with the lensing effect of a power pulse that

creates a refractive index influencing the propagation speed and direction, as detailed in Section

4.5 Higher-dimensional simulations 67

Table 4.5: Settings for 2D simulations with two conceptually equal Gaussian pulses. The wave-
length is obtained via λ= πw2

0/zR . The Rayleigh length and waist are chosen such that the wave-
length equals one micrometer.

Grid Square Size 80 µm × 80 µm

Lattice Points 1024×1024

Pulse 1 ~ε (0,0,1)

A 50×10−3Ecr

k̂ (-1,0,0)

λ 1 µm

w0 2.3 µm

zR 16.619 µm

zτ 20 µm

τz 4.5 µm

Pulse 2 Same parameters as for pulse 1

but varying propagation direction see Figures 4.14-4.22

and polarization

4.2. With a lower refractive index at the outer waist regions of at least one of the pulses, light

passing through the strong-field zone experiences a phase velocity change comparable to the one

in a convex lens. Focusing of light by light is an intriguing topic to be further investigated with the

help of adequate simulations with tailored pulse parameters.

Going beyond coaxial pulses by varying the collision angle and thereby lifting the degeneracy of

frequencies of the harmonics, geometry effects with rich spectra in 2D simulations can be observed,

see Figures 4.16–4.19 for perpendicularly propagating and colliding pulses as well as for a collision

angle of 135°. Most signals vanish again in the asymptotic state. The off-axis contributions occur

as consequences of the field spatio-temporal inhomogeneities [165].

The asymptotic harmonics, which can be seen in the right frames of the frequency plots, are

caused by the self-interactions of the 2D Gaussian pulses [110, 165]. Time-resolving the processes

(see the simulation video referenced in Figure 4.20) reveals that these harmonics arise immediately

as the dynamics begin, directly after the initial configuration shown at the lower left of the figure,

and thus already before the pulses overlap. Both the four- and six-photon processes contribute to

the asymptotic signals with |~k| =ωp/c and |~k| = 3ωp/c.

Six-photon processes contribute to all harmonics, in the overlap as well as in the asymptotic

states. In the overlap states various merging processes become directly visible. A more precise

analysis shows that the four-photon spectrum in the overlap states is even richer. Some signals,

however, are of the order of accumulating numerical errors that depend on a number of factors,

see the discussion in Chapter 6. Such errors appear, e.g., at the corners of the frequency plots for

four-photon and six-photon processes, irrespective of the pulse alignment.

The signals of asymptotic harmonics generated by four-photon interactions are aligned on the

initial propagation axes, while six-photon processes seem to generate a tiny off-axis twist. Note

that the initial symmetry of the two-pulse system is thereby conserved.

Giving the pulses different polarization directions, the harmonics can be tagged. The frequency

space of the simulations visualized in Figures 4.21 and 4.22 show again collision angles of 90° and

68 4. All-Optical Quantum Vacuum Simulations

135°, but the pulse propagating from the left is now polarized along the E y-direction. Hence, the

shown polarization components can be identified with one of the two pulses, and thus also the

harmonics.

Ultimately, in order to take into account all geometry effects, simulations have to be conducted

in full three spatial dimensions. A demonstration of configurations similar to those in 2D as shown

in Figure 4.16, in 3D yields results visualized in Figure 4.23. Pulses with frequencies differing

by a factor two colliding collinearly produce the results of Figure 4.24. By virtue of the differing

frequencies expressly rich harmonics spectra can be observed. The corresponding 1D case with

a breakdown of the frequencies is demonstrated in the examples provided in the code repository

[148]. Colliding the two pulses at an angle of 135° generates the harmonics shown in Figure 4.25.

It can be seen that the weakest generated signals have about the magnitude of numerical artifacts.

A promising configuration for the detection of a nonlinear vacuum response is given by the

prominent probe–pump laser pulse collision setup shown in Figure 4.26. While vacuum birefrin-

gence effects in 2D are simulated in a parallel project, even the employed supercomputing system

described in Appendix A does not provide enough computing power to for such simulations in 3D as

a consequence of the small probe wavelengths required to enhance the effect, c.f. Equation (4.11).

Ways to overcome the obstacle of extremely large 3D grids are discussed in Chapters 7 and 8.

Simulation results in higher dimensions extend the horizon to yet undiscovered terrain that is

particularly relevant for experiments. Predictions for light-by-light scattering in general should

be possible in all conceivable interaction scenarios between probe and pump with the help of the

solver [147].

The presented simulations in one spatial dimension could be cross-checked against analytical

results and are in perfect agreement with the latter. On the other hand, the simulation results in

higher dimensions have no direct analytical counterparts to compare with. A comparable accuracy

can be expected.

4.5 Higher-dimensional simulations 69

-30 -20 -10 0 10 20 30
x [m]

-30

-20

-10

0

10

20

30

y
[

m
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-30 -20 -10 0 10 20 30
x [m]

-30

-20

-10

0

10

20

30

y
[

m
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-30 -20 -10 0 10 20 30
x [m]

-30

-20

-10

0

10

20

30

y
[

m
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

Figure 4.14: Coaxially colliding pulses with the same polarization. The left plots show the initial
state, those in the middle the overlap state, and the right ones the final state. Top: position space.
Bottom: frequency space.

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

Figure 4.15: Frequency space of coaxially colliding pulses with the same polarization. The left plots
show the initial state, those in the middle the overlap state, and the right ones the final state. Top:
only four-photon diagrams included. Bottom: only six-photon diagrams included.

70 4. All-Optical Quantum Vacuum Simulations

-30 -20 -10 0 10 20 30
x [m]

-30

-20

-10

0

10

20

30

y
[

m
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-30 -20 -10 0 10 20 30
x [m]

-30

-20

-10

0

10

20

30

y
[

m
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-30 -20 -10 0 10 20 30
x [m]

-30

-20

-10

0

10

20

30

y
[

m
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

Figure 4.16: Perpendicularly colliding pulses with equal polarization. The left plots show the initial
state, those in the middle the overlap state, and the right ones the final state. Top: position space.
Bottom: frequency space.

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

Figure 4.17: Frequency space of perpendicularly colliding pulses with same polarization. The left
plots show the initial state, those in the middle the overlap state, and the right ones the final state.
Top: only four-photon diagrams included. Bottom: only six-photon diagrams included.

4.5 Higher-dimensional simulations 71

-30 -20 -10 0 10 20 30
x [m]

-30

-20

-10

0

10

20

30

y
[

m
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-30 -20 -10 0 10 20 30
x [m]

-30

-20

-10

0

10

20

30

y
[

m
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-30 -20 -10 0 10 20 30
x [m]

-30

-20

-10

0

10

20

30

y
[

m
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

Figure 4.18: Pulses with the same polarization colliding at an angle of 135°. The left plots show the
initial state, those in the middle the overlap state, and the right ones the final state. Top: position
space. Bottom: frequency space.

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

Figure 4.19: Frequency space of pulses with the same polarization colliding at an angle of 135°.
The left plots show the initial state, those in the middle the overlap state, and the right ones the
final state. Top: only four-photon diagrams included. Bottom: only six-photon diagrams included.

72 4. All-Optical Quantum Vacuum Simulations

-30 -20 -10 0 10 20 30
x [m]

-30

-20

-10

0

10

20

30

y
[

m
]

Position Space

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5
k y

[
p/c

]

Frequency Space

-30 -20 -10 0 10 20 30
x [m]

-30

-20

-10

0

10

20

30

y
[

m
]

Position Space

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

Frequency Space

Figure 4.20: Thumbnail of simulation videos for two pulses colliding at an angle of 90° and 135°
provided in the Mendeley Data repository [150]. 40 µm propagation distance are divided into 100
time steps. Note the self-interaction contributions for the higher-dimensional Gaussian pulses
in contrast to plane waves. Gaussian pulses in one dimension amount to plane waves, but in
higher dimensions there are self-interactions of a single Gaussian pulse since in that case F 6=
0. Therefore, the self-interactions already at the first time step cause the slightly wiggling 3ω
harmonics to become visible before the pulse overlap. From the overlap position onward, these
harmonics are static in frequency space.

4.5 Higher-dimensional simulations 73

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

Figure 4.21: Frequency space of perpendicularly colliding pulses with orthogonal relative polariza-
tion. The left plots show the initial state, those in the middle the overlap state, and the right ones
the final state. Top: the Ez component is shown. Bottom: the Bz component is shown.

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

-5 -3 -1 1 3 5
kx [p/c]

-5

-3

-1

1

3

5

k y
[

p/c
]

Figure 4.22: Frequency space of pulses colliding at an angle of 135° with orthogonal relative polar-
ization. The left plots show the initial state, those in the middle the overlap state, and the right
ones the final state. Top: the Ez component is shown. Bottom: the Bz component is shown.

74 4. All-Optical Quantum Vacuum Simulations

Figure 4.23: 3D simulation of two perpendicularly colliding Gaussian pulses. The visualizations
on the left show the overlap state, the visualizations on right the final state. Top: position space.
Bottom: frequency space.

Figure 4.24: 3D simulation of two coaxially colliding Gaussian pulses with different frequencies.
Left: initial pulse configuration. Right: harmonics spectrum at the overlap position.

4.5 Higher-dimensional simulations 75

Figure 4.25: Rich harmonics spectrum in 3D. This spectrum is generated by the two Gaussian
pulses of Figure 4.24 colliding at an angle of 135°. There are numerical remnants present on the
coordinate axes, where the zero values in frequency space are located and small numerical errors
accumulate. These can also be observed in Figure 4.23.

76 4. All-Optical Quantum Vacuum Simulations

F
igure

4.26:P
robe–pum

p
collision

in
a

flat-box
shaped

sim
ulation

space
in

order
to

detect
a

polarization
rotation

ofthe
probe

pulse.
T

he
probe

pulse
on

the
left

is
tiny

in
com

parison
to

the
strong

pum
p

on
the

right.

Chapter 5

Performance Optimization

Roofline model

“If you optimize everything you will always be unhappy.” – Donald E. Knuth

78 5. Performance Optimization

5.1 Introduction

Computation has been optimized advancing from the first code versions of [111, 113] to [144, 145],

but communication has not. While the code has been optimized with respect to smartly performed

computations and memory access at the derivative operations in comparison to the very first ver-

sions, focus was not put on large scale performance.

The code version from [144, 145] already performed decisively better than the one of [111, 113]

and enabled computations in 2D, but 3D simulations have not been conductible. One reason is

the implementation of parallelism in the code. MPI communication was performed with the use of

standard calls, not taking advantage of more advanced functionality. Moreover, the communication

pattern was a self-constructed, hard-coded, and iterative procedure. No effort has been made to

further increase the parallelism of the code.

This chapter describes how the solver is turned into a modern, large-scale, high-performance

computing (HPC) application and as such is scalable and therewith able to simulate relevant pulse

collisions in 3D. Performance optimization nowadays often means parallelization in various forms.

Performance optimization on all levels of an HPC system, the core-, node-, and cluster-level, is

outlined. To this end, the code is vectorized and the memory access is improved both on the soft-

ware side and by making use of hardware affinity. Most importantly, since the code is eventually

limited by the MPI communication speed when distributed over a large number of processes, the

MPI communication style is updated. An MPI virtual Cartesian topology is implemented to incor-

porate the actual structure of the simulation space and advanced techniques such as non-blocking

communication replace the standard procedures for the exchange of boundary values between the

patches of the lattice.

In order to combat communication overheads for simulations on a large number of nodes, the

parallelization scheme has to be extended to a hybrid multiprocessing plus multithreading form.

This approach is advantageous for massively distributed simulations in order to reduce both waste

of memory and the communication overhead caused by a large number of MPI processes A further

option would be making use of the MPI-3 shared memory model.

The output data sizes of 3D simulations easily amount to several terabytes. Consequently,

the file output needs to be efficiently parallelized and the format optionally changed from simple

comma-separated-values to a lightweight and efficient binary form.

Parallelization techniques are, however, only half the way to a good performance, since opti-

mization is highly system dependent. In order to improve the scalability of the solver and reduce

performance variations, the software needs to match to the computer architecture and the hard-

ware components. This goes under the name of “hardware affinity”. In the present case it is

achieved on the one hand with the use of an MPI virtual topology fitted to the underlying physical

problem in order to reduce communication resources. On the other hand, the hybrid parallelization

with both multiprocessing and multithreading urges the user to explicitly “pin” the patches of the

lattice to certain cores of the computer.

Benchmarks of the revamped simulator are provided.

Outline

In Section 5.2 high-performance computing systems, such as the one employed for the larger sim-

ulations conducted for the ongoing investigations, are introduced. Performance measurements of

5.2 High-performance computing 79

the solver are conducted in Section 5.3 and approaches using parallelization techniques for perfor-

mance optimization at various levels are detailed in Section 5.4.

5.2 High-performance computing

Clock rates are no longer increasing but Moore’s law in the sense of transistor count still holds

through parallelization [184]. A list of the 500 best performing supercomputers with respect to

their ability to solve a set of linear equations, the LINPACK benchmark [185], can be found at the

TOP500 project [186], where latest news, databases, and statistics about the topic are available.

The evolution of the list shows an extremely expensive and fast race for machines with the highest

computing power.

The reason is that science, and consequentially technological development as a whole, today

rely on computing. Computer simulations via numerical methods are pervasive in science to as-

sist or replace experiments and make predictions on complex systems in order to gain insights

into theoretical models. The highest-developed countries require the best-performing computing

systems in order to maintain their leading positions in science. In its 59th edition of May 2022

the exascale barrier (1018 floating point operations per second) was first officially broken on the

high-performance LINPACK benchmark by the Frontier system at Oak Ridge National Laboratory

(ORNL). Purported Chinese exascale systems have not been subjected to independent benchmarks.

The breaking of that barrier is an achievement opening up all kinds of possibilities for the advance-

ment of science and engineering.

Performance in HPC relies on using many processors simultaneously, where the single ones are

commonly not particularly fast. Supercomputers are clusters of computers that put emphasis on

speedy links between its constituent computers and fast memory access. Notebooks on the other

hand rather have few but powerful cores, since for everyday tasks a large number of cores will

hardly be necessary or usable.

The single self-contained computers in a cluster are called nodes, each equipped with an op-

erating system. Nodes on the cluster can communicate with each other via node-interconnects.

A node commonly contains a number of sockets consisting of compute cores, some levels of cache

layers and local memory attached. Cores might be further divided into hardware threads [187].

A visualization is provided with Figure 5.1. All nodes further have access to shared parallel file

systems.

Optimization on such composite systems is more intricate for the user, since both machine and

code have to be tuned for parallelization. The interplay between large scale parallel code and the

HPC system can become complex. The various levels to be taken into account are outlined over the

following sections.

It is increasingly common to furthermore offload work onto accelerators like GPUs that can

have significantly better performance than CPUs for certain problems. Since the HPC system used

for the present work, the KCS system at the Arnold Sommerfeld Center for Theoretical Physics in

Munich, does not contain accelerators, HEWES is still lacking GPU support. The KCS is described

in Appendix A.

The future of computing is increasingly distributed and nowadays clearly affects also research

and development outside of the scientific community. The global supercomputer market experi-

ences vast growth rates through the high demand in new AI-supported technologies in many fields

80 5. Performance Optimization

C0 C1 C3 C4 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1

L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2

L3

Memory Interface

Memory

Socket 0

C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31

L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1

L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2

L3

Memory Interface

Memory

Socket 1

C
oh

er
en

t L
in

k

Node Interconnect

Node

Figure 5.1: HPC architecture. The figure shows one node. It is connected to the other nodes on
the cluster via the node interconnect. Here, the node consists of two sockets with an attached
memory unit. Each socket contains sixteen cores (C), c.f. Figure 5.2, with their individual level
one (L1) and level two (L2) caches. Cache levels are detailed in Section 5.2.1. The level three
(L3) cache is shared among the cores of a socket. Caches are connected to the local memory via a
memory interface. Cache coherence, discussed in Section 5.2.3, is maintained through a coherent
link between the latter. This is the architecture of the KCS, see Appendix A.

5.2 High-performance computing 81

Registers

Control Unit

Execution
Units

L1D
Cache

L1I
Cache

Core

L2
Cache

Figure 5.2: Rough structure of a compute core. The data is transported trough the caches to the
registers and the execution units. There are different types of L1 caches, the data (d) cache and the
instruction (i) cache. A control unit coordinates the instructions.

of research as well as in the entertainment industry with prominent technologies like chatbots and

the metaverse. All these technologies require unprecedented computing power. Progress is pushed

hard by big technology companies and governments. Even for the success of quantum computing,

a conjunction with classical high-performance computing is indispensable.

Alike a self-fulfilling prophecy, use cases become even more versatile taking into account that

supercomputers are no longer in privileged use of research institutes and a small number of large

companies. Cloud computing has made its way into supercomputing and even into the top rankings

in the TOP500 list. There is a movement that can be considered as “democratization of HPC” [188]

as a consequence of the digital transformation. Large scale process simulation and the creation of

digital prototypes are no longer inaccessible to companies and startups that cannot afford an own

supercomputing machine with HPC on demand in the cloud [189].

5.2.1 Memory access

Computer architecture is plagued by bottlenecks and in most cases data transfer is the number

one limiting factor. Floating point operations per second (FLOPs) are, like the pixels of a digital

camera, the lighthouse metric for quality. Yet, overall performance depends on which is slower, the

processor or the data transfer. Disk, memory and network throughput all have been increasing

way more slowly than the computing power in terms of FLOPs over the years [190].

Caches

Intermediate levels of cache layers, normally three, are built into the CPU chips to act as buffers

between memory units and the processing unit with the purpose to remedy the slow memory per-

formance, c.f. Figure 5.1. Instructions are performed by the cores only on data in their registers,

which are connected only to the top level cache. See Figure 5.2 for a rough outline of the structure

of a core.

Caches are faster in transfer to the CPU register but have smaller capacities. In order to

increase the throughput, algorithms make sure that caches are holding those data items the pro-

cessor is most likely to ask for next. However, these algorithms are not perfectly apt for all appli-

cations and rely on, e.g., a last-recently-used policy. There are various styles of implementations of

the cache levels both in terms of design and algorithm [187].

Usually, there are three levels of cache layers. The latencies of level one (L1) to level three

82 5. Performance Optimization

(L3) cache range from 10−9s to 10−8s, with bandwidths of 1012 to 1011 bytes per second [191]. The

register only communicates directly with the L1 cache. Further information on the caches of the

KCS system employed for large simulations of the present work are given in Appendix A in Listing

A.3 and Figure A.1.

The common way of designing the layers is such that L1 and L2 caches are private to the cores

and a much larger L3 cache is shared among the socket. This yields low latencies on the one hand

and avoids data contention between caches (different cores overwriting cache data of others) on the

other. Shared data in L3 caches among cores improves the effective bandwidth. Everything in the

L1 cache is also contained in the L2 cache, etc., down the hierarchy.

Registers can only access the level one cache in the form of complete cache lines of usually 64

bytes size. Accessing a byte anywhere in a line fetches the whole line. This reduces latency, but

has the downside that crossing a cache line incurs another whole access operation. Every unused

byte in the line forms a loss event. In consequence, it is crucial to exploit the whole cache line in

order not to waste bandwidth.

Locality

Oftentimes the main purpose of optimizations is to organize fast memory access through the cache

layers. This is achieved by managing the local and temporal locality of data, since caches most

likely hold lately used and nearby data. If the processor finds the data item it wants right at the

time in its cache, this is called a cache hit. The important term cache miss on the other hand

expresses that the load or store instruction does not find the desired data in the first cache level

and thus cache line transfers between cache levels have to be performed, or even worse, from the

main memory [187]. To fetch new data into the cache, other data have to be evicted. If the searched

data lie in the main memory of another socket or node this can lead to a severe drop in performance,

as explained in Section 5.2.3.

Everything about memory is about locality. Caching effects can be hard to predict but there

exist dedicated cache analyzers like Cachegrind and Callgrind from the Valgrind toolset [192].

Improved memory management involves [191]

• blocking of data, i.e., splitting data structures such that access sweeps are small, in order to

exploit cache reuse opportunities;

• easing the hardware prefetcher’s work with simple to predict access patterns in order to help

hide memory latency; and

• copying to reduce chances of data eviction from cache.

Sometimes, memory access instructions can be reduced by increased (perhaps redundant) compu-

tation. Memory access analyses for HEWES are performed in Section 5.3.4.

5.2.2 Core-level

On the core-level, in order to leverage the increasing transistor count, multiple levels of parallelism

are available [187].

5.2 High-performance computing 83

Instruction-level parallelism

Instruction-level parallelism such as pipelining and superscalarity make use of the fact that in-

structions are split into smaller, simpler tasks that each take the same amount of time, one com-

pute cycle. Every computation is split into single tasks like multiplying mantissas, adding expo-

nents, etc. Moreover, the instruction execution itself can be split into fetching the instruction from

cache, decoding and finally executing it.

The efficiency of pipelining stems from the fact that these tasks can be overlapped for different

instructions and data. With different units assigned to different instructions like adding or multi-

plying, loading or storing, the instruction stream is parallelized. In this way all stages of functional

units are kept active throughout the processing time.

Modern processors are capable of executing more than one instruction per cycle. Superscalarity

means performing multiple instructions per cycle.

Exploiting instruction-level parallelism is mostly carried out by the compiler or processor.

Single instruction multiple data

Producing one result for each single arithmetic instruction is called scalar operating. Nowadays,

register sizes are large enough to hold more than one floating-point or integer number of a given

precision. Single instruction multiple data (SIMD) vectorization leverages the wide register size

by executing the same kind of operation concurrently on multiple data. Vectorization is crucial

because often enough the modern arithmetic and floating point units of the cores are underutilized.

A modern fused multiply-add vector unit with a 512-bit register can operate on chunks of six-

teen single-precision (SP) or eight double-precision floating-point numbers, or eight 64-bit or six-

teen 32-bit integers within 512-bit vectors at a time. on the KCS system at LRZ, the full size of the

registers can be exploited using the Advanced Vector Extension 512 instruction set architecture

(Intel® AVX-512 ISA) for the Intel® Xeon® Gold 6130 CPUs of type Skylake, see Appendix A.

It has to be kept in mind that the bandwidth limits vectorization capabilities. Full SIMD benefit

is only possible for data in the L1 cache since for lower levels the data transfer is too slow. SIMD

vectorization, which is detailed in Section 5.4.1, is achieved with compiler options and directives.

Simultaneous multithreading

Simultaneous multithreading (SMT), or hyperthreading, divides one physical core into two logical

cores with separate use of registers, pipelines and control units. This can oftentimes be advan-

tageous, since the data loading from cache is due to latency too slow to keep the execution units

occupied, which comes at the cost of idle cores. Employing SMT, the caches are shared between two

logically distinct registers and control units, while the number of execution units stays the same.

There are different forms of implementation of SMT.

As is the case for many applications, the use of hyperthreading showed to have no positive

influence on the speed of execution in the present project. This is probably due to the competition

of threads for data on the shared caches, leading to more cache misses.

General multithreading lets a multitude of logical cores perform computations piece-wise in

parallel. This is detailed in the Section 5.4.2.

84 5. Performance Optimization

5.2.3 Socket-, node-, and cluster-level

Cores share a memory bus for access to the main memory, with the cache hierarchy in between.

Oftentimes, there is a local memory unit attached to each socket. A socket thus forms a shared

memory island, or locality domain, on the cluster on which multithreading can be ideally employed,

e.g., with the help of an API like OpenMP [173]. Multithreading means the parallel execution of

code on a number of cores/threads using the same memory address space, further discussed in

Section 5.4.2.

Multiprocessing on the other hand is the parallel execution of code with separate memory per

process. Parallelization libraries for multiprocessing, e.g., implementations of the Message Passing

Interface (MPI) [172] can be used within a socket, a node, or the whole cluster. This is further

discussed in Section 5.4.3.

Today’s nodes are cache-coherent non-uniform memory access (ccNUMA) nodes. The termi-

nology implies that the cache updates are synchronized and the memory bandwidth and latency

depends on which memory unit is accessed by which core. Non-uniform memory access is caused

by different path lengths for a core to access memory units located at different physical positions,

see Figure 5.1. Accessing data in the various caches can likewise incur vast extra work through

the cache coherence mechanism. Copying data up and down the memory hierarchies, potentially

over the coherent link, in order to ensure synchronization can become expensive operations.

On the cluster-level, where memory is anyways distributed, it is crucial to minimize access on

remote memory units and resource contention. This is because remote memory access bandwidth

is clearly the lowest and can form a severe bottleneck. Every core can access any memory location,

but the bandwidth and latency clearly depend on the physical position. The effective memory

bandwidth can be increased by distributing working cores among a number of sockets. The effective

cache sizes are thereby increased, since the highest cache level is commonly shared on a socket.

Hardware affinity

Topology optimization is one way to optimize bandwidth usage by reducing the communication over

the slower inter-node/socket connections. On ccNUMA node systems, it is also instructive to avoid

resource contention on shared memory paths. Contention is ubiquitous in the first place on the

node interconnects but also on the coherent links.

Code can be bound to certain hardware threads by pinning the processes and threads explicitly

to logical cores of the system. In fact, OpenMP and MPI programs should never be run without

explicitly binding processes and threads to logical processors. Circumventing slow data paths is

key. Techniques for the positioning of data and processes/threads are discussed in Section 5.3.1,

relevant for Section 5.4.4.

On top of that, performance can vary significantly without pinning instructions, since some

physical process/thread localizations are up to chance. The system does not simply guess the best

assignments. The default behavior of ccNUMA systems is the first-touch rule: Data get mapped

onto the local memory of the processor that first writes them. This is often problematic in the case

of multithreading if data initialization is not parallelized.

Accordingly, parallel first-touch has to be explicitly implemented when using multithreading

along with multiprocessing over several ccNUMA domains. This means parallelization of the ini-

tialization processes such that data are written to the local memory where it will be required for

5.3 Performance measurement 85

further computations. Parallel first touch is detailed in Section 5.4.4. If NUMA balancing – auto-

matic page migration – is activated on the system, as is the case on KCS, the system monitors the

memory access during the process runtime and tries to move memory pages to the threads that are

accessing them. One should definitely not rely on that, the default behavior is rather tentative and

slow [191].

At extreme scales, pure MPI codes require a too large number of MPI processes and nodes. This

causes a waste of memory since every process requires its own copy of data. To conclude, a well-

designed hybrid approach with multiprocessing and multithreading is indispensable for extreme

scaling.

5.3 Performance measurement

Measuring is better than guessing and performance is implementation-, problem-, and machine-

dependent. So instead of a hope-for-the-best trial-and-error process, deficiencies ought to be sys-

tematically analyzed with state-of-the-art tools and techniques in order to gain a clear perspective

for the relevant and suiting optimization tweaks.

In order not to waste resources, performance measurements are mostly performed on short “de-

bug” simulations of only a few time steps. Moreover, without explicit pinning, runtime variations

are quite high due to the unspecified distribution of the processes over the cluster. Benchmarks

should furthermore always be run on exclusive systems, to this end the used nodes should not be

otherwise occupied. This could however be to the detriment of other users and long queuing times,

see Appendix A.

A combination of different methods, tools and techniques is employed. These involve

• retrieving system information and controlling hardware affinity with LIKWID [193]; and

• performance analysis on the cluster-level with the trace-based Scalasca toolset that is based

on the Score-P instrumenter and measurement system and the graphical analysis report

exploration format Cube [194, 195].

Furthermore, Intel® tools from the Intel® oneAPI toolkits [196] are used, namely

• the Intel® Advisor as a vectorization memory access analysis toolset on the core- and node-

level;

• the Intel® VTune™ Profiler for profiling and evaluation of performance characteristics on the

node-level; and

• the Intel® Trace Analyzer and Collector GUI to profile, analyze, and visualize MPI applica-

tions on the cluster-level.

The crucial metric here shall be time to success, leaving aside an economic occupation of re-

sources. There are generally two ways to make things faster: Do the same amount of work faster

or do less work. Making processing faster thereby often means more parallelization in some form.

In that case, anything that takes time is only relevant for optimization if it lies on the critical path
of execution. That means, overall performance in a parallelized application is determined by the

weakest link. The critical path is responsible for the wall clock time the execution of the application

takes.

86 5. Performance Optimization

Because of inevitable operating system noise, the execution time is often not deterministic.

Averaging runtimes and taking care of hardware affinity are ways to mitigate runtime variations.

The performance is generally limited by [190]

• bs: the maximum saturated bandwidth to move data from their memory location to the CPU

register [Byte/s];

• I: the intensity of work for each byte moved [FLOP/Byte], i.e., the number of times the same

float is reused in some set of floating-point operations; and

• Ppeak : the theoretical maximum performance of the CPU [FLOP/s].

Besides the hardware, bs also depends on locality of data because the bandwidth is highest for

the caches. I depends on the structure of the algorithm and data layout. Ppeak is affected by the

clock frequency and the number of cores, but also by vectorization. The effective performance for a

function/loop is thus given by P =min
(
Ppeak, I ×bs

)
. These metrics are captured graphically in the

roofline model discussed in Section 5.3.4.

5.3.1 Scaling

Parallelization of the algorithm

To the end of faster computation and scalability the code is parallelized in multiprocessing form at

the outer level. It is expedient at this stage to give an overview of the techniques. The details have

been omitted until this point but are important for this chapter.

A Cartesian domain decomposition of the lattice is performed, allowing individual compute

cores to process patches of the lattice. The number of these sub-lattices is determined by the user

who may subdivide each dimension of the lattice into a number of equally sized parts, see also the

README file in Section 3.4.

The finite differences scheme used to discretize the spatial derivatives requires values from

neighboring sub-lattices when it is applied at the boundaries of a patch. For this purpose, ghost

cells, or halos, are placed at the boundaries and updated via message passing, making use of MPI
[172], see Figure 5.3. The required depths of the boundary layers depend on the stencil order as

described in the README in Section 3.4.

As a result of the sub-lattices forming a Cartesian grid, the communication scheme is conve-

niently implemented in an MPI virtual Cartesian topology, detailed in Section 5.4.3.

Output to CSV format is written to one file per process (patch), whereas output in binary form

is written to one single file per step, making use of MPI-IO. This is discussed in more detail in

Section 5.4.5.

Strong and weak scaling

Since efficient parallelization is paramount for expensive 3D simulations, strong and weak scal-

ing tests proving the parallelization capability are conducted. For the tests no output data are

generated, yet the MPI-IO variant is highly efficient anyways, as demonstrated in Section 5.4.5.

It is important to recall elements of the architecture of the employed high-performance com-

puting system. KCS contains sixteen cores per memory locality domain (here a socket) and two

5.3 Performance measurement 87

Domain of
process 1

Domain of
process 2

Figure 5.3: Ghost cell exchange. The blue boxes represent sub-lattices (patches), batches of the
interdependent grid data, each being processed on single cores. The processes (compute cores)
exchange their boundary layers’ values with the neighboring processes. The boundary regions,
whose required depths depend on the order of the finite differences scheme, are indicated in red.
This exchange is performed sequentially for each dimension. Here it is shown for one boundary
region between two processes.

20 21 22 23 24 25 26 27 28

Cores

27

28

29

210

211

212

213

214

Ru
nt

im
e

[s
]

linear decomposition
cubic decomposition

Figure 5.4: Strong scaling test for a relatively cheap simulation in 3D. The overall lattice keeps
its size and is split into smaller and smaller patches to be processed by single cores. The runtimes
nearly halve for a doubling of cores for up to eight cores. The lattice is sliced into sub-lattices in one
dimension (blue line and dots). The runtime speedup decreases where one memory domain (socket)
is fully occupied with sixteen cores. The code for this benchmark configuration is memory-bound
as this typical behavior at the socket saturation shows. The intra-socket scaling is not linear since
the memory as a shared resource on the socket does not scale along with additionally used cores.
Slicing only in one dimension leads to a communication overhead when the sub-lattices become
too narrow. This is remedied in this scenario by an equal slicing in every dimension such that the
patches are cubic (red line and dots). The scaling across nodes is then again optimal. Each setting
ran twice and is averaged in order to take into account minor runtime variations.

88 5. Performance Optimization

27 28 29 210 211

Cores

213

214

Ru
nt

im
e

[s
]

8000

9000
10000
11000
12000
13000
14000
15000
16000
17000

Figure 5.5: Weak scaling test for a simulation such as to obtain 3D results shown in Section 4.5.
While the strong scaling test uses a fixed overall lattice, a weak scaling test is obtained by keeping
the patch size constant, while increasing the size of the overall lattice with the number of patches
and compute cores. Hence, the problem size is increased along with the number of parallel work-
ers. For such 3D simulations the code becomes more and more communication-bound. Runtime
variations and scaling issues are mainly as a result of data transfer via the node interconnect and
resource contention thereon. These expensive simulations ran only once each, in order to save re-
sources for the community.

sockets per node, see Figure 5.1 and Appendix A. The results of the scaling tests are visualized in

Figures 5.4 and 5.5.

The former case of the strong scaling test, which was performed on an older code version,

demonstrates that an efficient decomposition of the lattice is important. At the scales explored

in this test, an optimal scaling performance can then be achieved. More tests prove that cubic

patches form the most efficient decomposition. This is discussed in Section 5.4.3.

In the latter case of the weak scaling test, which was performed at larger scales with an al-

ready optimized code version, runtime differences are mainly due to communication among nodes

that are farther apart on the cluster and resource contention on the interconnects. No runtime

averaging was performed in this case. The memory required per node was about 30 GB for each

simulation. The weak scaling can be considered satisfying between 400 and 1000 cores. A steep

increase in runtime is observed at the most expensive run shown, fully occupying 50 of a total of

153 nodes on KCS.

The decisive effect of the distribution of participating nodes on the cluster was impressively

demonstrated with another, similar simulation. On a compact set of nodes the runtime was three

and a half hours and was thereby nearly one hour shorter than a repeated run that was allocated

on farther apart nodes.

Hardware affinity control

Almost all performance features depend on the system topology and when using multiprocess-

ing and multithreading further on the process/thread placement, also called pinning of process-

es/threads to certain compute cores. In the optimal case, this ensures that the data are equally

distributed among the involved processors and their local memory.

Pinning is performed as a first step before any further modifications in order to reduce the

5.3 Performance measurement 89

runtime variations during testings. This is necessary for reliable benchmarks that should always

be accurate, deterministic, and reproducible. The LIKWID performance tools provide the means

to control the pinning of MPI and OpenMP programs. For a hybrid MPI + OpenMP model, affin-

ity is conveniently controlled with the compiler wrapper likwid-mpirun and its options. With

OpenMP there are also environment variables available to control hardware affinity as well as

some Intel® specific variables, see Appendix A with Listing A.5 and the documentations.

An important point to make is that the most relevant pinning, namely that of the nodes, is

most of the time not performed by the user. On HPC systems, usually batch job schedule software

is responsible for the resource allocation. The user’s influence with respect to the node distribution

is often very limited, which explains the issue with large runtime variations mentioned in Section

5.3.1. The scheduler employed on the KCS is outlined in Appendix A.

Outlook on bottlenecks

The question is what else limits performance and scalability. Runtimes and bottlenecks vary

strongly with the particular setting for the problem under consideration. Consequentially, it is

hard to give universal benchmarks and provide general scaling properties.

Bottlenecks for various configurations are outlined over the following sections. Analyses show

that the code is – for the presented standard simulations used to produce the results of Chapter 4

– compute/memory-bound in 1D, memory-bound in 2D, and communication-bound in 3D.

In order to improve the performance of simulations in lower dimensions (1D and 2D), more

vectorization and memory locality are enforced. At large scales, which are most important and

where MPI communications play the biggest role, speedups are obtained through a reduction of

the communication overhead.

The latter can be achieved by lowering the order of the numerical scheme, because the required

depth of the ghost layers decreases, e.g., from seven to three from order thirteen to order four, as

can be seen from the stencils in Section 2.3. As mentioned in the REAMDE file in Section 3.4, the

stencil order is on the other hand not decisive for computation speed alone. To further ease the

messaging pressure and memory requirements at large scales, where the pure MPI scaling seems

to deteriorate, additional parallelism by multithreading is used on top of the multiprocessing with

the help of OpenMP [173]. Section 5.4.4 is devoted to the latter approach.

5.3.2 Code hotspots

Profiling and performance snapshots

The Intel® VTune™ Profiler (former Intel® VTune™ Amplifier) for node-level performance evalu-

ation performs hardware counter sampling, i.e., numbers of specific hardware-related actions are

counted in order to determine, e.g., memory and CPU activity. A profile is a summary of events over

an execution interval. The tool is applied here to give an idea about the bottlenecks of different

kinds of simulations and time-intensive hotspots in the code.

Minimally invasive first analyses can be performed with Intel® VTune™ Profiler Application

Performance Snapshots. The Intel® VTune™ Profiler identifies the process-communication to be

the limiting factor for a test simulation in 3D. It is accordingly classified as MPI-bound. Figure 5.6

shows an Intel® VTune™ Profiler Application Performance Snapshot.

90 5. Performance Optimization

Figure 5.6: APS report for an MPI-bound 3D simulation on 256 cores.

Smaller simulations in 1D and 2D require less processes, occupy fewer cores, and thus the

overall communication load is smaller. Principally, these simulations find enough memory space

on a single node and can in principle be run even without MPI at all. These simulations are

thus rather memory-bound or even compute-bound, see Figure 5.7 for an Intel® VTune™ Profiler
Application Performance Snapshot of a 2D simulation on four cores.

Figure 5.7: APS report for a memory-bound 2D simulation on four cores.

Only in such cases, where the overwhelming factor is not the communication, does the actual

computational effort, e.g., whether one or two pulses are simulated, play a relevant role for the

overall simulation time. On the other hand, in large 3D simulations the connection speed of the oc-

cupied nodes on the cluster forms the decisive factor, besides the optimizations on the software side

detailed in Sections 5.4.3 and 5.4.4. For a non-admin user this is most of the time uncontrollable.

5.3 Performance measurement 91

Note that the maximum clock frequency is in both cases of memory and communication-bound

simulations by far not exhausted. This is the case for most HPC applications since data transfer, be

it memory access or inter-node communication, usually forms the bottleneck. That fact has been

discussed in Section 5.2.1 and explains why the clock frequency of cores in an HPC system are

generally not that high.

The performance snapshots in Figures 5.6 and 5.7 were performed on an older code implemen-

tation, where still every floating point arithmetic instruction is scalar. This deficiency is taken care

of in Section 5.4.1.

Compute-intensive functions

An Intel® VTune™ Profiler hotspot analysis identifies the time evolution operation of the electro-

magnetic waves to be most compute-intensive, along with the derivative as well as rotation opera-

tions, see also Chapter 2 with Section 2.4. These use the most CPU time besides some SUNDIALS
functions, see Listing 5.1.

1 Function CPU Time Module

2 --------------------------------------- -------- -----------------------------

3 Vaxpy_Parallel 703.880s libsundials_nvecparallel.so.3

4 NLin4u6_2D_Propagation 323.384s Simulation

5 LatticePatch::derive 304.750s Simulation

6 LatticePatch::derotate 176.332s Simulation

7 N_VWrmsNorm_Parallel 174.280s libsundials_nvecparallel.so.3

8 LatticePatch::rotateToY 166.996s Simulation

9 s13b 143.318s Simulation

10 s13b 135.283s Simulation

11 s13f 128.579s Simulation

12 s13f 99.892s Simulation

13 s13f 96.580s Simulation

14 VSum_Parallel 92.757s libsundials_nvecparallel.so.3

15 s13f 89.295s Simulation

16 VDiff_Parallel 88.141s libsundials_nvecparallel.so.3

17 VCopy_Parallel 82.853s libsundials_nvecparallel.so.3

18 VScaleBy_Parallel 77.380s libsundials_nvecparallel.so.3

19 VLin2_Parallel 67.520s libsundials_nvecparallel.so.3

20 LatticePatch::rotateToX 66.771s Simulation

21 N_VInv_Parallel 34.423s libsundials_nvecparallel.so.3

22 N_VMin_Parallel 28.003s libsundials_nvecparallel.so.3

23 N_VAbs_Parallel 21.610s libsundials_nvecparallel.so.3

24 PMPI_Allreduce 21.296s libmpi.so.12

Listing 5.1: Excerpt of an Intel® VTune hotspots analysis for a 2D simulation. Only the most

time consuming functions are included down to the first of the MPI library. Clearly, this is not a

communication-bound simulation, where the MPI functions are be among the top ranking.

Most functions from the Simulation module can be understood by their name. s13f and

s13b are the backward- and forward-biased stencils of order thirteen that are applied on forward-

and backward-propagating modes.

Notably, in many of the expensive functions there are loops where compilers assume vector

dependencies in their reports. An investigation with the Intel® Advisor proves that there are no

dependencies present in some of them. Vectorization can there safely be enforced with the help of

OpenMP compiler directives that are made use of in Section 5.4.1.

92 5. Performance Optimization

5.3.3 Communication load

Tracing

Profiling as well as tracing are possible with the Scalasca toolset. While a profile gathers the

essential information for most serial applications, parallel codes primarily require relative timing

information. An event trace is a chronologically ordered sequence of event records. Information

about entering and leaving code regions and sending/receiving data, are recorded and saved in a

full trace [197].

Using tracing, information about the individual contexts of events and their dynamics is kept,

since temporal and spatial relationships are preserved in the traces. In general, the profile data can

be reconstructed from the traces. The problem is that a full trace analysis consumes a large amount

of storage and incurs large overheads but is most of the time not necessary. The measurement

overhead for trace collection is eased by filtering only relevant parts.

Scoring can identify where the overhead is likely to occur and optimizes profiling by weighting

these regions higher. Scalasca does an automatic trace analysis and thereby distills the measure-

ment to the essential events, first modeling and scoring the traces, then returning a high-level

summary of relevant traces. The Score-P instrumenter automatically inserts measurement code

to capture only the events of interest. Scalasca acts as a convenience function package over those

provided by Score-P alone and creates a summary within a comprehensive and augmented report

[197].

Environment variables are used to configure the measurement. Typically, compute routines,

memory allocation, communication and input/output are instrumented. MPI and OpenMP routines

are thereby always taken into account but frequently visited computation functions, which are not

relevant for the analysis of threading/communication, get a lower score.

Further filtering seems not be necessary in the present case and manual instrumentation is

possible. The code instrumentation causes an intrusion overhead but yields more detailed infor-

mation than a periodic interruption of the code execution would in order to take measurements.

The latter approach is called sampling.

Scalasca analysis

Scalasca offers an automated diagnosis of many parallelization peculiarities, including a search for

patterns of inefficient behavior and their identification, classification and quantification. It thereby

guarantees to cover the entire relevant event trace. It can be seen from Listing 5.2 that the buffer

sizes for the event traces are quite small.

1 Estimated aggregate size of event trace: 94MB

2 Estimated requirements for largest trace buffer (max_buf): 374kB

3 Estimated memory requirements (SCOREP_TOTAL_MEMORY): 4097kB

4 (hint: When tracing set SCOREP_TOTAL_MEMORY=4097kB to avoid intermediate flushes

5 or reduce requirements using USR regions filters.)

6

7 type max_buf[B] visits time[s] time[%] time/visit[us] region

8 ALL 381,966 1,545,984 17454.96 100.0 11290.52 ALL

9 MPI 381,966 1,545,984 17454.96 100.0 11290.52 MPI

10

11 MPI 193,536 516,096 6159.55 35.3 11934.88 MPI_Sendrecv

12 MPI 68,544 258,048 4902.22 28.1 18997.31 MPI_Barrier

5.3 Performance measurement 93

13 MPI 67,184 252,928 6232.40 35.7 24640.99 MPI_Allreduce

14 MPI 26,338 259,328 0.29 0.0 1.11 MPI_Comm_rank

15 MPI 26,312 259,072 1.48 0.0 5.69 MPI_Comm_size

16 MPI 26 256 2.52 0.0 9824.59 MPI_Finalize

17 MPI 26 256 156.52 0.9 611404.14 MPI_Init

Listing 5.2: Profile of the Scalasca analysis of an old code version. The communication is performed

with a combined sending/receiving routine. A lot of time is spent at the barrier.

MPI_Allreduce is used a lot within CVODE algorithms, see Section 6.3.3. Otherwise, much

time in this call is a hint to load imbalance [198], since it performs re-synchronizations of processes.

The barrier, which is completely unnecessary, aggregates too many resources. This is taken care of

in Section 5.4.3.

An automated postprocessing of the analysis infers important additional metrics such as the

time consumed by computation, MPI and OpenMP calls, critical path, imbalance, performance

impact, etc. The idea of Scalasca is to identify MPI wait states (idle time) and the critical execution

path. Inefficient behaviors are then classified and quantified in order to help identify the root

causes. The corresponding Cube visualization is threefold. It shows

• the metric to investigate;

• the location in the code; and

• the distribution over processes/threads.

A colorization scheme lets problem areas be identified and located, see Figure 5.8 for a 3D simula-

tion with that code version. With the focus on MPI, the excerpt shows a good load balancing of the

communication. For a more thorough load imbalance analysis, profiles of varying problem sizes

can be compared function by function in order to detect scalability problems.

5.3.4 Memory efficiency

An Intel® Amplifier Application Performance Snapshot (APS) report for a small simulation can be

used to get an overview of the efficiency of the different memory access levels, see Listing 5.3 for a

perfomance snapshot of a memory-bound 2D simulation.

1 | Your application is memory bound.

2 | Use memory access analysis tools like Intel(R) VTune(TM) Profiler for a detailed

metric breakdown by memory hierarchy, memory bandwidth, and correlation by memory

objects.

3 |

4 Elapsed Time: 2771.30 s

5 SP GFLOPS: 0.00

6 DP GFLOPS: 2.57

7 Average CPU Frequency: 7.37 GHz

8 CPI Rate: 1.53

9 | The CPI value may be too high.

10 | This could be caused by such issues as memory stalls, instruction starvation,

11 | branch misprediction, or long latency instructions.

12 | Use Intel(R) VTune(TM) Profiler General Exploration analysis to specify

13 | particular reasons of high CPI.

14 MPI Time: 45.47 s 3.28% of Elapsed Time

15 MPI Imbalance: N/A*

94 5. Performance Optimization

F
igure

5.8:
C

ube
visualization

ofa
S

calasca-generated
profile.

D
eep

insights
can

be
gained

w
ith

a
num

ber
ofavailable

m
etrics

(leftpane)the
instrum

ented
function

(center
pane)and

individuallistings
for

allcores
processing

the
various

instrum
ented

functions
(rightpane).

H
ere,the

tim
e

spent
by

the
processes

in
the

com
m

unication
routines

is
show

n.It
can

be
seen

that
there

is
a

good
load

balancing
in

the
com

m
unication.T

his
is

com
m

on
for

pure
M

P
I

applications.

5.3 Performance measurement 95

16 | * No information about MPI Imbalance time is available. Set APS_IMBALANCE_TYPE

17 | to 1 or 2 to collect it.

18 Top 5 MPI functions (avg time):

19 MPI_Allreduce: 30.13 s 2.17% of Elapsed Time

20 MPI_Sendrecv: 14.74 s 1.06% of Elapsed Time

21 MPI_Init: 0.57 s 0.04% of Elapsed Time

22 MPI_Finalize: 0.02 s 0.00% of Elapsed Time

23 MPI_Comm_size: 0.01 s 0.00% of Elapsed Time

24 Memory Stalls: 113.40% of Pipeline Slots

25 | The metric value can indicate that a significant fraction of execution

26 | pipeline slots could be stalled due to demand memory load and stores. See the

27 | second level metrics to define if the application is cache- or DRAM-bound and

28 | the NUMA efficiency. Use Intel(R) VTune(TM) Profiler Memory Access analysis to

29 | review a detailed metric breakdown by memory hierarchy, memory bandwidth

30 | information, and correlation by memory objects.

31 Cache Stalls: 51.70% of Cycles

32 | A significant proportion of cycles are spent on data fetches from cache. Use

33 | Intel(R) VTune(TM) Profiler Memory Access analysis to see if accesses to L2 or

34 | L3 cache are problematic and consider applying the same performance tuning as

35 | you would for a cache-missing workload. This may include reducing the data

36 | working set size, improving data access locality, blocking or partitioning the

37 | working set to fit in the lower cache levels, or exploiting hardware

38 | prefetchers.

39 DRAM Stalls: 34.60% of Cycles

40 | The metric value indicates that a significant fraction of cycles could be

41 | stalled on the main memory (DRAM) because of demand loads or stores. Use

42 | Intel(R) VTune(TM) Profiler Memory Access Analysis to get more details if the

43 | code is latency- or bandwidth-bound and what can be done to increase memory

44 | access efficiency.

Listing 5.3: Excerpt of an Intel® Amplifier Application Performance Snapshot (APS) for a rather

small 2D simulation. The simulation is identified to be memory-bound. The various levels of

memory access are shown. The simulation was running on only two cores, so there is no remote

memory access.

Memory access patterns

Some inefficient memory access patterns are identified with the help of the Intel® Advisor, espe-

cially within some functions pointed out by the Intel® VTune™ Profiler to be particularly time-

consuming in Listing 5.1.

The rotation functions mix up components of a six-dimensional vector. Memory access instruc-

tions with mixed-, unit-, and mostly constant-stride in both read and write operations are inherent

there and unavoidable, but at least no irregular access is detected. An Intel® Advisor memory

access pattern analysis points this out.

SIMD vectorization instructions for these functions ease that pressure and the problem be-

comes less severe when higher instruction set architectures for vectorization are used. See Ap-

pendix A for the highest available one on the KCS system. On the other hand, with more aggressive

vectorization a vector register spilling shows up in the Intel® Advisor report along with the high

vector register pressure in the propagation loops. This can sometimes be improved by splitting

large loops into smaller ones, which can be done in several more loops to ease memory bandwidth

pressure. Vectorization is discussed in Section 5.4.1.

96 5. Performance Optimization

Figure 5.9: An Intel® Advisor roofline analysis of a 1D simulation on one core to investigate the
performance and bottlenecks of program parts. Dots denote functions/loops and indicate the per-
formance bounds for each loop, whether it is the memory-/cache-level bandwidth or the CPU per-
formance. The more to the right and to the top, the better. The abscissa is the arithmetic intensity;
the ordinate, the performance.

Roofline model

A roofline model enables to investigate which bandwidth type limits the memory performance of the

specific function/loop. A complete roofline analysis with the Intel® Advisor capturing a large num-

ber of metrics and details about the software-hardware interaction is extremely resource-intensive

and thus only conducted for 1D simulations. The roofline model also helps to investigate whether

the CPU is reaching its theoretical peak performance and if there is a bottleneck in memory access

or processing. A screenshot is provided in Figure 5.9.

Moving a function to the right side of a roofline model plot is often hard to achieve. This

requires a reorganization of the computation style but different data layouts can help as well.

Moving it upwards can be achieved by improved data locality in the memory-bound region and by

more vectorization in the compute-bound region [190].

The remaining memory issues in the rotation functions are not disastrous, because the cache

misses are only fractional compared to the number of memory loads and stores. Moreover, the

maximum memory address range turns out to be 47 kB and is therefore in an acceptable range, yet

beyond the capacity of the L1 cache with 32 kB on the KCS, see Appendix A. Some CPUs nowadays

come with L1 cache sizes of 64 kB.

Attempts to achieve a reduction of cache pressure using cache-blocking, i.e., splitting the com-

putations in such a way that fitting subsets of the data are processed sequentially, and unrolling

loops with the help of pragmas have not been successful.

5.4 Parallelization

5.4.1 Vectorization

SIMD vectorization tests are performed with the Intel® Advisor. It mainly works as a vectorization

checking tool but is not designed for HPC applications. In-depth analyses incur large overheads

5.4 Parallelization 97

and 3D simulations would require too large amounts of extra memory and are clearly unsuited for

such an analysis. In view of these memory issues and because the focus is not on communication,

vectorization analyses are done solely at the hand of 1D and sometimes 2D simulations.

Auto-vectorization

The least complicated way to increase the vectorization share is via compiler options such that

the compiler automatically applies auto-vectorization instructions tailored to the CPU. Compiler

optimization reports from some of the employed compilers (GCC, Clang, Intel®) are valuable tools

to understand the compiler’s judgments and behavior. There are many, often subtle, differences

between compilers and compiler versions. Some compilers are more conservative than others with

respect to auto-vectorization. Runtime differences due to more or less vectorization are observable.

Compilers get more sophisticated and efficient with time. It is also remarkable that there is an

increase of auto-vectorization with more threading of outer loops, see Section 5.4.4.

Compilers need to be cautions when in doubt in order not to falsify the computation. As men-

tioned in Section 5.3.2, the compilers sometimes assume vector dependencies where an Intel® Ad-
visor dependency analysis proved there are none. This often happens when pointers are used.

Different pointers might point to the same data and thereby a SIMD (single instruction multiple

data) operation could possibly process overlapping data. This is called pointer aliasing. In the

present case, there exist a variety of pointers, some actually pointing to the same data or subsets,

see also Section 2.4. If safety is proven, vectorization can be forced with an OpenMP SIMD compiler

directive in front of these loops or via a compiler option as shown in Appendix A.

SIMD declarations

The advisor yields hints on further functions and loops that could possibly profit from vectoriza-

tion. Many more loops are in fact vectorized with SIMD declarations. These directives can be

tailored specifically to the code. Safety of the changes is guaranteed with crosschecks. It has to be

paid attention on so-called write-after-write dependencies and write-after-read anti-dependencies,

where concurrency of instructions can cause trouble [199]. These are identified by the advisor and

vectorization problems can often be solved by specifying a maximum number of iterations that can

be performed concurrently.

For a 1D simulation the time spent in vectorized loops is now up to over 90% where it was zero

before, see Figure 5.10.

The code consists of the user code and the external MPI and SUNDIALS libraries. The amount

of user code varies, taking up to about 50% of the runtime, depending on many factors like the

number of dimensions and the number of processes. Similarly, while the time spent for communi-

cation grows for larger simulations, the total share of vectorized code decreases and therewith its

benefits.

The most important, most time consuming loops, which have already been discussed in the con-

text of profiling, are now vectorized. This includes the time evolution and the derivative operations,

as can be seen in Figure 5.10. Note that for this 1D simulation the order of most time consuming

loops changes in relation to a 2D test, c.f. Listing 5.1, because a 1D simulation is dominated by

more compute-intensive functions like those from SUNDIALS.

More vectorization draws the bandwidth and latency issues to the attention, as the processors

digest larger amounts of data in a given time. This causes register spillings in the time evolution

98 5. Performance Optimization

Figure 5.10: An Intel® Advisor analysis of a (nearly) fully vectorized 1D simulation.

function.

Benchmarks

The performance gain from vectorization cannot be stated in a single number, as it very much

depends on the kind of simulation. Vectorization is rather a small-scale, core-level tuning. Keeping

in mind the architecture of HPC systems, it can be concluded that a modern laptop is able to

perform way better on small applications, where a large-scale distributed system cannot unfold its

strengths.

Tests on the personal device in 1D and 2D showed large benefits from incremental vectorization.

On an M1 MacBook Pro 2021 2D simulations such as to produce the results at the end of Chapter

4 on four processes sped up from 45 min with the old code version to only 12 min. The simulations

for harmonic generation in 1D, c.f. Table 4.4, are now conducted within only a few seconds, while

it was approximately half a minute before.

On KCS, a simulation in 2D on four cores utilizing a rather new code version built with and

without vectorization took 776 s and 920 s, respectively. A short 3D simulation with a small enough

grid to fit on one node ran on one core to avoid communication and provoke heavy computing. With

and without vectorization the simulation took 420 s and 584 s.

A notable effect here is that the Intel® compiler performs way better on the KCS and simulta-

neously vectorizes more aggressively. This is attributable to the native support of Intel® compilers

for their processors, incorporating more features.

With the worked out vectorization optimizations now in place, simulations in 2D can easily be

performed on a notebook instead of having to submit a batch job to an HPC system already at that

stage. To achieve that, also the MPI optimizations detailed in Section 5.4.3 play a role, while the

influence of the latter really only unfolds when a larger number of processors is involved.

5.4 Parallelization 99

Optimized building

The CVODE solver from the SUNDIALS family of solvers has been used in various versions and

build types. The computations rely heavily on the SUNDIALS library, where only a small fraction

of functions are auto-vectorized by the compiler per default.

To enable higher compiler optimization levels also for the SUNDIALS library, it has to be

built in “Release” mode. The optimized build type has a significant impact on the performance

of compute-intensive simulations, since a large number of the computations is performed within

CVODE functions. The library code is thereby vectorized to a large extent.

Employing multi-file or whole-program interprocedural optimization (IPO), the Intel® compiler

analyzes all code files together and may apply various tweaks in order to optimize the overall

program. IPO yields a performance gain and combats many problems identified by the Intel®

Advisor. Additionally, it enforces more vectorization.

5.4.2 Multithreading

MPI was originally developed for distributed single core processors with message passing only

being necessary for communication between different memory regions. With modern multi-core

CPUs MPI is also used on shared memory resources, e.g., a node or socket, c.f. Figure 5.1. Reducing

the number of MPI processes is the simplest way to reduce the communication overhead. In order

not to lose parallelization speedup, multithreading can be implemented on top.

The industry standard to achieve this is the OpenMP API [173]. Threading with OpenMP
works by insertion of compiler directives into existing code, as in the case with vectorization using

OpenMP, discussed in Section 5.4.1. While MPI is an API for distributed memory computers, where

each processing core refers to its own data, OpenMP is an API for programming shared memory

parallel computers. The latter is based on the notion of threads and tasks, with the understanding

that threads work together on a computation while sharing their memory, i.e., using the same

address space. Tasks are computation snippets independent of each other.

An MPI process can spin up several threads that are processed by cores on the same socket

or node. See for example Figure 5.11, where four processes on a socket span four threads each.

The different ways to perform this kind of hybrid parallelization are outlined in Section 5.4.4. As

mentioned in Section 5.2.2, cores can often be divided into hardware threads that are each capable

of processing a thread. There is no notion of message passing in multithreading. “Communication”

is achieved by enforcing the cache coherence of the cores discussed in Sections 5.2.1 and 5.2.3.

Threading pitfalls

Cache coherence implies some non-negligible, and often even costly, memory accesses throughout

the memory hierarchy. Threads can contend for memory bandwidth and cache capacity, and even

for functional units if SMT is used, c.f. Section 5.2.2. When a thread writes data, the copies of that

data in the other threads’ caches are invalidated to ensure that subsequent accesses use only the

updated data. An issue to be kept in mind here is that the cache coherency mechanism operates on

units of typically 64 or 128 bytes, the cache lines introduces in Section 5.2.1.

Differing threads accessing neighboring bytes on the same cache line cause severe memory

access overheads, called cache line false-sharing. Concurrent access is prohibited because cache

coherence is maintained on a cache line basis, not for individual elements. The mechanism thus

100 5. Performance Optimization

P0
T0

P0
T1

P0
T2

P0
T3

P1
T0

P1
T1

P1
T2

P1
T3

P2
T0

P2
T1

P2
T2

P2
T3

P3
T0

P3
T1

P3
T2

P3
T3

Socket 0

C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31

L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1

L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2

L3

Memory Interface

Memory

Socket 1

C
oh

er
en

t L
in

k
Node Interconnect

Node

Figure 5.11: Hybrid multiprocessing and multithreading model with one process spanning four
threads. One socket is shown, c.f. Figure 5.1. Here, each core (yellow) processes one thread.

causes the cache line to bounce between the caches of the processors and is therefore extremely

time consuming. Threaded applications can suffer significantly from that [200]. A race condition
occurs when multiple threads access the exact same data that is shared by the threads and at least

one access is a write operation. The result of the computation then depends on which thread wins

the race.

Sequential code regions in a threaded application can become extra time consuming. With

threads running through the sequential region, long data transfer times are risked due to cache

misses. It is thus often sensible to expand the parallel regions. Furthermore, some shared re-

sources do not scale and a single core may have better memory access.

Schedules

for loops are the main source of parallelism with threads. Within a parallel region there is the

notion of shared and private data. Shared data can be accessed by all threads, private data only by

the owning thread. The execution of a loop by parallel threads is performed according to a schedule
and a chunksize, the part of iteration space that each single thread operates on. Possible schedules

are

• static: Equally large chunks are assigned to the threads in order. This causes the least

overhead and best suited for balanced loops;

• dynamic: Iterations are split into chunks and assigned to threads on first-come first-served

basis. This is useful for varying loads but compromises data locality;

• guided: Like dynamic but the chunksize decreases exponentially down to an indicated

one. This is unsuited for loops where the first iterations are most expensive; and

• auto: The schedule is determined by the runtime. This has the lowest overhead and best

load balancing and addresses loops that are often accessed.

To decide for a proper schedule a trade-off has to be found between thread idleness and scheduling

overheads.

5.4 Parallelization 101

NUMA considerations

Synchronization overhead is most of the time caused implicitly in order to ensure that threads

do not interfere with each other and process the up-to-date values [201]. There is an implicit

synchronization barrier at the end of every parallel region, if not a contradicting clause is explicitly

added to the directive. These so-called flushes guarantee a consistent view of memory for each

thread.

Scaling issues with threads are present as a result of contention for bandwidth and cache ca-

pacity. It is thus mandatory to ensure data affinity, e.g., with the methods mentioned in Section

5.3.1 and bind logical threads to physical cores in order not to have them roam over the cluster.

There are undesired NUMA effects concerning memory allocation with OpenMP. The risk is

that all the data are first written into memory by one master thread. This would cause all data

to reside on that thread’s local memory unit and can pose a severe bottleneck, as can be imagined

considering diverse data paths from different memory units in Figure 5.1. Accordingly, a socket

is a memory locality domain in the case of the KCS architecture. Performance-degrading NUMA

effects can be combated by explicitly implementing parallel first-touch, mentioned in Section 5.2.3

and further discussed in Section 5.4.4.

Remarkable speedups can in principal be obtained through threading simulations, but in conse-

quence of the problems discussed, most of the time the gain is small compared to multiprocessing.

The pure MPI application is thus usually scaling better in a long range of core numbers [200].

Only when multiprocessing reaches its limits, multithreading as an additional layer of parallelism

is useful to maintain scalability. This is the subject of Section 5.4.4.

5.4.3 Multiprocessing

As stated in Section 3.2 and detailed in Section 5.3.1, MPI is employed to perform the communi-

cation between processes. This is achieved by having single cores process patches of the lattice,

thereby transferring boundary data to neighboring cores/patches, as shown in Figure 5.3. In short,

MPI send and receive calls are posted in the code in such a way that this communication is cor-

rectly taking place. To combat parallel performance deterioration at larger scales, a revamped

MPI communication style paves the way for the code to run distributed over hundreds of nodes.

For purposeful simulations a sufficiently high grid resolution is required, c.f. relation (2.58).

Communication overhead

There are four main categories of parallelization overheads [198],

• lack of parallelism: The workload cannot be split into enough pieces;

• load imbalance: The pieces for each processor are not identical amounts of work;

• synchronization: Processors need to wait for each other; and

• communication: Inefficient patterns of communication.

Communication is overhead by construction and moreover forms the number one bottleneck for

large simulations, c.f. Section 5.3.2 with Figure 5.6.

The three levels of communication in an HPC system, listed with increasing bandwidth, are

102 5. Performance Optimization

• between the nodes;

• between the sockets of the nodes; and

• between the cores of a socket.

Hence, in the first place, node-to-node communication ought to be reduced, especially when a large

number of nodes is targeted. It has to be noted that generally latency forms the bottleneck, not the

bandwidth. Bandwidth could easily be added by further interconnects. For the total transfer time

it is obtained

transfer time= synchronization time+ latency+ message length
bandwidth

. (5.1)

It is generally faster to send fewer large messages than many small ones, since the latency of all

individual sending operations accumulates. The synchronization time is also called idle time, the

amount of time it takes for sender and receiver to perform a “handshake”.

From the software perspective latency and bandwidth are dependent on the internal MPI pro-

tocol. The latter defines the mechanism for sending data to remote processes and contains an

envelope (header) with metadata. For standard MPI_Send calls the protocol type is selected based

on the message size and is implementation dependent, but can also be configured by the user. The

three protocol types are

• the short protocol, which can send short messages within the metadata envelope. It has a

short latency but small bandwidth;

• the eager protocol, which temporarily buffers the data. It has higher latency and bandwidth

comparable to the short protocol; and

• the rendezvous protocol, which does not buffer. When the envelope is accepted at the receiver

end, i.e., the receiving routine is called, a ready-to-send message is returned to the sender

and delivery begins. Latency is worst in this case but the bandwidth highest.

Using the synchronous MPI_Ssend routine, the rendezvous synchronization can be enforced,

MPI_Bsend on the other hand enforces buffering. The latter avoids deadlocks and may prevent

idle time (synchronization) and returns directly, but the creation, filling and emptying of very large

message buffers can be disadvantageous. Another, and most of the time the best option, are non-

blocking routines. Such have been implemented in HEWES and are discussed below.

First steps

A simple but unwelcome way of speeding up the runtime is by reducing the precision of compu-

tations. Reducing, e.g., the order of the stencil matrices from thirteen to four, the width of the

halos can be reduced from seven to three, see Chapter 2. This results in a tremendous reduction

of the communication load and accordingly a significant speedup for distributed simulations. The

runtime is reduced by more than 20% at a test on 256 cores.

It has to be kept in mind that a lower stencil order in turn causes the dispersion relation to

deviate from the true vacuum speed of light at lower grid resolutions. Hence, the grid resolution

has to be increased, requiring a larger computational effort in turn. There is thus a trade-off worth

of further investigation. Such trade-offs are analyzed in Chapter 6 for the case of 1D simulations.

5.4 Parallelization 103

First thing to optimize is getting rid of the MPI barriers that can safely be removed but are

often present in older MPI applications. The performance-degrading effect of the barriers is shown

in the Scalasca analyses excerpts in Listing 5.2 and Figure 5.8. Removing the barrier is a simple

but efficient optimization.

MPI virtual topology

OS noise is ubiquitous, caused throughout the time by other running processes. It can lead to

synchronization issues in sensitive implementations. Non-uniformity in memory access and com-

munication demands an optimization of the MPI topology. Adapting the virtual topology of the

communicating processes to the simulated physical system is however beneficial in any case, since

it enables the MPI implementation to perform optimizations under the hood.

Since the ghost cell exchange is a local operation, the communicating processes are best located

nearby. The topology should generally be as cubic as possible in order to obtain a minimal “surface”

for node-to-node communication. Accordingly, it is instructive to implement a Cartesian communi-

cator. The new communicator is a member of the Lattice class, c.f Section 2.4, and is at startup

configured at the hand of the user-defined lattice decomposition, c.f. Chapter 3.

Unfortunately, the current MPI implementations map multi-dimensional grids unevenly onto

the nodes when using the convenience function MPI_Dims_create to create the process topology

from the given number of processes and dimensions. More flexibility to optimize to the hardware

will be provided with MPI 4.1 [200, 202].

One way to speed up code is to remove unnecessary tasks. The use of the virtual Cartesian

topology dramatically reduced the number of instructions for ghost cell exchange. A virtual Carte-

sian topology assigns coordinates to the processes on the lattice. This allowed to eliminate hard-

coded lookups for the correct neighboring processes. Associating IDs to the patches in the lattice

became redundant, too. Large code fragments, including two whole classes thereby became su-

perfluous, which enabled the shortening of call paths. The initialization of the communicator that

was previously handled by a dedicated class is now performed by a member function of the lattice.

The important functions taking care of the halo exchanges themselves could also be simplified and

now work more efficiently. The initialization of the ghost cells, i.e., the communication buffers, is

merged into the exchange function.

Nonblocking communication

The use of nonblocking MPI routines is in almost any case favorable [198]. Nonblocking means that

the communication call returns immediately, i.e., it does not block further code execution until the

operation is completed. This implies that other, independent operations can be performed by the

processor while communication is ongoing or pending, as opposed to standard blocking routines. It

is in this way basically possible to overlap communication and computation. Deadlocks and idle

time can be prevented.

Just like the synchronous and buffered routines mentioned above start with MPI_S and MPI_B,

the nonblocking routines start with MPI_I, where I is for “immediate”. On the downside, non-

blocking communication is also more error prone and fragile. The nonblocking operation might

still be ongoing while the program continues and it has to be ensured that there is no interference.

The message buffer must remain untouched until the message passing operation has completed,

i.e., the buffer is safely transferred.

104 5. Performance Optimization

Figure 5.12: Excerpt of an Intel® Trace Analyzer and Collector analysis comparing blocking and
nonblocking communication styles. For better visibility a short cutout of the runtime of a sample
simulation in 3D is shown. The quantitative timelines show the overall load of MPI calls and
the rest application accumulated over the 128 processes for the blocking communication (top) and
nonblocking communication (bottom)

Note the difference between the return of a routine and the completion of a communication

operation. Blocking routines only return when the data transfer is completed. MPI buffered send

operations thereby return as soon as the send buffer is filled, independent of whether a matching

receive call has been posted. Merely enough buffer space has to be provided. MPI synchronous

sends only return when a matching receive call has been posted to pick up the data. As a con-

sequence, synchronous sends might deadlock when the target is not getting ready to receive, e.g.,

when the latter is itself still trying to send. The standard MPI_Send operation is buffered for

a sufficiently small amount of data to be transferred that fit into the system buffer. However, it

changes to synchronous mode for larger amounts of data. Hence, the standard send call is at risk of

deadlocking for enlarged data or even just another MPI implementation and should thus be used

with care and foresight.

The blocking MPI_Sendrecv call, a convenience function combining send and receive calls

under the hood, has been employed in an old code version. As of the MPI 4 standard [202] the non-

blocking variant MPI_Isendrecv will be available and could bear benefits. Nonblocking routines

return independently of whether the communication process has completed. Variants of MPI_Wait

routines are required after nonblocking routines to wait for the final completion, after possible in-

dependent communications or computations could have been performed in the meantime. Idle time

can occur at the waiting routine, of course.

In fact, an Intel® Trace Analyzer and Collector analysis shows that most of the MPI commu-

nication time is spent waiting, while the actual immediate sending and receiving operations are

extremely fast. In contrast, the MPI_Sendrecv calls take more time in total. The nonblocking

variant is quicker getting started. In both cases, a large amount of time is spent in the collective

reduction operation. The latter is in order to re-synchronize the processes, c.f. Section 5.3.3, and is

performed at all norm-like calculations of the CVODE solver, see Section 6.3.3. An excerpt of the

analysis is shown in Figure 5.12.

It is in order to provide a benchmark for the overall performance at moderate scales in three

5.4 Parallelization 105

spatial dimensions. Full-time simulations in 3D took quite a long time before the optimizations.

On the KCS, simulating colliding 3D Gaussian waves, such as in Figure 4.23, that propagate a

distance of 40 µm on a lattice with 800×800×200 points, divided into 8×8×2 patches (128 cores),

previously took 13 h 20 min. Now, the same simulation takes only 2 h 47 min.

Collective communication routines and cubic patches

There is an important distinction between point-to-point and collective communication routines

that is worth considering, particularly when using virtual topologies. While the former describes

data transfer between two specific processes, the latter is a predefined communication pattern

between many processes. For the use of the latter, processes need to be ordered in some form, as is

the case in virtual topologies.

Instead of a point-to-point halo transfer, requiring looping over the patches in every dimension

of the lattice, one call to a neighborhood collective routine could suffice. Such routines exist in

blocking and nonblocking versions. Using neighborhood collectives it is up to the MPI implementa-

tion to optimize the operation. Neighborhood collectives require a slicing of the lattice patchwork

into patches of equal side length, i.e., into cubic patches in 3D, or squares in 2D. This is to ensure

halo layers of equal size in any direction and has to be taken care of at the setup of the patchwork.

Results for the different ways of communication for a standard ghost cell exchange program

have been tested [198]. Remarkable runtime and bandwidth differences between the standard

MPI_Sendrecv calls and nonblocking routines could be observed. Using one neighborhood collec-

tive call has proven to be even way faster in that particular case.

Yet, the quantum vacuum algorithm as introduced in Chapter 2 at present does not allow this

communication style. The algorithm processes the dimensions of the lattice sequentially in the

order: I) ghost exchange, II) rotation to prepare for derivation, III) derivation, IV) derotation, V)

time step update, c.f. Section 2.4. One collective neighborhood communication would distort the

rotation and derivation operations.

Conceptually equal on a Cartesian grid and in compliance with the algorithm are nonblocking

Isend/Irecv/Waitall combinations. MPI_Cart_shift can thereby be used on the virtual

topology to directly infer the neighboring patches. It can prove beneficial to post the nonblocking

Irecv calls before the Isend calls in order to evade late progress [198].

With regard to load balancing of the communication, it is in any case beneficial to use halos

of equal size in every dimension. In Section 5.3.1 it was demonstrated how unequal slicing of

the simulation box affects the scalability in an extreme case. The effect of using cubic instead of

cuboidal patches in 3D simulations has proven to be tremendous. A short simulation on a lattice of

the size 800×400×200 with cubic slicing into 16×8×4 processes took 104 s, while the unfortunate

slicing into 8×8×8 processes took 209 s. An analysis with the Intel® Trace Analyzer and Collector
showed that in less extreme situations, non-cubic patches do not degrade the performance that

badly. Nevertheless, there is an explicit advise given in the README file in Section 3 to use cubic

patches. At present, even a runtime warning is issued if a 3D simulation is running with non-cubic

patches.

Cubic patches can be further leveraged by initializing the ghost cells once at the generation

of the patchwork, since their size stays the same for the transfer in any direction. This way, it is

circumvented to create six ghost cells (two for every direction, as is effectively done for a collective

routine) at every step, but the same two buffers can be reused without resizing for every direction.

106 5. Performance Optimization

Also for non-cubic patches the allocation of buffer space has been tailored to fit exactly the size of

the exchanged data. Before that, there was an overhead generated on purpose, in order to create

enough buffer space. The result of the modification is less memory consumption and communica-

tion overhead. Furthermore, the width of the ghost cells is configured to automatically adapt to

the chosen order of the finite differences scheme according to the rule

ghost layer width = stencil order÷2+1 , (5.2)

where ÷ denotes integer division, ensuring a reduced communication load for lower orders and a

sufficient width for the calculation of the derivatives of Section 2.2.

5.4.4 Hybrid parallelization

With a large number of MPI processes per node, it becomes advantageous to additionally employ

multithreading. The basic idea is to combine OpenMP threading on the node/socket level with

processes spinning up the threads that communicate with the help of MPI. Such a configuration is

shown in Figure 5.11 in Section 5.4.2. This can also be viewed as MPI on the outer level and an

additional layer of parallelism for shared memory using OpenMP on the inner level [200].

Advantages

The advantage of a single address space accessible to parallel threads is that there is no need

to buffer messages for communication. Additionally, with pure MPI it is not possible to further

subdivide the distributed processes. A smaller number of MPI processes reduces the size of the

internal MPI buffer space, the space for replicated data, as well as the communication overhead.

The potential advantages are thus [198, 201]

• an additional level of parallelism, enabling increased scalability;

• less communication in virtue of simpler intra-node data transfer between threads;

• less memory requirements, since MPI processes often replicate data and the communication

buffers consume a lot of space;

• no communication overhead in a strict sense, since only required data are accessed by the

threads;

• better manageable load balancing, since in pure MPI this would require the transfer of tasks

and data to underloaded processors, while with threading only tasks have to be moved; and

• the possibility of incremental parallelization, as opposed to pure MPI.

Adding another level of parallelization enables the application to scale up to more cores. The

benefit of a hybrid parallelization, however, often becomes noticeable only at a very large number

of cores. For extreme scaling, fewer numbers of processes per node presumably perform better

because of the substantially increasing communication and memory costs. On the other hand, a

hybrid parallelization does generally not improve performance in the region where the pure MPI
application is still scaling well [201]. Figure 5.13 shows a sketch of typical performance curves

related to the development efforts of the parallelization methods.

5.4 Parallelization 107

Sequential

OpenMP

MPI

MPI + OpenMP

Performance

Development

Figure 5.13: Sketch of typical performance
curves for OpenMP and MPI. The use of
OpenMP can very early lead to applica-
tion speedups in multi-core environments.
The implementation of MPI-capability takes
some programming effort but pays out on dis-
tributed systems. When the performance of
a pure MPI application no longer increases it
can help to additionally make use of OpenMP
threading. The figure is composed of ideas in
[203] and [204].

The hybrid procedure is considered to serve as the workhorse on large systems. In this regime,

it is quite common today. A hybrid parallelization is in fact even demanded from modern HPC code

and rumored to be the key to exascale [200].

NUMA considerations and pitfalls

Nevertheless, the implementation of the hybrid parallelization is a very subtle procedure with

a lot of pitfalls to avoid, e.g., race conditions (also on buffers) and non-deterministic bugs [198].

Additional overheads might be introduced through the sequential code parts, synchronization,

false-sharing, and NUMA effects. At the same time, it has to be paid attention to other band-

width bottlenecks created by shared caches. An oftentimes neglected factor is that as a result of

more cache invalidations the sequential code parts take more time when operated on by multiple

threads, which has been pointed out in Section 5.4.2.

It has to be stressed again that data affinity becomes of utmost importance, such that each

thread can access its data as fast as possible. Guided first-touch programming is essential to evade

NUMA problems when using OpenMP on top. At this point the discussion on the first-touch rule

of Sections 5.2.3 and 5.4.2 is resumed.

Memory is structured in pages of typically 4096 kB that can be written according to first-touch

by different processors to their local memory [187]. Hence, it has to be ensured that those proces-

sors first write the data that need it again afterwards. With OpenMP it is often the case that one

master thread is responsible for writing, e.g., in a sequential region, c.f. Figure 5.14, with the con-

sequence that other processors have non-optimal access to the data. As discussed in Section 5.2.3,

the path lengths for data access in terms of bandwidth and latency can vary strongly on ccNUMA

nodes. This is an unfortunate situation and can be prevented by threading the data writing, at best

with static schedules, c.f. Section 5.4.2. It is further important to place threads onto the same

NUMA domain as their parent processes.

With pure MPI every process automatically has its local copy of data. As repeatedly stated,

this is problematic with regard to overall memory requirements. A severe memory overhead of

pure MPI can be bypassed by sharing data between multiple threads within one process instead of

having to allocate individual copies of data for each single core.

108 5. Performance Optimization

Figure 5.14: Idle threads in se-
rial code regions. One process
(P0) spans up four threads. The
master thread (T0) works alone in
the serial code regions (red) while
the other cores are idle. Many
processes can do this in parallel
to form a hybrid parallelization
model, c.f. Figure 5.11.

P0

T0

P0

T1

P0

T2

P0

T3

Additional overheads

OpenMP comes with its own issues that have been discussed in Section 5.4.2 and hence introduces

additional overheads, e.g., with every implicit barrier at the end of parallel regions. In essence,

parallel regions must be costly enough to justify multithreading, otherwise the implicit synchro-

nizations alone slow down the execution.

Spinning up a parallel threaded region thus induces an overhead that has to be compensated

by the gain, i.e., the region must be quite time consuming in sequential style. Multithreading on

top of the multiprocessing will therefore unleash its potential commonly only at very large scales,

where communication is not only the dominating bottleneck but also reaches its scalability limit.

For small simulations the threading gain disappears into overheads.

To summarize, the performance gain may disappear into overheads formed by

• sequential code;

• idle (waiting) threads;

• synchronization; and

• hardware resource contention.

Possibly the greatest hurdle is that single-threaded regions in a hybrid model must be averted

by all means in order not to waste resources. Parallel speedup is clearly limited by the serial code

parts. In the context of strong and weak scaling this is manifested in the scaling laws conceived by

Amdahl and Gustafson [205, 206]. Single-threaded regions put all other cores idle, see Figure 5.14.

The effect will be a large number of spinning threads. In principle, in a hybrid model the entire

code should be threaded, if possible.

It is thus a hassle to incrementally parallelize the existing code loop by loop. If this is not

manageable and many instructions cannot be threaded, single-threaded regions enlarge the crit-

ical path and this approach might have to be discarded after all. Threading has to be at least

implemented for selected, expensive routines along the main code path.

Hybrid styles

A neat way to circumvent NUMA effects and superfluous work is to place one MPI process on one

NUMA locality domain. In the case of the KCS system this amounts to two MPI processes per

5.4 Parallelization 109

node, as there are two sockets with attached memory units per node, c.f. Figure 5.1. In order to

exploit the full capacity of the machine, there should be at least one thread-spanning process per

memory region.

Fewer processes imply more memory to be available per process, diminished intra-node mes-

sages, and fewer inter-node messages, since the latter get bundled. This is particularly beneficial

for memory- and communication-intensive software. A fully hybrid parallelization means to put

only one MPI process on each used node, the largest shared memory domain of the cluster. Hav-

ing more MPI processes per node implies a partly hybrid parallelization as shown in Figure 5.11.

There is no other way to find the ideal number of threads than to test it out with experiments for

the application and system under prospect.

There are generally four styles of hybrid MPI + OpenMP programming [198], given by

• master-only: Communication takes place only in the sequential regions by the master thread.

This is the simplest solution with a clear separation between the parallelization levels. Ob-

viously, the disadvantages are idleness of all other threads and communication through the

master thread caches only;

• funneled: All MPI communication takes place through the same thread and may also be

inside parallel regions. Overlap of computation with communication is possible but commu-

nication still flows through the cache of the one thread;

• serialized: One thread at a time is allowed to make MPI calls. Sending and receiving threads

have to be distinguished with MPI tags or different communicators. Overlap of computation

with communication is possible, but additional latency overheads occur through the larger

number of smaller messages being sent. With this style it can be arranged that threads

communicate the data they own; and

• multiple: Several threads can do MPI communication simultaneously. This is clearly the

hardest way, remarkably with no overall support (portability) and often bad performance, but

often required to reduce overheads. The advantage is that threads naturally communicate

their own data only. Also, inter-process and inter-thread communication can overlap.

Implementation of the hybrid parallelization

The relevant functions and loops that all need to be threaded are inferred from the Intel® VTune™

Profiler analyses, see Section 5.3.2. The most expensive routines in the time-evolution process are

concerned with the computation of derivatives and the rotation operations. The flow of execution,

including communication and communication preparation, according to the numerical scheme goes:

I) fill the ghost cells, II) communicate (exchange) them, III) rotate, IV) derive, V) derotate, VI)

update time, c.f. Section 2.4. With exception of the communication, all these are now optionally

threaded. Hence, communication takes place only in a sequential region and the master-only style

is chosen.

The patchwork is split into process domains and the communication calls are performed per

process exchange instructions, not subdivided into threads as of yet. The latter would require

quite some programming effort with no predictable outcome, as the last bullet point concerning

hybrid programming styles above describes. Overlapping communication with computation is not

an option since only when the exchange is complete the next operation on the data can begin.

Trying to change this behavior would likewise require an expensive redesign.

110 5. Performance Optimization

Threading is implemented with explicit parallel loops, without resorting to more advanced con-

structs that would allow extended parallel regions, because synchronization after each step in the

scheme is required anyways. With the exception of the filling of the ghost cells and their transfer,

all of these are additionally vectorized, see Section 5.4.1. In the case of nested loops, the standard

procedure is to thread the outer loop and apply vectorization at the innermost level.

Since the concerned loops are balanced, the static schedule is chosen. Notably, this schedule

is best for parallel first touch [201]. In order to implement parallel first-touch along the discussion

in Section 5.2, the initialization instructions of the electromagnetic waves and the helper vectors

on the lattice mentioned in Section 2.4 are threaded with a static schedule. Since the com-

munication is still serial in terms of threads, the receive buffers are written only by the master

thread.

The remaining parts of the code are concerned with the creation of the setup configuration and

not suited for parallelization. Both the use of the OpenMP library as well as MPI are optional in

HEWES, while the use of MPI is strictly recommended, as detailed in the README file in Section

3.4.

Optimized SUNDIALS containers & benchmarks

The SUNDIALS library provides various NVECTOR implementations optimized for different data

types and partitioning styles. These vectors form the containers for the electromagnetic field values

used in the computations. The NVECTOR_MPIPLUSX module is available to support the MPI+X

paradigm for hybrid parallelization with MPI and another local parallelization level like OpenMP.

This is a rather new feature of SUNDIALS, see Chapter 6.

If a simulation is executed using processes and threads, this vector implementation is used

globally on the lattice, wrapped around the local NVECTOR_OPENMP vectors on the single lattice

patches. If only MPI or OpenMP are employed, the program resorts to the NVECTOR_PARALLEL

or NVECTOR_OPENMP implementations. If neither multiprocessing nor multithreading are made

use of, the fundamental NVECTOR_SERIAL is used.

The optimized containers give the hybrid MPI+OpenMP parallelization a tremendous perfor-

mance boost compared to the old NVECTOR_PARALLEL module, designed solely for MPI. For a

simulation on 512 cores, when running on 64 processes with eight threads each, the runtime is

reduced by 50%. Globally, a performance gain with the hybrid model over the pure MPI model is

achieved only for more than a thousand cores. As an example, the simulation running on 512 cores

from the weak scaling test (Figure 5.5) can be equipped with additional four threads. The runtime

thereby decreases from nearly 13×103 s to 8.7×103 s and the memory required per node from 31

GB to 8 GB. Of course, this is not directly comparable since the resources are extended, while the

load is not.

It is noteworthy, however, that the same simulation on 512×4= 2048 processes is problematic.

Nominally, it occupies the same resources, but the processes do not operate on cubic patches in this

case. Accordingly, eight threads would have to be used, which would exceed the allowed resources.

Unfortunately, the tests cannot be carried much further because there is a limit of 121 nodes per job

on KCS, see Appendix A. The memory requirements are at 11 GB per node and CVODE reported

struggles in this specific test. There is a number of subtle convergence issues with the CVODE
solver. A short list of experiences is given in Chapter 6.

In consequence, the threading can be useful to scale resources, while keeping patches cubic. As

5.4 Parallelization 111

in the case above, this has proven to be beneficial in some situations.

MPI-3 shared memory

The MPI-3 shared memory model deserves being mentioned in the context of hybrid parallelization.

It works with shared memory windows replacing communicators, where every process of a node can

directly read from and write to. It is based on the MPI single-sided remote memory access, where

processes independently access memory windows with MPI_Put and MPI_Get calls.

In the case of MPI-3 shared memory, windows can be created on each shared memory island,

e.g., a node or socket. Direct read and write operations are possible within an island, without

MPI communication and without OpenMP-specific problems. Separate communicators for each

shared memory island are created and joined to an overall communicator. Only inter-node/socket

communication still relies on send and receive routines.

Utilizing MPI-3 shared memory may result in a powerful reduction of memory requirements,

with data being stored only once per memory domain. The likely waste of resources of a hybrid

model can be efficiently combated with this model, where MPI emulates the shared memory con-

cept of OpenMP.

It might yield a significantly better bandwidth and the opportunity to reduce the halo buffers,

since halo exchange is facilitated by direct writes or receives from other halos. The downside is

that all the halo data have to be stored in the windows and the remote memory access calls need

to be synchronized. Moreover, the communicator handling is intricate. The implementation of this

concept might be an idea for future work.

5.4.5 Parallel I/O

Input/output (I/O) overheads can in some cases grow to dominate the overall runtime. With larger

simulations and datasets becoming ever larger, efficient I/O evidently gains attention. Serialized

I/O is no longer an option with potentially thousands of cores at work.

Reading from and writing to disk from a large number of parallel processes poses a challenge,

since standard I/O routines are designed for serialized processing. Unix generally is not designed

for parallel read/write operations. With newly put focus, nowadays I/O infrastructures are getting

more complex with designs specifically for parallel I/O.

Such file systems can be configured for optimal performance, with different strategies for dif-

fering systems and I/O patterns, see Appendix A for the case of the KCS. Parallel file systems are

constructed from many standard disks, where each single one is not particularly fast. Performance

comes from operating on many disks at the same time. This is in full analogy to the computing

power of HPC systems.

The standard parallel one-file-per-process approach generates an abundance of files on large

scales, resulting in a saturation of the file system and metadata servers. These problems can occur

when the maximum number of supported files is reached, by contention through simultaneous

disk accesses, and because of exceedingly wasted space [207]. On a personal device the one-file-

per-process approach might work well but it is not scalable on HPC systems.

Hence, efficient parallel I/O aims at a single file, which is operated on by multiple cores. In

this way, the end result of parallel I/O is the same as for serial I/O and it is possible to reduce the

metadata operations and the concurrent accesses to shared files. Postprocessing, too, is simpler on

a single file.

112 5. Performance Optimization

As mentioned in the README file in Section 3.4, the output size of 3D simulations can become

extremely large. The amount of output varies substantially, depending on the requirements. The

user might want to construct a step-by-step dynamic visualization or be only interested in the final

asymptotic state alone. Particularly a time-resolution of processes in 3D can demand very large

disk space at the order of several terabytes.

The output format deserves consideration, too. While for small to medium size outputs a CSV
format comes in handy, keeping the CSV format at large scales would be impractical. To achieve

highly efficient parallel I/O, the file output operation is optionally parallelized with MPI-IO in

binary data representation.

MPI-IO

MPI-IO is part of the MPI standard and thus highly portable. It operates very low-level and is

the fundamental building block of other common parallel I/O libraries like pHDF5 [207]. In simple

terms, in order to coordinate the writing/reading position for each process, explicit file offsets can

be defined. A process-specific “view” assigns the individual process a portion of the file.

A decision has to be made on the data representation used within MPI-IO. The options are

• “native”: raw bytes as they are present in memory. There is no loss of precision and no

conversion overhead. Yet, postprocessing for conversion is required;

• “internal”: implementation dependent and not necessarily compatible with other implemen-

tations. Conversions are performed if necessary, which incurs overhead; and

• “external32”: the standardized data representation big-endian IEEE. The best portable choice,

which is always readable by MPI-IO on any platform and also other programs. Precision and

performance may be lost in consequence of conversions.

Most MPI Implementations require the native format and extra conversion afterwards. The system

architecture could thereby use little- or big-endian byte order. Hence, “native” is the format of

choice in the present project.

The output size can then be exactly computed to be the number of lattice points times six (the

number of field components) times eight bytes (double precision floating point numbers). This

can be much less than in CSV format, particularly for large 3D simulations, where the data sizes

increase drastically.

Parallel file systems are optimized for bandwidth, not latency. I/O performance suffers con-

siderably when many small I/O requests are issued. Utilizing collective I/O is more efficient than

independent I/O, since therewith a smaller number of large write/read operations is invoked. MPI
thereby merges or funnels reads and writes and thus prevents file system contention. Hence, in

HEWES, collective and nonblocking MPI-IO routines are utilized that are generally considered

most efficient [207].

The speedup is substantial in comparison to the previous style of writing one CSV file per

process. There is an HPC characterization tool that transparently captures I/O access pattern

information, called Darshan [208]. With its help, the I/O operations of a rather small 3D simulation

on 128 cores are compared in the two I/O styles. The grid for the corresponding simulation has a

size of 800×800×200 points and the data is written to disk at each of the 40 time steps. Results

are shown in Figure 5.15. Note that in this case the one-file-per-process variant already produces

128×40= 5120 output files.

5.4 Parallelization 113

Figure 5.15: Comparison of I/O variants by time consumption and output size. The quantities
shown are averaged to per process, so the total amount is obtained through multiplying by 128.
Top: MPI-IO. Bottom: one-file-per-process style in CSV format. In the former case of MPI-IO the
independent writes are negligible and the bulk are shared write operations. The latter case of one-
file-per-process forms the contrasting pattern. The overall amount of data is larger in the latter
case, the time consumption is much smaller in the former case.

There is a rule of thumb: More than 10% of the runtime spent in I/O operations is considered

an I/O bottleneck [190]. Measurements show that I/O does not form a bottleneck according to this

rule, not even with one output per step in the one-file-per-process style. In 3D, where one would

guess that I/O could become a bottleneck, computation and communication consume by far the

largest amount of the total runtime. The share of I/O operations of the total runtime amount to

about 5% with the one-file-per-process style and only about 1% using MPI-IO. This is visualized in

Figure 5.16 with the help of Darshan.

Nevertheless, adequate and competitive I/O is an absolute requirement in view of ever larger

simulations, as the discussion above makes clear. 5% of the total runtime can still become a signif-

icant amount of time, and large output volumes should better be stored as compact as possible.

Processing high-volume data

Compared to previous code versions, the disk output is reduced to only the electromagnetic field

components. Earlier versions also saved lattice information that could be useful for postprocessing.

To nevertheless ensure ease of use, Python modules to read out the field data in the correct order

and shape for any dimensionality and format are provided in the code repository, as described in

the README file in Section 3.4.

Simulations in three spatial dimensions plus time are even so likely to produce several ter-

abytes of output data. It is then instructive to perform some form of downsampling and prepro-

cessing or even the postprocessing directly on the cluster computer. Visualization of high-volume

data can be carried out with the help of MPI-capable tools like ParaView [177].

114 5. Performance Optimization

Figure 5.16: Comparison of I/O variants by their share of the overall runtime. The simulation
configuration is the same as for Figure 5.15, however these shares seem to be quite universal.
Different tests resulted in about the same outcome. STDIO marks the shell output, discussed in
the README file in Section 3.4. Left: using MPI-IO that consumes about 1% of the runtime. Right:
using the one-file-per-process style in CSV format that requires about 5% of the runtime.

Chapter 6

Accuracy Considerations

/2 /4 /6 /8 /10 /12 /14 /16 /18 /20
k

10 9

10 7

10 5

10 3

10 1

M
AP

E

Errors at varying grid resolutions

“In order to solve this differential equation you look at it until a solution occurs to you.”

– George Polya

116 6. Accuracy Considerations

6.1 Introduction

Differential equations are pervasive in physics and everywhere in science. Most of the time, they

appear in a form of partial differential equations (PDEs), i.e., equations containing derivatives

with respect to more than one independent variable. The solution of ordinary differential equations

(ODEs), which contain only derivatives with respect to one variable, is a much better understood

subject.

In Maxwell’s theory the superposition principle for the set of differential equations holds, i.e.,

the equations are linear. As explained in Chapter 1, the Heisenberg–Euler theory of the quantum

vacuum supplements Maxwell’s theory of electromagnetism with nonlinear light–light interactions

that are forbidden at tree-level in quantum electrodynamics. Taking those into account in the low-

energy limit below the Compton scale of the electron, nonlinear terms in the electromagnetic field

extend Maxwell’s theory. This results in nonlinear differential equations of motion, invalidating

the classical superposition principle in the vacuum.

The extended Maxwell equations as given in Equation (1.25) are thus classified as a system

of nonlinear partial differential equations (PDEs). A merged PDE is obtained in matrix form in

Equation (2.4). As outlined in Chapter 2, semi-discretization of the PDEs with the help of the finite

differences scheme for the spatial derivatives results in the ODE system of Equation (2.22).

Solutions of differential equations can rarely be derived analytically in a closed form. Most of

the time numerical approximations are required. The simplest way is not to reinvent the wheel but

to rely on centrally managed and optimized libraries for code routines. As mentioned in Chapter

3, the CVODE solver [167–169] is the numerical software employed for the time integration of the

propagation equation (2.22). CVODE is capable of solving nonlinear differential equations.

Previous chapters left open questions with respect to sensible choices of parameters and the

impact on accuracy and performance of the numerical scheme for spatial derivatives and the time

integration by CVODE. With the finite differences scheme being thoroughly discussed in Chapter

2, this chapter mainly goes into detail about the time integration. Further, the general accuracy

of HEWES is analyzed. To this end, various configurations are scrutinized, studying different

settings and the impacts on accuracy and performance.

Outline

This chapter first provides a rough overview of ordinary differential equations and a selection of

widely used solution methods in Section 6.2. In Section 6.3, the CVODE solver, which is employed

for the time integration of the equations of motion, is introduced. An accuracy analysis with vary-

ing configurations is conducted in Section 6.4, including trade-off considerations, and closed by a

note on convergence issues.

6.2 Numerical solution of ODEs

Classification

An initial value problem (IVP) for a time-dependent function y(t) with initial value y0 at time t0

can be formulated as

ẏ= f (t, y) , y(t0)= y0 , (6.1)

6.2 Numerical solution of ODEs 117

with

ẏ= dy
dt

, (6.2)

i.e., the time-derivative of y(t) generally depends on a function of y(t) itself.

Equation (6.1) is a first-order differential equation, since it contains only derivatives up to

order one. Note that if higher-order derivatives were contained the equation could be rendered a

system of first-order differential equations [209]. If f contains no explicit dependence on t, i.e.,

f (t, y) = f (y(t)), the differential equation is homogeneous. If f contains nonlinear terms in y, the

differential equation is nonlinear.

Roughly speaking, the IVP (6.1) has a unique solution (in some interval of t and y) if f is

continuous in t and Lipschitz-continuous in y,

| f (t, y1)− f (t, y2)| ≤ L |y1 − y2| , (6.3)

with a Lipschitz constant L ≥ 0 [210].

6.2.1 Explicit and implicit methods

The explicit Euler method is the ancestor of all numerical methods to approximate solutions of

differential equations. Truncating the Taylor expansion of y(t0 + h) at the first order in the step

size h, one obtains

y(t0 +h)≈ y0 +h ẏ= y0 +h f (t, y)= y1 . (6.4)

The true solution after one time step of size h, y(t0 +h), is approximated by y1. An approximation

yn for y(t+ nh) can then be obtained in an iterative manner. The step size hn = tn − tn−1 can

principally be varied from step to step.

In other terms, approximating the derivative by the first-order forward finite difference approx-

imation, c.f. Section 2.2.2,

ẏ= f (t, y)≈ y(t+h)− y(t)
h

, (6.5)

it is obtained that

y(t+h)≈ y(t)+h f (t, y) . (6.6)

An explicit algorithm infers the state of the next time step from the information given at the

current state of the system. An implicit method on the other hand makes use of nonlinear ap-

proaches – coupled equations at each time step – to find a prediction for the iterate of the next step.

The prescription for the implicit Euler method is thus

yn+1 = yn +h f (tn+1, yn+1) , (6.7)

whereby yn+1 is defined implicitly. This scheme is obtained using instead of the forward difference

approximation, the backward difference approximation [209]. Iterative approaches are required

to compute the updated approximations yn+1 with the help of the available values tn, yn, tn+1.

Commonly root-finding or fixed point iterations are employed. The initial guess for the iteration is

a predicted value computed explicitly from the available history. In the case of the implicit Euler

method, a first prediction is usually obtained with the help of explicit Euler method [209]. The

explicit Euler method thereby functions as a predictor formula for the implicit Euler method.

While the explicit Euler method in many applications tends to introduce large errors if the

118 6. Accuracy Considerations

step size is not sufficiently small, the implicit approach is more stable. The principally higher cost

induced by the additional nonlinear equation system can thus be compensated. Stability means

that a small change in the initial value leads to a small change of the solution. In other words, the

solution is well-behaved under a small perturbation of the system [209]. For sufficiently small step

sizes this can always be achieved with Euler methods, but small step sizes can become very costly

and thus render the technique less efficient than one that is stable for larger values of h. Hence,

for stability quantification it is instructive to assume that h is not too small and define regions of

stability [209, 210].

Where it is beneficial to employ the implicit Euler method, the system can be called stiff. Put

differently, parameters in a system of differential equations that cause a variation of the solution

by orders of magnitude make it stiff [169]. A rigorous mathematical definition for stiffness does

not exist, but the general concept is important for stability considerations [210, 211]. In stiff dif-

ferential equations f has a large Lipschitz constant and such systems more rapidly break out of

a stability region. The Lipschitz constant plays an important role in the error bound estimations

of the approximate solutions. The more stable a scheme, the less restrictive the conditions on the

step size [209].

6.2.2 Higher-order methods

Stability is closely related to convergence. The latter means that for h → 0, the error of the approx-

imations also approaches zero. The local errors of the approximate solutions introduced at every

time step accumulate to a total or global error in the final solution approximation. The global error

of a method of order p is bound by hp, i.e.,

|y(tn)− yn| ≤ Chp , (6.8)

with an error constant C. Comparing the Taylor expansions of the exact and the numerical so-

lution, they should agree up to and including the hp term, when a method of order p is used. A

method of order p is said to be convergent with order p. Higher-order methods naturally converge

faster [209].

The Euler methods are of order one. The so-called Runge–Kutta methods are among the most

widely used higher-order methods and rely on integrating (6.1),∫ tn+1

tn

ẏ(t) dt =
∫ tn+1

tn

f (t, y(t)) dt , (6.9)

to obtain as approximation

yn+1 = yn +
∫ tn+1

tn

f (t, y(t)) dt (6.10)

and approximate the integral with the help of quadrature formulas. The higher orders are in this

case not attained through the evaluation of higher-order derivatives but via more intermediate

evaluations of f [210]. There are also implicit Runge–Kutta methods.

SUNDIALS includes the ARKODE package that provides explicit, implicit, and explicit-implicit

Runge–Kutta methods for stiff, nonstiff and mixed stiff/nonstiff problems [168]. Runge–Kutta

methods belong to the class of so-called one-step methods because the new solution is obtained

solely form that of the previous step. Other important types of higher-order are Adams and BDF

(Backward Differentiation Formula) multi-step methods.

6.2 Numerical solution of ODEs 119

6.2.3 Multi-step methods

Using approximations of previous values for f , the integral in (6.10) can also be approximated

with the help of interpolations. The explicit Adams method (Adams–Bashforth formula [212]) of

order p uses an interpolation polynomial of degree p through tn−i and fn−i for i = 0, ..., p. This

polynomial is then integrated. Higher-order Adams methods are obtained using higher-degree

interpolation polynomials. Taking into account available solution approximations of previous steps

renders Adams a multi-step method. Multi-step methods are superior to Runge–Kutta methods

particularly when high accuracy is essential [209].

Especially at higher orders it is favorable to employ the implicit Adams–Moulton formula [170].

The latter commonly corrects the approximation obtained with the explicit Adams–Bashforth for-

mula, taking it as starting iterate to be inserted into the Adams–Moulton formula. This is a famous

example of a predictor-corrector method [211]. Fixed-point iterations are most prominently utilized

to solve the nonlinear equations [210].

The implicit p-step Adams–Moulton method has a larger interval of absolute stability and a

smaller error constant than the explicit p-step Adams–Bashforth method [210]. Yet, while Adams

methods have great success for nonstiff systems, they often perform poorly on stiff problems.

Backward differentiation methods, like the backward Euler method, are better suited for the

latter case [210]. These make use of numerical differentiation rather than integration. Instead of

integrating the interpolating polynomial in the integral expression (6.10), an interpolating polyno-

mial of the differential equation (6.1) itself is differentiated backwards [211]. At order p, p previ-

ous solutions that have been approximated are used for an interpolation polynomial u(t) passing

through the preceding solutions and the upcoming step approximation, while requiring

u̇(tn+1)= f (tn+1,u(tn+1)) . (6.11)

BDF is accordingly an implicit method and thus also executes a predictor-corrector scheme. Instead

of fixed-point iteration, Newton’s method for root-finding is commonly used [210].

Both Adams methods (with constant step size) and BDF are linear multi-step methods, using

a linear combination of previous time steps in the inference process and in the implicit forms an

additional corrector included for a future step. The general formula for linear multi-step methods

is given in Section 6.3.2.

As mentioned above, higher order integrators can be more efficient. As opposed to one-step

methods, high orders do unfortunately not ensure convergence of multi-step methods for h → 0.

Further conditions have to be satisfied [210, 211]. Adams and BDF multi-step methods are those

with the most widespread use for many applications.

SUNDIALS includes the CVODE package targeting IVPs in the form of (6.1), with implemen-

tations of Adams–Moulton and BDF methods for nonstiff and stiff problems, respectively [168].

The highest available orders of the methods in CVODE are twelve for Adams–Moulton and five for

BDF. The latter suffers from instabilities above order six [211]. CVODE is detailed in Section 6.3.

The nonlinear algebraic equations appearing at implicit methods, which can be viewed as

generic root-finding or fixed-point problems, can be solved with Newton methods or fixed-point

iterations. SUNDIALS includes the KINSOL package for nonlinear algebraic systems that pro-

vides modified and inexact Newton methods for the root-finding case, and fixed-point and Picard

iterations for fixed-point systems [167, 168].

120 6. Accuracy Considerations

6.3 The CVODE solver

6.3.1 Structure

The time integration of the propagation equation (2.22) is performed by CVODE (C-language

Variable-coefficients ODE solver), a state-of-the art open source ODE solver from the SUNDIALS
(SUite of Nonlinear and DIfferential/ALgebraic equation Solvers) family of solvers which are ex-

plicitly designed to solve nonlinear equations on large-scale, HPC systems [167–169, 213, 214].

The SUNDIALS packages have a long history of success and are widely used in the scientific com-

munity.

SUNDIALS solvers are written in a data-independent manner. SUNDIALS operates on vector

structures of different types, called NVectors, with specific type-dependent functionality. Mathe-

matical operations on the NVectors are generic, agnostic to the particular data structure, paral-

lelization method, and solver type [168].

A few implementations of NVectors have been discussed in the context of hybrid paralleliza-

tion in Section 5.4.4. Notably, all parallelism within CVODE is encapsulated in vector and solver

modules and user-supplied functions. For MPI-based parallel vectors each dot product or norm-like

operation requires one MPI_Allreduce call [168].

Since the first versions of the Heisenberg–Euler simulation codes were written, the develop-

ment of SUNDIALS has made significant progress. To keep up with the growing complexity of

computer architecture, new programming models, and the popularity of external libraries, a re-

design of the SUNDIALS packages has been undertaken over the recent years.

To meet the above points, efforts have been made to increase the flexibility of the solver classes

and the NVECTOR implementations. The new, highly customizable solver classes are equipped with

many optional settings. Interfaces ensure seamless interoperability with other popular scientific li-

braries. Furthermore, the object-oriented design principles ensure extensibility for the user, easing

the addition of new features and code reuse [168].

Of utmost importance for the present work are the enhancements regarding performance at

extreme scales. As outlined in Section 5.4.4, the hybrid MPI + OpenMP programming model is

taken into account by SUNDIALS with new many-vector implementations. These form a software

layer ensuring well-defined partitioning of data between computing resources and computation

operations on that data. The data can be partitioned among distinct vector instances placed on

separate hardware resources, whereon the actual computations take place.

Devoted to the hybrid style of MPI communication over a cluster in conjunction with some fur-

ther form of parallelism on the individual nodes is the MPI+X NVECTOR implementation. It can be

comprised of various subvectors for different kinds of parallelism on the nodes, e.g., multithreading

with OpenMP. A dedicated OpenMP NVECTOR is available as one subvector type. The performance

boost described in Section 5.4.4 is impressive. The general many-vector approach can also be used,

e.g., for GPU offloading.

Other big changes to the interface include the new SUNContext object with the purpose to

enable mechanisms for logging, profiling, and monitoring that are described in Section 6.3.4 and

employed for analyses in Section 6.4. Evidently, later versions of SUNDIALS incorporated many

bug-fixes and provide more overall stability. The code has been refactored to work with the latest

versions as of writing.

6.3 The CVODE solver 121

6.3.2 Methods

CVODE targets stiff and nonstiff IVPs for ODEs in the explicit form of (6.1) using variable order

and variable step size implicit linear multi-step methods with formulas of the form [168, 169]

K1∑
i=0

αn,i yn−i +hn

K2∑
i=0

βn,i f (tn−i, yn−i)= 0 . (6.12)

As mentioned above, implementations of Backward Differentiation Formulas and Adams–Moulton

formulas of orders p up to 5 and 12, respectively, are available. The methods are characterized

in Equation (6.12) by values of K1 = 1, K2 = p−1 and K1 = p, K2 = 0, respectively. Orders and

steps size are automatically adapted according to the local error tests described in Section 6.3.3.

Additionally to step size adjustments for error control, the order of the method is dynamically

changed with the purpose of maximizing the step size. For details of the implementation, see

[169].

As described in Section 6.2.3, nonlinear solver modules are available within SUNDIALS to solve

the nonlinear systems that are formulated by the implicit methods [167, 168]. An implementation

of a Newton iteration for root-finding is used by default. The Newton iteration requires the solution

of linear systems and the type of the Newton iteration depends on the extra choice of linear solver.

This results in either a modified or inexact Newton method for a matrix-based or matrix-free linear

solver [169]. CVODE provides a bunch of different linear solvers and is highly versatile in the

tuning of each.

The fixed-point iteration does not require the additional solution of a linear system. Ander-

son acceleration can be used to speed up convergence of the fixed-point iteration [215]. However,

Anderson acceleration showed to have only detrimental effects in the present case. Testing it in

various configurations resulted in a – sometimes severe – slowdown for 1D simulations.

In line with the discussion above, the Adams method (Adams–Moulton formula) with a fixed-

point iteration is recommended for nonstiff ODEs in the CVODE user documentation [169]. For

stiff ODEs mostly BDF in conjunction with Newton iteration would be used.

Roughly, the CVODE solver performs the following operations to integrate the equations of

motion stepwise [169]: I) predict the solution, II) solve the nonlinear system and thereby correct

the prediction, III) perform an error test, IV) choose the order and step size for the subsequent

step. In case the error test fails or if there are issues with the convergence, the solver is capable to

perform recovery attempts by adapting step sizes and method orders.

Choice of the CVODE method

In order to choose the suitable method within CVODE, the stiffness of the system has been inves-

tigated in [145]. The parameter under investigation is the lattice spacing, or resolution, ∆, defined

as the number of points per physical length. Its importance is stressed in Section 2.3.

Adams–Moulton is found to be superior until the equations become, at a very high resolution

of ∆ = λ/500 or k ·∆ = π/250, very stiff. Only at that point BDF should be employed for enhanced

stability and faster convergence. Such high grid resolutions are definitely not targeted, first be-

cause that significantly impairs the efficiency and second because the available high orders of the

scheme make them avoidable. Moreover, when shrinking the lattice point distance the accuracy is

at some point limited by a dominating round-off error.

122 6. Accuracy Considerations

To conclude, implicit Adams–Moulton is the method of choice. As explained above, the order and

step size are adapted automatically. The maximum order is by default set to twelve. A fixed-point

iteration is chosen for the nonlinear algebraic system.

6.3.3 Error controlling

CVODE uses a weighted root-mean-square (WRMS) norm to control error-like quantities. The used

weights are based on the current solution and on the relative and absolute tolerances mentioned

in Chapter 3 and supplied by the user [169],

Wi = 1
rtol · |yi|+atoli

. (6.13)

As mentioned above, every WRMS norm operation on parallel MPI vectors requires an

MPI_Allreduce call. Error control is a critical feature of CVODE.

At every step the local error is estimated and required to satisfy the tolerance conditions. Rel-

ative and absolute errors are defined by

erel =
|yn − y(tn)|

|y(tn)| , eabs = |yn − y(tn)| . (6.14)

The relative error tolerance should generally not be smaller than the unit round-off [169].1

Just as in Chapter 4, the quantification of errors with a relative error metric is limited to regions

where the true solution is not too near to zero. The absolute error tolerance is thus important to

control small values of the solution, where the relative error tolerance becomes inapplicable. The

absolute error tolerance should therefore be set to some conservative threshold value, while the

relative error tolerance controls the significant digits above that threshold.

The relative and absolute error tolerances for the time integration with the CVODE solver are

set to 10−12 or lower for the simulations presented in Chapter 4. This yields time integration

errors that are hardly detectable due to the errors introduced by the finite differences scheme.

With sufficiently low tolerances, the time integration can be considered exact in light of the errors

introduced by the spatial derivative approximations. This matter is discussed in Section 6.4.

At every step, the local error is estimated and required to satisfy the tolerance conditions.

Whenever the error test fails, the step is redone with a reduced step size. New step sizes are

computed based on the asymptotic behavior of the local error [169]. Tolerances hence guide the

time step adaptations. Depending on the dynamics of the system, the solver performs larger time

steps in quiet regions and shorter steps in highly dynamic regions. Clearly, the locally controlled

errors accumulate with the number of integrator steps to a global error.

Additionally, the order of the method is adjusted with the goal of maximizing the step size,

selecting the order for which a polynomial of that order best fits the data [169]. Finding a more

efficient configuration, CVODE is therewith able to maintain the desired accuracy while taking

larger steps. The sizes of the steps can be further controlled with the help of tuning parameters, but

the default values in those configurations have a long history of success [169], see also [213, 214].

Besides the error of the time integration, which is restricted by CVODE, there is the spatial

derivative error of the scheme.

1The unit round-off precision machine epsilon for the ISO C double type is 2.220 446×10−16.

6.3 The CVODE solver 123

6.3.4 SUNDIALS evaluation functionalities

SUNDIALS provides capabilities for profiling of code regions, monitoring of the solver states, and

detailed logging. These modules constitute useful tools to inspect the solver load and performance,

and are made use of in Section 6.4 to collect data on every test run. It has to be kept in mind that

these mechanisms can act seriously performance-degrading, even more so the more detailed the

evaluation.

Conveniently, there is a function to directly print a bunch of solver statistics, see Listing 6.1.

1 Current time = 0.0001000034355709279

2 Steps = 26031

3 Error test fails = 3

4 NLS step fails = 0

5 Initial step size = 4.115745890359425e-21

6 Last step size = 3.845318480764656e-09

7 Current step size = 3.845318480764656e-09

8 Last method order = 7

9 Current method order = 7

10 Stab. lim. order reductions = 0

11 RHS fn evals = 44830

12 NLS iters = 44829

13 NLS fails = 0

14 NLS iters per step = 1.722138988129538

15 LS setups = 0

16 Root fn evals = 0

Listing 6.1: CVODE statistics. In particular the number of internal steps and iterations of the

nonlinear solver (NLS) serve as quick reference to estimate the load and performance of CVODE.

No linear solver (LS) is used for the employed fixed-point iteration.

More details can be extracted with the advanced functionality. Parameters of the solver can be

accessed during runtime. This is most conveniently done with the help of the monitoring capability

that extracts solver states in defined intervals of internal solver steps. For example, supplementary

metrics like estimated errors and error weights are collected. To make this possible, additional

NVectors need to be allocated. Hence, used in that way, monitoring also noticeably affects the

memory resources.

Profiling lists the SUNDIALS code regions and their time consumption, alike the profiles shown

in Section 5.3.2. Listing 6.2 lists the CVODE functions in a sample 1D simulation of Section 6.4.

Instrumentation is possible and currently used around the integration loop, called Propagation,

which obviously encompasses nearly the full time spent in the CVODE routines.

1 SUNDIALS PROFILER: SUNContext Default

2 Results: % time max/rank average/rank count

3 ==

4 From profiler epoch 100.00% 29.072401s 21.804267s 2

5 Propagation 99.94% 29.055443s 21.791331s 100

6 CVode 99.94% 29.055359s 21.791267s 100

7 N_VLinearSum 88.18% 25.635841s 19.187485s 1803942

8 SUNNonlinSolSolve 38.10% 11.075888s 8.293876s 26034

9 N_VScaleAddMulti 21.52% 6.256312s 4.688735s 52062

10 N_VWrmsNorm 20.00% 5.815803s 4.348774s 160492

124 6. Accuracy Considerations

11 N_VWSqrSumLocal 17.97% 5.222930s 3.911580s 160492

Listing 6.2: Excerpt of SUNDIALS profiling information. The time consumption and the count

of calls of the various functions is listed. Four processes (here called ranks) are used for the

simulation. The propagation is split into 100 integrator steps. This kind of report can be used

to quantify the varying loads of CVODE.

The logging capabilities provide a SUNDIALS-wide mechanism for logging of errors, warnings,

and information. If everything runs fine, there are neither errors nor warnings. The informational

output encompasses a summary of the nonlinear solver iterations. Further debug output to, e.g.,

examine the NVectors is possible.

6.4 Accuracy and performance evaluation

The stability of the numerical scheme with respect to a well-behaved propagation of electromag-

netic modes of any frequency has been detailed in Section 2.3 and is further discussed in Section

7.2. In this section the accuracy and performance of both the numerical scheme of biased finite

spatial differences and the time integration with CVODE are analyzed. Some trade-offs have been

marked in the preceding chapters, which are brought up for discussion here. While utilizing the

CVODE solver at high accuracy, it is imperative to guarantee a real vacuum-like dispersion rela-

tion with suitable parameters of the spatial grid.

Note that the focus is not on parameters within the ODE system, but in the first place on the

numerical scheme and the configuration of the simulation space (lattice) as well as the CVODE
solver settings. The investigation first expands on the analysis of the dispersion relation in Section

2.3. Likewise, one plane wave is propagated on a one-dimensional grid. The wave has a wavelength

of 1 µm and propagates a fixed distance of 100 µm. This is a comparably long distance in relation

to the simulations presented in Chapter 4. The basic settings are listed in Table 6.1.

Table 6.1: Parameters for accuracy and performance tests. A plane wave with a fixed wavelength
and polarized in Ez-direction propagates in x-direction on a 1D lattice with fixed physical size.
The wave further propagates for 100 periods, i.e., 100 µm. Recall that the lattice has periodic
boundaries. Other parameters, the grid resolution, the stencil order, and the tolerances of the
CVODE solver are varied.

Grid Length 100 µm

Lattice Points 400 – 4000

Probe A 0.1Ecr

λ 1 µm

Stencils Order 1–13

CVODE Relative Tolerance 10−16 – 10−6

Absolute Tolerance 10−16 – 10−6

The settings are used for testing the accuracy of the scheme and for trade-off estimations.

Recall that there are no nonlinear interactions with a single plane wave. After having propagated

for 100 full periods, the final wave position should be identical to the original position, such that

the deviations are easily identifiable. In order to get an averaged, relative expression, the error

6.4 Accuracy and performance evaluation 125

/2 /4 /6 /8 /10 /12 /14 /16 /18 /20
k

10 9

10 7

10 5

10 3

10 1

M
AP

E

13
12
11
10
9
8

Figure 6.1: Errors at varying grid resolutions and stencil orders. A MAPE of about unity is not
meaningful, hence an even coarser grid is not taken into account. Lower stencil orders need ac-
cordingly higher resolutions to converge to a minimal error. There is a pattern in the differences
observable. The accuracy loss going from an even order of accuracy to the next lower uneven one is
larger than from an uneven order to the next lower even order.

metric is chosen to be the mean absolute percentage error. The same metric has been chosen to

assess simulations in Chapter 4. For completeness, it is defined as

MAPE (in %) = 100
n

n∑
i=1

ypred,i − ytrue,i

ytrue,i
. (6.15)

The MAPE shown in the following diagrams is not given in percent. As opposed to the problems

in Chapter 4, a critical region for the metric, where the true distribution lies near to zero, can be

avoided. This is achieved by shifting the plane waves upwards with a just sufficient z-offset of 0.11.

6.4.1 Testing the scheme

For tests of the scheme only, the CVODE tolerances are kept very low at 10−16 each. First, varying

grid resolutions are compared at varying order of the scheme. The results, visualized in Figure 6.1,

can be compared to the analytical plots of the dispersion relations at all orders in Figures 2.6.

According to Equation 2.58, the lattice resolutions used for quantum vacuum simulations should

adhere to the rule ∆. 1/12λ or k ·∆& π/6 at order thirteen of the numerical scheme. As in the

simulation of higher harmonics, c.f. Table 4.4, even after a propagation of 100 µm the accuracy is

then still appropriate to extract the vacuum nonlinearities with high accuracy.

On the other hand, decreasing the resolution from there on, the critical regime is quickly

reached and the modeling of waves deteriorates. At 400 lattice points, i.e., ∆= 1/4λ or k ·∆= π/2,

the wave gets damped and shifted so heavily after 100 µm that a comparison to the initial state is

nonsensical. This situation can be directly compared to Figure 2.5 (left). The order of accuracy of

the scheme evidently plays an outstanding role.

The average times in the propagation loop for the simulations of Figure 6.1 are depicted in

Figure 6.2. The times are obtained through SUNDIALS profiling information, c.f. Listing 6.2.

As mentioned in Section 3.2, the computation time is approximately independent of the stencil

126 6. Accuracy Considerations

/2 /4 /6 /8 /10 /12 /14 /16 /18 /20
k

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ti
m

e
[s

]

13
12
11
10
9
8

Figure 6.2: Time consumption at varying grid resolutions and stencil orders. This proves that the
stencil order has a negligible impact on the runtime. Generally, the load scales linearly with the
grid size.

order, but the correct physical solution is rather approached with a higher stencil order. This

lucidly demonstrates the benefit of the high-order scheme, where a small lattice can be employed.

Only for distributed simulations the order of the scheme unfolds an impact on the performance

through the communication load, c.f. Equation 5.2. This impact becomes dominant in 3D, as de-

tailed in Section 5.3. Apart from that, even higher order stencils could be implemented. Obviously,

the grid resolution influences the CVODE profile of Listing 6.2. This is because in the present case

the resolution is increased with the overall grid size, i.e., the problem size.

6.4.2 Testing CVODE

Concerning the solver statistics of Listing 6.1, both the stencil order and the grid resolution seem to

be rather irrelevant. On the other hand, the tolerances significantly impact the number of internal

solver steps and iterations.

Tolerances

The time integration should be kept exact in order to have only the scheme limiting the accuracy. It

is not a simple task to guess the right tolerances and it is clearly problem-dependent. The relative

error tolerance controls the relative error and, keeping in mind its insufficiency at small absolute

values, is complemented by the absolute tolerance. As described in Section 6.3.3, the latter is

crucial to control small overall values that are naturally being dealt with in the investigation of

quantum vacuum nonlinearities.

Errors are tested at varying tolerances with the baseline simulation given by the one with 1200

lattice points, i.e., ∆ = 1/12λ or k ·∆ = π/6, and stencil order twelve. With respect to the lattice

resolution and propagation time, this is a suitable setting for the detection of quantum vacuum

effects. The errors are summarized in Figure 6.3.

In this particular case, an absolute tolerance of 10−8 is sufficient. The relative tolerance then

only needs to be adequately lower than the error introduced by the scheme, c.f. Figure 6.1. Finding

6.4 Accuracy and performance evaluation 127

10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 13 10 14 10 15 10 16

Relative Tolerance

10 4

10 3
M

AP
E

atol=10 6

atol=10 8

atol=10 10

atol=10 12

atol=10 16

Figure 6.3: Integrator tolerances and accuracy. Tolerances are varied for the simulation with
stencil order 12 and k ·∆=π/6. There is a long range in the conservative region, where the relative
tolerances do not affect the overall accuracy of the integration in this case. The errors introduced
by the dispersion on the grid predominate in that range, as one can see from Figure 6.1. The
dashed horizontal line shows where the total errors are at the threshold given by the scheme and
where the time integration is exact in that sense. Clearly, it is not sensible to set a strict absolute
tolerance but at the same time a loose relative tolerance.

an apt pair of tolerances most of the time requires experiments for the particular class of simula-

tion. Vacuum nonlinearities, which are tiny compared to the strong pulses, are not present in this

test. More stringent error bounds are for this reason considered as required for the simulations of

Chapter 4.

For example, the configuration for harmonic generation in 1D of Table 4.4 with the results in

Figure 4.13 can be considered. For the initial wavelength of the probe pulse, the resolution is

k ·∆ . π/12. According to Figure 6.1 this would yield a MAPE of the scheme of less than 10−9.

Note that the mangitudes of the pulse amplitudes are smaller than in the tests above. Moreover,

the propagation distance and hence also the propagation of the error is less. On the other hand,

after about 40 µm, higher harmonics arise with accordingly smaller wavelengths, upon which the

scheme introduces larger errors.

Considering all factors, it is challenging to make a decided prediction. In view of the above

discussion, a relative tolerance of about three orders of magnitude smaller than the error of the

scheme should be sufficient, considering error propagation. The absolute tolerance would be chosen

small enough to take into account the nonlinearities. It is obtained atol ' rtol ' 10−12. The actual

tolerances to obtain the accurate results of Figure 4.13 are conservatively chosen to be atol= rtol=
10−16, since the cost of such a simulation hardly matters.

Notwithstanding, the tolerances do matter in more expensive simulations. The simulations in

2D and 3D of Section 4.5 are indeed conducted with atol = rtol = 10−12. Clearly, these simulations

do not yet aim to be of ultra high precision and the highest harmonics quickly fade, such that they

need not be propagated for a long distance. Nonetheless, the elemental results were unchanged

even when testing one of the 2D simulations of Chapter 4 with doubled grid resolution in every

dimension or by lowering the tolerances for the 3D simulation generating Figure 4.25 to 10−15. In

the latter case, the runtime nearly doubled.

128 6. Accuracy Considerations

10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 13 10 14 10 15 10 16

Relative Tolerance

1

2

3

4

5

6

7

Ti
m

e
[s

]

atol=10 6

atol=10 8

atol=10 10

atol=10 12

atol=10 16

Figure 6.4: Time consumption at varying integrator tolerances. Too strict tolerances can incur very
large overheads that need not necessarily be mandatory, as discussed in the text.

This demonstrates that it is worth trying out higher tolerances, keeping in mind the imperfec-

tion of the numerical scheme for a given stencil order and grid resolution. Figure 6.3 shows a long

range up to very low relative tolerances. Relaxing the tolerances can reduce the time consumption

significantly, at least in compute-intensive simulations, while still keeping time integration exact.

Runtimes are shown for the simulations of Figure 6.3 in Figure 6.4.

Number of steps

Another concern is the number of steps taken per propagation distance. CVODE takes a self-

adjusted number of internal steps to reach each user-given step. In the README file in Section

3.4 the advise is given not to set too few steps in order to elude large interpolation errors. In the

CV_NORMAL mode, in order to reach an external step exactly, CVODE performs internal steps until

the external step is just reached or surpassed and then interpolates back [169]. Large steps can

incur CVODE to complain about too much work in order to control the error. Good results are

achieved with a step size of about 1 µm and there is no noticeable accuracy improvement in the

case of the above simulations with shorter user-defined steps.

CVODE convergence issues

There are unstable scenarios where CVODE takes increasingly long to converge or fails completely

when a too small step size is reached. In this sense, the solver unfortunately proves not to be

stable with respect to the initial configuration. Moreover, this behavior seems to be even system

dependent. For example, some later compiler versions are demonstrably responsible for causing

convergence errors more often. The README file in Section 3.4 includes a note that for the initial

wave parameters decimal numbers should be chosen. Using, e.g., a sqrt expression instead can

already cause problems. Code instrumentation for different purposes can also cause convergence

corrector errors. Issues of this kind have to be investigated in more detail in the future, e.g., with

the help of the CVODE debugging capability.

Chapter 7

Outlook

10 20 30 40 50 60
x [m]

4

2

0

2

4

E
[1

0
3 E

cr
]

t=0s
t=15fs
t=30fs
t=60fs
t=90fs

0 10 20 30 40 50 60 70 80
x [m]

6

4

2

0

2

4

6

E
[1

0
3 E

cr
]

t=0fs
t=45fs
t=90fs
t=135fs

Dispersion with and without a resolution barrier

“The only way you can predict the future is to build it.” – Alan Kay

130 7. Outlook

7.1 Introduction

Instead of discussing ongoing research employing the Heisenberg–Euler solver, which has been

mentioned throughout the preceding chapters, this chapter gives an outlook on future descendant

simulation codes. Ongoing investigations are outlined in preparation to conduct simulations with

farther scope.

As discussed in Section 2.5, the code is subject to the curse of dimensionality. Practical fea-

sibility limits are set upon the solver for high-frequency waves requiring high-resolution grids,

particularly when it comes to full three spatial dimensions. The all-optical QED vacuum simulator

outlined in Chapter 3 uses a numerical scheme of high order and consequently requires a compar-

atively small number of lattice points for the accurate propagation of an electromagnetic wave of

a given wavelength, c.f. Chapter 2. The number of lattice points nevertheless needs to be further

reduced without diminishing the accuracy in order to simulate effects like polarization rotation in

three-dimensional setups.

To address this problem the optimizations outlined in Chapter 5 have been put into place. The

scalability on distributed computing systems can be leveraged to conduct high-load simulations.

Nonetheless, in order to reach the x-ray regime in 3D, a drastic reduction of the computational

load in the first place has to be achieved. The hope is that this can be done with novel techniques

including machine learning and multi-scale simulations.

Matter is totally absent in the description in the present work, c.f. Section 1.6. To take it into

account, a conceptually very different formalism seems adequate. The Dirac–Heisenberg–Wigner

formalism takes into account the full QED picture, including pair creation. There is progress on

that numerical front, too.

Outline

A sophisticated future approach to render extremely expensive simulations feasible via a multi-

scale ansatz is discussed in Section 7.2. Taking into account pair creation numerically might be

possible with the Dirac–Heisenberg–Wigner formalism outlined in Section 7.3.

7.2 Dynamic multi-scale simulations

Harmonic generation has already been simulated in 3D, see Section 4.5, but polarization flipping,

even when using extrapolation techniques, could incur a numerical load that is easily million-fold.

To make this clear, see the lattice requirements for the simulations of birefringence and harmonic

generation listed in Chapter 4.

Specifically birefringence scenarios exhibit a scale separation between the probe and back-

ground wavelengths by many orders of magnitude. At the same time the spatial extension of

the probe pulse is commonly quite small compared to the background field. Hence, the seemingly

best option is to resolve only a fractional region of the whole simulation space with the high pre-

cision that is required to propagate the high-frequency probe pulse in order to simulate vacuum

birefringence effects in three spatial dimensions and time.

The implementation of a dynamically resolution-adapting grid can render the simulation of

high-frequency pulses more feasible. The computational load for a simulation of the prominent

7.2 Dynamic multi-scale simulations 131

low-frequency pump and high-frequency probe pulses setup to detect vacuum nonlinearities can in

principle be dramatically reduced by locally varying grid resolutions.

Simulating all waves from their initial to final positions on a uniform grid, whose resolution

must be adequate for the highest involved frequency, incurs a very large and unnecessary over-

head. Instead, dynamical grids are capable of reducing the overall numerical load significantly by

ensuring a lower resolution in regions where at a given time only the low-frequency pump pulse or

no pulse at all is present. This strategy does not diminish the overall accuracy and is the way to

achieve the maximum reduction of computational load from a conceptual point of view.

Ultimately, a fully automatically adapting grid is envisioned, which changes resolutions in cer-

tain regions on demand and on the fly with a machine-learning based inference technique, employ-

ing an AI spectral FFT analyzer.

The challenge with an explicit solution of the numerical multi-scale problem using dynamical

grids is that topologically complex communication interfaces at grid resolution boundaries, an in-

line diagnostic sensing the evolution of dynamic scales, and advanced load balancing are required.

This can be achieved with the use of adaptive data structures and integrators combined with novel

machine learning concepts.

In order to render the methods dynamic, it appears that interpolations are required for the

transition to finer grids, while for the transition to coarser grid points might be omitted. The

way these interpolations are performed, presumably relying heavily on machine learning methods,

is part of active research. Focus has to be put on maintaining the stability of the algorithm on

dynamic multi-scale grids. This could become problematic using interpolations [216].

7.2.1 A static resolution barrier

In order to demonstrate that the solver presented in this work is capable of multi-scale simulations,

the problem of transmission and mode reflection at grid resolution boundaries is investigated at

the hand of the specific dispersion properties of the numerical scheme on a static grid. The idea of

an adaptive grid is thereby mimicked with a static resolution barrier inserted into the lattice.

This can be implemented using different grid resolutions on neighboring patches. To the end of

load balancing, the number of points is kept constant among the patches, while the physical length

is changed.

1D Simulations are performed in this basic multi-scale form and the validity of employing a

grid with regions of varying resolution is investigated. The dispersion of the waves, especially in

the vicinity of the barrier, is studied. Reflection and error behaviors of the waves are investigated

with the purpose of quantifying the validity of more sophisticated future implementations.

The finite difference method works well for regular grids, but it is a nontrivial task to connect

two grids with different resolutions. Depending on the underlying algorithms, changing the res-

olution can lead to numerical artifacts at the transition regions. Another option is to adapt the

finite differences at the transition region, taking into account varying step sizes on the fine and

coarse grid parts [216]. This is a more sophisticated and promising approach that can, per contra,

introduce instabilities.

Recapitulation of the dispersion relations

A short summary of the dispersion relation is in order. The dispersion relation is symmetric in k
for all stencils and hence the phase velocity equal in both directions. All used stencils are listed

132 7. Outlook

10 20 30 40 50 60
x [m]

4

2

0

2

4

E
[1

0
3 E

cr
]

t=0s
t=15fs
t=30fs
t=60fs
t=90fs

10 20 30 40 50 60
x [m]

4

2

0

2

4

E(
x)

[1
0

3 E
cr

]

t=0s
t=30fs
t=60fs
t=90fs

Figure 7.1: Amplitude damping with stencils of order thirteen. Left: Time evolution for a Gaussian
wave packet with a wavelength corresponding to half the Nyquist frequency. There is a strong
damping due to the dispersion relation. Right: Time evolution for a Gaussian wave packet with a
wavelength corresponding to a tenth of the Nyquist frequency. No damping is observed with the
sole eye.

in Chapter 2. Higher orders defer and decrease the rise of the imaginary parts. A stronger bias

causes more absorption on the grid and the phase velocity to become superluminal as can be seen

in Figure 2.6 at the even orders of accuracy, which are more imbalanced.

The wavelength/frequency regions where the dispersion relation deviates heavily from the lin-

ear vacuum form a critical regime. General dispersion effects for Gaussian wave packets in the

critical and non-critical regime are visualized in Figure 7.1.

Note that the simulation of a high-frequency wave does not overshoot the Nyquist limit, but

will be sampled as a wave with lower frequency, as explained in Chapter 2 and demonstrated in

Figure 2.3. The frequency axes of the dispersion relation plots in Figure 2.6 thus range only up to

the Nyquist limit, but the algorithm is stable for any frequency.

Stability at transition regions

The presumption is thus that there is no danger for a wave with a given wavelength to get a

blown up amplitude even after crossing some resolution barrier. The resolutions to the right of a

resolution barrier will be fourfold lower in the forthcoming discussion. The simulations are tested

with the highest available stencil order thirteen.

By crossing the resolution barrier from a fine to a coarse grid the wave might enter the strongly

nonlinear regime of the dispersion relation, the critical regime. This is visualized in Figures 7.2 for

the same wave packets as in Figure 7.1.

It can easily be understood that a stronger damping can be observed when the wave transitions

into a region of lower resolution. This is shown for the extreme case in the zoomed-in Figure 7.3.

Reflection at the barrier

As a consequence of energy non-conservation there is no defined relation between transmitted and

reflected wave fractions at resolution barriers. An investigation of reflection effects is performed

via an analysis of the evolution of wave amplitudes, see Figure 7.4, and by a time-step analysis of

the reflected fractions, see Figure 7.5.

7.2 Dynamic multi-scale simulations 133

0 10 20 30 40 50 60 70 80
x [m]

6

4

2

0

2

4

6
E

[1
0

3 E
cr

]
t=0fs
t=45fs
t=90fs
t=135fs

0 10 20 30 40 50 60 70 80
x [m]

6

4

2

0

2

4

6

E
[1

0
3 E

cr
]

t=0fs
t=45fs
t=90fs
t=135fs

Figure 7.2: Evolution of the waves from figure 7.1 crossing a grid resolution barrier. The above
wave is very strongly damped and to the right of the barrier is extincted quickly. What looks like a
hard cut is indeed a strong damping as can be seen in figure 7.3. The wave below when passing the
barrier experiences a noticeable damping. See figure 7.4 for the evolution of the amplitudes over
time.

40 42 44 46 48 50 52 54
x [m]

0.3

0.2

0.1

0.0

0.1

0.2

E
[1

0
3

E c
r]

t=90fs

40 42 44 46 48 50 52 54
x [m]

0.3

0.2

0.1

0.0

0.1

0.2

E
[1

0
3

E c
r]

t=105fs

Figure 7.3: Strong damping after crossing the resolution barrier of an incoming wave with a wave-
length corresponding to a half of the Nyquist frequency.

134 7. Outlook

60 80 100 120 140
t [fs]

4.5
4.6
4.7
4.8
4.9
5.0
5.1
5.2

A
[1

0
3 E

cr
]

Figure 7.4: Peak amplitude evolution of a Gaussian wave packet with a tenth of the Nyquist fre-
quency, hitting the resolution barrier with the packet center at 100 fs. There is a pile-up at the
barrier which relaxes quickly, see Figure 7.5. Right from the barrier a bouncing of the amplitude
can be observed. This comes down to the inaccurate modeling of a Gaussian wave packet when the
frequency is large compared to the lattice resolution. In less severe form the latter effect can also
be observed in Figure 4.13.

45 46 47 48 49 50
x [m]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

E
[1

0
3 E

cr
]

t=99fs

45 46 47 48 49 50
x [m]

150

100

50

0

50

100

150

E
[1

0
6 E

cr
]

t=114fs

45 46 47 48 49 50
x [m]

20
15
10
5
0
5

10
15
20

E
[1

0
9 E

cr
]

t=135fs

45 46 47 48 49 50
x [m]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

E
[1

0
12

E c
r]

t=150fs

Figure 7.5: Reflected wave parts for a Gaussian packet modeled with a tenth the Nyquist frequency
after hitting the resolution barrier. The reflections are obtained by subtracting the same simulation
on a uniform grid. The reflection is diminished step by step.

7.3 Phase-space approach to the quantum vacuum 135

The fact that the reflection pile up is damped away quickly is constructive. There is thus no no-

ticeable disturbance to be expected through reflected wave fractions. Even harsher dampings of the

reflections occur for incoming waves with smaller wavelengths. Waves with very low frequencies

can pass a resolution barrier nearly undisturbed.

The current analyses prove the dispersion to be stable on both sides of a resolution barrier

and reflections to be quickly absorbed, paving the way for dynamical solutions to be implemented.

Further analysis material, such as videos of simulations not covered here can be found in the

Mendeley Data repository [150].

Reflection-less static resolution barrier

Another approach of implementing a static resolution barrier is to adapt the finite differences at

the transition regions. Using only the grid points from the regular grid that form the non-regular

grid can annihilate any reflection.

In the case of a two-fold smaller resolution to the right of a barrier one would use at transition

regions instead of the grid points (−1,0,1) the points (−1,0,2). This yields new stencils that have

to be derived for every point in the transition region. With this, the discretization of the grid is

dependent on the position and hence also the dispersion relation is grid point-dependent.

Taking this approach, no numerical defects could be detected [216]. It has been tested for

resolution jumps of a factor of two or one half. A downside of this method is that it was found

that it becomes unstable for stencil orders higher than six and lower than twelve, generating an

amplifying imaginary part for relevant frequencies.

7.3 Phase-space approach to the quantum vacuum

The optical properties of the nonlinear quantum vacuum represent one aspect of a more complete,

self-consistent formulation of a relativistic dynamical many-body quantum theory.

Within reach over the next years appears the formulation and numerical implementation of a

consistent, relativistic quantum mean field theory. The latter is a prerequisite for novel applica-

tions and is sufficiently remote from the validity range of scattering theory, which is not capable of

capturing collective effects and dynamical properties of the quantum vacuum [217].

It is clear that the optical properties of the quantum vacuum have to be coupled to dynami-

cal matter fields beyond the scope of the effective theory approach at a subsequent stage. While

probe pulses with ever shorter wavelengths and pump pulses with ever higher intensities enhance

vacuum effects, they might destabilize the quantum vacuum and pair creation can be seeded, c.f.

Section 1.3.

Advanced numerical methods are required to investigate the problem of vacuum stability. A

numerical code capable of simulating at the onset of vacuum instability needs to combine the effects

of the nonlinear quantum vacuum, seeded pair production, and seeded radiative emission in a

strong electromagnetic background.

There are detriments of the perturbative approach that can be resolved with another, more

fundamental method. The perturbative approach is deficient of a structural understanding of the

vacuum [218]. Discovering the physics hidden in the vacuum itself requires methods exceeding the

Schwinger limit.

136 7. Outlook

7.3.1 The Dirac–Heisenberg–Wigner formalism

An elaboration based on the Dirac–Heisenberg–Wigner (DHW) formalism as a full-picture ap-

proach to vacuum dynamics seems promising [218–220]. The handy classical phase-space is no

more available in quantum physics due to the incompatibility of position and momentum measure-

ments manifested in the uncertainty relation. Nonetheless, there is a desire to set up quantum-

valid expressions for average values of observables defined on phase-space, since relations to clas-

sical physics and measurable effects can be easier drawn and the physical intuition works better

in a phase-space description [218].

The fundamental object providing a phase-space description of quantum theories is the Wigner

operator Ŵ(x, p) that is defined somewhat ad-hoc as a Fourier transform of the density operator in

coordinate space [221–224]. In scalar QED, with the “scalar matter” and radiation field operators

given by φ and A, it is expressed as

Ŵ(x, p)=
∫

d4 y
(2π)4

e−ipyφ(x) e
1
2 yD†

e−
1
2 yD φ†(x)

=
∫

d4 y
(2π)4

e−ipyφ(x+ y/2) exp
[

ie
∫ 1/2

−1/2
ds A(x+ sy)y

]
φ†(x− y/2) ,

(7.1)

with the gauge-covariant derivatives Dµ in the exponentials forming the Wilson line factor

U(A; x− y/2, x+ y/2)= exp
[

ie
∫ 1/2

−1/2
ds A(x+ sy)y

]
, (7.2)

ensuring gauge-invariance.

The equations of motion are directly governed by the Klein–Gordon equation, such that the

Wigner operator incorporates the complete picture of virtual particles and hence the whole dynam-

ics of the vacuum without loss of information. The correlation function, which the Wigner operator

is the Fourier transform of, is called the Wigner kernel,

Φ(x, y)=φ(x+ y/2)U(A; x− y/2, x+ y/2)φ†(x− y/2) . (7.3)

In the original form this was the Heisenberg–Dirac density matrix of quantum mechanics, intro-

duced by Dirac [225] and already used in the context of vacuum polarization by Heisenberg and

Euler [20]. The whole construct is therefore also called Dirac–Heisenberg–Wigner formalism.

The Wigner function is the normal ordered ensemble average of the Wigner operator. In spinor

QED, introducing the spinor field ψα, the Wigner operator and function become [219],

Ŵαβ(x, p)=
∫

d4 y
(2π)4

e−ipy ψ̄β(x)e
1
2 yD†

e−
1
2 yDψα(x) ,

Wαβ(x, p)= 〈: ψ̄β(x)δ4(p− q̂)ψα(x) :〉 ,
(7.4)

where in the second line the y-integral has been performed and

q̂ = i/2(D−D†) . (7.5)

This expression directly indicates that the trace over spinor indices of the Wigner function mea-

sures the Lorentz scalar density of electrons at space-time point x with four momentum p. The

7.3 Phase-space approach to the quantum vacuum 137

dynamics are governed by the Dirac equation.

Hartree approximation

In order to handle the dynamics, simplifications are necessary in this formalism.

Since the ensemble average is defined by the density operator, if the gauge field is a quantum

operator, the ensemble averaging of equations for the Wigner operator contains two-body interac-

tions. This is because the radiation field operator is a functional of the fermion current operator.

The two-body correlations in turn depend on three-body terms and so on, generating the BBGKY

hierarchy [226].

The most common simplification is to apply a Hartree-type approximation, were the radiation

field is treated as a classical mean-field. This approximation can be considered valid for strong

but slowly varying electromagnetic fields, where quantum fluctuations of the radiation field should

be negligible. In consequence of the “averaging over degrees of freedom”, a many-body problem

is reduced to a one-body problem transport theory. This results in a truncation of the BBGKY

hierarchy at the one-body level. In this case, the Wigner operator is formally equal to the Wigner

function.

The Wigner function is a natural and intuitive quantum analog to the classical density function.

A closed differential equation for the Wigner function, which acts as a one-particle weight function,

consequently serves as a transport equation that expresses the evolution of all macroscopic quan-

tities of interest. Expectation values of observables are calculated via phase-space integrals in full

analogy to classical physics.

Impact of the DHW formalism

Historical interest in relativistic quantum transport theory arose through the discovery of a new

matter-state, the QCD quark-gluon plasma in a series of seminal works [227, 228] with a compan-

ion paper devoted to QED [219].

The Wigner formalism gives us a systematic framework to describe the structure of the QED

vacuum independent of perturbation theory, at least mostly [218]. It facilitates the unification of

three hitherto disjoint theories [218]; Dirac’s theory of the electron in external fields, Maxwell’s

theory of electromagnetism, and the relativistic kinetic theory of charged particles.

Advantages of the DHW formalism are that it

• combines QED with known features of statistical physics;

• leads to transport equations in more general form than of quantum Vlasov kind, important

for many applications in many-body physics [219];

• yields a complete phase-space description, including created electron–positron pairs [50,

229];

• reveals many novel signatures for understanding the complicated physics in pair production

but also helps to guide the possible future experimental realization [230];

• facilitates simple expressions for observables; and

• is, most importantly, fully general, encompassing QFT.

138 7. Outlook

It is important to know the trajectories of created electrons and positrons to exclude subsequent

recombinations and formations of photons.

The expectation value of the current induced by an external field represents nonlinearities,

since it also depends on the vacuum feedback [22]. The particles and antiparticles are accelerated

by the background field, thereby creating an opposed current which in turn attenuates the external

field. The external field acts as a control parameter, the back-reaction responds accordingly. Hence,

the current is usually separated into an external part induced purely by the applied field and an

internal vacuum response [231, 232].

Studying the phenomenon of pair creation non-perturbatively in phase-space had gained popu-

larity around the nineties [218, 220, 233–235] and again in the 2010-years [236–238]. A downside

of the DHW approach is the absolute need for numerical techniques, since only a few analytical

results are available [236]. Yet, this pressure might spur the advancement in times of higher com-

puting power. Some significant progress in the field has been achieved with numerical aid over the

recent years [3, 24, 50, 229, 239].

7.3.2 Numerical approach to a seminal work

There remain major difficulties deriving consistent transport equations and it is computationally

expensive to obtain realistic numerical solutions [223, 239]. An expansion formalism in terms of

a signal photon theory alike the Vacuum Emission Picture is a promising approach. Phase-space

is large and high-dimensional, hence, simplifying assumptions and lower-dimensional or symmet-

ric scenarios have to be selected to render computations feasible [3, 24]. Besides, slicing space

and employing parallelization techniques, such as they are used in the effective action approach,

supposedly will render the DHW-based calculations more realistic.

In one of the seminal works the simple configuration of a spatially homogeneous but time-

dependent purely electric field in scalar QED was considered [220]. An oscillator equation describ-

ing the process of pair creation was obtained,

∂2
t ζ+E2

p ζ= 0 , (7.6)

with Ep =
√

p(t)2 +m2. Here, |ξ|2 =W3 is the energy-averaged Wigner function describing a three-

dimensional phase-space formulation [220],

W3 =
∫

dp0 W . (7.7)

The initial condition is given by |ξ|2(t = −∞) = 1/Ep(t = −∞). This type of equation has also been

found in [235]. Enhancing graphical visualizations can be obtained for various scenarios, e.g., the

ones described in Figures 7.6 and 7.7.

In ongoing investigations parallel to the Heisenberg–Euler solver, a solver for the case of scalar

QED is devised, based on the fundamental equations of motion for the Wigner function, without

making use of energy-averaging. As explained above, these fundamental equations derive directly

from the Klein–Gordon equation and hence the approach amounts to solving the complete field

theory. The solver is intended to include the magnetic field as well.

7.3 Phase-space approach to the quantum vacuum 139

5 10 15 20 25 30
t/tC

0.2

0.4

0.6

0.8

1.0

E/Ecr

5 10 15 20 25 30
t/tC

0.5

1.0

1.5

2.0

2.5

3.0

3.5

p/(eEcrtC)

ℜ(ζ)
ℑ(ζ)

5 10 15 20 25 30
t/tC

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0
ℜ(ζ)

-1.0

-0.5

0.5

1.0

ℑ(ζ)

|ζ 2

∂t|ζ
2

E/Ecr
Ep

5 10 15 20 25 30
t/tC

1

2

3 ∂t|ζ
2

∂t
2|ζ 2

5 10 15 20 25 30
t/tC

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 7.6: Polarized vacuum. Top lef t: amplitude of a switched-on electric field with a peak
value of Ecr. Top right: total momentum (normalized) according to the Lorentz force with the
initial momentum set to zero. Center left: oscillation of the real and imaginary parts of ζ. The
amplitudes begin to decrease as the electric field is turned on and reach a new state after the field
has vanished. As a result of the different initial conditions, the imaginary part decreases faster
and farther. Center right: Corresponding Lissajou ellipsis of the coupled oscillator over time. At
excitation (turning on of the electric field) one can see the intake of energy, hence the compression.
Bottom left: combined time evolutions of |ζ(t)|2, its derivative, the electric field and the energy Ep.
Bottom right: first and second derivatives of the energy-averaged Wigner function.

140 7. Outlook

5 10 15 20 25 30
t/tC

-1.0

-0.5

0.5

1.0

E/Ecr

5 10 15 20 25 30
t/tC

0.5

1.0

1.5

2.0

2.5

3.0

3.5

p/(eEcrtC)

ℜ(ζ)
ℑ(ζ)

5 10 15 20 25 30
t/tC

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0
ℜ(ζ)

-1.0

-0.5

0.5

1.0

ℑ(ζ)

|ζ 2

∂t|ζ
2

E/Ecr
Ep

5 10 15 20 25 30
t/tC

-1

1

2

3 ∂t|ζ
2

∂t
2|ζ 2

5 10 15 20 25 30
t/tC

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 7.7: Restored vacuum. Shown are the same quantities as in Figure 7.6 for the scenario
with a second pulse with opposite polarization. Strikingly, the latter pulse takes energy out of the
system. Ideally, the oscillator would end up on the initial circle before the first pulse in the Lissajou
ellipses. This, however, requires a careful tuning of the pulses. The concept resembles stimulated
emission.

Chapter 8

Conclusion

This final chapter summarizes what has been achieved and what may follow in the context.

Simulations in the weak-field Heisenberg–Euler quantum vacuum look back at several years of

tradition in the working group of Hartmut Ruhl. The first version of the simulation code was pre-

sented with 1D capability in the course of the PhD thesis of Patrick Böhl [113]. The algorithm was

restructured and a new code version developed within the PhD project of Arnau Domenech [144]

and the first results in 2D were produced. Full 3D capability is incorporated and demonstrated in

this thesis.

New modules have been implemented and the code has been refactored with the purpose of

modernization and optimization. Emphasis is put on high-performance computing to leverage the

power of supercomputers for expensive simulations. To this end, a hybrid multiprocessing plus

multithreading model, nowadays functioning as the workhorse on massively distributed systems,

has been integrated into the code. This enables extreme scalability and hence to obtain more

realistic simulation results. In the process, the performance of the solver has been analyzed.

The underlying algorithm is concisely outlined in [180], the first publication of the new solver.

With science relying increasingly on computer simulations, software has become an important aca-

demic material. Having undergone a full refurbishment, the software project is now published open

source under the name HEWES in [148]. The publication opens up the possibility for researchers

in the community to use it as a tool and monitor further development. Within the limits of the

Heisenberg–Euler weak-field approximation the solver represents an efficient numerical approach

to the complete dynamical response of the nonlinear vacuum for complicated pulse setups in all

three dimensions.

The validity of the presented numerical scheme for solving the modified Maxwell equations

in the Heisenberg–Euler weak-field expansion relies on two basic assumptions: I) field strengths

below the critical values Ecr and Bcr, and II) wavelengths larger than the Compton length of the

electron.

An established solver of the Heisenberg–Euler dynamics can be very useful for strong-field

QED research going on at present. There have been other approaches in the area of numerical

solvers for the nonlinear quantum vacuum, put forward in [72, 143] and [165]. The one discussed

in the present thesis stands out with a very high order of accuracy of the numerical scheme and

the inclusion of six-photon processes, and is thus extremely precise. Of paramount significance is

the dispersion relation, lying at the heart of the algorithm, which ensures stability throughout the

142 8. Conclusion

frequency spectrum and moreover creates an imaginary part that annihilates nonphysical modes.

Furthermore, the linear vacuum-like behavior of the dispersion relation for a large frequency range

is an essential ingredient.

Every simulation of the Heisenberg–Euler model incorporates the complete nonlinear physics

in the weak-field approximation, whereas analytical calculations normally have to concentrate on

single, isolated effects, leaving others aside, and hence often miss the complete picture of the inter-

action. By taking into account the whole dynamics of the nonlinear vacuum, the solver captures

in particular back-reactions to the radiation fields. Withal, simulations permit to describe the

temporal evolution of nonlinear vacuum processes, which is beyond the reach of many analytical

approaches.

In order to set the stage for a soon-to-be-expected experimental verification of all-optical nonlin-

ear quantum vacuum phenomena, theoretical predictions are required. Universality with respect

to pulse configurations is the main raison d’être of the numerical approach as a complement to the-

oretical treatments. Analytical methods rely on simplifying assumptions and are in consequence

most of the time limited to special scenarios. Practicable calculations are constrained to simple

configurations and arrangements of the involved laser pulses, or neglect important properties of

the quantum vacuum. Any such approximation in turn limits the accuracy of predictions and the

precision with which theory can be tested [143].

The exploration of parameter regimes and the estimation of expected signals that should be

detectable in experiments will be supported by numerical tools. Moreover, only computer-driven

approaches are flexible enough to guide the development of experimental constructions and config-

urations in the research area of strong-field QED. A shift in perspective to accompany the numer-

ous analytical treatments with versatile numerical solutions is apparent. Phenomena that are in

prospect to profit from HEWES simulations are the investigated effects of vacuum birefringence

and the generation of higher harmonics, and light-by-light scattering effects in general.

A good agreement with analytical results is achieved by making use of high orders of the numer-

ical scheme and high expansion orders of the effective Heisenberg–Euler model. The computational

cost scales strongly with the number of lattice points but weakly with the discretization order of

the scheme and the expansion order of the Heisenberg–Euler model. The impact of the discretiza-

tion order on the computational cost, however, does become relevant in 3D with increasing cluster

computer communication for the transfer of spatial derivative data. Making use of high discretiza-

tion orders and their favorable dispersion relations facilitates the use of comparably small lattices

to accurately model the involved electromagnetic modes. Nonetheless, for high-frequency pulses

the required grid resolutions can become unfeasible.

Ideas are being developed in order to overcome the obstacle of extremely large 3D grids. One

promising, ongoing, and important project is on multi-scale simulation capability. This research

is intended to pave the way for a dynamical grid, adapting its resolution regionally on the fly and

on demand in order to reduce the computational load, while at the same time maximizing the

accuracy in important spatial regions. An adaptive grid is particularly suited for the prominent

low-frequency pump pulse and high-frequency probe pulse setup to detect vacuum nonlinearities,

where the computational load can in principle be dramatically reduced.

It should be emphasized again that not only the high-energy, low-intensity regime discovered in

particle accelerators, but also the low-energy, high-intensity regime might be a path towards new

physics, since quantum fluctuations in the vacuum consist of all existing particles [14–16].

Appendix A

KCS System Information

The cluster computing system KCS of the Arnold Sommerfeld Center (ASC) for Theoretical Physics

in Munich is hosted at the Leibniz Rechenzentrum (LRZ). It is a homogeneous system, i.e., the clus-

ter consists of equal nodes and, in as opposed to heterogeneous systems, there are no accelerators

like GPUs attached. The ASC hosts an own cluster consisting of the bureau workstation computers.

The latter is an inhomogeneous cluster with different CPU types, which is clearly more difficult to

handle. Moreover, distributed computations suffer from slower node interconnects.

Topology

KCS contains 153 nodes, however, as mentioned in Chapter 5, a maximum of 121 nodes can be

occupied per simulation. This can be seen from the partition information in Listing A.1, obtained

via the batch job scheduling system discussed further below.

1 PartitionName=kcs_batch

2 Nodes=hlcpr06c01s[01-10],hlcpr07c01s[01-10],hlcpr06c02s[01-10],hlcpr07c02s[01-10],

hlcpr06c03s[01-10],hlcpr07c03s[01-10],hlcpr06c04s[01-10],hlcpr07c04s[01-10],

hlcpr06c05s[01-10],hlcpr07c05s[01-10],hlcpr08c01s[01-10],hlcpr08c02s[01-10],

hlcpr08c03s[01-10],hlcpr08c04s[01-10],hlcpr08c05s[01-10],hlcpr05c04s[07-09]

3 TotalCPUs=4896 TotalNodes=153

4 MaxNodes=121 MaxTime=3-00:00:00

5 OverTimeLimit=NONE State=UP

Listing A.1: Configuration of the KCS batch partition (excerpt). The list of nodes is given. While

the system has 153 nodes in total, only 121 of them can be used for a single job. The maximum

runtime for a job is limited to three days.

Each node consists of 32 cores, 16 cores per socket, c.f. Figure 5.1, with each more than 180 GB

memory. A selection of nodes with information is listed in Listing A.2.

1 NODELIST PARTITION CPUS S:C MEMORY

2 hlcpr05c04s07 kcs_batch* 32 2:16 184939

3 hlcpr05c04s08 kcs_batch* 32 2:16 765356

4 hlcpr05c04s09 kcs_batch* 32 2:16 765356

5 hlcpr06c01s01 kcs_batch* 32 2:16 378484

Listing A.2: Information for a selection of nodes. Each node consists of 32 cores (here referred to

as CPUs), on two sockets with 16 cores each. The nodes on the KCS system, while being equipped

with the same processors, have different sizes of memory attached.

144 A. KCS System Information

In Listing A.3 and Figure A.1 the topology of a node on the cluster is detailed, i.e., the layout of

cores and caches, and their specifications. The information is generated with the help of LIKWID
[193].

1 CPU name: Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz

2 CPU type: Intel Skylake SP processor

3 CPU stepping: 4

4 **
5 Hardware Thread Topology

6 **
7 Sockets: 2

8 Cores per socket: 16

9 Threads per core: 2

10 --

11 Socket 0: (0 32 1 33 2 34 3 35 4 36 5 37 6 38 7 39 8 40 9 41 10 42 11 43 12 44 13 45

14 46 15 47)

12 Socket 1: (16 48 17 49 18 50 19 51 20 52 21 53 22 54 23 55 24 56 25 57 26 58 27 59

28 60 29 61 30 62 31 63)

13 --

14 **
15 Cache Topology

16 **
17 Level: 1

18 Size: 32 kB

19 Type: Data cache

20 Associativity: 8

21 Number of sets: 64

22 Cache line size: 64

23 Cache type: Non Inclusive

24 Shared by threads: 2

25 Cache groups: (0 32) (1 33) (2 34) (3 35) (4 36) (5 37) (6 38) (7 39)

(8 40) (9 41) (10 42) (11 43) (12 44) (13 45) (14 46) (15 47) (16

48) (17 49) (18 50) (19 51) (20 52) (21 53) (22 54) (23 55) (24 56

) (25 57) (26 58) (27 59) (28 60) (29 61) (30 62) (31 63)

26 --

27 Level: 2

28 Size: 1 MB

29 Type: Unified cache

30 Associativity: 16

31 Number of sets: 1024

32 Cache line size: 64

33 Cache type: Non Inclusive

34 Shared by threads: 2

35 Cache groups: (0 32) (1 33) (2 34) (3 35) (4 36) (5 37) (6 38) (7 39)

(8 40) (9 41) (10 42) (11 43) (12 44) (13 45) (14 46) (15 47) (16

48) (17 49) (18 50) (19 51) (20 52) (21 53) (22 54) (23 55) (24 56

) (25 57) (26 58) (27 59) (28 60) (29 61) (30 62) (31 63)

36 --

37 Level: 3

38 Size: 22 MB

39 Type: Unified cache

40 Associativity: 11

41 Number of sets: 32768

42 Cache line size: 64

43 Cache type: Non Inclusive

44 Shared by threads: 32

145

45 Cache groups: (0 32 1 33 2 34 3 35 4 36 5 37 6 38 7 39 8 40 9 41 10 42 11 43 12 44

13 45 14 46 15 47) (16 48 17 49 18 50 19 51 20 52 21 53 22 54 23 55 24 56 25 57

26 58 27 59 28 60 29 61 30 62 31 63)

46 --

47 **
48 NUMA Topology

49 **
50 NUMA domains: 2

51 --

52 Domain: 0

53 Processors: (0 32 1 33 2 34 3 35 4 36 5 37 6 38 7 39 8 40 9 41 10 42 11 43 12 44 13

45 14 46 15 47)

54 Distances: 10 21

55 Free memory: 92412 MB

56 Total memory: 95351.3 MB

57 --

58 Domain: 1

59 Processors: (16 48 17 49 18 50 19 51 20 52 21 53 22 54 23 55 24 56 25 57 26 58 27 59

28 60 29 61 30 62 31 63)

60 Distances: 21 10

61 Free memory: 94784.3 MB

62 Total memory: 96760.9 MB

Listing A.3: KCS topology. The processor type and specifications are given at the top. The numbers

of hardware threads and cores per socket are listed and a detailed mapping of the hardware threads

to the cores is given, which is visualized in Figure A.1. The specifications of the caches list the

cache line size of 64 bytes. The NUMA topology at the bottom indicates that there are two NUMA

domains, the sockets. There is a memory unit with more than 90 GB attached to each of the two

sockets, which indicates the non-uniform memory access (NUMA) for the cores on the node.

Compilers

Although the system is being upgraded regularly to be kept up to date, it is in order to give a

summary of the system specifications and the employed software environment. The versions listed

are those used at the time of writing.

The operating system the KCS is running on is SUSE Linux Enterprise Server 15 SP1. The

compiler used for most performance analyses is ICPC version 2021.4.0 (GCC version 10.3.0 com-

patibility) from the Intel® MPI Library 2021.4 for Linux. Intel® compilers have been using the GNU

tools on clusters; header files, libraries, and linker. This is called the Intel® and GNU compatibility

and interoperability. The next generation Intel® C++ compiler ICX, based on Clang/LLVM has

recently been adopted in the Intel® oneAPI toolkit in 2022 [196]. Instead of the GCC libstdc++
libraries it relies on Clang libc++. For the latest simulations on KCS, the latter compiler was

employed to build the executables. Sometimes, GCC version 11.2 was used on the cluster.

Compiler options

Since C++20 is required, the compiler option -std=c++20 is mandatory. Further, the optimization

level two -O2 is strictly recommended, which contains function inlining and loop alignment to a

large extent. The higher optimization level three can be advantageous for programs with loops

that perform many floating-point calculations or process large datasets, but is not used here, as it

did not yield noticeable speedup and is unsafe when threading is used.

146 A. KCS System Information

F
igure

A
.1:

K
C

S
graphicaltopology.

A
node

consists
of

tw
o

sockets,each
w

ith
16

cores.
E

ach
core

can
be

divided
into

tw
o

hardw
are

threads.
T

he
first

row
of

a
socket

lists
the

tw
o

threads
per

core.
L

evelone
and

leveltw
o

cache
are

core-private.
T

heir
capacities

are
given

in
row

s
tw

o
and

three.
T

he
levelthree

cache
in

row
four

is
shared

upon
a

socket.M
ore

detailis
provided

in
L

isting
A

.3.

147

Depending on the performed tests, various additional compiler options can be beneficial. In

order to enable the usage of the large 512-bit (zmm) registers for vectorization, the Intel® advanced

vectorization extension instructions for 512-bit, -xCORE-AVX512, are used together with -qopt-

zmm-usage=high. These are available for Skylake-type CPUs, c.f. Listing A.3. The code provably

profits from 512-bit register usage, as described in Section 5.4.1. Enforcing SIMD vectorization

with OpenMP compiler directives requires to include and link OpenMP.

Lower advanced vectorization extension SIMD features are automatically put into place where

the compiler assumes that too aggressive vectorization is disadvantageous. Since there is no

pointer aliasing, as found in Section 5.4.1, -fno-alias can be used as a hint to the compiler.

Aggressive vectorization could be achieved by telling the compiler to wave its doubts with -vec-

threshold0.

Module system

Users of HPC systems commonly have a large pool of software at their disposal. In order to make

the required software ready for use on an HPC system, usually the module system is employed.

All available software can be listed and searched and the desired tools can be loaded. The module

system takes care of setting the corresponding system and environment variables and at the same

time avoids clashes. It further ensures that all required dependencies are loaded. The loaded

software stack can be checked at any time. An example of an environment is given in Listing A.4.

1 Currently Loaded Modulefiles:

2 1) admin/1.0(default) <S> 13) intel-oneapi-vtune/2021.7.1

3 2) tempdir/1.0(default) <S> 14) intel-oneapi-advisor/2021.4.0

4 3) lrz/1.0(default) <S> 15) intel-oneapi-itac/2021.5.0

5 4) spack/22.2.1(default) 16) numactl/2.0.14-intel21

6 5) intel-mkl/2020(default) 17) likwid/5.2.0-intel21

7 6) intel-oneapi-compilers/2022.2.0 18) perl/5.34.0 <aL>

8 7) intel-mpi/2019-intel(default) 19) texlive/2019 <aL>

9 8) llvm/13.0.0 20) gnuplot/5.4.2-X11 <aL>

10 9) scorep/7.0-gcc10-impi 21) darshan-runtime/3.3.1-intel21-impi

11 10) papi/6.0.0.1-intel21 22) darshan-util/3.3.1-gcc11

12 11) cube/4.6 23) cmake/3.21.4

13 12) scalasca/2.6-gcc9-impi 24) valgrind/3.17.0-gcc11-impi

14

15 Key:

16 (symbolic-version) <module-tag> <aL>=auto-loaded <S>=sticky

Listing A.4: A module environment. Besides the “sticky” modules that are always pre-loaded on the

system, this enviroment uses the Intel® MPI compiler wrappers and the next generation compiler

that works with LLVM. Furthermore, some of the tools used in Chapter 5 are loaded. Auto-loaded

modules are those that are autmoatically loaded as prerequisites for another loaded module.

SLURM (Simple Linux Utility for Resource Management)

Simulations are submitted as jobs to the KCS cluster and scheduled with the help of the SLURM
cluster workload management system [240]. Options are available to distribute the jobs on specific

numbers of nodes and/or CPUs for parallel programs. Allocation of resources is automatically

managed by SLURM at the hand of the chosen parameters. An excerpt of a SLURM file for KSC
is given in Listing A.5.

148 A. KCS System Information

1 #!/bin/bash

2

3 ###

4 # Slurm File SBATCH Commands

5 ###

6

7 #SBATCH -o /dss/dsshome1/lxc0A/ru68dab/slurm/slurm_out/%j.%N.out # stdout file

8 #SBATCH -e /dss/dsshome1/lxc0A/ru68dab/slurm/slurm_out/%j.%N.err # stderr file

9 #SBATCH -D /dss/dsshome1/lxc0A/ru68dab/repos/heisenberg_euler/src # work dir

10 #SBATCH -J HEWES # Job name

11 #SBATCH --partition=kcs_batch # Specifiy kcs for resource allocation

12 #SBATCH --mail-type=begin,end # email at begin and end of job

13 #SBATCH --mail-user=and.lindner@physik.uni-muenchen.de # email recipient

14 #SBATCH --time=15:00:00 # run time limit

15 #SBATCH --ntasks=512 # maximum number of tasks provided for resources

16 #SBATCH --ntasks-per-node=8 # maximum number of tasks per node

17 #SBATCH --ntasks-per-socket=4 # maximum number of tasks per socket

18 #SBATCH --nodes=64 # total number of nodes in resource allocation

19 #SBATCH --exclusive # exclusive nodes

20 #SBATCH --cpus-per-task=4 # number of CPUs allocated per task (process)

21 #SBATCH --mem-per-cpu=1024 # minimum memory allocated per CPU in Megs

22

23

24 ###

25 # Overall Environment Variables & Hardware Affinity Control

26 ###

27 # Pass on variables for numbers of processes and threads

28 export MPI_NUM_PROCESSES=$SLURM_NTASKS

29 export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

30

31 # Further OpenMP environment variables

32 export OMP_DYNAMIC=false # not fewer threads than requested

33 export OMP_SCHEDULE=static,2 # thread runtime schedule

34 export OMP_WAIT_POLICY=active # spinning instead of idle threads

35

36 # Variables to control hardware affinity

37 export OMP_PLACES=cores # thread per core

38 export OMP_PROC_BIND=true # bind thread to core or:

39 export KMP_AFFINITY=noverbose,granularity=thread,compact,1,0 (Intel runtime)

40 export I_MPI_PIN_DOMAIN=‘expr 2 * $OMP_NUM_THREADS‘ # hybrid pinning (Intel MPI)

41 export OMP_DISPLAY_AFFINITY=true # display thread affinity

42

43 ./run_3D_ex.sh

Listing A.5: Minimal SLURM file for KCS. Shown are basic configuration instructions for SLURM
as well as some environment variables for hardware affinity control. At the end, a run script is

executed.

Besides the pinning options with the help of LIKWID [193] mentioned in Section 5.3.1, there

are, e.g., the OpenMP and Intel® specific environment variables used in Listing A.5.

However, since the inter-node bandwidth is lowest, the most crucial aspect of hardware affinity

is formed by the distribution of allocated nodes. It is possible to tell SLURM which nodes should

be used, but this can result in extremely long queuing times. Which specific nodes SLURM decides

to allocate is therefore most of the time unpredictable.

Running jobs can be monitored and the resource consumption of finished jobs be analyzed.

149

SLURM further provides some useful metrics during and after the simulation. An example of

SLURM accounting information is given in Listing A.6.

1 JobName JobID Elapsed NNodes NCPUS NTasks MaxRSS

2 ---------- ------------ ---------- ---------- -------- -------- ----------

3 Heisenber+ 325760 19:41:28 8 256

4 batch 325760.batch 19:41:28 1 32 1 13684K

5 hydra_bst+ 325760.1 19:41:26 8 8 8 102585488K

6

7 JobName JobID Elapsed NNodes NCPUS NTasks MaxRSS

8 ---------- ------------ ---------- -------- ---------- -------- ----------

9 HEWES 517918 02:31:01 8 256

10 batch 517918.batch 02:31:01 1 32 1 20404K

11 hydra_bst+ 517918.0 02:30:56 8 256 8 15810988K

Listing A.6: SLURM accounting information for two different job that ran on 256 cores each. It can

be chosen which fields of the many available job accounting fields should be displayed. There is, e.g.,

the rightmost metric that gives the maximium memory requirements per node. The computational

and memory loads for the shown jobs differ considerably.

File systems

Cluster computers use parallel file systems optimized for large volumes of data, such as GPFS
(general purpose file system) and LUSTRE (a compound of Linux and cluster). GPFS is employed

for KCS, the storage of the cluster at the ASC relies on LUSTRE.

The MPI_Info object is a container of string-based key-value pairs that can be used to pass

optimization hints to MPI, e.g., about file access patterns and file system specifications. The infor-

mation can be set in an MPI call, via environment variables, or sometimes with a ROMIO-hints

configuration file, which is at best configured by the file system vendor or maintainer. There is

significant potential for performance benefits through file system-specific hints.

The hints may contain whether to allow collective buffering, i.e., the use of collective I/O and its

tuning with respect to block size and buffer space, and more. Collective buffering reorganizes data

across processes to match the data layout in the file. Data from sets of processes are to this end

aggregated via MPI communication in order to produce larger chunks and fewer I/O operations

[241].

Well proven hints according to the LRZ on the SuperMUC system are to set the buffer size and

striping unit to 4 MiB [242],

MPI_Info_set(info,"romio_cb_write","enable", error) ,

MPI_Info_set(info,"cb_buffer_size","4194304", error) ,

MPI_Info_set(info,"striping_unit","4194304", error) ,

where cb is for collective buffering.

In parallel file systems, the chunk size should be a multiple of the block size of the file system.

GPFS and LUSTRE have locking protocols that operate on blocks (GPFS) or pages (LUSTRE) of 4

MiB size per default. Parallel file systems thereby have a way larger block size than standard non-

parallel file systems that commonly use 4 kiB. The scratch file systems at the LRZ have maximal

bandwidths between 30 and 60 GB/s.

Appendix B

Code Modernization

Some software tools that assisted in the process of refactoring, optimizing and modernizing the

code deserve being mentioned.

The source code has been tidied up and modernized with the help of Clang-tidy according to

aspects of the C++ Core Guidelines and formatted in the LLVM-style with the help of Clang-format.
Further, the Clang Static Analyzer has been used in conjunction with diagnostics to rectify unsafe

code segments. Debugging was performed in the context of some subtle synchronization problems

with the help of LLDB. All these tools are part of the LLVM project [243, 244].

Furthermore, compiler warnings and optimization reports of various vendors, Clang, Intel®,

and GCC, were of great help in the process of code modernization and in order to get rid of danger-

ous flaws.

Extensive “consting” and using static declarations form valuable hints to the compiler to let

the code work more efficiently. Further, a compactification of the time-evolution functions, where

unnecessarily large arrays kept redundant data and loops copied already present values, was car-

ried out. This modification decreased the memory load, while at the same time increasing the

throughput.

The computational load could be reduced making use of C++ performance tweaks. Modern C++
features have been built in. E.g., use of the Boost C++ Libraries became superfluous thanks to the

incorporation of many of its features into later C++ standards [174]. In addition, the upgrade to

the latest CVODE versions led to extended functionality and improved stability [168, 169].

The whole interface has been revamped to have all necessary control via command line argu-

ments, outsourcing all further functionalities to modules. Therefore, the executable has to be built

only one on a system. The building process is outermost simplified, automated and cross-platform

compatible through the use of CMake[178].

Comment blocks are inserted into the code in order to generate a full code documentation with

the help of Doxygen [153]. The code reference is made available in the public software repository

[148].

List of Figures

1.1 Fluctuations in the Dirac sea picture . 2

1.2 Vacuum polarization . 4

1.3 Photon–photon interaction . 7

1.4 Heisenberg–Euler weak-field expansion . 10

1.5 Effective photon–photon vertices . 11

2.1 Dispersion relations for varying finite differences schemes at low order 22

2.2 Dispersion relation at fourth and thirteenth order . 25

2.3 On the Nyquist frequency . 26

2.4 Numerical tests of the dispersion for low frequencies . 27

2.5 Numerical tests of the dispersion for high frequencies . 28

2.6 Dispersion relations from order one to thirteen . 29

3.1 Screenshot of the Compute Capsule on Code Ocean. 48

4.1 Phase velocity change in a strong background . 53

4.2 Depiction of polarization flipping . 54

4.3 Initial setup for vacuum birefringence simulations in 1D . 55

4.4 Polarization flipping time evolution I . 57

4.6 Polarization flipping time evolution II . 57

4.5 Parametric scaling of the polarization flipping probability . 58

4.7 Extrapolation of the polarization flipping probability to the x-ray regime 59

4.8 Initial configuration to simulate harmonic generation in 1D . 60

4.9 Effective vertices for harmonic generation . 60

4.10 Allowed resulting harmonics through four- and six-photon processes 61

4.11 Log-scale plot of harmonics at different states in time . 62

4.12 Thumbnail of an animation of nonlinearly generated harmonics 64

4.13 Amplitude evolution of nonlinearly generated harmonics . 65

4.14 Harmonics in 2D for collinear pulses . 69

4.15 Harmonics in 2D for collinear pulses (processes distinguished) . 69

4.16 Harmonics in 2D for perpendicular pulses . 70

4.17 Harmonics in 2D for perpendicular pulses (processes distinguished) 70

4.18 Harmonics in 2D for pulses at 135° . 71

4.19 Harmonics in 2D for pulses at 135° (processes distinguished) . 71

4.20 Thumbnail for videos of 2D hamonic generation simulations . 72

4.21 Harmonics in 2D for perpendicular pulses and orthogonal polarization 73

4.22 Harmonics in 2D for pulses at 135° and orthogonal polarization 73

4.23 3D simulation of two perpendicularly colliding Gaussian pulses 74

152 LIST OF FIGURES

4.24 3D simulation of two coaxially colliding Gaussian pulses . 74

4.25 Rich harmonics spectrum in 3D . 75

4.26 Probe–pump setup in 3D . 76

5.1 HPC architecture . 80

5.2 Core structure . 81

5.3 Ghost cell exchange . 87

5.4 Strong scaling test . 87

5.5 Weak scaling test . 88

5.6 APS report for an MPI-bound simulation . 90

5.7 APS report for a memory-bound simulation . 90

5.8 Cube visualization . 94

5.9 Roofline model . 96

5.10 Vectorization gain . 98

5.11 Hybrid model . 100

5.12 Blocking vs. nonblocking communication trace comparison . 104

5.13 Sketch of typical performance curves for OpenMP and MPI . 107

5.14 Idle threads in serial code regions . 108

5.15 Comparison of I/O variants (time, bytes) . 113

5.16 Comparison of I/O variants (share of total runtime) . 114

6.1 Errors at varying grid resolutions and stencil orders . 125

6.2 Time consumption at varying grid resolutions and stencil orders 126

6.3 Integrator tolerances and accuracy . 127

6.4 Time consumption at varying integrator tolerances . 128

7.1 Amplitude damping on the grid . 132

7.2 Crossing a resolution barrier . 133

7.3 Crossing a resolution barrier (zoom) . 133

7.4 Crossing a resolution barrier (peak amplitude evolution) . 134

7.5 Reflection at a resolution barrier . 134

7.6 Polarized vacuum . 139

7.7 Restored vacuum . 140

A.1 KCS graphical topology . 146

List of Tables

3.1 Code metadata . 38

4.1 Parameters to investigate phase velocity changes . 53

4.2 Parameters for parametric scaling tests of vacuum birefringence 57

4.3 Parameters for a vacuum birefringence benchmark . 57

4.4 Parameters to simulate harmonic generation in 1D . 60

4.5 Parameters to simulate harmonic generation in 2D . 67

6.1 Parameters for accuracy and performance tests . 124

List of Listings

2.1 Excerpt of the coordinating C++ file . 30

3.1 Excerpt of a run script . 40

3.2 Shell output on stdout during running . 42

5.1 VTune hotspots analysis . 91

5.2 Scalsca analysis of an old code version . 92

5.3 APS for memory access . 93

6.1 CVODE statistics . 123

6.2 SUNDIALS profiling information . 123

A.1 KCS batch partition configuration . 143

A.2 Node information (selection) . 143

A.3 KCS topology . 144

A.4 Module environment . 147

A.5 SLURM file for KCS . 148

A.6 SLURM accounting . 149

Bibliography

[1] R. D. Mattuck, A guide to Feynman diagrams in the many-body problem, 2nd Edition, Dover Publications, 1992.

[2] F. Bissey, F.-G. Cao, A. R. Kitson, A. I. Signal, D. B. Leinweber, B. G. Lasscock, A. G. Williams, Gluon flux-tube
distribution and linear confinement in baryons, Physical Review D 76 (11) (2007). doi:10.1103/physrevd.76.
114512.

[3] C. Kohlfürst, Electron-positron pair production in inhomogeneous electromagnetic fields, Ph.D. thesis, U. Graz (2015).
arXiv:1512.06082, doi:10.48550/arXiv.1512.06082.

[4] W. E. Lamb, R. C. Retherford, Fine structure of the hydrogen atom by a microwave method, Phys. Rev. 72 (1947)
241–243. doi:10.1103/PhysRev.72.241.

[5] P. J. Mohr, Lamb Shift in a Strong Coulomb Potential, Phys. Rev. Lett. 34 (1975) 1050–1052. doi:10.1103/

PhysRevLett.34.1050.

[6] W. Johnson, G. Soff, The Lamb shift in hydrogen-like atoms, 1≤ Z ≤ 110, Atomic Data and Nuclear Data Tables 33 (3)
(1985) 405–446. doi:10.1016/0092-640X(85)90010-5.

[7] P. A. M. Dirac, The quantum theory of the electron, Proceedings of the Royal Society of London. Series A 117 (778)
(1928) 610–624. doi:10.1098/rspa.1928.0023.

[8] H. Casimir, On the Attraction Between Two Perfectly Conducting Plates, Indag. Math. 10 (1948) 261–263.
URL https://www.mit.edu/~kardar/research/seminars/Casimir/Casimir1948.pdf

[9] H. B. G. Casimir, D. Polder, The Influence of Retardation on the London-van der Waals Forces, Phys. Rev. 73 (1948)
360–372. doi:10.1103/PhysRev.73.360.

[10] V. M. Mostepanenko, N. N. Trunov, The Casimir effect and its applications, Soviet Physics Uspekhi 31 (11) (1988)
965. doi:10.1070/PU1988v031n11ABEH005641.

[11] A. W. Rodriguez, F. Capasso, S. G. Johnson, The Casimir effect in microstructured geometries, Nature Photonics 5 (4)
(2011) 211–221. doi:10.1038/nphoton.2011.39.

[12] J. M. Pate, M. Goryachev, R. Y. Chiao, J. E. Sharping, M. E. Tobar, Casimir spring and dilution in macroscopic cavity
optomechanics, Nature Physics 16 (11) (2020) 1117–1122. doi:10.1038/s41567-020-0975-9.

[13] Q.-D. Jiang, F. Wilczek, Chiral Casimir forces: Repulsive, enhanced, tunable, Phys. Rev. B 99 (2019) 125403. doi:
10.1103/PhysRevB.99.125403.

[14] H. Gies, Strong laser fields as a probe for fundamental physics, The European Physical Journal D 55 (2) (2009)
311–317. doi:10.1140/epjd/e2009-00006-0.

[15] H. Gies, External fields as a probe for fundamental physics, Journal of Physics A: Mathematical and Theoretical
41 (16) (2008) 164039. doi:10.1088/1751-8113/41/16/164039.

[16] F. Karbstein, A. Blinne, H. Gies, M. Zepf, Boosting Quantum Vacuum Signatures by Coherent Harmonic Focusing,
Phys. Rev. Lett. 123 (2019) 091802. doi:10.1103/PhysRevLett.123.091802.

[17] J. Schwinger, On Gauge Invariance and Vacuum Polarization, Phys. Rev. 82 (1951) 664–679. doi:10.1103/

PhysRev.82.664.

https://doi.org/10.1103/physrevd.76.114512
https://doi.org/10.1103/physrevd.76.114512
http://arxiv.org/abs/1512.06082
https://doi.org/10.48550/arXiv.1512.06082
https://doi.org/10.1103/PhysRev.72.241
https://doi.org/10.1103/PhysRevLett.34.1050
https://doi.org/10.1103/PhysRevLett.34.1050
https://doi.org/10.1016/0092-640X(85)90010-5
https://doi.org/10.1098/rspa.1928.0023
https://www.mit.edu/~kardar/research/seminars/Casimir/Casimir1948.pdf
https://www.mit.edu/~kardar/research/seminars/Casimir/Casimir1948.pdf
https://doi.org/10.1103/PhysRev.73.360
https://doi.org/10.1070/PU1988v031n11ABEH005641
https://doi.org/10.1038/nphoton.2011.39
https://doi.org/10.1038/s41567-020-0975-9
https://doi.org/10.1103/PhysRevB.99.125403
https://doi.org/10.1103/PhysRevB.99.125403
https://doi.org/10.1140/epjd/e2009-00006-0
https://doi.org/10.1088/1751-8113/41/16/164039
https://doi.org/10.1103/PhysRevLett.123.091802
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1103/PhysRev.82.664

BIBLIOGRAPHY 155

[18] F. Sauter, Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie
Diracs, Zeitschrift für Physik 69 (11-12) (1931) 742–764. doi:10.1007/BF01339461.

[19] H. Euler, B. Kockel, Über die Streuung von Licht an Licht nach der Diracschen Theorie, Naturwissenschaften 23 (15)
(1935) 246–247. doi:10.1007/BF01493898.

[20] W. Heisenberg, H. Euler, Folgerungen aus der Diracschen Theorie des Positrons, Zeitschrift für Physik 98 (11) (1936)
714–732. doi:10.1007/BF01343663.

[21] V. Weisskopf, The electrodynamics of the vacuum based on the quantum theory of the electron, Kong. Dan. Vid. Sel.
Mat. Fys. Med. 14N6 (1936) 1–39.
URL http://www.neo-classical-physics.info/uploads/3/0/6/5/3065888/weisskopf_-_

electrodynamics.pdf

[22] W. Dittrich, H. Gies, Probing the Quantum Vacuum: Perturbative Effective Action Approach in Quantum Electro-
dynamics and its Application, Vol. 166 of Springer Tracts in Modern Physics, Springer Berlin Heidelberg, 2000.
doi:10.1007/3-540-45585-X.

[23] F. Karbstein, Probing Vacuum Polarization Effects with High-Intensity Lasers, Particles 3 (1) (2020) 39–61. doi:
10.3390/particles3010005.

[24] C. Kohlfürst, M. Mitter, G. von Winckel, F. Hebenstreit, R. Alkofer, Optimizing the pulse shape for Schwinger pair
production, Phys. Rev. D 88 (2013) 045028. doi:10.1103/PhysRevD.88.045028.

[25] A. D. Piazza, Strong-field QED in intense laser fields, Particle and Astroparticle Theory Seminar Max Planck Insti-
tute for Nuclear Physics, Heidelberg (2017).
URL https://www.mpi-hd.mpg.de/lin/seminar_theory/talks/Talk_diPiazza_100717.pdf

[26] G. V. Dunne, The Heisenberg–Euler Effective Action: 75 years on, International Journal of Modern Physics A 27 (15)
(2012) 1260004. doi:10.1142/S0217751X12600044.

[27] P. W. Milonni, The Quantum Vacuum: An Introduction to Quantum Electrodynamics, Academic press, 1994. doi:
10.1016/C2009-0-21295-5.

[28] Y. B. Zel’dovich, The cosmological constant and the theory of elementary particles, Soviet Physics Uspekhi 11 (3)
(1968) 381. doi:10.1070/PU1968v011n03ABEH003927.

[29] U. Leonhardt, The case for a Casimir cosmology, Philosophical Transactions of the Royal Society A 378 (2177) (2020)
20190229. doi:10.1098/rsta.2019.0229.

[30] S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1–23. doi:10.1103/RevModPhys.
61.1.

[31] N. Itzhaki, A comment on technical naturalness and the cosmological constant, Journal of High Energy Physics 8
(2006) 020. doi:10.1088/1126-6708/2006/08/020.

[32] C. P. Burgess, The Cosmological Constant Problem: Why it’s hard to get Dark Energy from Micro-physics (2013).
arXiv:1309.4133, doi:10.48550/arXiv.1309.4133.

[33] S. W. Hawking, Black hole explosions?, Nature 248 (5443) (1974) 30–31. doi:10.1038/248030a0.

[34] L. C. B. Crispino, A. Higuchi, G. E. A. Matsas, The Unruh effect and its applications, Rev. Mod. Phys. 80 (2008)
787–838. doi:10.1103/RevModPhys.80.787.

[35] E. T. Akhmedov, D. Singleton, On the physical meaning of the Unruh effect, JETP Letters 86 (9) (2008) 615–619.
doi:10.1134/S0021364007210138.

[36] J. M. Ezquiaga, J. García-Bellido, V. Vennin, Massive Galaxy Clusters Like El Gordo Hint at Primordial Quantum
Diffusion, Phys. Rev. Lett. 130 (2023) 121003. doi:10.1103/PhysRevLett.130.121003.

[37] T. Blum, P. A. Boyle, V. Gülpers, T. Izubuchi, L. Jin, C. Jung, A. Jüttner, C. Lehner, A. Portelli, J. T. Tsang, Calculation
of the Hadronic Vacuum Polarization Contribution to the Muon Anomalous Magnetic Moment, Phys. Rev. Lett. 121
(2018) 022003. doi:10.1103/PhysRevLett.121.022003.

https://doi.org/10.1007/BF01339461
https://doi.org/10.1007/BF01493898
https://doi.org/10.1007/BF01343663
http://www.neo-classical-physics.info/uploads/3/0/6/5/3065888/weisskopf_-_electrodynamics.pdf
http://www.neo-classical-physics.info/uploads/3/0/6/5/3065888/weisskopf_-_electrodynamics.pdf
http://www.neo-classical-physics.info/uploads/3/0/6/5/3065888/weisskopf_-_electrodynamics.pdf
https://doi.org/10.1007/3-540-45585-X
https://doi.org/10.3390/particles3010005
https://doi.org/10.3390/particles3010005
https://doi.org/10.1103/PhysRevD.88.045028
https://www.mpi-hd.mpg.de/lin/seminar_theory/talks/Talk_diPiazza_100717.pdf
https://www.mpi-hd.mpg.de/lin/seminar_theory/talks/Talk_diPiazza_100717.pdf
https://doi.org/10.1142/S0217751X12600044
https://doi.org/10.1016/C2009-0-21295-5
https://doi.org/10.1016/C2009-0-21295-5
https://doi.org/10.1070/PU1968v011n03ABEH003927
https://doi.org/10.1098/rsta.2019.0229
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1088/1126-6708/2006/08/020
http://arxiv.org/abs/1309.4133
https://doi.org/10.48550/arXiv.1309.4133
https://doi.org/10.1038/248030a0
https://doi.org/10.1103/RevModPhys.80.787
https://doi.org/10.1134/S0021364007210138
https://doi.org/10.1103/PhysRevLett.130.121003
https://doi.org/10.1103/PhysRevLett.121.022003

156 BIBLIOGRAPHY

[38] M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions
to the muon anomalous magnetic moment and to α (mz2), The European Physical Journal C 80 (3) (2020) 1–13.
doi:10.1140/epjc/s10052-020-7792-2.

[39] M. Knecht, On some short-distance properties of the fourth-rank hadronic vacuum polarization tensor and the
anomalous magnetic moment of the muon, Journal of High Energy Physics 2020 (8) (2020) 1–29. doi:10.1007/
JHEP08(2020)056.

[40] T. Aoyama, N. Asmussen, M. Benayoun, J. Bijnens, T. Blum, M. Bruno, I. Caprini, C. Carloni Calame, M. Cè, G. Colan-
gelo, et al., The anomalous magnetic moment of the muon in the Standard Model, Physics Reports 887 (2020) 1–166.
doi:10.1016/j.physrep.2020.07.006.

[41] B. Abi, T. Albahri, S. Al-Kilani, D. Allspach, L. P. Alonzi, A. Anastasi, A. Anisenkov, F. Azfar, K. Badgley, S. Baeßler,
et al., Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021)
141801. doi:10.1103/PhysRevLett.126.141801.

[42] S. Borsanyi, Z. Fodor, J. N. Guenther, C. Hoelbling, S. D. Katz, L. Lellouch, T. Lippert, K. Miura, L. Parato, K. K.
Szabo, et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature 593 (7857)
(2021) 51–55. doi:10.1038/s41586-021-03418-1.

[43] A. I. Berdyugin, N. Xin, H. Gao, S. Slizovskiy, Z. Dong, S. Bhattacharjee, P. Kumaravadivel, S. Xu, L. A. Ponomarenko,
M. Holwill, et al., Out-of-equilibrium criticalities in graphene superlattices, Science 375 (6579) (2022) 430–433. doi:
10.1126/science.abi8627.

[44] H. Rottke, R. Y. Engel, D. Schick, J. O. Schunck, P. S. Miedema, M. C. Borchert, M. Kuhlmann, N. Ekanayake,
S. Dziarzhytski, G. Brenner, et al., Probing electron and hole colocalization by resonant four-wave mixing spec-
troscopy in the extreme ultraviolet, Science Advances 8 (20) (2022) eabn5127. doi:10.1126/sciadv.abn5127.

[45] G. Breit, J. A. Wheeler, Collision of Two Light Quanta, Phys. Rev. 46 (1934) 1087–1091. doi:10.1103/PhysRev.
46.1087.

[46] O. J. Pike, F. Mackenroth, E. G. Hill, S. J. Rose, A photon–photon collider in a vacuum hohlraum, Nature Photonics
8 (6) (2014) 434–436. doi:10.1038/nphoton.2014.95.

[47] A. Golub, S. Villalba-Chávez, H. Ruhl, C. Müller, Linear Breit-Wheeler pair production by high-energy
bremsstrahlung photons colliding with an intense x-ray laser pulse, Phys. Rev. D 103 (2021) 016009. doi:

10.1103/PhysRevD.103.016009.

[48] C. Kohlfürst, H. Gies, R. Alkofer, Effective Mass Signatures in Multiphoton Pair Production, Phys. Rev. Lett. 112
(2014) 050402. doi:10.1103/PhysRevLett.112.050402.

[49] M. Ruf, G. R. Mocken, C. Müller, K. Z. Hatsagortsyan, C. H. Keitel, Pair Production in Laser Fields Oscillating in
Space and Time, Phys. Rev. Lett. 102 (2009) 080402. doi:10.1103/PhysRevLett.102.080402.

[50] C. Kohlfürst, R. Alkofer, On the effect of time-dependent inhomogeneous magnetic fields in electronpositron pair
production, Physics Letters B 756 (2016) 371 – 375. doi:10.1016/j.physletb.2016.03.027.

[51] G. Bimonte, E. Calloni, G. Esposito, L. Milano, L. Rosa, Towards measuring variations of casimir energy by a super-
conducting cavity, Physical Review Letters 94 (18) (2005). doi:10.1103/physrevlett.94.180402.

[52] J. Cripe, N. Aggarwal, R. Lanza, A. Libson, R. Singh, P. Heu, D. Follman, G. D. Cole, N. Mavalvala, T. Corbitt,
Measurement of quantum back action in the audio band at room temperature, Nature 568 (7752) (2019) 364–367.
doi:10.1038/s41586-019-1051-4.

[53] H. Yu, L. McCuller, M. Tse, N. Kijbunchoo, L. Barsotti, N. Mavalvala, J. Betzwieser, C. D. Blair, S. E. Dwyer, A. Effler,
et al., Quantum correlations between light and the kilogram-mass mirrors of LIGO, Nature 583 (7814) (2020) 43–47.
doi:10.1038/s41586-020-2420-8.

[54] K. Y. Fong, H.-K. Li, R. Zhao, S. Yang, Y. Wang, X. Zhang, Phonon heat transfer across a vacuum through quantum
fluctuations, Nature 576 (7786) (2019) 243–247. doi:10.1038/s41586-019-1800-4.

https://doi.org/10.1140/epjc/s10052-020-7792-2
https://doi.org/10.1007/JHEP08(2020)056
https://doi.org/10.1007/JHEP08(2020)056
https://doi.org/10.1016/j.physrep.2020.07.006
https://doi.org/10.1103/PhysRevLett.126.141801
https://doi.org/10.1038/s41586-021-03418-1
https://doi.org/10.1126/science.abi8627
https://doi.org/10.1126/science.abi8627
https://doi.org/10.1126/sciadv.abn5127
https://doi.org/10.1103/PhysRev.46.1087
https://doi.org/10.1103/PhysRev.46.1087
https://doi.org/10.1038/nphoton.2014.95
https://doi.org/10.1103/PhysRevD.103.016009
https://doi.org/10.1103/PhysRevD.103.016009
https://doi.org/10.1103/PhysRevLett.112.050402
https://doi.org/10.1103/PhysRevLett.102.080402
https://doi.org/10.1016/j.physletb.2016.03.027
https://doi.org/10.1103/physrevlett.94.180402
https://doi.org/10.1038/s41586-019-1051-4
https://doi.org/10.1038/s41586-020-2420-8
https://doi.org/10.1038/s41586-019-1800-4

BIBLIOGRAPHY 157

[55] J. Ahn, Z. Xu, J. Bang, P. Ju, X. Gao, T. Li, Ultrasensitive torque detection with an optically levitated nanorotor,
Nature Nanotechnology 15 (2) (2020) 89–93. doi:10.1038/s41565-019-0605-9.

[56] M. G. Millis, G. J. Maclay, J. Hammer, R. Clark, M. George, Y. Kim, A. Kir, Study of Vacuum Energy Physics for
Breakthrough Propulsion, Tech. rep., NASA (2004).
URL https://ntrs.nasa.gov/citations/20040171927

[57] T. C. N. Boekholt, S. F. Portegies Zwart, M. Valtonen, Gargantuan chaotic gravitational three-body systems and their
irreversibility to the Planck length, Monthly Notices of the Royal Astronomical Society 493 (3) (2020) 3932–3937.
doi:10.1093/mnras/staa452.

[58] I.-C. Benea-Chelmus, F. F. Settembrini, G. Scalari, J. Faist, Electric field correlation measurements on the electro-
magnetic vacuum state, Nature 568 (7751) (2019) 202–206. doi:10.1038/s41586-019-1083-9.

[59] J. C. Maxwell, A Dynamical Theory of the Electromagnetic Field, Philosophical Transactions of the Royal Society of
London 155 (1865) 459–512. doi:10.1098/rstl.1865.0008.

[60] R. Karplus, M. Neuman, Non-Linear Interactions between Electromagnetic Fields, Phys. Rev. 80 (1950) 380–385.
doi:10.1103/PhysRev.80.380.

[61] R. Karplus, M. Neuman, The Scattering of Light by Light, Phys. Rev. 83 (1951) 776–784. doi:10.1103/PhysRev.
83.776.

[62] J. Mckenna, P. M. Platzman, Nonlinear Interaction of Light in a Vacuum, Phys. Rev. 129 (1963) 2354–2360. doi:
10.1103/PhysRev.129.2354.

[63] F. Moulin, D. Bernard, F. Amiranoff, Photon-photon elastic scattering in the visible domain, Zeitschrift für Physik C:
Particles and Fields 72 (4) (1996) 607. doi:10.1007/s002880050282.

[64] F. Moulin, D. Bernard, Four-wave interaction in gas and vacuum: definition of a third-order nonlinear effective sus-
ceptibility in vacuum: χ(3)

vacuum, Optics Communications 164 (1) (1999) 137–144. doi:10.1016/S0030-4018(99)
00169-8.

[65] D. Bernard, F. Moulin, F. Amiranoff, A. Braun, J. P. Chambaret, G. Darpentigny, G. Grillon, S. Ranc, F. Perrone,
Search for stimulated photon-photon scattering in vacuum, The European Physical Journal D - Atomic, Molecular,
Optical and Plasma Physics 10 (1) (2000) 141–145. doi:10.1007/s100530050535.

[66] E. Lundström, G. Brodin, J. Lundin, M. Marklund, R. Bingham, J. Collier, J. T. Mendonça, P. Norreys, Using High-
Power Lasers for Detection of Elastic Photon-Photon Scattering, Phys. Rev. Lett. 96 (2006) 083602. doi:10.1103/
PhysRevLett.96.083602.

[67] J. Lundin, M. Marklund, E. Lundström, G. Brodin, J. Collier, R. Bingham, J. T. Mendonça, P. Norreys, Analysis of
four-wave mixing of high-power lasers for the detection of elastic photon-photon scattering, Phys. Rev. A 74 (2006)
043821. doi:10.1103/PhysRevA.74.043821.

[68] D. Tommasini, A. Ferrando, H. Michinel, M. Seco, Precision tests of QED and non-standard models by searching
photon-photon scattering in vacuum with high power lasers, JHEP 11 (2009) 043. doi:10.1088/1126-6708/

2009/11/043.

[69] G. Y. Kryuchkyan, K. Z. Hatsagortsyan, Bragg Scattering of Light in Vacuum Structured by Strong Periodic Fields,
Phys. Rev. Lett. 107 (2011) 053604. doi:10.1103/PhysRevLett.107.053604.

[70] B. King, C. H. Keitel, Photon–photon scattering in collisions of intense laser pulses, New Journal of Physics 14 (10)
(2012) 103002. doi:10.1088/1367-2630/14/10/103002.

[71] V. Dinu, T. Heinzl, A. Ilderton, M. Marklund, G. Torgrimsson, Photon polarization in light-by-light scattering: Finite
size effects, Phys. Rev. D 90 (2014) 045025. doi:10.1103/PhysRevD.90.045025.

[72] H. Gies, F. Karbstein, C. Kohlfürst, N. Seegert, Photon-photon scattering at the high-intensity frontier, Phys. Rev. D
97 (2018) 076002. doi:10.1103/PhysRevD.97.076002.

[73] B. King, H. Hu, B. Shen, Three-pulse photon-photon scattering, Phys. Rev. A 98 (2018) 023817. doi:10.1103/

PhysRevA.98.023817.

https://doi.org/10.1038/s41565-019-0605-9
https://ntrs.nasa.gov/citations/20040171927
https://ntrs.nasa.gov/citations/20040171927
https://ntrs.nasa.gov/citations/20040171927
https://doi.org/10.1093/mnras/staa452
https://doi.org/10.1038/s41586-019-1083-9
https://doi.org/10.1098/rstl.1865.0008
https://doi.org/10.1103/PhysRev.80.380
https://doi.org/10.1103/PhysRev.83.776
https://doi.org/10.1103/PhysRev.83.776
https://doi.org/10.1103/PhysRev.129.2354
https://doi.org/10.1103/PhysRev.129.2354
https://doi.org/10.1007/s002880050282
https://doi.org/10.1016/S0030-4018(99)00169-8
https://doi.org/10.1016/S0030-4018(99)00169-8
https://doi.org/10.1007/s100530050535
https://doi.org/10.1103/PhysRevLett.96.083602
https://doi.org/10.1103/PhysRevLett.96.083602
https://doi.org/10.1103/PhysRevA.74.043821
https://doi.org/10.1088/1126-6708/2009/11/043
https://doi.org/10.1088/1126-6708/2009/11/043
https://doi.org/10.1103/PhysRevLett.107.053604
https://doi.org/10.1088/1367-2630/14/10/103002
https://doi.org/10.1103/PhysRevD.90.045025
https://doi.org/10.1103/PhysRevD.97.076002
https://doi.org/10.1103/PhysRevA.98.023817
https://doi.org/10.1103/PhysRevA.98.023817

158 BIBLIOGRAPHY

[74] J. Toll, The dispersion relation for light and its application to problems involving electron pairs, Ph.D. thesis, Prince-
ton University, (unpublished) (1952).

[75] R. Baier, P. Breitenlohner, The vacuum refraction index in the presence of external fields, Il Nuovo Cimento B Series
10 47 (1) (1967) 117–120. doi:10.1007/BF02712312.

[76] E. Brezin, C. Itzykson, Polarization Phenomena in Vacuum Nonlinear Electrodynamics, Phys. Rev. D 3 (1971)
618–621. doi:10.1103/PhysRevD.3.618.

[77] J. S. Heyl, L. Hernquist, Birefringence and dichroism of the QED vacuum, Journal of Physics A: Mathematical and
General 30 (18) (1997) 6485. doi:10.1088/0305-4470/30/18/022.

[78] A. N. Luiten, J. C. Petersen, Detection of vacuum birefringence using intense laser pulses, Physics Letters A 330 (6)
(2004) 429 – 434. doi:10.1016/j.physleta.2004.08.020.

[79] T. Heinzl, B. Liesfeld, K.-U. Amthor, H. Schwoerer, R. Sauerbrey, A. Wipf, On the observation of vacuum birefringence,
Optics Communications 267 (2) (2006) 318 – 321. doi:10.1016/j.optcom.2006.06.053.

[80] A. Di Piazza, K. Z. Hatsagortsyan, C. H. Keitel, Light Diffraction by a Strong Standing Electromagnetic Wave, Phys.
Rev. Lett. 97 (2006) 083603. doi:10.1103/PhysRevLett.97.083603.

[81] B. J. King, Vacuum polarisation effects in intense laser fields, Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg
(2010).
URL https://archiv.ub.uni-heidelberg.de/volltextserver/10846

[82] V. Dinu, T. Heinzl, A. Ilderton, M. Marklund, G. Torgrimsson, Vacuum refractive indices and helicity flip in strong-
field QED, Phys. Rev. D 89 (2014) 125003. doi:10.1103/PhysRevD.89.125003.

[83] F. Karbstein, H. Gies, M. Reuter, M. Zepf, Vacuum birefringence in strong inhomogeneous electromagnetic fields,
Phys. Rev. D 92 (2015) 071301. doi:10.1103/PhysRevD.92.071301.

[84] H.-P. Schlenvoigt, T. Heinzl, U. Schramm, T. E. Cowan, R. Sauerbrey, Detecting vacuum birefringence with x-ray
free electron lasers and high-power optical lasers: a feasibility study, Physica Scripta 91 (2) (2016) 023010. doi:

10.1088/0031-8949/91/2/023010.

[85] F. Karbstein, C. Sundqvist, Probing vacuum birefringence using x-ray free electron and optical high-intensity lasers,
Physical Review D 94 (1) (2016). doi:10.1103/physrevd.94.013004.

[86] B. King, N. Elkina, Vacuum birefringence in high-energy laser-electron collisions, Phys. Rev. A 94 (2016) 062102.
doi:10.1103/PhysRevA.94.062102.

[87] S. Bragin, S. Meuren, C. H. Keitel, A. Di Piazza, High-Energy Vacuum Birefringence and Dichroism in an Ultrastrong
Laser Field, Phys. Rev. Lett. 119 (2017) 250403. doi:10.1103/PhysRevLett.119.250403.

[88] F. Karbstein, Vacuum birefringence in the head-on collision of x-ray free-electron laser and optical high-intensity
laser pulses, Phys. Rev. D 98 (2018) 056010. doi:10.1103/PhysRevD.98.056010.

[89] S. Ataman, Vacuum birefringence detection in all-optical scenarios, Phys. Rev. A 97 (2018) 063811. doi:10.1103/
PhysRevA.97.063811.

[90] F. Karbstein, E. A. Mosman, X-ray photon scattering at a focused high-intensity laser pulse, Phys. Rev. D 100 (2019)
033002. doi:10.1103/PhysRevD.100.033002.

[91] E. A. Mosman, F. Karbstein, Vacuum birefringence and diffraction at an x-ray free-electron laser: From analytical
estimates to optimal parameters, Phys. Rev. D 104 (2021) 013006. doi:10.1103/PhysRevD.104.013006.

[92] F. Karbstein, C. Sundqvist, K. S. Schulze, I. Uschmann, H. Gies, G. G. Paulus, Vacuum birefringence at x-ray free-
electron lasers, New Journal of Physics 23 (9) (2021) 095001. doi:10.1088/1367-2630/ac1df4.

[93] D. Tommasini, H. Michinel, Light by light diffraction in vacuum, Phys. Rev. A 82 (2010) 011803. doi:10.1103/
PhysRevA.82.011803.

https://doi.org/10.1007/BF02712312
https://doi.org/10.1103/PhysRevD.3.618
https://doi.org/10.1088/0305-4470/30/18/022
https://doi.org/10.1016/j.physleta.2004.08.020
https://doi.org/10.1016/j.optcom.2006.06.053
https://doi.org/10.1103/PhysRevLett.97.083603
https://archiv.ub.uni-heidelberg.de/volltextserver/10846
https://archiv.ub.uni-heidelberg.de/volltextserver/10846
https://doi.org/10.1103/PhysRevD.89.125003
https://doi.org/10.1103/PhysRevD.92.071301
https://doi.org/10.1088/0031-8949/91/2/023010
https://doi.org/10.1088/0031-8949/91/2/023010
https://doi.org/10.1103/physrevd.94.013004
https://doi.org/10.1103/PhysRevA.94.062102
https://doi.org/10.1103/PhysRevLett.119.250403
https://doi.org/10.1103/PhysRevD.98.056010
https://doi.org/10.1103/PhysRevA.97.063811
https://doi.org/10.1103/PhysRevA.97.063811
https://doi.org/10.1103/PhysRevD.100.033002
https://doi.org/10.1103/PhysRevD.104.013006
https://doi.org/10.1088/1367-2630/ac1df4
https://doi.org/10.1103/PhysRevA.82.011803
https://doi.org/10.1103/PhysRevA.82.011803

BIBLIOGRAPHY 159

[94] B. King, A. Di Piazza, C. H. Keitel, A matterless double slit, Nature Photonics 4 (2) (2010) 92–94. doi:10.1038/
nphoton.2009.261.

[95] B. King, A. Di Piazza, C. H. Keitel, Double-slit vacuum polarization effects in ultraintense laser fields, Phys. Rev. A
82 (2010) 032114. doi:10.1103/PhysRevA.82.032114.

[96] Y. Monden, R. Kodama, Enhancement of Laser Interaction with Vacuum for a Large Angular Aperture, Phys. Rev.
Lett. 107 (2011) 073602. doi:10.1103/PhysRevLett.107.073602.

[97] F. Karbstein, R. R. Q. P. T. Oude Weernink, X-ray vacuum diffraction at finite spatiotemporal offset, Phys. Rev. D 104
(2021) 076015. doi:10.1103/PhysRevD.104.076015.

[98] H. Gies, F. Karbstein, N. Seegert, Quantum reflection as a new signature of quantum vacuum nonlinearity, New
Journal of Physics 15 (8) (2013) 083002. doi:10.1088/1367-2630/15/8/083002.

[99] H. Gies, F. Karbstein, N. Seegert, Quantum reflection of photons off spatio-temporal electromagnetic field inhomo-
geneities, New Journal of Physics 17 (4) (2015) 043060. doi:10.1088/1367-2630/17/4/043060.

[100] V. Yakovlev, Incoherent electromagnetic wave scattering in a Coulomb field, Sov. Phys. JETP 24 (1967) 411.
URL http://www.jetp.ras.ru/cgi-bin/dn/e_024_02_0411.pdf

[101] A. Di Piazza, K. Z. Hatsagortsyan, C. H. Keitel, Nonperturbative Vacuum-Polarization Effects in Proton-Laser Colli-
sions, Phys. Rev. Lett. 100 (2008) 010403. doi:10.1103/PhysRevLett.100.010403.

[102] H. Gies, F. Karbstein, R. Shaisultanov, Laser photon merging in an electromagnetic field inhomogeneity, Phys. Rev.
D 90 (2014) 033007. doi:10.1103/PhysRevD.90.033007.

[103] H. Gies, F. Karbstein, N. Seegert, Photon merging and splitting in electromagnetic field inhomogeneities, Phys. Rev.
D 93 (2016) 085034. doi:10.1103/PhysRevD.93.085034.

[104] P. Bhartia, S. Valluri, Non-linear scattering of light in the limit of ultra-strong fields, Canadian Journal of Physics
56 (8) (1978) 1122–1132. doi:10.1139/p78-147.

[105] S. R. Valluri, P. Bhartia, An analytical proof for the generation of higher harmonics due to the interaction of plane
electromagnetic waves, Canadian Journal of Physics 58 (1) (1980) 116–122. doi:10.1139/p80-019.

[106] Z. Bialynicka-Birula, Nonlinear phenomena in the propagation of electromagnetic waves in the magnetized vacuum,
Physica D: Nonlinear Phenomena 2 (3) (1981) 513–524. doi:10.1016/0167-2789(81)90025-7.

[107] A. E. Kaplan, Y. J. Ding, Field-gradient-induced second-harmonic generation in magnetized vacuum, Phys. Rev. A 62
(2000) 043805. doi:10.1103/PhysRevA.62.043805.

[108] A. Di Piazza, K. Z. Hatsagortsyan, C. H. Keitel, Harmonic generation from laser-driven vacuum, Phys. Rev. D 72
(2005) 085005. doi:10.1103/PhysRevD.72.085005.

[109] A. Fedotov, N. Narozhny, Generation of harmonics by a focused laser beam in the vacuum, Physics Letters A 362 (1)
(2007) 1–5. doi:10.1016/j.physleta.2006.09.085.

[110] N. B. Narozhny, A. M. Fedotov, Third-harmonic generation in a vacuum at the focus of a high-intensity laser beam,
Laser Physics 17 (4) (2007) 350–357. doi:10.1134/S1054660X0704010X.

[111] B. King, P. Böhl, H. Ruhl, Interaction of photons traversing a slowly varying electromagnetic background, Phys. Rev.
D 90 (2014) 065018. doi:10.1103/PhysRevD.90.065018.

[112] P. Böhl, B. King, H. Ruhl, Vacuum high-harmonic generation in the shock regime, Phys. Rev. A 92 (2015) 032115.
doi:10.1103/PhysRevA.92.032115.

[113] P. A. Böhl, Vacuum harmonic generation in slowly varying electromagnetic backgrounds, Ph.D. thesis, LMU (2016).
URL https://edoc.ub.uni-muenchen.de/19887

[114] H. Kadlecová, G. Korn, S. V. Bulanov, Electromagnetic shocks in the quantum vacuum, Physical Review D 99 (3)
(2019). doi:10.1103/physrevd.99.036002.

https://doi.org/10.1038/nphoton.2009.261
https://doi.org/10.1038/nphoton.2009.261
https://doi.org/10.1103/PhysRevA.82.032114
https://doi.org/10.1103/PhysRevLett.107.073602
https://doi.org/10.1103/PhysRevD.104.076015
https://doi.org/10.1088/1367-2630/15/8/083002
https://doi.org/10.1088/1367-2630/17/4/043060
http://www.jetp.ras.ru/cgi-bin/dn/e_024_02_0411.pdf
http://www.jetp.ras.ru/cgi-bin/dn/e_024_02_0411.pdf
https://doi.org/10.1103/PhysRevLett.100.010403
https://doi.org/10.1103/PhysRevD.90.033007
https://doi.org/10.1103/PhysRevD.93.085034
https://doi.org/10.1139/p78-147
https://doi.org/10.1139/p80-019
https://doi.org/10.1016/0167-2789(81)90025-7
https://doi.org/10.1103/PhysRevA.62.043805
https://doi.org/10.1103/PhysRevD.72.085005
https://doi.org/10.1016/j.physleta.2006.09.085
https://doi.org/10.1134/S1054660X0704010X
https://doi.org/10.1103/PhysRevD.90.065018
https://doi.org/10.1103/PhysRevA.92.032115
https://edoc.ub.uni-muenchen.de/19887
https://edoc.ub.uni-muenchen.de/19887
https://doi.org/10.1103/physrevd.99.036002

160 BIBLIOGRAPHY

[115] P. V. Sasorov, F. Pegoraro, T. Z. Esirkepov, S. V. Bulanov, Generation of high order harmonics in Heisenberg–Euler
electrodynamics, New Journal of Physics 23 (10) (2021) 105003. doi:10.1088/1367-2630/ac28cb.

[116] S. L. Adler, J. N. Bahcall, C. G. Callan, M. N. Rosenbluth, Photon Splitting in a Strong Magnetic Field, Phys. Rev.
Lett. 25 (1970) 1061–1065. doi:10.1103/PhysRevLett.25.1061.

[117] Z. Bialynicka-Birula, I. Bialynicki-Birula, Nonlinear Effects in Quantum Electrodynamics. Photon Propagation and
Photon Splitting in an External Field, Phys. Rev. D 2 (1970) 2341–2345. doi:10.1103/PhysRevD.2.2341.

[118] S. L. Adler, Photon splitting and photon dispersion in a strong magnetic field, Annals of Physics 67 (2) (1971) 599 –
647. doi:10.1016/0003-4916(71)90154-0.

[119] V. O. Papanjan, V. I. Ritus, Vacuum polarization and photon splitting in an intense field, Tech. rep., Akad. Nauk
Moscow. Fiz. Inst. P. N. Lebedev, Moscow (1971).
URL http://cds.cern.ch/record/1056277

[120] R. J. Stoneham, Phonon splitting in the magnetised vacuum, Journal of Physics A: Mathematical and General 12 (11)
(1979) 2187–2203. doi:10.1088/0305-4470/12/11/028.

[121] V. N. Baier, A. I. Milstein, R. Z. Shaisultanov, Photon Splitting in a Very Strong Magnetic Field, Phys. Rev. Lett. 77
(1996) 1691–1694. doi:10.1103/PhysRevLett.77.1691.

[122] S. L. Adler, C. Schubert, Photon Splitting in a Strong Magnetic Field: Recalculation and Comparison with Previous
Calculations, Phys. Rev. Lett. 77 (1996) 1695–1698. doi:10.1103/PhysRevLett.77.1695.

[123] A. Di Piazza, A. I. Milstein, C. H. Keitel, Photon splitting in a laser field, Phys. Rev. A 76 (2007) 032103. doi:

10.1103/PhysRevA.76.032103.

[124] C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi,
J. Hein, D. I. Hillier, et al., Petawatt and exawatt class lasers worldwide, High Power Laser Science and Engineering
7 (2019) e54. doi:10.1017/hpl.2019.36.

[125] M. Scholz, FEL Performance Achieved at European XFEL, in: Proc. 9th International Particle Accelerator Conference
(IPAC’18), Vancouver, BC, Canada, April 29-May 4, 2018, no. 9 in International Particle Accelerator Conference,
JACoW Publishing, Geneva, Switzerland, 2018, pp. 29–33. doi:10.18429/JACoW-IPAC2018-MOZGBD2.

[126] M. Marklund, J. Lundin, Quantum vacuum experiments using high intensity lasers, The European Physical Journal
D 55 (2) (2009) 319. doi:10.1140/epjd/e2009-00169-6.

[127] A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, C. H. Keitel, Extremely high-intensity laser interactions with funda-
mental quantum systems, Rev. Mod. Phys. 84 (2012) 1177–1228. doi:10.1103/RevModPhys.84.1177.

[128] B. King, T. Heinzl, Measuring vacuum polarization with high-power lasers, High Power Laser Science and Engineer-
ing 4 (2016) e5. doi:10.1017/hpl.2016.1.

[129] W. Dittrich, M. Reuter, Effective Lagrangians in quantum electrodynamics, Springer, 1985. doi:10.1007/

3-540-15182-6.

[130] G. V. Dunne, Heisenberg–Euler Effective Lagrangians: Basics and Extensions, in: From Fields to Strings: Circum-
navigating Theoretical Physics: Ian Kogan Memorial Collection (In 3 Volumes), World Scientific, 2005, pp. 445–522.
doi:10.1142/9789812775344_0014.

[131] G. V. Dunne, New strong-field QED effects at extreme light infrastructure, The European Physical Journal D 55 (2)
(2009) 327. doi:10.1140/epjd/e2009-00022-0.

[132] T. Heinzl, A. Ilderton, Exploring high-intensity QED at ELI, The European Physical Journal D 55 (2) (2009) 359–364.
doi:10.1140/epjd/e2009-00113-x.

[133] F. Karbstein, The quantum vacuum in electromagnetic fields: From the Heisenberg-Euler effective action to vac-
uum birefringence, in: Quantum Field Theory at the Limits: from Strong Fields to Heavy Quarks, Proceedings of
the Helmholtz International Summer School 2016, Verlag Deutsches Elektronen-Synchrotron, Hamburg, 2017, pp.
44–57. doi:10.3204/DESY-PROC-2016-04/Karbstein.

https://doi.org/10.1088/1367-2630/ac28cb
https://doi.org/10.1103/PhysRevLett.25.1061
https://doi.org/10.1103/PhysRevD.2.2341
https://doi.org/10.1016/0003-4916(71)90154-0
http://cds.cern.ch/record/1056277
http://cds.cern.ch/record/1056277
https://doi.org/10.1088/0305-4470/12/11/028
https://doi.org/10.1103/PhysRevLett.77.1691
https://doi.org/10.1103/PhysRevLett.77.1695
https://doi.org/10.1103/PhysRevA.76.032103
https://doi.org/10.1103/PhysRevA.76.032103
https://doi.org/10.1017/hpl.2019.36
https://doi.org/10.18429/JACoW-IPAC2018-MOZGBD2
https://doi.org/10.1140/epjd/e2009-00169-6
https://doi.org/10.1103/RevModPhys.84.1177
https://doi.org/10.1017/hpl.2016.1
https://doi.org/10.1007/3-540-15182-6
https://doi.org/10.1007/3-540-15182-6
https://doi.org/10.1142/9789812775344_0014
https://doi.org/10.1140/epjd/e2009-00022-0
https://doi.org/10.1140/epjd/e2009-00113-x
https://doi.org/10.3204/DESY-PROC-2016-04/Karbstein

BIBLIOGRAPHY 161

[134] T. Inada, T. Yamazaki, T. Yamaji, Y. Seino, X. Fan, S. Kamioka, T. Namba, S. Asai, Probing Physics in Vacuum
Using an X-ray Free-Electron Laser, a High-Power Laser, and a High-Field Magnet, Applied Sciences 7 (7) (2017).
doi:10.3390/app7070671.

[135] M. Marklund, P. K. Shukla, Nonlinear collective effects in photon-photon and photon-plasma interactions, Rev. Mod.
Phys. 78 (2006) 591–640. doi:10.1103/RevModPhys.78.591.

[136] R. Battesti, J. Beard, S. Böser, N. Bruyant, D. Budker, S. A. Crooker, E. J. Daw, V. V. Flambaum, T. Inada, I. G.
Irastorza, et al., High magnetic fields for fundamental physics, Physics Reports 765-766 (2018) 1–39. doi:10.

1016/j.physrep.2018.07.005.

[137] G. V. Dunne, T. M. Hall, Borel summation of the derivative expansion and effective actions, Phys. Rev. D 60 (1999)
065002. doi:10.1103/PhysRevD.60.065002.

[138] H. Gies, L. Roessler, Vacuum polarization tensor in inhomogeneous magnetic fields, Phys. Rev. D 84 (2011) 065035.
doi:10.1103/PhysRevD.84.065035.

[139] E. Tiesinga, P. J. Mohr, D. B. Newell, B. N. Taylor, CODATA recommended values of the fundamental physical
constants: 2018, Rev. Mod. Phys. 93 (2021) 025010. doi:10.1103/RevModPhys.93.025010.

[140] T. Heinzl, Strong-field QED and high-power lasers, International Journal of Modern Physics A 27 (15) (2012) 1260010.
doi:10.1142/S0217751X1260010X.

[141] L. Klar, Quantum vacuum nonlinearities in the all-optical regime, Ph.D. thesis, Friedrich-Schiller-Universität Jena
(2022).
URL https://www.db-thueringen.de/receive/dbt_mods_00055002

[142] M. Peskin, D. V. Schroeder, An Introduction To Quantum Field Theory, 1st Edition, CRC Press, 1995. doi:10.

1201/9780429503559.

[143] A. Blinne, H. Gies, F. Karbstein, C. Kohlfürst, M. Zepf, All-optical signatures of quantum vacuum nonlinearities in
generic laser fields, Phys. Rev. D 99 (2019) 016006. doi:10.1103/PhysRevD.99.016006.

[144] A. P. Domenech, H. Ruhl, An implicit ODE-based numerical solver for the simulation of the Heisenberg-Euler equa-
tions in 3+1 dimensions (2017). arXiv:1607.00253, doi:10.48550/arXiv.1607.00253.

[145] A. Pons Domenech, Simulation of quantum vacuum in higher dimensions, Ph.D. thesis, LMU (2018).
URL https://edoc.ub.uni-muenchen.de/21885

[146] A. Lindner, B. Ölmez, H. Ruhl, Numerical Simulations of the Nonlinear Quantum Vacuum in the Heisenberg-Euler
Weak-Field Expansion (2021). arXiv:2109.08121, doi:10.48550/arXiv.2202.09680.

[147] A. Lindner, B. Ölmez, H. Ruhl, Numerical simulations of the nonlinear quantum vacuum in the Heisenberg-Euler
weak-field expansion, Journal of Computational Physics: X 17 (2023) 100124. doi:10.1016/j.jcpx.2023.

100124.

[148] A. Lindner, B. Ölmez, H. Ruhl, HEWES: Heisenberg–Euler weak-field expansion simulator, Software Impacts 15
(2023) 100481. doi:https://doi.org/10.1016/j.simpa.2023.100481.

[149] C. Shannon, Communication in the presence of noise, Proceedings of the IEEE 86 (2) (1998) 447–457. doi:10.

1109/JPROC.1998.659497.

[150] A. Lindner, HEWES project extra and supplementary material, Mendeley Data (2023). doi:10.17632/

f9wntyw39x.3.

[151] Wolfram Research, Inc., Mathematica, Version 13.2, Champaign, IL (2022).
URL https://www.wolfram.com/mathematica

[152] A. Lindner, HEWES Benchmarking Supplementary Analyses, Notebook Archive (2022).
URL https://notebookarchive.org/2022-08-eb2cjxb

[153] A. Köhler, Der C/C++-Projektbegleiter: C/C++ Projekte planen, dokumentieren, bauen und testen, dpunkt.verlag
GmbH, Heidelberg, 2007.

https://doi.org/10.3390/app7070671
https://doi.org/10.1103/RevModPhys.78.591
https://doi.org/10.1016/j.physrep.2018.07.005
https://doi.org/10.1016/j.physrep.2018.07.005
https://doi.org/10.1103/PhysRevD.60.065002
https://doi.org/10.1103/PhysRevD.84.065035
https://doi.org/10.1103/RevModPhys.93.025010
https://doi.org/10.1142/S0217751X1260010X
https://www.db-thueringen.de/receive/dbt_mods_00055002
https://www.db-thueringen.de/receive/dbt_mods_00055002
https://doi.org/10.1201/9780429503559
https://doi.org/10.1201/9780429503559
https://doi.org/10.1103/PhysRevD.99.016006
http://arxiv.org/abs/1607.00253
https://doi.org/10.48550/arXiv.1607.00253
https://edoc.ub.uni-muenchen.de/21885
https://edoc.ub.uni-muenchen.de/21885
http://arxiv.org/abs/2109.08121
https://doi.org/10.48550/arXiv.2202.09680
https://doi.org/10.1016/j.jcpx.2023.100124
https://doi.org/10.1016/j.jcpx.2023.100124
https://doi.org/https://doi.org/10.1016/j.simpa.2023.100481
https://doi.org/10.1109/JPROC.1998.659497
https://doi.org/10.1109/JPROC.1998.659497
https://doi.org/10.17632/f9wntyw39x.3
https://doi.org/10.17632/f9wntyw39x.3
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://notebookarchive.org/2022-08-eb2cjxb
https://notebookarchive.org/2022-08-eb2cjxb

162 BIBLIOGRAPHY

[154] F. Karbstein, R. Shaisultanov, Stimulated photon emission from the vacuum, Phys. Rev. D 91 (2015) 113002. doi:
10.1103/PhysRevD.91.113002.

[155] K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE
Transactions on Antennas and Propagation 14 (3) (1966) 302–307. doi:10.1109/TAP.1966.1138693.

[156] H. Gies, F. Karbstein, C. Kohlfürst, All-optical signatures of strong-field QED in the vacuum emission picture, Phys.
Rev. D 97 (2018) 036022. doi:10.1103/PhysRevD.97.036022.

[157] A. Blinne, S. Kuschel, S. Tietze, M. Zepf, Efficient retrieval of phase information from real-valued electromagnetic
field data, Journal of Computational Physics: X 1 (2019) 100019. doi:10.1016/j.jcpx.2019.100019.

[158] F. Karbstein, Vacuum Birefringence as a Vacuum Emission Process (2015). doi:10.48550/ARXIV.1510.03178.

[159] L. Klar, Detectable Optical Signatures of QED Vacuum Nonlinearities Using High-Intensity Laser Fields, Particles
3 (1) (2020) 223–233. doi:10.3390/particles3010018.

[160] F. Karbstein, E. A. Mosman, Enhancing quantum vacuum signatures with tailored laser beams, Phys. Rev. D 101
(2020) 113002. doi:10.1103/PhysRevD.101.113002.

[161] F. Karbstein, Vacuum Birefringence at the Gamma Factory, Annalen der Physik 534 (3) (2022) 2100137. doi:

10.1002/andp.202100137.

[162] H. Gies, F. Karbstein, L. Klar, Quantum vacuum signatures in multicolor laser pulse collisions, Phys. Rev. D 103
(2021) 076009. doi:10.1103/PhysRevD.103.076009.

[163] A. Blinne, H. Gies, F. Karbstein, C. Kohlfürst, M. Zepf, Photon-Photon Scattering at the High-Intensity Frontier:
Paraxial Beams, Journal of Physics: Conference Series 1206 (2019) 012016. doi:10.1088/1742-6596/1206/

1/012016.

[164] A. Blinne, H. Gies, F. Karbstein, C. Kohlfürst, M. Zepf, The Vacuum Emission Picture Beyond Paraxial Approxima-
tion, Journal of Physics: Conference Series 1206 (2019) 012017. doi:10.1088/1742-6596/1206/1/012017.

[165] T. Grismayer, R. Torres, P. Carneiro, F. Cruz, R. A. Fonseca, L. O. Silva, Quantum Electrodynamics vacuum polariza-
tion solver, New Journal of Physics 23 (9) (2021) 095005. doi:10.1088/1367-2630/ac2004.

[166] A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Edition,
Artech House, 2005.

[167] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, C. S. Woodward, SUNDIALS:
Suite of Nonlinear and Differential/Algebraic Equation Solvers, ACM Trans. Math. Softw. 31 (3) (2005) 363396.
doi:10.1145/1089014.1089020.

[168] D. J. Gardner, D. R. Reynolds, C. S. Woodward, C. J. Balos, Enabling New Flexibility in the SUNDIALS Suite of
Nonlinear and Differential/Algebraic Equation Solvers, ACM Trans. Math. Softw. 48 (3) (2022). doi:10.1145/

3539801.

[169] A. C. Hindmarsh, R. Serban, C. J. Balos, D. J. Gardner, D. R. Reynolds, C. S. Woodward, User Documentation for
CVODE, v6.5.1 (2023).

[170] F. R. Moulton, Discussions: New Methods in Exterior Ballistics, The American Mathematical Monthly 35 (5) (1928)
246–250. doi:10.2307/2299587.

[171] E. Hairer, S. P. Nørsett, G. Wanner, Solving Ordinary Differential Equations. I, Nonstiff Problems, Springer Series
in Computational Mathematics, Springer Berlin, Heidelberg, 1993. doi:10.1007/978-3-540-78862-1.

[172] L. Clarke, I. Glendinning, R. Hempel, The MPI Message Passing Interface Standard, in: K. M. Decker, R. M.
Rehmann (Eds.), Programming Environments for Massively Parallel Distributed Systems, Birkhäuser Basel, Basel,
1994, pp. 213–218. doi:10.1007/978-3-0348-8534-8_21.

[173] T. G. Mattson, Y. H. He, A. E. Koniges, The OpenMP Common Core: Making OpenMP Simple Again, MIT Press,
2019.
URL http://ompcore.com

https://doi.org/10.1103/PhysRevD.91.113002
https://doi.org/10.1103/PhysRevD.91.113002
https://doi.org/10.1109/TAP.1966.1138693
https://doi.org/10.1103/PhysRevD.97.036022
https://doi.org/10.1016/j.jcpx.2019.100019
https://doi.org/10.48550/ARXIV.1510.03178
https://doi.org/10.3390/particles3010018
https://doi.org/10.1103/PhysRevD.101.113002
https://doi.org/10.1002/andp.202100137
https://doi.org/10.1002/andp.202100137
https://doi.org/10.1103/PhysRevD.103.076009
https://doi.org/10.1088/1742-6596/1206/1/012016
https://doi.org/10.1088/1742-6596/1206/1/012016
https://doi.org/10.1088/1742-6596/1206/1/012017
https://doi.org/10.1088/1367-2630/ac2004
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.1145/3539801
https://doi.org/10.1145/3539801
https://doi.org/10.2307/2299587
https://doi.org/10.1007/978-3-540-78862-1
https://doi.org/10.1007/978-3-0348-8534-8_21
http://ompcore.com
http://ompcore.com

BIBLIOGRAPHY 163

[174] B. Stroustrup, Thriving in a crowded and changing world: C++ 20062020, Proc. ACM Program. Lang. 4 (HOPL)
(2020). doi:10.1145/3386320.

[175] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic, K. Kelley, J. Hamrick, J. Grout,
S. Corlay, et al., Jupyter Notebooks – a publishing format for reproducible computational workflows, in: F. Loizides,
B. Schmidt (Eds.), Positioning and Power in Academic Publishing: Players, Agents and Agendas, IOS Press, 2016,
pp. 87 – 90. doi:10.3233/978-1-61499-649-1-87.

[176] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson,
W. Weckesser, J. Bright, et al., SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature
Methods 17 (2020) 261–272. doi:10.1038/s41592-019-0686-2.

[177] J. Ahrens, B. Geveci, C. Law, ParaView: An End-User Tool for Large-Data Visualization, in: C. D. Hansen, C. R.
Johnson (Eds.), Visualization Handbook, Butterworth-Heinemann, Burlington, 2005, pp. 717–731. doi:10.1016/
B978-012387582-2/50038-1.

[178] K. Martin, B. Hoffman, An Open Source Approach to Developing Software in a Small Organization, IEEE Software
24 (1) (2007) 46–53. doi:10.1109/MS.2007.5.

[179] A. Clyburne-Sherin, X. Fei, S. A. Green, Computational reproducibility via containers in social psychology, Meta-
Psychology 3 (2019). doi:10.15626/MP.2018.892.

[180] A. Lindner, HEWES: Heisenberg-Euler Weak-Field Expansion Simulator [Source Code], Code Ocean (2023). doi:
10.24433/CO.5672141.v1.

[181] W.-y. Tsai, T. Erber, Propagation of photons in homogeneous magnetic fields: Index of refraction, Phys. Rev. D 12
(1975) 1132–1137. doi:10.1103/PhysRevD.12.1132.

[182] G. Zavattini, U. Gastaldi, R. Pengo, G. Ruoso, F. D. Valle, E. Milotti, Measuring the magnetic birefringence of
vacuum: the PVLAS experiment, International Journal of Modern Physics A 27 (15) (2012) 1260017. doi:

10.1142/S0217751X12600172.

[183] A. Cadène, P. Berceau, M. Fouché, R. Battesti, C. Rizzo, Vacuum magnetic linear birefringence using pulsed
fields: status of the BMV experiment, The European Physical Journal D 68 (1) (2014) 16. doi:10.1140/epjd/
e2013-40725-9.

[184] C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W. Lampson, D. Sanchez, T. B. Schardl, There’s plenty
of room at the Top: What will drive computer performance after Moore’s law?, Science 368 (6495) (2020) eaam9744.
doi:10.1126/science.aam9744.

[185] J. Dongarra, P. Luszczek, A. Petitet, The LINPACK Benchmark: past, present and future, Concurrency and Compu-
tation: Practice and Experience 15 (9) (2003) 803–820. doi:10.1002/cpe.728.

[186] J. Dongarra, P. Luszczek, Encyclopedia of Parallel Computing, Springer, Boston, MA, 2011, Ch. TOP500, p. 20552057.
doi:10.1007/978-0-387-09766-4_157.

[187] G. Hager, G. Wellein, Introduction to High Performance Computing for Scientists and Engineers, Taylor & Francis
Group, Baton Rouge, 2010.

[188] J. Samuel, M. Brennan-Tonetta, Y. Samuel, P. Subedi, J. Smith, Strategies for Democratization of Supercomputing:
Availability, Accessibility and Usability of High Performance Computing for Education and Practice of Big Data
Analytics (2021). doi:10.48550/ARXIV.2104.09091.

[189] A. Gupta, L. V. Kale, F. Gioachin, V. March, C. H. Suen, B.-S. Lee, P. Faraboschi, R. Kaufmann, D. Milojicic, The Who,
What, Why, and How of High Performance Computing in the Cloud, in: 2013 IEEE 5th International Conference on
Cloud Computing Technology and Science, Vol. 1, 2013, pp. 306–314. doi:10.1109/CloudCom.2013.47.

[190] P. Böhl, J. Coles, G. Mathias, C. Guillen, N. Patel, J. Weidendorfer, HPC Code Optimisation Workshop, Leibniz-
Rechenzentrum (LRZ) (2022).
URL https://doku.lrz.de/display/PUBLIC/PRACE+Course%3A+HPC+Code+Optimisation+

Workshop+2022

https://doi.org/10.1145/3386320
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/B978-012387582-2/50038-1
https://doi.org/10.1016/B978-012387582-2/50038-1
https://doi.org/10.1109/MS.2007.5
https://doi.org/10.15626/MP.2018.892
https://doi.org/10.24433/CO.5672141.v1
https://doi.org/10.24433/CO.5672141.v1
https://doi.org/10.1103/PhysRevD.12.1132
https://doi.org/10.1142/S0217751X12600172
https://doi.org/10.1142/S0217751X12600172
https://doi.org/10.1140/epjd/e2013-40725-9
https://doi.org/10.1140/epjd/e2013-40725-9
https://doi.org/10.1126/science.aam9744
https://doi.org/10.1002/cpe.728
https://doi.org/10.1007/978-0-387-09766-4_157
https://doi.org/10.48550/ARXIV.2104.09091
https://doi.org/10.1109/CloudCom.2013.47
https://doku.lrz.de/display/PUBLIC/PRACE+Course%3A+HPC+Code+Optimisation+Workshop+2022
https://doku.lrz.de/display/PUBLIC/PRACE+Course%3A+HPC+Code+Optimisation+Workshop+2022
https://doku.lrz.de/display/PUBLIC/PRACE+Course%3A+HPC+Code+Optimisation+Workshop+2022

164 BIBLIOGRAPHY

[191] G. Hager, G. Wellein, Node-Level Performance Engineering, Leibniz-Rechenzentrum (LRZ) (2020).
URL https://moodle.nhr.fau.de/course/view.php?id=4

[192] N. Nethercote, J. Seward, Valgrind: A Program Supervision Framework, Electronic Notes in Theoretical Computer
Science 89 (2) (2003) 44–66, RV ’2003, Run-time Verification (Satellite Workshop of CAV ’03). doi:https://doi.
org/10.1016/S1571-0661(04)81042-9.

[193] J. Treibig, G. Hager, G. Wellein, LIKWID: A Lightweight Performance-Oriented Tool Suite for X86 Multicore Envi-
ronments, in: Proceedings of the 2010 39th International Conference on Parallel Processing Workshops, ICPPW ’10,
IEEE Computer Society, USA, 2010, p. 207216. doi:10.1109/ICPPW.2010.38.

[194] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, B. Mohr, The Scalasca Performance Toolset Architecture,
Concurrency and Computation: Practice and Experience 22 (6) (2010) 702719.
URL https://apps.fz-juelich.de/jsc-pubsystem/aigaion/attachments/sthec08-special.

pdf-c565f219e0f9e1814e48c543dfe71039.pdf

[195] A. Knüpfer, C. Rössel, D. a. Mey, S. ff, K. Diethelm, D. Eschweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Malony, et al.,
Score-P: A Joint Performance Measurement Run-Time Infrastructure for Periscope, Scalasca, TAU, and Vampir,
in: Tools for High Performance Computing 2011, Springer Berlin Heidelberg, 2012, pp. 79–91. doi:10.1007/

978-3-642-31476-6_7.

[196] Intel® Corporation, Intel® oneAPI HPC Toolkit (2023).
URL https://www.intel.com/content/www/us/en/developer/tools/oneapi/hpc-toolkit.html

[197] B. Wylie, C. Feld, P. Saviankou, Parallel Performance Analysis using Scalasca, UK National Supercomputer Center
(EPCC) (2021).
URL https://github.com/EPCCed/archer2-scalasca-2021-07-27

[198] D. Henty, ARCHER2 Advanced MPI course, EPCC (2021).
URL https://github.com/EPCCed/archer2-AMPP-2021-07-14

[199] D. Tullsen, Pipeline Hazards (2005).
URL https://cseweb.ucsd.edu//classes/wi05/cse240a/pipe2.pdf

[200] C. Blaas-Schenner, D. Fischak, G. Hager, R. Rabenseifner, Introduction to Hybrid Programming in HPC, Vienna
Scientific Cluster (VSC) (2021).
URL https://moodle.nhr.fau.de/course/view.php?id=27

[201] M. Bull, Advanced OpenMP, UK National Supercomputer Center (EPCC) (2021).
URL https://github.com/EPCCed/archer2-advanced-OpenMP/tree/2021-10-05

[202] MPI Forum, MPI: A Message-Passing Interface Standard Version 4.0 (2021).
URL https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

[203] L. Einkemmer, C. Blaas-Schenner, Shared memory parallelization with OpenMP, Vienna Scientific Cluster (VSC)
(2021).
URL https://vsc.ac.at//training/materials/openmp

[204] C. Blaas-Schenner, R. Rabenseifner, Parallelization with MPI, Vienna Scientific Cluster (VSC) (2021).
URL https://vsc.ac.at//training/materials/mpi

[205] G. M. Amdahl, Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities, in: Pro-
ceedings of the April 18-20, 1967, Spring Joint Computer Conference, AFIPS ’67 (Spring), Association for Computing
Machinery, New York, NY, USA, 1967, p. 483485. doi:10.1145/1465482.1465560.

[206] J. L. Gustafson, Reevaluating Amdahl’s Law, Commun. ACM 31 (5) (1988) 532533. doi:10.1145/42411.42415.

[207] D. Henty, Efficient Parallel IO on ARCHER2, UK National Supercomputer Center (EPCC) (2022).
URL https://github.com/EPCCed/archer2-parallelIO-2022-08-23

[208] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, K. Riley, 24/7 Characterization of petascale I/O workloads, in: 2009
IEEE International Conference on Cluster Computing and Workshops, 2009, pp. 1–10. doi:10.1109/CLUSTR.

2009.5289150.

https://moodle.nhr.fau.de/course/view.php?id=4
https://moodle.nhr.fau.de/course/view.php?id=4
https://doi.org/https://doi.org/10.1016/S1571-0661(04)81042-9
https://doi.org/https://doi.org/10.1016/S1571-0661(04)81042-9
https://doi.org/10.1109/ICPPW.2010.38
https://apps.fz-juelich.de/jsc-pubsystem/aigaion/attachments/sthec08-special.pdf-c565f219e0f9e1814e48c543dfe71039.pdf
https://apps.fz-juelich.de/jsc-pubsystem/aigaion/attachments/sthec08-special.pdf-c565f219e0f9e1814e48c543dfe71039.pdf
https://apps.fz-juelich.de/jsc-pubsystem/aigaion/attachments/sthec08-special.pdf-c565f219e0f9e1814e48c543dfe71039.pdf
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1007/978-3-642-31476-6_7
https://www.intel.com/content/www/us/en/developer/tools/oneapi/hpc-toolkit.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/hpc-toolkit.html
https://github.com/EPCCed/archer2-scalasca-2021-07-27
https://github.com/EPCCed/archer2-scalasca-2021-07-27
https://github.com/EPCCed/archer2-AMPP-2021-07-14
https://github.com/EPCCed/archer2-AMPP-2021-07-14
https://cseweb.ucsd.edu//classes/wi05/cse240a/pipe2.pdf
https://cseweb.ucsd.edu//classes/wi05/cse240a/pipe2.pdf
https://moodle.nhr.fau.de/course/view.php?id=27
https://moodle.nhr.fau.de/course/view.php?id=27
https://github.com/EPCCed/archer2-advanced-OpenMP/tree/2021-10-05
https://github.com/EPCCed/archer2-advanced-OpenMP/tree/2021-10-05
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://vsc.ac.at//training/materials/openmp
https://vsc.ac.at//training/materials/openmp
https://vsc.ac.at//training/materials/mpi
https://vsc.ac.at//training/materials/mpi
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/42411.42415
https://github.com/EPCCed/archer2-parallelIO-2022-08-23
https://github.com/EPCCed/archer2-parallelIO-2022-08-23
https://doi.org/10.1109/CLUSTR.2009.5289150
https://doi.org/10.1109/CLUSTR.2009.5289150

BIBLIOGRAPHY 165

[209] K. Atkinson, W. Han, D. E. Stewart, Numerical solution of ordinary differential equations, John Wiley & Sons, 2009.
doi:10.1002/9781118164495.

[210] E. Süli, Numerical Solution of Ordinary Differential Equations, Lecture notes, University of Oxford (2022).
URL https://people.maths.ox.ac.uk/suli/nsodes.pdf

[211] J. D. Lambert, Numerical Methods for Ordinary Differential Systems: The Intitial Value Problem, John Wiley &
Sons, 1991.

[212] F. Bashforth, J. C. Adams, An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and
Measured Forms of Drops of Fluid. With an Explanation of the Method of Integration Employed in Constucting the
Tables which Give the Theoretical Forms of Such Drops, Cambridge University Press, Cambridge, 1883.
URL https://archive.org/details/attempttest00bashrich

[213] P. N. Brown, G. D. Byrne, A. C. Hindmarsh, VODE: A Variable-Coefficient ODE Solver, SIAM Journal on Scientific
and Statistical Computing 10 (5) (1989) 1038–1051. doi:10.1137/0910062.

[214] S. D. Cohen, A. C. Hindmarsh, P. F. Dubois, CVODE, A Stiff/Nonstiff ODE Solver in C, Computer in Physics 10 (2)
(1996) 138–143. doi:10.1063/1.4822377.

[215] D. G. Anderson, Iterative procedures for nonlinear integral equations, J. ACM 12 (4) (1965) 547560. doi:10.1145/
321296.321305.

[216] R. Rasche, A Numerical ODE-based Solver for the Integration of the Heisenberg-Euler Equations on an Adaptive
Grid, Master thesis, LMU Munich, (unpublished) (2022).

[217] B. Oelmez, High Frequency Radiation Fields in Slowly Varying Strong Field Electromagnetic Backgrounds, Master
thesis, LMU Munich, (unpublished) (2020).

[218] I. Bialynicki-Birula, P. Górnicki, J. Rafelski, Phase-space structure of the dirac vacuum, Phys. Rev. D 44 (1991)
1825–1835. doi:10.1103/PhysRevD.44.1825.

[219] D. Vasak, M. Gyulassy, H.-T. Elze, Quantum transport theory for abelian plasmas, Annals of Physics 173 (2) (1987)
462 – 492. doi:10.1016/0003-4916(87)90169-2.

[220] P. Zhuang, U. Heinz, Relativistic Quantum Transport Theory for Electrodynamics, Annals of Physics 245 (2) (1996)
311–338. doi:https://doi.org/10.1006/aphy.1996.0011.

[221] E. Wigner, On the Quantum Correction For Thermodynamic Equilibrium, Phys. Rev. 40 (1932) 749–759. doi:

10.1103/PhysRev.40.749.

[222] P. Carruthers, F. Zachariasen, Quantum collision theory with phase-space distributions, Rev. Mod. Phys. 55 (1983)
245–285. doi:10.1103/RevModPhys.55.245.

[223] H. Elze, Relativistic quantum transport theory, AIP Conference Proceedings 631 (1) (2002) 229–252. doi:10.1063/
1.1513683.

[224] D. Han, Y. S. Kim, M. E. Noz, Illustrative example of Feynmans rest of the universe, American Journal of Physics
67 (1) (1999) 61–66. doi:10.1119/1.19192.

[225] P. A. M. Dirac, Discussion of the infinite distribution of electrons in the theory of the positron, Mathematical Pro-
ceedings of the Cambridge Philosophical Society 30 (2) (1934) 150163. doi:10.1017/S030500410001656X.

[226] S. R. De Groot, W. A. Van Leeuwen, C. G. Van Weert, Relativistic Kinetic Theory: Principles and Applications,
Elsevier North-Holland, Amsterdam, 1980.

[227] H.-T. Elze, M. Gyulassy, D. Vasak, Transport equations for the QCD quark Wigner operator, Nuclear Physics B 276 (3)
(1986) 706 – 728. doi:10.1016/0550-3213(86)90072-6.

[228] H.-T. Elze, M. Gyulassy, D. Vasak, Transport equations for the QCD gluon Wigner operator, Physics Letters B 177 (3)
(1986) 402 – 408. doi:10.1016/0370-2693(86)90778-1.

https://doi.org/10.1002/9781118164495
https://people.maths.ox.ac.uk/suli/nsodes.pdf
https://people.maths.ox.ac.uk/suli/nsodes.pdf
https://archive.org/details/attempttest00bashrich
https://archive.org/details/attempttest00bashrich
https://archive.org/details/attempttest00bashrich
https://archive.org/details/attempttest00bashrich
https://doi.org/10.1137/0910062
https://doi.org/10.1063/1.4822377
https://doi.org/10.1145/321296.321305
https://doi.org/10.1145/321296.321305
https://doi.org/10.1103/PhysRevD.44.1825
https://doi.org/10.1016/0003-4916(87)90169-2
https://doi.org/https://doi.org/10.1006/aphy.1996.0011
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/RevModPhys.55.245
https://doi.org/10.1063/1.1513683
https://doi.org/10.1063/1.1513683
https://doi.org/10.1119/1.19192
https://doi.org/10.1017/S030500410001656X
https://doi.org/10.1016/0550-3213(86)90072-6
https://doi.org/10.1016/0370-2693(86)90778-1

166 BIBLIOGRAPHY

[229] C. Kohlfürst, Phase-space analysis of the Schwinger effect in inhomogeneous electromagnetic fields, The European
Physical Journal Plus 133 (5) (2018) 191. doi:10.1140/epjp/i2018-12062-6.

[230] B. S. Xie, Z. L. Li, S. Tang, Electron-positron pair production in ultrastrong laser fields, Matter and Radiation at
Extremes 2 (5) (2017) 225–242. doi:10.1016/j.mre.2017.07.002.

[231] J. C. R. Bloch, V. A. Mizerny, A. V. Prozorkevich, C. D. Roberts, S. M. Schmidt, S. A. Smolyansky, D. V. Vinnik, Pair
creation: Back reactions and damping, Phys. Rev. D 60 (1999) 116011. doi:10.1103/PhysRevD.60.116011.

[232] S. A. Smolyansky, G. Roepke, S. Schmidt, D. Blaschke, V. D. Toneev, A. V. Prozorkevich, Dynamical derivation of a
quantum kinetic equation for particle production in the Schwinger mechanism (1997). arXiv:hep-ph/9712377,
doi:10.48550/arXiv.hep-ph/9712377.

[233] J. M. Eisenberg, G. Kalbermann, Pair production in transport equations, Phys. Rev. D 37 (1988) 1197–1201. doi:
10.1103/PhysRevD.37.1197.

[234] C. Best, P. Gornicki, W. Greiner, The Phase-Space Structure of the Klein-Gordon Field, Annals of Physics 225 (2)
(1993) 169–190. doi:https://doi.org/10.1006/aphy.1993.1055.

[235] C. Best, J. M. Eisenberg, Pair creation in transport equations using the equal-time Wigner function, Phys. Rev. D 47
(1993) 4639–4646. doi:10.1103/PhysRevD.47.4639.

[236] F. Hebenstreit, Schwinger effect in inhomogeneous electric fields, Ph.D. thesis, U. Graz (2011). arXiv:1106.5965,
doi:10.48550/arXiv.1106.5965.

[237] F. Hebenstreit, R. Alkofer, H. Gies, Schwinger pair production in space- and time-dependent electric fields: Relating
the Wigner formalism to quantum kinetic theory, Phys. Rev. D 82 (2010) 105026. doi:10.1103/PhysRevD.82.
105026.

[238] F. Hebenstreit, R. Alkofer, H. Gies, Particle Self-Bunching in the Schwinger Effect in Spacetime-Dependent Electric
Fields, Phys. Rev. Lett. 107 (2011) 180403. doi:10.1103/PhysRevLett.107.180403.

[239] I. A. Aleksandrov, C. Kohlfürst, Pair production in temporally and spatially oscillating fields, Phys. Rev. D 101 (2020)
096009. doi:10.1103/PhysRevD.101.096009.

[240] A. B. Yoo, M. A. Jette, M. Grondona, SLURM: Simple Linux Utility for Resource Management, in: D. Feitelson,
L. Rudolph, U. Schwiegelshohn (Eds.), Job Scheduling Strategies for Parallel Processing, Springer Berlin Heidelberg,
2003, pp. 44–60. doi:10.1007/10968987_3.

[241] P. Wautelet, Best practices for parallel IO and MPI-IO hints, PATC Training session Parallel filesystems and parallel
IO libraries, Maison de la Simulation (2015).
URL http://www.idris.fr/media/docs/docu/idris/idris_patc_hints_proj.pdf

[242] Leibniz Rechenzentrum (LRZ), Best Practices, Hints and Optimizations for IO (2023).
URL https://doku.lrz.de/x/9gLyAg

[243] C. Lattner, V. Adve, LLVM: a compilation framework for lifelong program analysis and transformation, in: Interna-
tional Symposium on Code Generation and Optimization, 2004. CGO 2004., 2004, pp. 75–86. doi:10.1109/CGO.
2004.1281665.

[244] C. Lattner, LLVM and Clang: Advancing compiler technology, FOSDEM 2011: Free and Open Source Developers’
European Meeting, Brussels, Belgium (2011).
URL https://llvm.org/pubs/2011-02-FOSDEM-LLVMAndClang.html

https://doi.org/10.1140/epjp/i2018-12062-6
https://doi.org/10.1016/j.mre.2017.07.002
https://doi.org/10.1103/PhysRevD.60.116011
http://arxiv.org/abs/hep-ph/9712377
https://doi.org/10.48550/arXiv.hep-ph/9712377
https://doi.org/10.1103/PhysRevD.37.1197
https://doi.org/10.1103/PhysRevD.37.1197
https://doi.org/https://doi.org/10.1006/aphy.1993.1055
https://doi.org/10.1103/PhysRevD.47.4639
http://arxiv.org/abs/1106.5965
https://doi.org/10.48550/arXiv.1106.5965
https://doi.org/10.1103/PhysRevD.82.105026
https://doi.org/10.1103/PhysRevD.82.105026
https://doi.org/10.1103/PhysRevLett.107.180403
https://doi.org/10.1103/PhysRevD.101.096009
https://doi.org/10.1007/10968987_3
http://www.idris.fr/media/docs/docu/idris/idris_patc_hints_proj.pdf
http://www.idris.fr/media/docs/docu/idris/idris_patc_hints_proj.pdf
https://doku.lrz.de/x/9gLyAg
https://doku.lrz.de/x/9gLyAg
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://llvm.org/pubs/2011-02-FOSDEM-LLVMAndClang.html
https://llvm.org/pubs/2011-02-FOSDEM-LLVMAndClang.html

Funding and Data Statement

Funding

Initial funding for the project was provided by the Munich Cluster of Excellence “Munich-Centre

for Advanced Photonics” (MAP), now Centre for Advanced Laser Applications (CALA), by the In-

ternational Max-Planck Research School for Advanced Photonic Sciences (IMPRS-APS), by the

German Research Foundation under Grant No. 229633566 withing the Research Unit TRR 18 on

relativistic laser-plasma-dynamics.

The code has been refurbished and further developed as part of the German Research Founda-

tion Research Unit FOR 2783 “Probing the Quantum Vacuum at the High-Intensity Frontier”.

This work has been funded by the German Research Foundation under Grant Nos. 416611371;

416607684.

Large parts of the computations during the production and verification process have been per-

formed on the KCS cluster computing system of the Arnold Sommerfeld Center (ASC) for Theo-

retical Physics at the LMU Munich, hosted at the Leibniz-Rechenzentrum (LRZ) in Garching and

funded by the German Research Foundation under Grant No. 409562408.

Data and code availability

The simulation data produced for evaluation in this work amount to more than 220 gigabytes

in size. They are archived on servers of the ASC, hosted by the LRZ, in compliance with the

regulations of the German Research Foundation. Included are simulation data, analyses performed

with presented tools, collected integrator metrics, the development git repository, and working

notes. The raw data of a simulation consist of the electromagnetic field components at every grid

point at a given time step. In some cases, to save on storage, the data has undergone some form of

downsampling or a postprocessing filtered out certain field components of interest.

The code is publicly available under the BSD 3-Clause License and maintained on an institutional

GitLab server: https://gitlab.physik.uni-muenchen.de/ls-ruhl/hewes.

A reproducible code capsule is published on Code Ocean:

https://codeocean.com/capsule/3187285/tree/v1.

There is a Mendeley Data repository containing extra and supplementary materials:

https://data.mendeley.com/datasets/f9wntyw39x.

Some Mathematica analyses are also available on the Notebook Archive:

https://notebookarchive.org/2022-08-eb2cjxb.

https://www.cala-laser.de/
http://www2.mpq.mpg.de/APS/
http://www2.mpq.mpg.de/APS/
https://www.dfg.de/
https://gepris.dfg.de/gepris/projekt/229633566
https://gepris.dfg.de/gepris/projekt/5486099
http://www.quantumvacuum.org/index.html
https://gepris.dfg.de/gepris/projekt/416611371
https://gepris.dfg.de/gepris/projekt/416607684
https://www.theorie.physik.uni-muenchen.de/
https://www.theorie.physik.uni-muenchen.de/
https://www.lmu.de/de/index.html
https://www.lrz.de/
https://gepris.dfg.de/gepris/projekt/409562408
https://www.en.it.physik.uni-muenchen.de/dienste/datenspeicherung/archivierung/index.html
https://gitlab.physik.uni-muenchen.de/ls-ruhl/hewes/-/blob/main/LICENSE
https://gitlab.physik.uni-muenchen.de/ls-ruhl/hewes
https://codeocean.com/capsule/3187285/tree/v1
https://data.mendeley.com/datasets/f9wntyw39x
https://notebookarchive.org/2022-08-eb2cjxb

Workshops

I am thankful for a lot of inspiration and technical knowledge gain through free online workshops

during the time of the pandemic. They enabled me to derive much useful further thinking, facili-

tating the present work. I participated at the online workshops

• “Introduction to Hybrid Programming in HPC”, June 15-17, 2021, hosted at the Vienna Sci-

entific Cluster (VSC) and organized by Claudia Blaas-Schenner and David Fischak, with

lectures by Georg Hager and Rolf Rabenseifner;

• “ARCHER2 Advanced MPI course”, July 14 and 16, 2021, hosted at the UK National Super-

computer Center (EPCC) by David Henty;

• “Parallel Performance Analysis using Scalasca”, July 27 and 29, 2021, hosted by Brian Wylie,

Christian Feld, and Pavel Saviankou at EPCC;

• “Efficient Parallel IO on ARCHER2”, January 11, 2022, hosted by David Henty, also at EPCC;

• “HPC Code Optimisation Workshop”, from June 27 to 29, 2022 at the Leibniz-Rechenzentrum

(LRZ), with lectures from Patrick Böhl, Jonathan Coles, Gerald Mathias, Carla Guillen, Nis-

arg Patel, and Josef Weidendorfer; and

• “CMake workshop” at September 1 and 2, 2022, at the EuroCC National Competence Centre

Sweden (ENCCS), taught by Roberto Di Remigio.

Moreover, the ARCHER2 training team perpetually provides the lecture and tutorial materials,

including videos, of most teaching courses free to use for anyone. This enabled me to catch up with

OpenMP, MPI and modern C++.

I highly appreciate the efforts of the Partnership for Advanced Computing in Europe (PRACE)

training center in part-funding, supporting, gathering and announcing workshops from their mem-

ber institutions, making them free for any EU citizen.

I further participated at the on-site “1st Pan-European Advanced School on Statistics in High-

Energy Physics”, October 28 to November 1, 2019, at the Deutsches Elektronen-Synchrotron (DESY)

in Hamburg.

Publications

Numerical simulations of the nonlinear quantum vacuum in the Heisenberg–Euler
weak-field expansion
Andreas Lindner, Baris Ölmez, and Hartmut Ruhl

Journal of Computational Physics: X 17 (2023) 100124.

HEWES: Heisenberg–Euler weak-field expansion simulator
Andreas Lindner, Baris Ölmez, and Hartmut Ruhl

Software Impacts 15C (2023) 100481

https://doi.org/10.1016/j.jcpx.2023.100124
https://doi.org/10.1016/j.simpa.2023.100481

Acknowledgments

First of all, I want to thank my supervisor Hartmut Ruhl. For his trust in me and the opportuni-

ties he opened up for me, not only with the exciting topic of my PhD project. It is highly valued by

your students that you are available to work even at the most unconventional times. I am looking

forward to many more humorous off-topic chats!

Being a member of the DFG Research Unit FOR 2783 dedicated to the quantum vacuum at the

high-intensity frontier has been an honor to me. I am grateful for the chance to contribute to the

advancement of the research in this fascinating field. Special thanks are due to Felix Karbstein

for fruitful discussions and Holger Gies, spokesperson of the research unit, for helpful hints and

examining my work.

Many thanks are also due to Gerhard Buchalla, Thomas Kuhr, Martin Kerscher, and Dirk-André

Deckert for agreeing to join my examination committee. During my days in high-energy physics I

benefited from having as supervisors Gerhard Buchalla on the theoretical side and Thomas Kuhr

on the experimental side. I could learn a lot from you and have always appreciated your kindness.

I am indebted to Baris Ölmez, Johannes Halbinger, Rasmus Rasche, and Yukiko Maya Song for

proofreading parts of the manuscript and valuable comments.

I am fortunate to have had the possibility to cooperate with my colleague, but in the first place

good friend, Baris Ölmez, who has been backing me for many years. Our gallows humor and your

endless encouragement helped me get through the hard days that inevitably come during a PhD

project. Since our first days as physics students we have been forming a trio with Johannes Hal-

binger and hopefully this friendship will last for many years to come.

Last but not least, I feel blessed to have my girlfriend Anna-Theresa, a wonderful companion over

all the years, my dear sister, and my parents who enabled me to follow my passion and always

supported me unconditionally on my path.

	Zusammenfassung
	Abstract
	Outline
	The Quantum Vacuum
	Introduction
	Commonly known quantum vacuum effects
	Matter out of nothing
	Fundamental ramifications and recent breakthroughs
	Photon–photon interactions
	The Heisenberg–Euler effective action
	QED strong-field regime
	Weak-field expansion
	Modified Maxwell equations
	General approach and motivation

	The Quantum Vacuum Simulation Algorithm
	Introduction
	Equations of motion
	A merged partial differential equation
	Finite differences

	Dispersion relations
	A simple example at first and second order
	The fourth order scheme
	Dispersion properties of the scheme

	Overview of the implementation
	Comparison to other approaches
	The Vacuum Emission Picture
	Modified Yee scheme
	Conclusion

	HEWES: The Heisenberg–Euler Weak-Field Expansion Simulator
	Introduction
	Description
	Usage
	HEWES README
	Short user manual

	Installation

	All-Optical Quantum Vacuum Simulations
	Introduction
	Phase velocity in a strong background
	Vacuum birefringence
	Vacuum birefringence – parametrical dependencies
	Vacuum birefringence – extrapolation to the x-ray regime

	Harmonic generation
	Harmonic generation – analytical results
	Harmonic generation – simulation results

	Higher-dimensional simulations

	Performance Optimization
	Introduction
	High-performance computing
	Memory access
	Core-level
	Socket-, node-, and cluster-level

	Performance measurement
	Scaling
	Code hotspots
	Communication load
	Memory efficiency

	Parallelization
	Vectorization
	Multithreading
	Multiprocessing
	Hybrid parallelization
	Parallel I/O

	Accuracy Considerations
	Introduction
	Numerical solution of ODEs
	Explicit and implicit methods
	Higher-order methods
	Multi-step methods

	The CVODE solver
	Structure
	Methods
	Error controlling
	SUNDIALS evaluation functionalities

	Accuracy and performance evaluation
	Testing the scheme
	Testing CVODE

	Outlook
	Introduction
	Dynamic multi-scale simulations
	A static resolution barrier

	Phase-space approach to the quantum vacuum
	The Dirac–Heisenberg–Wigner formalism
	Numerical approach to a seminal work

	Conclusion
	KCS System Information
	Code Modernization
	List of Figures
	List of Tables
	List of Listings
	Bibliography
	Funding and Data Statement
	Workshops
	Publications
	Acknowledgments

