1 research outputs found

    Immersive virtual reality methods in cognitive neuroscience and neuropsychology: the Virtual Reality Everyday Assessment Lab (VR-EAL).an immersive neuropsychological test battery of everyday cognitive functions

    Get PDF
    In cognitive neuroscience and neuropsychology, the collection of cognitive and behavioural data is predominantly achieved by implementing paper-and-pencil and computerized (i.e., 2D and 3D applications) assessments. However, these psychometric tools in clinics and/or laboratories display several limitations and discrepancies between the observed performance in the laboratory/clinic and the actual performance of individuals in everyday life. The functional and predictive association between an individual's performance on a set of neuropsychological tests and the individual's performance in various everyday life settings is called ecological validity. Ecological validity is considered an important issue that cannot be resolved by the currently available assessment tools. Virtual reality head-mounted displays (HMD) appear to be effective research tools, which may address the problem of ecological validity in neuropsychological testing. However, their widespread implementation is hindered by virtual reality induced symptoms and effects (VRISE) and the lack of skills in virtual reality software development. In this PhD, a technological systematic literature review of the reasons for adverse symptomatology was conducted and suggestions and technological knowledge for the implementation of virtual reality HMD systems in cognitive neuroscience provided. The review indicated features pertinent to display, sound, motion tracking, navigation, ergonomic interactions, user experience, and computer hardware that should be considered by researchers. Subsequently, a meta-analysis of 44 neuroscientific or neuropsychological studies involving virtual reality HMD systems was performed. The meta-analysis of the virtual reality studies demonstrated that new generation HMDs induce significantly less VRISE and marginally fewer dropouts. Importantly, the commercial versions of the new generation HMDs with ergonomic interactions had zero incidents of adverse symptomatology and dropouts. HMDs equivalent to or greater than the commercial versions of contemporary HMDs accompanied with ergonomic interactions are suitable for implementation in cognitive neuroscience. Another aim of this PhD was to devise a brief tool to appraise and report both the quality of software features and VRISE intensity quantitatively; such a tool does not currently exist. The Virtual Reality Neuroscience Questionnaire (VRNQ; Kourtesis et al., 2019) was developed to assess the quality of virtual reality software in terms of user experience, game mechanics, in-game assistance, and VRISE. Forty participants aged between 28 and 43 years were recruited (18 gamers and 22 non-gamers) for the study. They participated in 3 different virtual reality sessions until they felt weary or discomfort and subsequently filled in the VRNQ. The results demonstrated that VRNQ is a valid tool for assessing virtual reality software as it has good convergent, discriminant, and construct validity. The maximum duration of virtual reality sessions should be between 55 and 70 min when the virtual reality software meets or exceeds the parsimonious cut-offs of the VRNQ, and the users are familiarized with the virtual reality system. Also, gaming experience does not affect how long virtual reality sessions should last. Furthermore, while the quality of virtual reality software substantially modulates the maximum duration of virtual reality sessions, age and education do not. Finally, deeper immersion, better quality of graphics and sound, and more helpful in-game instructions and prompts were found to reduce VRISE intensity. The VRNQ facilitates the brief assessment and reporting of the quality of virtual reality software features and/or the intensity of VRISE, while its minimum and parsimonious cut-offs may appraise the suitability of virtual reality software for implementation in research and clinical settings. However, the development of virtual reality software is predominantly dependent on third parties (e.g., freelancers or companies) with programming and software development skills. A solution that will promote the adoption of immersive virtual reality as a research and clinical tool might be the in-house development of virtual reality research/clinical software by computer science literate cognitive scientists or research software engineers. In Chapter 4, guidelines are offered for the development of virtual reality software in cognitive neuroscience and neuropsychology, by describing and discussing the stages of the development of Virtual Reality Everyday Assessment Lab (VR-EAL), the first neuropsychological battery in immersive virtual reality. Techniques for evaluating cognitive functions within a realistic storyline are discussed. The utility of various assets in Unity, software development kits, and other software are described so that cognitive scientists can overcome challenges pertinent to VRISE and the quality of the virtual reality software. In addition, VR-EAL is evaluated in accordance with the necessary criteria for virtual reality software for research purposes. The virtual reality neuroscience questionnaire (VRNQ) was implemented to appraise the quality of the three versions of VR-EAL in terms of user experience, game mechanics, in-game assistance, and VRISE. Twenty-five participants aged between 20 and 45 years with 12–16 years of full-time education evaluated various versions of VR-EAL. The final version of VR-EAL achieved high scores in every sub-score of the VRNQ and exceeded its parsimonious cut-offs. It also appeared to have better in-game assistance and game mechanics, while its improved graphics substantially increased the quality of the user experience and almost eradicated VRISE. The results substantially support the feasibility of the development of effective virtual reality research and clinical software without the presence of VRISE during a 60-min virtual reality session. In Chapter 5, validation of VR-EAL as an assessment of prospective memory, episodic memory, attention, and executive functions using an ecologically valid approach is examined. Performance on the VR-EAL, an immersive virtual reality neuropsychological battery, is examined against an extensive paper-and-pencil neuropsychological battery. Forty-one participants (21 females) were recruited: 18 gamers and 23 non-gamers who attended both an immersive virtual reality and a paper-and-pencil testing session. Bayesian Pearson correlation analyses were conducted to assess construct and convergent validity of the VR-EAL. Bayesian t-tests were performed to compare virtual reality and paper-and-pencil testing in terms of administration time, similarity to real life tasks (i.e., ecological validity), and pleasantness. VR-EAL scores were significantly correlated with their equivalent scores on the paper-and-pencil tests. The participants’ reports indicated that the VR-EAL tasks were considered significantly more ecologically valid and pleasant than the paper-and-pencil neuropsychological battery. The VR-EAL battery also had a shorter administration time. The VR-EAL appears to be an effective neuropsychological tool for the assessment of everyday cognitive functions, and has enhanced ecological validity, a highly pleasant testing experience, and does not induce cybersickness. In the final part of this thesis, the preparatory attentional and memory (PAM) and the multiprocess theories of prospective memory are examined by attempting to identify the cognitive functions which may predict the individual’s performance on ecologically valid prospective memory tasks in the same group of participants described in Chapter 5. Bayesian t-tests were conducted to explore the differences among different prospective memory tasks (e.g., event-based and time-based) and prospective memory tasks with varying delays between encoding and the recall of the intended action (e.g., short-delay versus long-delay). Bayesian linear regression analyses were performed to examine the predictors of VR-EAL scores. The results revealed that the type of prospective memory task does not play a significant role in everyday prospective memory functioning, but instead the length of delay between encoding and retrieving the prospective memory intention plays a central role. Support for the PAM and MP frameworks was found in non-focal and focal event-based tasks respectively. However, the findings, inferring a dynamic interplay between automatic and intentional monitoring and retrieval processes, agree with the inclusive approach of the multiprocess framework. Also, the role of executive functions appears crucial in everyday PM. Finally, everyday PM is predominantly facilitated by episodic memory, visuospatial attention, auditory attention, and executive functions. In conclusion, this PhD thesis attempted to show how immersive virtual reality research methods may be implemented efficiently without the confounding effect of cybersickness symptomatology in order to enhance the ecological validity of neuropsychological testing and contribute to our understanding of everyday cognitive ability
    corecore