18,023 research outputs found

    Processing and structure-property relationships of natural rubber/wheat bran biocomposites

    Get PDF
    In this work, wheat bran was used as cellulosic filler in biocomposites based on natural rubber. The impact of wheat bran content [ranging from 10 to 50 parts per hundred rubber (phr)] on processing, structure, dynamic mechanical properties, thermal properties, physico-mechanical properties and morphology of resulting biocomposites was investigated. For better characterization of interfacial interactions between natural rubber and wheat bran, achieved results were compared with properties of biocomposites filled with commercially available cellulosic fillers—wood flour and microcellulose. It was observed that wheat bran, unlike commercial cellulosic fillers, contains high amount of proteins, which act like plasticizers having profitable impact on processing, physical, thermo-mechanical and morphological properties of biocomposites. This is due to better dispersion and distribution of wheat bran particles in natural rubber, which results in reduction of stiffness and porosity of the biocomposites. Regardless of cellulosic filler type, Wolff activity coefficient was positive for all studied biocomposites implying reinforcing effect of the applied fillers, while tensile strength and elongation at break decreased with increasing filler content. This phenomenon is related to restricted strain-induced crystallization of NR matrix due to limited mobility of polymer chains in the biocomposites. Furthermore, this explains negligible impact of particle size distribution, chemical composition and crystallinity degree of applied cellulosic filler on static mechanical properties of highly-filled NR biocomposites. The conducted investigations show that wheat bran presents interesting alternative for commercially available cellulosic fillers and could be successfully applied as a low-cost filler in polymer compositesPostprint (author's final draft

    Environmentally Friendly Pervious Concrete for Treating Deicer-Laden Stormwater: Phase II

    Get PDF
    In Phase I of this project, graphene oxide (GO)-modified pervious concrete was developed using coal fly ash as the sole binder. The primary objectives of Phase II of this project were (1) to evaluate the stormwater infiltration capacity of GO-modified fly ash pervious concrete; (2) to evaluate the durability performance of GO-modified fly ash pervious concrete using freeze/thaw and salt resistance testing methods; and (3) to use advanced analytical tools to fully characterize the GO-modified fly ash binder. Test results indicate different degrees of reduction in concentrations of possible pollutants in stormwater—copper, zinc, sulphate, chloride, ammonia, nitrate, and total phosphate. The incorporation of GO significantly improved the resistance of pervious concrete to freeze/thaw cycles and ambient-temperature salt attack. The specimens were examined using X-ray diffraction, which revealed that the mineralogy and the chemical composition of fly ash pastes differ considerably from those of cement pastes. Nuclear magnetic resonance was used to study the chemical structure and ordering of different hydrates, and provided enhanced understanding of the freeze/thaw and salt scaling resistance of fly ash pervious concrete and the role of GO

    Cellulose, Chitosan, and Keratin Composite Materials. Controlled Drug Release

    Get PDF
    A method was developed in which cellulose (CEL) and/or chitosan (CS) were added to keratin (KER) to enable [CEL/CS+KER] composites to have better mechanical strength and wider utilization. Butylmethylimmidazolium chloride ([BMIm+Cl–]), an ionic liquid, was used as the sole solvent, and because the [BMIm+Cl–] used was recovered, the method is green and recyclable. Fourier transform infrared spectroscopy results confirm that KER, CS, and CEL remain chemically intact in the composites. Tensile strength results expectedly show that adding CEL or CS into KER substantially increases the mechanical strength of the composites. We found that CEL, CS, and KER can encapsulate drugs such as ciprofloxacin (CPX) and then release the drug either as a single or as two- or three-component composites. Interestingly, release rates of CPX by CEL and CS either as a single or as [CEL+CS] composite are faster and independent of concentration of CS and CEL. Conversely, the release rate by KER is much slower, and when incorporated into CEL, CS, or CEL+CS, it substantially slows the rate as well. Furthermore, the reducing rate was found to correlate with the concentration of KER in the composites. KER, a protein, is known to have secondary structure, whereas CEL and CS exist only in random form. This makes KER structurally denser than CEL and CS; hence, KER releases the drug slower than CEL and CS. The results clearly indicate that drug release can be controlled and adjusted at any rate by judiciously selecting the concentration of KER in the composites. Furthermore, the fact that the [CEL+CS+KER] composite has combined properties of its components, namely, superior mechanical strength (CEL), hemostasis and bactericide (CS), and controlled drug release (KER), indicates that this novel composite can be used in ways which hitherto were not possible, e.g., as a high-performance bandage to treat chronic and ulcerous wounds

    Investigating the impact of curing system on structure-property relationship of natural rubber modified with brewery by-product and ground tire rubber

    Get PDF
    The application of wastes as a filler/reinforcement phase in polymers is a new strategy to modify the performance properties and reduce the price of biocomposites. The use of these fillers, coming from agricultural waste (cellulose/lignocellulose-based fillers) and waste rubbers, constitutes a method for the management of post-consumer waste. In this paper, highly-filled biocomposites based on natural rubber (NR) and ground tire rubber (GTR)/brewers’ spent grain (BSG) hybrid reinforcements, were prepared using two different curing systems: (i) sulfur-based and (ii) dicumyl peroxide (DCP). The influence of the amount of fillers (in 100/0, 50/50, and 0/100 ratios in parts per hundred of rubber) and type of curing system on the final properties of biocomposites was evaluated by the oscillating disc rheometer, Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, swelling behavior, tensile testing, and impedance tube measurements. The results show, that the scorch time and the optimum curing time values of sulfur cured biocomposites are affected by the change of the hybrid filler ratio while using the DCP curing system, and the obtained values do not show significant variations. The results conclude that the biocomposites cured with sulfur have better physico-mechanical and acoustic absorption, and that the type of curing system does not influence their thermal stability. The overall analysis indicates that the difference in final properties of highly filled biocomposites cured with two different systems is mainly affected by the: (i) cross-linking efficiency, (ii) partial absorption and reactions between fillers and used additives, and (iii) affinity of additives to applied fillersPostprint (published version

    Spin Signatures of Photogenerated Radical Anions in Polymer-[70]Fullerene Bulk Heterojunctions: High Frequency Pulsed EPR Spectroscopy

    Full text link
    Charged polarons in thin films of polymer-fullerene composites are investigated by light-induced electron paramagnetic resonance (EPR) at 9.5 GHz (X-band) and 130 GHz (D-band). The materials studied were poly(3-hexylthiophene) (PHT), [6,6]-phenyl-C61-butyric acid methyl ester (C60-PCBM), and two different soluble C70-derivates: C70-PCBM and diphenylmethano[70]fullerene oligoether (C70-DPM-OE). The first experimental identification of the negative polaron localized on the C70-cage in polymer-fullerene bulk heterojunctions has been obtained. When recorded at conventional X-band EPR, this signal is overlapping with the signal of the positive polaron, which does not allow for its direct experimental identification. Owing to the superior spectral resolution of the high frequency D-band EPR, we were able to separate light-induced signals from P+ and P- in PHT-C70 bulk heterojunctions. Comparing signals from C70-derivatives with different side-chains, we have obtained experimental proof that the polaron is localized on the cage of the C70 molecule

    Supramolecular Composite Materials from Cellulose, Chitosan, and Cyclodextrin: Facile Preparation and Their Selective Inclusion Complex Formation with Endocrine Disruptors

    Get PDF
    We have successfully developed a simple one-step method of preparing high-performance supramolecular polysaccharide composites from cellulose (CEL), chitosan (CS), and (2,3,6-tri-O-acetyl)-α-, ÎČ-, and Îł-cyclodextrin (α-, ÎČ-, and Îł-TCD). In this method, [BMIm+Cl–], an ionic liquid (IL), was used as a solvent to dissolve and prepare the composites. Because a majority (\u3e88%) of the IL used was recovered for reuse, the method is recyclable. XRD, FT-IR, NIR, and SEM were used to monitor the dissolution process and to confirm that the polysaccharides were regenerated without any chemical modifications. It was found that unique properties of each component including superior mechanical properties (from CEL), excellent adsorption for pollutants and toxins (from CS), and size/structure selectivity through inclusion complex formation (from TCDs) remain intact in the composites. Specifically, the results from kinetics and adsorption isotherms show that whereas CS-based composites can effectively adsorb the endocrine disruptors (polychlrophenols, bisphenol A), their adsorption is independent of the size and structure of the analytes. Conversely, the adsorption by Îł-TCD-based composites exhibits a strong dependence on the size and structure of the analytes. For example, whereas all three TCD-based composites (i.e., α-, ÎČ-, and Îł-TCD) can effectively adsorb 2-, 3-, and 4-chlorophenol, only the Îł-TCD-based composite can adsorb analytes with bulky groups including 3,4-dichloro- and 2,4,5-trichlorophenol. Furthermore, the equilibrium sorption capacities for the analytes with bulky groups by the Îł-TCD-based composite are much higher than those by CS-based composites. Together, these results indicate that the Îł-TCD-based composite with its relatively larger cavity size can readily form inclusion complexes with analytes with bulky groups, and through inclusion complex formation, it can strongly adsorb many more analytes and has a size/structure selectivity compared to that of CS-based composites that can adsorb the analyte only by surface adsorption

    (Bio)degradable polymeric materials for sustainable future—Part 3: Degradation studies of the PHA/wood flour-based composites and preliminary tests of antimicrobial activity

    Get PDF
    © 2020 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3390/ma13092200The need for a cost reduction of the materials derived from (bio)degradable polymers forces research development into the formation of biocomposites with cheaper fillers. As additives can be made using the post-consumer wood, generated during wood products processing, re-use of recycled waste materials in the production of biocomposites can be an environmentally friendly way to minimalize and/or utilize the amount of the solid waste. Also, bioactive materials, which possess small amounts of antimicrobial additives belong to a very attractive packaging industry solution. This paper presents a study into the biodegradation, under laboratory composting conditions, of the composites that consist of poly[(R)-3-hydroxybutyrate-co-4-hydroxybutyrate)] and wood flour as a polymer matrix and natural filler, respectively. Thermogravimetric analysis, differential scanning calorimetry and scanning electron microscopy were used to evaluate the degradation progress of the obtained composites with different amounts of wood flour. The degradation products were characterized by multistage electrospray ionization mass spectrometry. Also, preliminary tests of the antimicrobial activity of selected materials with the addition of nisin were performed. The obtained results suggest that the different amount of filler has a significant influence on the degradation profile.Published onlin
    • 

    corecore