255 research outputs found

    A Non-cooperative Game Algorithm for Task Scheduling in Wireless Sensor Networks

    Get PDF
    Scheduling tasks in wireless sensor networks is one of the most challenging problems. Sensing tasks should be allocated and processed among sensors in minimum times, so that users can draw prompt and effective conclusions through analyzing sensed data. Furthermore, finishing sensing task faster will benefit energy saving, which is critical in system design of wireless sensor networks. But sensors may refuse to take pains to carry out the tasks due to the limited energy. To solve the potentially selfish problem of the sensors, a non-cooperative game algorithm (NGTSA) for task scheduling in wireless sensor networks is proposed. In the proposed algorithm, according to the divisible load theory, the tasks are distributed reasonably to every node from SINK based on the processing capability and communication capability. By removing the performance degradation caused by communications interference and idle, the reduced task completion time and the improved network resource utilization are achieved. Strategyproof mechanism which provide incentives to the sensors to obey the prescribed algorithms, and to truthfully report their parameters, leading to an effient task scheduling and execution. A utility function related with the total task completion time and tasks allocating scheme is designed. The Nash equilibrium of the game algorithm is proved. The simulation results show that with the mechanism in the algorithm, selfish nodes can be forced to report their true processing capability and endeavor to participate in the measurement, thereby the total time for accomplishing the task is minimized and the energy-consuming of the nodes is balanced

    Towards a Queueing-Based Framework for In-Network Function Computation

    Full text link
    We seek to develop network algorithms for function computation in sensor networks. Specifically, we want dynamic joint aggregation, routing, and scheduling algorithms that have analytically provable performance benefits due to in-network computation as compared to simple data forwarding. To this end, we define a class of functions, the Fully-Multiplexible functions, which includes several functions such as parity, MAX, and k th -order statistics. For such functions we exactly characterize the maximum achievable refresh rate of the network in terms of an underlying graph primitive, the min-mincut. In acyclic wireline networks, we show that the maximum refresh rate is achievable by a simple algorithm that is dynamic, distributed, and only dependent on local information. In the case of wireless networks, we provide a MaxWeight-like algorithm with dynamic flow splitting, which is shown to be throughput-optimal

    An Optimal Task Scheduling Algorithm in Wireless Sensor Networks

    Get PDF
    Sensing tasks should be allocated and processed among sensor nodes in minimum times so that users can draw useful conclusions through analyzing sensed data. Furthermore, finishing sensing task faster will benefit energy saving, which is critical in system design of wireless sensor networks. To minimize the execution time (makespan) of a given task, an optimal task scheduling algorithm (OTSA-WSN) in a clustered wireless sensor network is proposed based on divisible load theory. The algorithm consists of two phases: intra-cluster task scheduling and inter-cluster task scheduling. Intra-cluster task scheduling deals with allocating different fractions of sensing tasks among sensor nodes in each cluster; inter-cluster task scheduling involves the assignment of sensing tasks among all clusters in multiple rounds to improve overlap of communication with computation. OTSA-WSN builds from eliminating transmission collisions and idle gaps between two successive data transmissions. By removing performance degradation caused by communication interference and idle, the reduced finish time and improved network resource utilization can be achieved. With the proposed algorithm, the optimal number of rounds and the most reasonable load allocation ratio on each node could be derived. Finally, simulation results are presented to demonstrate the impacts of different network parameters such as the number of clusters, computation/communication latency, and measurement/communication speed, on the number of rounds, makespan and energy consumption

    Wireless Network Design and Optimization: From Social Awareness to Security

    Get PDF
    abstract: A principal goal of this dissertation is to study wireless network design and optimization with the focus on two perspectives: 1) socially-aware mobile networking and computing; 2) security and privacy in wireless networking. Under this common theme, this dissertation can be broadly organized into three parts. The first part studies socially-aware mobile networking and computing. First, it studies random access control and power control under a social group utility maximization (SGUM) framework. The socially-aware Nash equilibria (SNEs) are derived and analyzed. Then, it studies mobile crowdsensing under an incentive mechanism that exploits social trust assisted reciprocity (STAR). The efficacy of the STAR mechanism is thoroughly investigated. Next, it studies mobile users' data usage behaviors under the impact of social services and the wireless operator's pricing. Based on a two-stage Stackelberg game formulation, the user demand equilibrium (UDE) is analyzed in Stage II and the optimal pricing strategy is developed in Stage I. Last, it studies opportunistic cooperative networking under an optimal stopping framework with two-level decision-making. For both cases with or without dedicated relays, the optimal relaying strategies are derived and analyzed. The second part studies radar sensor network coverage for physical security. First, it studies placement of bistatic radar (BR) sensor networks for barrier coverage. The optimality of line-based placement is analyzed, and the optimal placement of BRs on a line segment is characterized. Then, it studies the coverage of radar sensor networks that exploits the Doppler effect. Based on a Doppler coverage model, an efficient method is devised to characterize Doppler-covered regions and an algorithm is developed to find the minimum radar density required for Doppler coverage. The third part studies cyber security and privacy in socially-aware networking and computing. First, it studies random access control, cooperative jamming, and spectrum access under an extended SGUM framework that incorporates negative social ties. The SNEs are derived and analyzed. Then, it studies pseudonym change for personalized location privacy under the SGUM framework. The SNEs are analyzed and an efficient algorithm is developed to find an SNE with desirable properties.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Doctor of Philosophy

    Get PDF
    dissertationWe are seeing an extensive proliferation of wireless devices including various types and forms of sensor nodes that are increasingly becoming ingrained in our daily lives. There has been a significant growth in wireless devices capabilities as well. This proliferation and rapid growth of wireless devices and their capabilities has led to the development of many distributed sensing and computing applications. In this dissertation, we propose and evaluate novel, efficient approaches for localization and computation offloading that harness distributed sensing and computing in wireless networks. In a significant part of this dissertation, we exploit distributed sensing to create efficient localization applications. First, using the sensing power of a set of Radio frequency (RF) sensors, we propose energy efficient approaches for target tracking application. Second, leveraging the sensing power of a distributed set of existing wireless devices, e.g., smartphones, internet-of-things devices, laptops, and modems, etc., we propose a novel approach to locate spectrum offenders. Third, we build efficient sampling approaches to select mobile sensing devices required for spectrum offenders localization. We also enhance our sampling approaches to take into account selfish behaviors of mobile devices. Finally, we investigate an attack on location privacy where the location of people moving inside a private area can be inferred using the radio characteristics of wireless links that are leaked by legitimate transmitters deployed inside the private area, and develop the first solution to mitigate this attack. While we focus on harnessing distributed sensing for localization in a big part of this dissertation, in the remaining part of this dissertation, we harness the computing power of nearby wireless devices for a computation offloading application. Specially, we propose a multidimensional auction for allocating the tasks of a job among nearby mobile devices based on their computational capabilities and also the cost of computation at these devices with the goal of reducing the overall job completion time and being beneficial to all the parties involved

    A game theory control scheme in medium access for wireless body area network

    Full text link
    Wireless Body Area Network (WBAN) has been considered for applications in medical, healthcare and sports fields. Although there are several protocols for wireless personal area networks, specific features and reliability requirements in WBAN bring new challenges in protocol design. An appropriate control scheme in the MAC layer can make a significant improvement in network performance. Based on traffic priority and prior knowledge this paper proposes a game theoretical framework to smartly control access in contention period and contention free period as defined in IEEE 802.15.6 standard. The coordinator controls access probability of contention period based on users' priority in CSMA/CA and allocates suitable slots with strategies for best payoff based on link states in guaranteed time slots (GTS). The simulation results show the improved performance especially in heavily loaded channel condition when the optimal control mode is applied

    Scheduling Tasks on Intermittently-Powered Real-Time Systems

    Get PDF
    Batteryless systems go through sporadic power on and off phases due to intermittently available energy; thus, they are called intermittent systems. Unfortunately, this intermittence in power supply hinders the timely execution of tasks and limits such devices’ potential in certain application domains, e.g., healthcare, live-stock tracking. Unlike prior work on time-aware intermittent systems that focuses on timekeeping [1, 2, 3] and discarding expired data [4], this dissertation concentrates on finishing task execution on time. I leverage the data processing and control layer of batteryless systems by developing frameworks that (1) integrate energy harvesting and real-time systems, (2) rethink machine learning algorithms for an energy-aware imprecise task scheduling framework, (3) develop scheduling algorithms that, along with deciding what to compute, answers when to compute and when to harvest, and (4) utilize distributed systems that collaboratively emulate a persistently powered system. Scheduling Framework for Intermittently Powered Computing Systems. Batteryless systems rely on sporadically available harvestable energy. For example, kinetic-powered motion detector sensors on the impalas can only harvest energy when the impalas are moving, which cannot be ascertained in advance. This uncertainty poses a unique real-time scheduling problem where existing real-time algorithms fail due to the interruption in execution time. This dissertation proposes a unified scheduling framework that includes both harvesting and computing. Imprecise Deep Neural Network Inference in Deadline-Aware Intermittent Systems. This dissertation proposes Zygarde- an energy-aware and outcome-aware soft-real-time imprecise deep neural network (DNN) task scheduling framework for intermittent systems. Zygarde leverages the semantic diversity of input data and layer-dependent expressiveness of deep features and infers only the necessary DNN layers based on available time and energy. Zygarde proposes a novel technique to determine the imprecise boundary at the runtime by exploiting the clustering classifiers and specialized offline training of the DNNs to minimize the loss of accuracy due to partial execution. It also proposes a single metric, η to represent a system’s predictability that measures how close a harvesterâs harvesting pattern is to a constant energy source. Besides, Zygarde consists of a scheduling algorithm that takes available time, available energy, impreciseness, and the classifier's performance into account. Scheduling Mutually Exclusive Computing and Harvesting Tasks in Deadline-Aware Intermittent Systems. The lack of sufficient ambient energy to directly power the intermittent systems introduces mutually exclusive computing and charging cycles of intermittently powered systems. This introduces a challenging real-time scheduling problem where the existing real-time algorithms fail due to the lack of interruption in execution time. To address this, this dissertation proposes Celebi, which considers the dynamics of the available energy and schedules when to harvest and when to compute in batteryless systems. Using data-driven simulation and real-world experiments, this dissertation shows that Celebi significantly increases the number of tasks that complete execution before their deadline when power was only available intermittently. Persistent System Emulation with Distributed Intermittent System. Intermittently-powered sensing and computing systems go through sporadic power-on and off periods due to the uncertain availability of energy sources. Despite the recent efforts to advance time-sensitive intermittent systems, such systems fail to capture important target events when the energy is absent for a prolonged time. This event miss limits the potential usage of intermittent systems in fault- intolerant and safety-critical applications. To address this problem, this dissertation proposes Falinks, a framework that allows a swarm of distributed intermittently powered nodes to collaboratively imitate the sensing and computing capabilities of a persistently powered system. This framework provides power-on and off schedules for the swamp of intermittent nodes which has no communication capability with each other.Doctor of Philosoph

    Scheduling And Resource Management For Complex Systems: From Large-scale Distributed Systems To Very Large Sensor Networks

    Get PDF
    In this dissertation, we focus on multiple levels of optimized resource management techniques. We first consider a classic resource management problem, namely the scheduling of data-intensive applications. We define the Divisible Load Scheduling (DLS) problem, outline the system model based on the assumption that data staging and all communication with the sites can be done in parallel, and introduce a set of optimal divisible load scheduling algorithms and the related fault-tolerant coordination algorithm. The DLS algorithms introduced in this dissertation exploit parallel communication, consider realistic scenarios regarding the time when heterogeneous computing systems are available, and generate optimal schedules. Performance studies show that these algorithms perform better than divisible load scheduling algorithms based upon sequential communication. We have developed a self-organization model for resource management in distributed systems consisting of a very large number of sites with excess computing capacity. This self-organization model is inspired by biological metaphors and uses the concept of varying energy levels to express activity and goal satisfaction. The model is applied to Pleiades, a service-oriented architecture based on resource virtualization. The self-organization model for complex computing and communication systems is applied to Very Large Sensor Networks (VLSNs). An algorithm for self-organization of anonymous sensor nodes called SFSN (Scale-free Sensor Networks) and an algorithm utilizing the Small-worlds principle called SWAS (Small-worlds of Anonymous Sensors) are introduced. The SFSN algorithm is designed for VLSNs consisting of a fairly large number of inexpensive sensors with limited resources. An important feature of the algorithm is the ability to interconnect sensors without an identity, or physical address used by traditional communication and coordination protocols. During the self-organization phase, the collision-free communication channels allowing a sensor to synchronously forward information to the members of its proximity set are established and the communication pattern is followed during the activity phases. Simulation study shows that the SFSN ensures the scalability, limits the amount of communication and the complexity of coordination. The SWAS algorithm is further improved from SFSN by applying the Small-worlds principle. It is unique in its ability to create a sensor network with a topology approximating small-world networks. Rather than creating shortcuts between pairs of diametrically positioned nodes in a logical ring, we end up with something resembling a double-stranded DNA. By exploiting Small-worlds principle we combine two desirable features of networks, namely high clustering and small path length

    Efficient Semantic Segmentation on Edge Devices

    Full text link
    Semantic segmentation works on the computer vision algorithm for assigning each pixel of an image into a class. The task of semantic segmentation should be performed with both accuracy and efficiency. Most of the existing deep FCNs yield to heavy computations and these networks are very power hungry, unsuitable for real-time applications on portable devices. This project analyzes current semantic segmentation models to explore the feasibility of applying these models for emergency response during catastrophic events. We compare the performance of real-time semantic segmentation models with non-real-time counterparts constrained by aerial images under oppositional settings. Furthermore, we train several models on the Flood-Net dataset, containing UAV images captured after Hurricane Harvey, and benchmark their execution on special classes such as flooded buildings vs. non-flooded buildings or flooded roads vs. non-flooded roads. In this project, we developed a real-time UNet based model and deployed that network on Jetson AGX Xavier module

    Convergence of Intelligent Data Acquisition and Advanced Computing Systems

    Get PDF
    This book is a collection of published articles from the Sensors Special Issue on "Convergence of Intelligent Data Acquisition and Advanced Computing Systems". It includes extended versions of the conference contributions from the 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS’2019), Metz, France, as well as external contributions
    • …
    corecore