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ABSTRACT

A principal goal of this dissertation is to study wireless network design and

optimization with the focus on two perspectives: 1) socially-aware mobile networking

and computing; 2) security and privacy in wireless networking. Under this common

theme, this dissertation can be broadly organized into three parts.

The first part studies socially-aware mobile networking and computing. First,

it studies random access control and power control under a social group utility maxi-

mization (SGUM) framework. The socially-aware Nash equilibria (SNEs) are derived

and analyzed. Then, it studies mobile crowdsensing under an incentive mechanism

that exploits social trust assisted reciprocity (STAR). The efficacy of the STAR mech-

anism is thoroughly investigated. Next, it studies mobile users’ data usage behaviors

under the impact of social services and the wireless operator’s pricing. Based on a

two-stage Stackelberg game formulation, the user demand equilibrium (UDE) is an-

alyzed in Stage II and the optimal pricing strategy is developed in Stage I. Last, it

studies opportunistic cooperative networking under an optimal stopping framework

with two-level decision-making. For both cases with or without dedicated relays, the

optimal relaying strategies are derived and analyzed.

The second part studies radar sensor network coverage for physical security.

First, it studies placement of bistatic radar (BR) sensor networks for barrier coverage.

The optimality of line-based placement is analyzed, and the optimal placement of

BRs on a line segment is characterized. Then, it studies the coverage of radar sensor

networks that exploits the Doppler effect. Based on a Doppler coverage model, an

efficient method is devised to characterize Doppler-covered regions and an algorithm

is developed to find the minimum radar density required for Doppler coverage.

The third part studies cyber security and privacy in socially-aware networking

i



and computing. First, it studies random access control, cooperative jamming, and

spectrum access under an extended SGUM framework that incorporates negative

social ties. The SNEs are derived and analyzed. Then, it studies pseudonym change

for personalized location privacy under the SGUM framework. The SNEs are analyzed

and an efficient algorithm is developed to find an SNE with desirable properties.
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Chapter 1

INTRODUCTION

1.1 Overview

Wireless networks have been widely recognized as an integral part of the next genera-

tion infrastructure in a wide range of fields, including communication, energy, trans-

portation, manufacturing, and healthcare. Generally speaking, a wireless network

nowadays is a system of wirelessly interconnected computational elements embedded

in physical entities, such as mobile networks, smart grids, vehicular networks, and

e-health systems. The ubiquitous integration of wireless connectivity and computa-

tional power provides enormous opportunity to “intelligently” engineer the physical

systems in an unprecedented way. Recent technology advances have dramatically

enhanced the functionality of individual nodes of wireless networks in various aspects

such as sensing, computing, communication, and control. To fully exploit the po-

tential benefits of wireless networks, a great deal of research have been conducted

to make them towards more efficient, reliable, and robust systems of coordinated

components working in concert. In particular, research in mobile networking and

computing has become a key driving force to boost the performance of wireless net-

works. Different from earlier generations of physical engineering systems, nowadays

wireless networks are characterized by complex interactions among the nodes due to

the coupling in both cyber and physical domains. This emerging feature of wireless

networks poses difficulties for their design and control. Another challenge rises from

the growing needs for security and privacy in the applications of wireless networks.

To overcome these challenges, this dissertation studies wireless network design and

optimization with the focus on two perspectives: 1) socially-aware mobile networking

and computing; 2) security and privacy in wireless networking.
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1.1.1 Socially-aware Mobile Networking and Computing

With explosive growth of the Internet, online social networks (e.g., Facebook, Twitter)

have gained widespread popularity over the past few years. In 2013, the number of

online social network users worldwide has crossed 1.73 billion, nearly one quarter of

the world’s population [1]. With pervasive penetration of the Internet in people’s daily

life, online social services have dramatically facilitated people’s social interactions

with each other, and thereby tighten people’s social relationships in an unprecedented

way.

Mobile networks have been growing rapidly in the past few years and this

trend will continue in the foreseeable future. In 2014, mobile phone shipments are

projected to reach 1.9 billion units, which is about 7 times that of desktop and lap-

top combined [2]. The widespread popularity of mobile networks has been driven

by continuing technology advances. On one hand, advanced wireless communication

technologies (e.g., MIMO, OFDM) have drastically improved the communication ef-

ficiency in wireless networks (e.g., cellular networks, WLANs). On the other hand,

advanced mobile devices (e.g. smartphones, tablets) equipped with powerful sensors

(e.g., cameras) and great computing capability have enabled a wide range of appli-

cations on mobile platforms. As a result, mobile networks have nowadays become an

indispensable infrastructure in people’s everyday life.

As mobile devices are carried and used personally by mobile users, the users’

behaviors on the mobile devices can be significantly influenced by their social re-

lationships. This convergence of social networks and mobile networks gives rise to

the interplay of these two traditionally disjoint domains. In particular, when mobile

users take actions pertaining to their mobile devices, from physical layer parameter

settings (e.g., transmit power selection) to application layer activities (e.g., data usage
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behavior), they are aware of their social relationships with each other and would take

into account the impacts of their actions on their social neighbors. The social aspect

of mobile networking and computing is an emerging paradigm for wireless network

design and optimization. A survey of mobile social networking can be found in [3].

In this dissertation, we study socially-aware mobile networking and comput-

ing with applications in mobile crowdsensing, wireless data pricing, and distributed

opportunistic scheduling.

Mobile Crowdsensing

Mobile crowdsensing has recently emerged as a promising paradigm for a variety

of applications, thanks to the pervasive penetration of mobile devices to people’s

daily lives. Indeed, with the development of 4G networks and powerful processors,

smartphone sales crossed 1 billion units in 2013 [2]. As smartphones are equipped

with advanced sensors such as accelerometers, compasses, gyroscopes, and cameras,

they can collectively perform many sensing tasks, e.g., monitoring the environment.

In a nutshell, by leveraging a crowd of mobile users, one can collect and process

sensed data far beyond the scope of what was possible before.

Although the benefit of crowdsensing is pronounced, performing a sensing

task typically incurs overhead for participating users, in terms of the users’ resource

consumption devoted to sensing, such as battery and computing power. Further, the

participating users also take the risk of potential privacy loss by sharing their sensed

data with others. As a result, a user may not participate in sensing without receiving

adequate incentive. Therefore, effective incentive design is essential for realizing the

benefit of crowdsensing.
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Wireless Data Pricing

With explosive growth of the Internet and rapid advances of mobile device (e.g.,

smartphones, tablets), wireless data traffic has grown tremendously in the past few

years. The proliferation of wireless data demand is largely driven by the popularity

of bandwidth-intensive applications on mobile platforms such as online social services

and video streaming. Indeed, mobile data traffic is predicted to increase by over 100

times in the next ten years [4]. This poses challenges for wireless operators (e.g.,

AT&T, Verizon) to consistently provide good quality services as heavy data traffic

can result in serious congestion which degrade mobile user’s experiences. On the other

hand, it also brings opportunities for wireless operators to boost their revenue thanks

to the increase of data usage. To address the challenges and exploit the opportunities,

it is important to judiciously price wireless services in order to control mobile data

usage in a desirable way.

Distributed Opportunistic Scheduling

There have been extensive research on channel-aware scheduling, which exploit the

rich diversity inherent in wireless communications by scheduling links with favorable

channel conditions [5,6]. While most existing studies focus on centralized scheduling

(see, e.g., [5–7]), a distributed opportunistic scheduling (DOS) framework is developed

for ad hoc networks in [8], in which multi-user diversity and time diversity in wireless

channels are exploited jointly in a distributed manner. Assuming perfect channel

estimation, it is shown that the optimal opportunistic scheduling in such a scenario is

intimately related to the fundamental tradeoff between throughput gain from better

channel conditions and the cost of further probing.
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1.1.2 Security and Privacy in Wireless Networking

Security has always been a critical issue for many important applications, as its failure

can lead to enormous loss and cost. Physical security is concerned with security

measures that are intended to deny unauthorized access to facilities, territories and

resources, so as to protect them from damage or harm (e.g., espionage, theft, or

attacks). Thanks to recent technology advances, sensor networks have shown great

potential in a wide range of applications for physical security (e.g., intruder detection,

security surveillance). To fully exploit this potential, it calls for strategic design of

sensor networks that takes into account all possible attacks from adversaries.

With pervasive penetration of advanced wireless devices into every aspect of

people’s life, cyber security and privacy have raised broad and serious concerns over

the past few years. Wireless networks are vulnerable by nature as wireless medium is

shared resource that can be accessed by any wireless device. This security weakness

can be potentially exploited by a number of attacks (e.g., eavesdropping, jamming).

Another vulnerability comes from the fact that existing wireless devices are widely

used by personal users for mobile communications and computing. As a result, per-

sonal users’ private data are transferred and processed over the Internet through mo-

bile networks, which can be compromised by possible adversaries. Therefore, wireless

network design is expected to fulfill their primary goals while meeting various security

and privacy needs arising from specific applications.

In this dissertation, we study security and privacy in wireless networking with

applications in sensor network coverage and location privacy.

Sensor Network Coverage

Coverage, which defines how well the object of interest is monitored, is a critical

performance metric for sensor networks [9]. While an individual sensor’s coverage
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depends on the sensing principles of different types of sensors, the collective coverage

of a network of geographically distributed sensor nodes is of central importance for

sensor network design. Various coverage problems arise depending on different net-

work contexts and application objective. A typical class of coverage problems belongs

to area coverage, where the objective is to cover the entire area of interest. Barrier

coverage is another objective for coverage, which aims to build a barrier of sensors

across an area of interest such that any object traversing the area can be detected.

Location Privacy

With rapid growth of mobile networking and computing, location-based services

(LBSs) have become increasingly popular recently as locations are useful information

for a wide range of applications (e.g., location-based navigation or recommendation).

Most mobile devices nowadays are capable of localization (e.g., by GPS or wireless

access points). Mobile users send their locations to a LBS provider for a certain

LBS, and the LBS provider feedbacks the desired results to the users based on their

reported locations. However, the providers of LBSs can not trustworthy, due to the

risk of leaking users’ location information to other parties (e.g., sell users’ location

data). As a result, mobile users are exposed to potential privacy threats when using

a LBS.

1.2 Summary of Main Contributions

The main body of this dissertation can be organized into three parts. The first part

(Chapters 2, 3, 4, 5) studies socially-aware mobile networking and computing with

the focus on random access control, power control, mobile crowdsensing, wireless

data pricing, and distributed opportunistic scheduling. Chapter 2 studies random

access control and power control under a social group utility maximization framework.

Chapter 3 studies mobile crowdsensing under an incentive mechanism that exploits
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social trust assisted reciprocity. Chapter 4 studies mobile users’ data usage behaviors

under the impact of social services and the wireless operator’s pricing. Chapter 5

studies opportunistic cooperative networking under an optimal stopping framework

with two-level decision-making. The second part (Chapters 6, 7) studies physical

security in wireless networking with the focus on radar sensor network coverage.

Chapter 6 studies optimal placement of bistatic radar sensor networks for barrier

coverage. Chapter 7 studies the coverage of radar sensor networks that exploits the

Doppler effect. The third part (Chapters 8, 9) studies cyber security and privacy in

socially-aware networking and computing with the focus on random access control,

cooperative jamming, and location privacy. Chapters 8 studies random access control,

cooperative jamming, and spectrum access under a social group utility maximization

framework that incorporates negative social ties. Chapters 9 studies pseudonym

change for personalized location privacy under a social group utility maximization

framework. We summarize the main contributions of each chapter as follows.

Chapter 2 studies mobile users’ altruistic behaviors based on their social ties.

We develop a social group utility maximization (SGUM) framework which captures

mobile users’ diverse social ties and mobile devices’ diverse physical relationships in a

unified way. Specifically, instead of maximizing one’s individual utility, each user aims

to maximize its social group utility based on its social ties with other users. A primary

merit of this framework is that it spans the continuum between non-cooperative

game (NCG) and network utility maximization (NUM) - two traditionally disjoint

paradigms for network optimization. Under the SGUM framework, we study two

important applications in wireless networks: random access control and power control.

We first derive socially-aware Nash equilibria (SNEs) for the SGUM based random

access control and power control, respectively. Then we show that as social ties

increase, each user’s SNE strategy migrates monotonically from the Nash equilibrium
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strategy for a standard NCG to the social optimal strategy for NUM, and the social

welfare of the SNE also increases. This shows that the SGUM framework captures

NCG and NUM as two special cases and spans the continuum in between.

Chapter 3 studies a socially-aware crowdsensing system which incentivizes

mobile users to participate in sensing tasks by leveraging their social trust. For this

system, we exploit social trust assisted reciprocity (STAR), a synergistic marriage

of social trust and reciprocity, to design an incentive mechanism that stimulates

users’ participation. Given the social trust structure among users, we thoroughly

investigate the efficacy of STAR for satisfying users’ sensing requests. Specifically,

we first show that all requests can be satisfied if and only if sufficient social credit

can be “transferred” from users who request more sensing service than what they can

provide to users who can provide more than what they request. Then we investigate

utility maximization for sensing services, and show that it boils down to maximizing

the utility of a circulation flow in the combined social graph and request graph.

Accordingly, we develop an algorithm that iteratively cancels a cycle of positive weight

in the residual graph, which finds the optimal solution efficiently, for both cases of

divisible and indivisible sensing service. Extensive simulation results corroborate

that STAR can significantly outperform the mechanisms using social trust only or

reciprocity only.

Chapter 4 studies mobile users’ data usage behaviors by jointly considering the

network effect based on their social relationships in the social domain and the con-

gestion effect in the physical wireless domain. Accordingly, we develop a Stackelberg

game for problem formulation: In Stage I, a wireless provider first decides the data

pricing to all users to maximize its revenue, and then in Stage II, users observe the

price and decide data usage subject to mutual interactions under both network and

congestion effects. We analyze the two-stage game using backward induction. For
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Stage II, we first show the existence and uniqueness of a user demand equilibrium

(UDE). Then we propose a distributed update algorithm for users to reach the UDE.

We further investigate the impact of different parameters on the UDE. For Stage I,

we develop an optimal pricing algorithm to maximize the wireless provider’s revenue.

We evaluate the performances of the developed algorithm by simulation results using

real data.

Chapter 5 studies opportunistic cooperative networking (OCN) in wireless

ad hoc networks, with a focus on characterizing the desired tradeoff between the

probing cost for establishing cooperative relaying and hence higher throughput via

opportunistic cooperative networking. Specifically, we treat opportunistic cooperative

networking as an optimal stopping problem with two-levels of incomplete information.

We consider the cases with or without dedicated relays, and we establish the existence

of optimal strategies for both cases. Then we show that for the case with dedicated

relays, the optimal strategy exhibits a threshold structure, in which it is optimal to

probe the dedicated relay when the signal-to-noise ratio (SNR) of the source-relay link

exceeds some threshold. For the case without dedicated relays, under more restrictive

conditions, the optimal strategy is also threshold-based, in the sense that it is optimal

to probe potential relays when the SNR of the source-destination link lies between

two thresholds. Furthermore, these strategies can be implemented in a distributed

manner.

Chapter 6 studies the coverage problem of a bistatic radar (BR) sensor net-

work, which is very challenging due to the Cassini oval sensing region of a BR and the

coupling of sensing regions across different BRs. In particular, we consider the prob-

lem of deploying a network of BRs in a region to maximize the worst-case intrusion

detectability, which amounts to minimizing the vulnerability of a barrier. We show

that it is optimal to place BRs on the shortest barrier if it is the shortest line segment
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that connects the left and right boundary of the region. Based on this, we study the

optimal placement of BRs on a line segment to minimize its vulnerability, which is a

non-convex optimization problem. By exploiting certain specific structural properties

pertaining to the problem (particularly an important structure of detectability), we

characterize the optimal placement order and the optimal placement spacing of the

BR nodes, both of which present elegant balanced structures. The findings provide

valuable insights into the placement of BRs for barrier coverage.

Chapter 7 studies radar sensor networks where the Doppler effect is exploited

to combat the effect of clutter on radar detection. We introduce the concept of

Doppler coverage as a coverage metric for such radar sensor networks. Specifically,

a target is said to be Doppler-covered if, regardless of its direction of motion, there

exists some radar in the network whose signal-to-noise ratio (SNR) is sufficiently

high and the DFS at that radar is sufficiently large. Based on the Doppler coverage

model, we devise an efficient method to characterize Doppler-covered regions for

arbitrarily deployed radars. Then we design an algorithm for deriving the minimum

radar density required to achieve Doppler coverage in a region under any polygonal

deployment pattern, and further apply it to investigate the regular triangle based

deployment.

Chapter 8 studies an extended social group utility maximization (SGUM)

framework that takes into account both “positive” and “negative” social ties. As a

result, this extended SGUM framework captures the rich continuum from zero-sum

game (ZSG) to non-cooperative game (NCG) to network utility maximization (NUM)

- traditionally disjoint paradigms for network optimization. Under this SGUM frame-

work, we study random access control, cooperative jamming, and spectrum access

as three applications. For the SGUM based random access control, we derive the

socially-aware Nash equilibrium. We show that as social ties increase, each user’s
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SNE strategy migrates monotonically from the NE strategy for a ZSG to that for

a standard NCG, and then to the social optimal strategy for NUM, and the social

welfare of the SNE also increases. For the SGUM based multi-channel cooperative

jamming, we show that there exists a unique mixed strategy SNE. When the social

tie between the legitimate user and the cooperative jammer exceeds a certain thresh-

old, the cooperative jammer always jams the eavesdropper on some channel at the

SNE, which improves the social welfare of the legitimate user and cooperative jam-

mer. Then we consider the SGUM based spectrum access for social networks with

structural balance. We characterize the SNE and show that it is equivalent to the

SNE for the game where each player consists of the users in the same social coalition

based on the balanced social structure.

Chapter 9 studies mobile users’ pseudonym change to protect location privacy

where users’ social ties are leveraged to motivate them to participate. Drawing on

the social group utility maximization (SGUM) framework developed in Chapter 2,

we cast users’ decision making of whether to change pseudonyms as a socially-aware

pseudonym change game (PCG). The PCG further assumes a general anonymity

model that allows a user to have its specific anonymity set for personalized location

privacy. For the SGUMbased PCG, we show that there exists a socially-aware Nash

equilibrium (SNE), and we quantify the system efficiency of SNEs with respect to

the optimal social welfare. Then we develop a greedy algorithm that myopically de-

termines users’ strategies, based on the social group utility derived from only the

users whose strategies have already been determined. We show that this algorithm

can efficiently find an SNE that enjoys desirable properties: 1) it is socially-aware

coalition-proof, and thus is also Pareto-optimal; 2) it achieves a larger social welfare

than any SNE for the socially-oblivious PCG. We further quantify the system effi-

ciency of the SNE with respect to the optimal social welfare. We also show that the
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SNE can be achieved in a distributed manner. Numerical results corroborate that

social welfare can be significantly improved by exploiting social ties.

Chapter 10 summarizes the dissertation and discusses possible directions for

future research.
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Chapter 2

SOCIAL GROUP UTILITY MAXIMIZATION FRAMEWORK WITH

APPLICATIONS IN RANDOM ACCESS CONTROL AND POWER CONTROL

2.1 Introduction

Mobile networks have been growing rapidly in the past few years and this trend will

continue in the foreseeable future. Indeed, mobile phone shipments are projected to

reach 1.9 billion units in 2014, which is about 7 times that of desktop and laptop

combined [2]. The widespread popularity of mobile networks has been driven by

continuing advances of technologies. On one hand, advanced wireless communication

technologies (e.g., MIMO, OFDM) have drastically improved the communication ef-

ficiency in existing wireless networks (e.g., cellular networks, WLANs). On the other

hand, advanced mobile devices (e.g. smartphones) equipped with powerful sensors

(e.g., cameras) and high computing capability have enabled a wide range of applica-

tions on mobile platforms. As a result, mobile networks have nowadays become an

indispensable infrastructure in people’s everyday life.

Different from other networks (e.g., sensor networks), a distinctive character-

istic of mobile networks is that mobile devices are carried and operated by human

beings. As a result, mobile users’ interactions hinge heavily on human behavior. It is

then natural to ask “How would mobile users’ social ties influence their behaviors in

mobile networks?” Social ties are built upon human social relationships (e.g., kinship,

friendship, colleague relationship). Indeed, social ties play an unprecedented role in

people’s interactions with each other, mainly due to the explosive growth of online

social networking services (e.g., Facebook, Twitter) in the past few years. In 2013,

the number of online social network users worldwide has crossed 1.73 billion, nearly

one quarter of the world’s population [1]. With pervasive connectivity to the Internet
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via mobile devices, mobile users can interact with each other much more readily than

ever before via online social networking services.

One fundamental aspect of (positive) social ties is that people are altruistic to

their social “friends” (friends, family, colleagues, etc.), as they care about the welfare

of their social friends. As a result, a user would take into account the effect of its

behavior on its social friends. It is then natural to ask “Is it possible to exploit users’

social ties to stimulate their cooperative behaviors?” Indeed, altruistic behaviors are

often observed among people with social ties. With this motivation, we view a wireless

network as an overlay/underlay system (as illustrated in Fig. 2.1), where a “virtual

social network” (social domain) overlays a physical communication network (physical

domain). Wireless users are connected by social ties in the social domain, while

their wireless devices are subject to physical relationships in the physical domain.

It is important to observe that users generally have diverse social ties such that a

user cares about others at different levels. For example, a user may care about her

family members more than her friends, and cares about her friends more than an

acquaintance of her. Similarly, it is clear that wireless devices also generally have

diverse physical relationships. For example, depending on their physical locations,

wireless devices can cause different levels of interference to each other. A primary

goal here is to leverage the intrinsic diverse social tie structure among mobile users,

which can be viewed as “hidden incentives” based on existing human relationships,

to facilitate cooperative networking among their mobile devices subject to diverse

physical relationships.

To this end, we advocate a social group utility maximization (SGUM) frame-

work that takes into account both the diverse social coupling and diverse physical

coupling among users. Specifically, we model the social coupling and physical coupling

by a social graph and physical graph, respectively, and then we cast the distributed
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Figure 2.1: Illustration of social group utility maximization framework.

decision making problem among users as a SGUM game.

2.2 Related Work

For a network consisting of autonomous users (nodes) (e.g., ad hoc networks), each

user may act in a selfish manner, in the sense that it only cares about its own benefit

(e.g., utility) and does not care about the effect of its behavior on other users. In

this case, the strategic interactions among users can be modeled by a non-cooperative

game (NCG), where each user aims to maximize its payoff. NCG has been extensively

studied for wireless networking applications [10]. Due to the selfish nature of users,

the stable outcome of a non-cooperative game (e.g., a Nash equilibrium) may achieve

a low social welfare (i.e., the total benefit of all users). In contrast to selfish users, for

a network where nodes are controlled by a central authority (e.g., sensor networks),

all nodes are fully cooperative and aim to achieve the same system-wide goal. In

this case, a widely used objective is network utility maximization (NUM), which is

to maximize the total utility of all nodes. NUM has been widely studied for resource

allocation in wireless networks [11].

Although there exists a significant body of work on NCG and NUM, very
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little attention has been paid to the continuum between these two extreme paradigms,

especially in the context of mobile social networking. Recent work [12,13] have studied

the impact of altruistic behavior in a routing game. [14] has recently investigated a

random access game between two symmetrically altruistic players. We should note

that the SGUM-based game is quite different from a coalitional game [15, 16], since

each user in the latter aims to maximize its own welfare (although it is achieved by

cooperating with other users). Furthermore, while a user in a coalitional game can

only participate in one social group (coalition), a user in the SGUM-based game can

be in multiple social groups associated with different users.

2.3 Social Group Utility Maximization (SGUM) Framework

2.3.1 Physical Network Graph Model

We consider a set of wireless users N = {1, 2, ..., N} where N is the total number

of users. We denote the set of feasible strategies for each user n ∈ N as Xn. For

instance, a strategy x ∈ Xn can be choosing either a channel or a power level for

wireless transmission. Subject to heterogeneous physical constraints, the strategy set

Xn can be user-specific. For example, the strategy set Xn can be a set of feasible

relay users that are in vicinity of user n for cooperative communication.

To capture the diverse physical coupling among the users in the physical do-

main, we introduce a physical graph Gp = {N , Ep} (see Fig. 2.1 for an example).

Here the set of users N is the vertex set, and Ep ≡ {(n,m) : epnm = 1, ∀n,m ∈ N} is

the edge set where epnm = 1 if and only if users n and m have physical coupling (e.g.,

cause interference to each other). We also denote the set of users that have physical

coupling with user n as N p
n ≡ {m ∈ N : epnm = 1}.

Let x = (x1, ..., xN) ∈
QN

n=1Xn be the strategy profile of all users. Given the

strategy profile x, the individual utility function of user n is denoted as un(x), which

represents the payoff of user n, accounting for the physical coupling among users. For
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example, un(x) can be the achieved data rate or the satisfaction of quality of service

(QoS) requirement of user n under the strategy profile x. Note that in general the

underlying physical graph plays a critical role in determining the individual utility

un(x). For example, users’ achieved data rates are determined by the interference

graph and channel quality.

2.3.2 Social Network Graph Model

To capture the diverse social coupling among the users in the social domain, we

introduce a social graph Gs = {N , Es} to model their social ties. Here the edge set

is given by Es = {(n,m) : esnm = 1, ∀n,m ∈ N} where esnm = 1 if and only if users n

has a social tie with user m, which can be built on, e.g., the kinship, friendship, or

colleague relationship between them. We denote the social tie from user n to user m

as snm. We assume that each user n’s social tie to itself is snn = 1, and we normalize

user n’s social tie to user m 6= i as snm ∈ (0, 1], which represents the extent to which

user n cares about user m relative to user n cares about itself, with a greater value

of snm indicating a stronger social tie. We also assume that snm = 0 if no social tie

exists from user n to user m. We define user n’s social group N s
n as the set of users

that have social ties with user n, i.e., N s
n = {m : esnm = 1, ∀m ∈ N}.

Based on the physical and social graph models described above, users are

coupled in the physical domain due to the physical relationships, and are also coupled

in the social domain due to their social ties. With this insight, we define the social

group utility of each user n as

fn(x) = un(x) +
X

m∈N s
n

snmum(x). (2.1)

It follows that the social group utility of each user consists of two parts: 1) its own

individual utility and 2) the weighted sum of the individual utilities of other users

having social tie with it. In a nutshell, the social group utility function captures that

each user is socially-aware and cares about the users having social tie with it.
17



2.3.3 Social Group Utility Maximization Game

We consider the distributed decision making problem among the users for maximizing

their social group utilities. Let x−n = (x1, ..., xn−1, xn+1, ..., xN ) be the set of strate-

gies chosen by all other users except user n. Given the other users’ strategies x−n,

user n aims to choose a strategy xn ∈ Xn that maximizes its social group utility, i.e.,

max
xn∈Xn

fn(xn,x−n), ∀n ∈ N .

The distributed nature of the problem above naturally leads to a formulation based

on game theory such that each user aims to maximize its social group utility. We

thus formulate the decision making problem among the users as a strategic game

Γ = (N , {Xn}n∈N , {fn}n∈N ), where the set of users N is the set of players, Xn is the

set of strategies for each user n, and the social group utility function fn of each user

n is the payoff function of player n. In the sequel, we call the game Γ as the SGUM

game. We next introduce the concept of socially-aware Nash equilibrium (SNE).

Definition 2.1. A strategy profile x
∗ = (x∗1, ..., x

∗
N) is a socially-aware Nash equilib-

rium of the SGUM game if no player can improve its social group utility by unilaterally

changing its strategy, i.e.,

x∗n = arg max
xn∈Xn

fn(xn,x−n), ∀n ∈ N .

It is worth noting that under different social graphs, the proposed SGUM game

formulation can provide rich flexibility for modeling network optimization problems

(as illustrated in Fig. 2.2). When the social graph consists of isolated nodes with

snm = 0 for any n,m ∈ N (i.e., all users are socially-oblivious), the SGUM game

degenerates to a standard non-cooperative game. When the social graph is fully

meshed with edge weight snm = 1 for any n,m ∈ N (i.e., all users are fully altruistic),

the SGUM game becomes a network utility maximization problem, which aims to
18
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Figure 2.2: SGUM captures NCG and NUM as special cases.

maximize the system-wide utility. The SGUM framework can be applied with general

social graphs and thus can bridge the gap between non-cooperative game and network

utility maximization – two traditionally disjoint paradigms for network optimization

(as illustrated in Fig. 2.3). These two paradigms are captured under the SGUM

framework as two special cases where no social tie exists among users, and all users

are connected by strongest social ties, respectively.

We note that the SGUM game is quite different from a coalitional game [17],

since each user in the latter aims to maximize its individual benefit (although it

is achieved by cooperating with other users). Furthermore, while each user in a

coalitional game can only participate in one coalition, a user in the SGUM game can

be in multiple social groups of different users.

To get a more concrete sense of our proposed social group utility maximization

game model, in Section 2.4 and 2.5, we will study its applications in two scenarios:

random access control and power control.
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Figure 2.3: SGUM framework spans the continuum between NCG and NUM.

2.4 SGUM based Random Access Control

2.4.1 System Model

We consider a set of users under the protocol interference model, where each user i

is a link consisting of transmitter Ti and receiver Ri. For example, in Fig. 2.4, T1

interferes with R2, T2 interferes with R1, T3 interferes with R1, where dashed circles

define the interference ranges of transmitters. Let I+i denote the set of receivers

that transmitter Ti causes interference to, and I−i denote the set of transmitters that

causes interference to receiver Ri. In a time-slotted system, each user i contends for

the opportunity of data transmission with probability qi ∈ [0, 1] in a time slot. If

multiple interfering links contend in the same time slot, a collision occurs and no link

can grab the transmission opportunity. Then the probability bi that user i can grab

the transmission opportunity is given by

bi(qi, q−i) = qi
Y

j∈I−
i

(1− qj). (2.2)

We assume that the individual utility of user i is given by

ui(qi, q−i) = log(θibi)− ciqi (2.3)

where θi > 0 represents user i’s efficiency of utilizing the transmission opportunity

(e.g., transmission rate), and ci > 0 represents user i’s cost of contention. Note that

the logarithmic function is widely used for modeling the utility of wireless users [18,

19]. Then, under the SGUM framework, we define the SGUM based random access
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Figure 2.4: Illustration of protocol interference model.

control game as G , (N , {qi}, {fi}), where

fi(qi, q−i) = log

�
θiqi

Y
j∈I−

i

(1− qj)

Ǒ
− ciqiX

j 6=i

sij

264log�θjqj
Y

k∈I−
j

(1− pk)

Ǒ
− cjqj

375 . (2.4)

2.4.2 Game Analysis

We first have the following result.

Theorem 2.1. For the SGUM based random access control game, there exists a

unique SNE, which is

qSNE
i =

P
j∈I+

i
sij + 1 + ci −

q
(
P

j∈I+
i
sij + 1 + ci)2 − 4ci

2ci
, ∀i ∈ N . (2.5)

Proof: Using (2.4), setting the first-order derivative of fi(qi, q−i) to 0, we

have

∂fi(qi, q−i)

∂qi
=

1

qi
−
X
j∈I+

i

sij
1− qi

−ci=
ciq

2
i − (

P
j∈I+

i
sij + 1 + ci)qi + 1

qi(1− qi)
= 0. (2.6)
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Then we obtain the smaller root of equation (2.6) asP
j∈I+

i
sij + 1 + ci −

q
(
P

j∈I+
i
sij + 1 + ci)2 − 4ci

2ci

≤ 1 + ci −
È
(1 + ci)2 − 4ci
2ci

≤ 1 (2.7)

where the first inequality follows from that the first-order derivative of the small root

with respect to sij is

1

2ci

�
1−

P
j∈I+

i
sij + 1 + ciq

(
P

j∈I+
i
sij + 1 + ci)2 − 4ci

Ǒ
< 0. (2.8)

We also obtain the larger root of equation (2.6) asP
j∈I+

i
sij + 1 + ci +

q
(
P

j∈I+
i
sij + 1 + ci)2 − 4ci

2ci

≥ 1 + ci +
È
(1 + ci)2 − 4ci
2ci

≥ 1.

Therefore, the SNE strategy qSNE
i is unique and is the smaller root of equation (2.6).

�

The result below directly follows from Theorem 2.1 and (2.8).

Corollary 2.1. Each user’s access probability at the SNE is decreasing as its social

ties with others increase.

Remark: We observe that each user’s SNE strategy does not depend on other

users’ strategies (also known as a dominant strategy), but depends on the user’s social

ties with others. Clearly, when a user increases its access probability, it also increases

the collision probabilities of the users within its interference range, and thus reduces

their individual utilities. Therefore, a user would decrease its access probability when

its social ties with those within its interference range get stronger (as illustrated in

Fig. 2.5).
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Figure 2.5: SNE for two-user SGUM based random access control.

Let V (q) denote the social welfare of all users, i.e., the total individual utility

of all users:

V (q) ,
NX
i=1

264log�θiqi
Y

j∈I−
i

(1− qj)

Ǒ
− ciqi

375 . (2.9)

Proposition 2.1. The social welfare of the SNE is increasing as social ties increase,

and reaches the social optimal point when all social ties are equal to 1.

Proof: Using (2.9), setting the first-order derivative of V (q) to 0, we have

∂V (q)

∂qi
=

ciq
2
i − (|I+i |+ 1 + ci)qi + 1

qi(1− qi)
= 0. (2.10)

Similar to the proof of Theorem 2.1, we obtain the social optimal strategy qSOi that

maximizes V (q) as the smaller root of equation (2.10), which is

qSOi =
|I+i |+ 1 + ci −

È
(|I+i |+ 1 + ci)2 − 4ci
2ci

.

Since the larger root of equation (2.10) is

|I+i |+ 1 + ci +
È
(|I+i |+ 1 + ci)2 − 4ci
2ci

≥ 1 + ci +
È
(1 + ci)2 − 4ci
2ci

≥ 1,

we have ∂V (q)
∂qi

< 0 for qi ∈ [qSOi , 1], and thus V (q) is decreasing in qi when qi ∈ [qSOi , 1].

Using Corollary 2.1, qSNE
i is decreasing in sij, ∀j ∈ I+i , ∀i ∈ N , and hence V (qSNE)

is increasing in sij , ∀j ∈ I+i , ∀i ∈ N . �
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Figure 2.6: Impact of number of users.

Remark: Intuitively, since the social welfare is equal to users’ individual

utilities summed up with the same weight 1, a user’s SNE strategy is closer to the

social optimal strategy when other users weigh more in that user’s social group utility

(i.e., the social ties to them increase), and the social welfare increases. As social ties

increase, a user’s SNE strategy migrates from its NE strategy for a standard NCG

to its social optimal strategy for NUM. For example, in Fig. 2.5, as the social tie

s , s12 = s21 increases from 0 to 1, each user’s SNE strategy qSNE migrates from

its NE strategy qNC,NE for a standard NCG to its social optimal strategy qSO for

NUM, and the social welfare vSNE of the SNE also migrates correspondingly. This

demonstrates that the SGUM game framework spans the continuum between these

traditionally disjoint paradigms.

2.4.3 Numerical Results

We consider N users each of which is a link consisting of a transmitter and a receiver.

Each transmitter or receiver is randomly located in a square area with side length

500m. Under the protocol interference model, we assume that a link causes interfer-
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ence to another link if the former link’s transmitter is within 100m of the latter link’s

receiver. We simulate the social graph based on both the Erdos-Renyi (ER) model

with link probability 0.5 and the real data trace of the friendship network Brightkite.

We assume that the strength of a social tie is 1 if the social tie exists.

To illustrate the system efficiency of the SGUM solution, we compare it with

the NCG solution where each user aims to maximize its individual utility, and the

NUM solution where the total individual utility of all users is maximized. Fig. 2.6

depicts the social welfare of the SNE for SGUM and the social optimal solution for

NUM normalized with respect to the NE for NCG, as the number of users increases.

We can see that the SGUM solution for the ER model based social graph always

dominates that of the NCG, with a substantial performance gain up to 22%. On the

other hand, it performs almost as well as the NUM solution. This demonstrates that

system efficiency can be significantly improved by exploiting social ties. We observe

that the SGUM solution for the real data based social graph is worse than that for the

ER model based social graph due to that social ties are weaker in the real data than

in the ER graph with link probability 0.5. However, it still can achieve a performance

gain up to 13% over that of the NCG solution.

2.5 SGUM based Power Control

2.5.1 System Model

We consider a set of users under the physical interference model, where each user

i is a link consisting of a transmitter Ti and a receiver Ri. The channel gain of

communication link i is hi, and the channel gain of the interference link between

transmitter Ti and receiver Rj is gij (as illustrated in Fig. 2.7). The noise at receiver

Ri is ni. Then the signal to interference and noise ratio (SINR) γi of link i is given

by

γi(pi,p−i) =
hipi

ni +
PN

j=1 gjipj
25
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Figure 2.7: Illustration of physical interference model.

where pi denotes the transmit power of Ti. We assume that the individual utility ui

of player i is given by

ui(pi,p−i) = log(γj)− cipi

where ci denotes the cost of per unit power consumption. Similar to Section 2.4, we

also use the logarithmic function to model the utility of a user. For example, log(γi)

can be a good approximation for the channel capacity log(1 + γi) under the high

SINR regime. Also, log(γi) can be used to quantify the satisfaction of wireless users’

requirements in terms of SINR. Then, under the SGUM framework, we define the

SGUM game for power control as G , (N , {pi}, {fi}), where

fi(pi,p−i) = log

 
hipi

ni +
P

j 6=i gjipj

!
− cipi+X
k 6=i

sik

 
log

 
hkpk

nk +
P

j 6=k gjkpj

!
− ckpk

!
. (2.11)

2.5.2 Game Analysis

We first have the following result.

Theorem 2.2. The SGUM based power control game is a supermodular game, and

thus there exists at least one SNE.

Proof: Using (2.11), we have

∂fi(pi,p−i)

∂pi
=

1

pi
−
X
k 6=i

sikgik
nk +

P
j 6=k gjkpj

− ci.
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Since each term in the above summation term is decreasing in pj, ∀j ∈ N \ i, it

follows that

∂2fi(pi,p−i)

∂pi∂pj
> 0, ∀j ∈ N \ i

which implies that the social group utility function fi(pi,p−i) is supermodular. It

follows from [20] that there exists at least one NE. �

Since the SGUM based power control game is a supermodular game, it follows

from [21] that users can start from any strategies (e.g., p = (0, · · · , 0)) and use asyn-

chronous best response updates such that their strategies will monotonically converge

to a SNE.

For ease of exposition, in the rest of this section we will focus on the SGUM

based power control game with two users, because the two-user case can shed light

on the impact of social ties on users’ strategies and social welfare. Furthermore, in

general, the game with more than two users does not yield closed-form SNE strategies,

and hence is much more difficult to quantify the impact.

Theorem 2.3. For the two-user SGUM based power control game, there exists a

unique SNE, which is

pSNE
1 =

È
α2
1 + β1 − α1, pSNE

2 =
È
α2
2 + β2 − α2

where

α1 ≡
s12g12 + c1n2 − g12

2c1g12
, β1 ≡

n2

c1g12

and

α2 ≡
s21g21 + c2n1 − g21

2c2g21
, β2 ≡

n1

c2g21
.

Proof: Since

u1(p1, p2) = log

�
h1p1

n1 + g21p2

�
− c1p1 + s12 log

�
h2p2

n2 + g12p1

�
− s12c2p2,
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we have

∂u1(p1, p2)

∂p1
=

1

p1
− s12g12

n2 + g12p1
− c1.

Since

lim
p1→0

(
1

p1
− s12g12

n2 + g12p1
) ≥ lim

p1→0
(
1

p1
− s12

p1
) =∞

and

lim
p1→∞

(
1

p1
− s12g12

n2 + g12p1
) = 0

and

∂
�

1
p1
− s12g12

n2+g12p1

�
∂p1

=− 1

p21
+

s12g
2
12

(n2 + g12p1)2
=
(s12 − 1)g212p

2
1 − 2n2g12p1 − n2

2

p21(n2 + g12p1)2
<0,

there exists a unique value of p1 such that

1

p1
− s12g12

n2 + g12p1
− c1 = 0, (2.12)

which is also the value of pSNE
1 . Solving (2.12), we obtain the desired result. Similarly,

we can obtain pSNE
2 . �

Next we have the following result.

Corollary 2.2. For the two-user SGUM based power control game, each user’s trans-

mit power at the SNE is decreasing as its social tie with the other increases.

Proof: Since

pSNE
1 =

È
α2
1 + β1 − α1

and

α1 ≡
s12g12 + c1n2 − g12

2c1g12
, β1 ≡

n2

c1g12
> 0,

we have

∂pSNE
1

∂s12
=

∂
�È

α2
1 + β1 − α1

�
∂α1

∂α1

∂s12
=

�
α1È

α2
1 + β1

− 1

�
1

2c1
< 0.
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Figure 2.8: SNE for two-user SGUM based power control.

So pSNE
1 is decreasing in s12. Similarly, we can show that pSNE

2 is decreasing in s21.

�

Proposition 2.2. For the two-user SGUM based power control game, the social wel-

fare of the SNE is increasing as social ties increase, and reaches the social optimal

point when all social ties are equal to 1.

Proof: Since

V (p1, p2) = log

�
h1p1

n1 + g21p2

�
− c1p1 + log

�
h2p2

n2 + g12p1

�
− c2p2

we have

∂V (p1, p2)

∂p1
=

1

p1
− g12

n2 + g12p1
− c1.

Using the same argument as in the proof of Theorem 2.3, the optimal value pSO1 of

p1 for V (p1, p2) is the unique solution of

1

p1
− g12

n2 + g12p1
− c1 = 0.

In particular, we have pSNE
1 ≥ pSO1 . Since ∂V (p1,p2)

∂p1
< 0 when p1 ≥ pSO1 , V (p1, p2) is

decreasing in p1 when p1 ≥ pSO1 . Using Lemma 2.2, pSNE
1 is decreasing in s12, and
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Figure 2.9: Impact of number of users.

hence V (pSNE
1 , pSNE

2 ) is increasing in s12 since pSNE
2 is independent of s12. Similarly,

we can show that V (pSNE
1 , pSNE

2 ) is increasing in s21. �

Remark: Similar to the SGUM based random access control game, for the

two-user SGUM based power control game, each user’s strategy at the SNE is also a

dominant strategy. As a user’s social tie with the other increases, the user’s transmit

power at the SNE decreases, and the social welfare increases. Therefore, as the social

tie increases, a user’s SNE strategy migrates from its NE strategy for a standard

NCG to its social optimal strategy for NUM. For example, in Fig. 2.8, as the social

tie s , s12 = s21 increases from 0 to 1, each user’s SNE strategy pSNE migrates from

its NE strategy pNC,NE for a standard NCG to its social optimal strategy pSO for

NUM, and the social welfare vSNE of the SNE also migrates correspondingly.

2.5.3 Numerical Results

We consider N users each of which is a link consisting of a transmitter and a receiver.

Each transmitter or receiver is randomly located in a square area with side length

500m. Under the physical interference model, we assume that the channel condition
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of a link (communication or interference link) only depends on the path loss effect

with path loss factor 3. We assume that the transmit power of each link is 1W and

the noise power at each receiver is 0.1W.

Fig. 2.9 shows the normalized social welfare for a varying number of users.

We can see that the SGUM solution for the ER model based social graph can achieve

a performance gain up to 23% over the NCG solution, and its performance loss from

the NUM solution is at most 10%. The SGUM solution for the real data based social

graph can achieve a performance gain up to 15%.

2.6 Conclusion

In this chapter, we have developed a general social group utility maximization game

framework that bridges the gap between non-cooperative game and network utility

maximization. In particular, we have studied two applications in mobile social net-

works under this framework: random access control and power control. Our findings

provide useful insight into the impact of social ties on users’ strategies and network

efficiency. We believe that this work will open a new door to exploring the impact of

social behavior on mobile networking.
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Chapter 3

EXPLOITING SOCIAL TRUST ASSISTED RECIPROCITY (STAR) TOWARDS

UTILITY-OPTIMAL CROWDSENSING

3.1 Introduction

Mobile crowdsensing has recently emerged as a promising paradigm for a variety

of applications, thanks to the pervasive penetration of mobile devices to people’s

daily lives. Indeed, with the development of 4G networks and powerful processors,

smartphone sales crossed 1 billion units in 2013 [2]. As smartphones are equipped

with advanced sensors such as accelerometer, compass, gyroscope, and camera, they

can collectively carry out many sensing tasks, e.g., monitoring the environment. In

a nutshell, by leveraging a crowd of mobile users, one can collect and process sensed

data far beyond the scope of what was possible before.

Although the benefit of crowdsensing is pronounced, performing a sensing task

typically incurs overhead for the participating user, in terms of the user’s resource

consumption devoted to sensing, such as battery and computing power. Further, the

participating user also incurs the risk of potential privacy loss by sharing its sensed

data with others. In general, a user may not participate in sensing without receiving

adequate incentive. Therefore, effective incentive design is essential for realizing the

benefit of crowdsensing.

There have been some recent studies on incentive design for crowdsensing

(see, e.g., [22–24]). Most of these work use monetary reward to stimulate users’

participation, which rely on a global (virtual) currency system. However, enforcing

the circulation of a global currency typically incurs a high implementation overhead,

especially for large-scale networks, due to the need to, e.g., resolve disputes and punish

counterfeiters. Therefore, it is appealing to design a crowdsensing system that can
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Figure 3.1: An example of social trust assisted reciprocity for spectrum crowdsensing.

motivate a large number of users to participate without using a global currency, which

is a goal of this study.

Online social networks have been explosively growing over the past few years.

In 2013, the number of online social network users worldwide reached 1.73 billion,

nearly one quarter of the world’s population [1]. As a result, social relationships

increasingly influence people’s behaviors in their interactions. In particular, as an

important aspect of social relationships, social trust can be exploited to stimulate

crowdsensing: if Alice has social trust in Bob, then Alice is willing to help Bob, since

Alice can trust Bob in that Bob would help Alice in the future to return the favor.

In this chapter, we devise an incentive mechanism to stimulate users’ par-

ticipation in crowdsensing, by using Social Trust Assisted Reciprocity (STAR) - a

synergistic marriage of social trust and reciprocity. The basic idea of STAR is that

Alice is willing to help Bob if someone who trusts Bob can help someone trusted by

Alice. This is because the overhead of Alice for helping Bob is compensated, as the

one trusted by Alice will help Alice in the future to return the favor. We illustrate

this idea by an example of spectrum crowdsensing in Fig. 3.1. Users 1 and 4 have

social trust in user 3 and 2, respectively (denoted by solid edges); user 2 and 3 request

user 1 and 4 to sense channel 1 and 2, respectively (denoted by dashed edges). User 1
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is willing to help user 2 in exchange for that user 4 helps user 1’s social friend, user 3,

while user 4 is willing to help user 3 in exchange for that user 1 helps user 4’s social

friend, user 2.

By taking advantage of reciprocity (“synchronous exchange”) with the as-

sistance of social trust (“asynchronous exchange”), STAR can efficiently encourage

users’ participation in crowdsensing. In particular, STAR greatly enhances the chance

that sensing requests are matched, since they can be matched through existing social

trust among users. As illustrated in Fig. 3.1, without using either social trust or

reciprocity, neither of CR1 and CR3 would be willing to help CR2 and CR4, respec-

tively. If users are well connected in the social network, the number of requests that

can be matched with the assistance of social trust can be significant. Furthermore,

compared to traditional currency-based schemes, STAR can incur much lower im-

plementation overhead due to the use of the already existing social trust. We will

discuss the overhead of STAR and related work in Section 3.6.

The main thrust of this study is devoted to characterizing the fundamental

performance of STAR, particularly for satisfying users’ sensing requests given the

social trust structure among them. Since sensing requests are mismatched in general

and social trust levels are limited, it may not be possible to satisfy all requests.

Therefore, a natural question is “Can all requests be satisfied?” The benefit of sensing

service provided under STAR can be quantified by the utility of users who receive

the service. In the case that not all requests can be satisfied, another important

question arises: What is the maximum utility that can be achieved by the provided

service? These two questions are similar in spirit to admission control and network

utility maximization, respectively.

We summarize the main contributions of this chapter as follows.
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• We propose a socially-aware crowdsensing system that stimulates users’ par-

ticipation by leveraging their social trust. The incurred overhead can be sig-

nificantly lower than that of traditional currency-based schemes, since it uses

social credit as a “local” currency enabled by social trust, rather than a global

currency.

• For the proposed system, we design STAR, an incentive mechanism which stim-

ulates users’ participation by using social trust assisted reciprocity. We inves-

tigate thoroughly the efficacy of STAR for satisfying users’ sensing requests,

given the social trust structure among users. Specifically, we first show that

all requests can be satisfied if and only if users who request more sensing ser-

vice than they can provide can transfer sufficient social credit to users who can

provide more than they request. Then we investigate utility maximization for

sensing service, and show that this problem is equivalent to maximizing the

utility of a circulation flow in the combined social graph and request graph.

Based on this observation, we develop an algorithm that iteratively cancels the

cycles of positive weights in the residual graph, and hence computes the optimal

solution efficiently, for both cases of divisible and indivisible service.

• We evaluate the performance of STAR through extensive simulations for a ran-

dom setting based on the Erdős-Rényi graph model, and for a practical setting

based on real social data with application to spectrum crowdsensing. For both

settings, simulation results demonstrate that STAR can achieve significantly

better system efficiency and individual user performance than only using social

trust or reciprocity.

The rest of this chapter is organized as follows. In Section 3.2, we propose a

socially-aware crowdsensing system. In Section 3.3, we design an incentive mechanism
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Figure 3.2: Illustration of socially-aware crowdsensing system.

based on social trust assisted reciprocity for the proposed system. Based on STAR,

Section 3.4 investigates conditions for satisfying all sensing requests and the utility

maximization for sensing service. Section 3.5 provides simulation results to illustrate

the efficacy of STAR. Related work is reviewed in Section 3.6 and the chapter is

concluded in Section 3.7.

3.2 Socially-aware Crowdsensing System

In this section, we describe a crowdsensing system that stimulates users’ participation

by leveraging their social trust.

3.2.1 Motivation

Social relationships play an increasingly important role in people’s interactions with

each other. One important aspect of the social relationship between two users is

their social trust : one user has belief in and relies on the other user’s behavior in

the future. To stimulate users’ participation in crowdsensing, social trust can be

exploited in the form of social credit. Specifically, social credit is transferred between
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two users with social trust if one user owes a favor to the other and commits to return

the favor later. Therefore, a user is willing to participate if it receives social credit

from another user that it has social trust in. This “asynchronous exchange” of favors

via social credit is in the same spirit as a global currency. However, since this pairwise

credit commitment is enabled by existing social trust between two users, social credit

would incur a much lower overhead than a global currency.

Most existing crowdsensing systems assume that a platform announces sensing

tasks and motivates users to participate in these tasks by providing monetary incen-

tives [22, 24]. In contrast, we are interested in a system where sensing requests are

generated by users. Indeed, a few crowdsensing systems that have been deployed are

based on this model. For example, the Waze [25] system employs traffic monitoring

data collected from a crowd of drivers to answer an individual driver’s request (e.g.,

navigation to a specific destination).

3.2.2 System Description

We consider a crowdsensing system as illustrated in Fig. 3.2. The system consists

of a platform that operates in the cloud, and a set of mobile users V = {1, · · · , N}

connected to the platform via the cloud. Initially, each user registers at the platform

and publishes its social information (e.g., Facebook account) such that users can

identify their social relationships with each other. Then, each user declares to the

platform a social credit limit for each other user that it has social trust in, based on

the strength of their social relationship. The social credit limit quantifies the social

trust level by specifying how much social credit one user is willing to accept from

another. For example, a user typically has high social trust in a close friend, while it

may have low social trust in an acquaintance. The system proceeds in rounds and the

workflow in each round consists of four major components as depicted in Fig. 3.3.

We describe each component in detail below.
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Figure 3.3: Workflow of socially-aware crowdsensing system.

• Sensing request formation. A user can submit to the platform a sensing

request that describes the sensing service it needs. For example, a user may

request to know if a licensed channel is available. Upon receiving a request,

the platform can find a particular set of users who can serve the request, based

on users’ sensing capabilities, such as their physical locations and the functions

of sensors on their devices. In this way, the platform determines the request

relationships among users, i.e., which user requests service from which other

users. For example, a user with a good sensing channel condition for a licensed

channel can serve another user’s request to sense that channel.

• Sensing task allocation. Based on the sensing requests, the platform allo-

cates sensing tasks to users. A sensing task specifies how much sensing service

is needed from that user. For example, a sensing task may require a user to

sense a licensed channel for a period of time. A key challenge for the platform

is to ensure that users have incentive to carry out their allocated tasks.

As expected, a user who requests sensing service can also receive requests from

others for service. Therefore, it is plausible to take advantage of direct (bilateral)

or indirect (multi-lateral) reciprocity (as illustrated in Fig. 3.4(a),(b)): Alice is

willing to help Bob if Bob simultaneously helps Alice. While this “synchronous

exchange” of favors is appealing as it obviates the need for currency, a major

drawback is that users’ requests have to be simultaneously matched, which does
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not hold in general. As illustrated by the example in Fig. 3.1, user 1 has a good

sensing channel for channel 1 while user 2 does not. Therefore, user 2 needs

user 1’s help while user 1 does not need user 2’s help.

• Social credit transfer. The platform can stimulate users’ participation by

using social credit. The platform maintains the social credit limit for each pair

of users, and updates it for the next round to reflect the amount of social credit

transferred between them in the current round. Besides the update performed

by the platform, each user can also change its credit limit for another by re-

porting the new value to the platform. Section 3.4.3 will discuss credit limit

setting in more detail.

• Data sensing and aggregation. Based on the transferred social credit, users

have incentive to carry out their allocated sensing tasks. After collecting and

processing the sensing data from users, the platform distributes the aggregated

data to the intended users. Therefore, most of the communication and compu-

tation burdens shifts from the users to the platform.

Unlike most existing work, our proposed crowdsensing system exploits social

trust to stimulate users’ participation, which obviates the need of a global currency.

For this system, one key challenge is to make the best use of social credit such that

users have incentive to carry out sensing tasks, and more importantly, the system

achieves good performance, which is the focus in the rest of this chapter.

3.3 STAR: Social Trust Assisted Reciprocity Based Incentive Mechanism

In this section, we design an incentive mechanism based on social trust assisted

reciprocity.
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Figure 3.4: Examples of social trust assisted reciprocity cycles.

3.3.1 System Model

We model users’ sensing requests by a request graph GR , (V,ER), in which user i

and user j are connected by a directed request edge eRij ∈ ER if user j requests sensing

service1 from user i. The capacity Rij > 0 of each request edge eRij represents the

amount of service requested by user j from user i2. The flow fR
ij > 0 on the request

edge eRij represents the amount of service provided by user i to user j. Depending on

the specific application, sensing service can be divisible (e.g., quantified by sensing

time) such that Rij and fR
ij for each eRij ∈ ER have continuous values, or indivisible

(e.g., quantified by the number of sensing data samples) such that they have to be

integers. In some situations, a user cannot provide all the service requested from

it (e.g., due to its resource constraints). To take this into account, let Ci be the

maximum amount of service that user i can provide and EC
i be the set of outgoing

request edges of user i. Then the following constraint applies:X
j:eij∈ER

i+

fR
ij ≤ Ci. (3.1)

1For brevity, we use “sensing service” and “service” interchangeably throughout the chapter.
2Recall that users’ request relationships are determined by the platform in the sensing request

formation phase as described in Section 3.2.2.
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We will discuss how to capture constraint (3.1) in our incentive mechanism in Sec-

tion 3.4.

A user obtains utility from its requested sensing service, which depends on the

amount of service provided by each user who is requested for that service. We assume

that user j obtains a utility of value Uij for each unit amount of service provided by

user i. In general, user j can request different types of service from user i, which

have utilities of different values. For example, a user may request sensing multiple

channels from another user, whose sensing capability varies across different channels.

In this case, there are multiple parallel request edges (in the same direction) from

user i to user j, each with a specific utility of service3. In this chapter, we assume

that there exists at most one request edge from one user to another. However, all the

results obtained under the assumption can be directly extended to the case of parallel

request edges. We further assume that a user’s utility is equal to the total utility of

the service provided to that user. More complex forms of utility will be studied in

our future work.

We model the social trust structure among users by a social graph GS ,

(V,ES), in which user i and user j are connected by a directed social edge eSij ∈ ES if

user j has social trust in user i. The capacity Sij > 0 of each social edge eSij represents

the social credit limit, which specifies the maximum amount of social credit that can

be transferred from user i to user j. The flow fS
ij on the social edge eSij represents

the amount of social credit transferred between user i and user j. The social credit

unit is the same as the sensing service unit, and is the same for all users. Note that

fS
ij = −fS

ji holds for each pair of social edges between two users, where fS
ij > 0 (or

fS
ji > 0) indicates that a credit of fS

ij (or fS
ji, respectively) is transferred from user i

to user j (or from user j to user i, respectively).

3For brevity, we say “utility of service” instead of “utility per unit service”.
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3.3.2 An Example of Spectrum Crowdsensing

As an illustrative example, we next discuss how the system model described above

can be applied to spectrum crowdsensing.

Spectrum sensing is an important and challenging task in cognitive radio net-

works [26]. To access a licensed channel in a cognitive radio network, a user needs

to sense the channel to ensure that the channel is not used by licensed transmitters.

When a user’s sensing channel condition is impaired by severe fading (e.g., path loss,

shadowing), the user needs other users’ help to sense the channel. Consider a cogni-

tive radio network where each user intends to sense one or multiple licensed channels

for access. A user’s sensing capability for a channel depends on its sensing channel

condition, which can vary across different users and different channels. If user i has

a good sensing channel condition for a channel, user j may request user i to sense

that channel. The overhead incurred by sensing that channel can be user i’s resource

consumption (e.g., device battery) for the sensing task. Therefore, the amount of

sensing service fR
ij provided by user i to user j can be quantified by user i’s sensing

time. The utility Uij,k of user j derived from the service provided by user i on channel

k, can depend on user i’s sensing capability on channel k as well as user j’s utilization

efficiency (e.g., transmission rate) of channel k.

3.3.3 Design Description

The basic incentive structure of the STAR mechanism is a social trust assisted reci-

procity cycle (STAR) in which a set of users have incentive to provide service. It is

defined in the combined social and request (social-request) graph G , (V,ES ∪ER).

Fig. 3.5 gives an example of the social-request graph in (c) constructed from the social

graph in (a) and the request graph in (b).

Definition 3.1. A social trust assisted reciprocity cycle is a directed cycle in the

42



1

5 4

2 3

6

1

5 4

2 3

6

1

5 4

2 3

6

1

5 4

2 3

6

(a)

(c)

(b)

(d)

Figure 3.5: An example of combining social graph and request graph.

social-request graph G.

Fig. 3.5(d) illustrates two STAR cycles for the social-request graph in Fig. 3.5(c).

Fig. 3.4 also gives some examples of social trust assisted reciprocity cycles. In partic-

ular, (a)-(d) are special cases: (a) is direct reciprocity cycle; (b) is indirect reciprocity

cycle; (c) is direct social trust based cycle; (d) is indirect social trust based cycle. In

a STAR cycle, a user is willing to provide service since the overhead is compensated

by receiving credit or service from another user in that cycle. For example, user 1

in Fig. 3.4(e) is willing to provide service to user 3 since it receives credit from user

2; user 1 in Fig. 3.4(f) is willing to provide service to user 3 since it receives ser-

vice from user 2. Note that a STAR cycle can involve intermediate users that only

transfer credits with their social neighbors. For example, in Fig. 3.4(f), user 4 is an

intermediate user.

For each user in a STAR cycle, the amount of service or credit it receives

should be equal to that of service or credit it provides or spends, respectively. Let

fc denote a balanced flow along a STAR cycle c, which has the same flow value on
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each edge in c. The flow on a social or request edge in the aggregate flow f of a set

of balanced flows {fc, c ∈ C} along cycles C is given by

fS
ij =

X
c∈C:eS

ij
∈c

fc −
X

c∈C:eS
ji
∈c

fc, fR
ij =

X
c∈C:eR

ij
∈c

fc

respectively. Note that the credit transferred from user i to j (i.e., the flow on

eSij ∈ ES) in the balanced flow along a STAR cycle can be partly or completely

canceled by that from user j to i in another STAR cycle. Users can participate in a

set of balanced flows along STAR cycles if and only if the aggregate flow satisfies the

capacity constraints on request and social edges.

Definition 3.2. A set of balanced flows along STAR cycles is feasible if the aggregate

flow satisfies the following capacity constraints:

−Sji ≤ fS
ij ≤ Sij , f

S
ji = −fS

ij , ∀eij ∈ ES (3.2)

0 ≤ fR
ij ≤Rij , ∀eij ∈ ER. (3.3)

Recall that the amount of service a user can provide can be constrained (i.e.,

constraint (3.1)). To capture this constraint, we can modify the social-request graph

G as follows. We first construct a virtual node i′ ∈ V and change all the outgoing

request edges from node i to being from node i′, and then we add a virtual edge eRii′ ∈

ER and set its capacity and utility as Ci and 0, respectively. For example, in Fig. 3.6,

the social-request graph can be modified to capture the constraint fR
12 + fR

13 ≤ C1.

Note that all other edges keep unchanged. It can be easily shown that it suffices to

focus on the modified graph: any feasible set of balanced flows along STAR cycles in

the modified graph has a one-to-one correspondence in the original graph that also

satisfies constraint (3.1).

Under the STAR mechanism, all users are willing to participate in any feasible

set of balanced flows along STAR cycles.
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Figure 3.6: An example that shows how to capture constraint (3.1).

3.4 Exploiting STAR to Satisfy Sensing Requests

In this section, we characterize the efficacy of the STAR mechanism. We first inves-

tigate conditions under which all sensing requests can be satisfied. Then we study

the maximum total utility that can be achieved by provided sensing service.

3.4.1 Satisfying All Sensing Requests

Based on the STAR cycles, we first show that it suffices to focus on circulation flows

in the social-request graph defined as follows.

Definition 3.3. A flow f in the social-request graph G is a circulation if f satisfies

the capacity constraints (3.2), (3.3), and the flow conservation constraintsX
j:eij∈ER

fR
ij +

X
j:eij∈ES

fS
ij =

X
j:eji∈ER

fR
ji , ∀i ∈ V. (3.4)

It is clear that the aggregate flow of any feasible set of balanced flows along

STAR cycles is a circulation flow in G. The following lemma shows that the converse

is also true.

Lemma 3.1. Any circulation flow in the social-request graph amounts to the aggregate

flow of a feasible set of balanced flows along STAR cycles.

Proof : Consider a non-empty circulation flow f . We can find a node v1 with

a positive flow on an outgoing edge from v1 and trace along this edge to another node
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v2. Due to the flow conservation constraint, we can find an outgoing edge from v2

with a positive flow and trace along it to a node v3. We continue this tracing process

until we visit a node vj that has been visited before, i.e., vi = vj for some i < j, and

hence we find a STAR cycle vi → vi+1 → · · · → vj . Then we subtract flow f by a

balanced flow along this cycle with value equal to the minimum flow value on an edge

in that cycle. Thus the remaining flow is still a circulation flow in which the number

of edges with non-zero flows is reduced. We can repeat this argument to subtract the

remaining flow by a balanced flow along a cycle until it is empty. This implies that

flow f is the aggregate flow of the subtracted balanced flows along the cycles, which

is also feasible. �

We define Pi as the total amount of service requested by user i deducted by

the amount that user i can provide:

Pi ,
X

j:eji∈ER

Rji −
X

j:eij∈ER

Rij .

Then we construct an extended social graph GS+
from the social graph GS by adding

a directed edge with capacity Pi from a virtual source node s to each node i with

Pi > 0, and adding a directed edge with capacity −Pi from each node i with Pi < 0 to

a virtual destination node t. Fig. 3.7 illustrates the extended social graph constructed

from the social-request graph in Fig. 3.5(d) where P1 > 0, P2 = 0, P3 < 0, P4 < 0,
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P5 = 0, P6 > 0. Let P be defined as

P ,
X

i:Pi>0

Pi = −
X

i:Pi<0

Pi.

Theorem 3.1. All sensing requests can be satisfied under STAR if and only if P is

equal to the maximum flow value from s to t in the extended social graph GS+
.

Proof : By Lemma 3.1, all requests can be satisfied if and only if there is a

circulation flow f in the social-request graph G that saturates all request edges (i.e.,

fR
ij = Rij , ∀eRij ∈ ER).

We first show the “if” part. Suppose S is equal to the value of the maximum

flow fS+
from s to t in GS+

. Let fS be the flow comprised of the flows on the social

edges ES in fS+
(i.e., not including the edges from s and to t in GS+

). Let fR be the

flow in the request graph GR that saturates all request edges. Then we augment flow

fS in the social-request graph G with flow fR to obtain a flow f in G. According

to the construction of GS+
, we have

P
j:eS

ij
∈ES fS

ij = Pi for each node i ∈ V , while we

also have
P

j:eR
ji
∈ER fR

ji −
P

j:eR
ij
∈ER fR

ij = Pi. This shows that f is a circulation flow.

Next we show the “only if” part. Suppose f is a circulation flow in G that

saturates all request edges. Let fS be the flow comprised of the flows on the social

edges ES in f . Then we augment flow fS with saturated flows on the edges from s

and to t in GS+
to obtain a flow fS+

in GS+
. According to the construction of GS+

,

fS+
is a flow in GS+

satisfying the capacity and flow conservation constraints, with

a flow value of P from s to t. �

Remark: Theorem 3.1 provides a useful insight: all requests can be satisfied if

and only if users who request more service than they can provide can transfer sufficient

social credit to users who can provide more than they request, to compensate their

imbalance in requests. Intuitively speaking, the social graph serves as a “buffer” to

partially or completely “absorb” the mismatch among users’ requests. It is worth
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Figure 3.8: An example of social-request graph and the residual graph.

noting that the maximum amount of service provided under STAR is in general not

equal to the maximum flow value from s to t in GS+
.

Remark: We note that an important difference between [27] and our study

is that the results in [27] is based on the assumption that all users are connected in

the social network, whereas our model here does not have this assumption. This is

essentially because that reciprocity is used in STAR but not in [27]. As illustrated

in Fig. 3.1, without using reciprocity, user 1 and 4 are not willing to help user 2

and 3, respectively. In Section 3.5, simulation results demonstrate that the STAR

mechanism can significantly outperform the mechanism in [27].

3.4.2 Utility Maximization for Sensing Service

Due to the mismatch of sensing service requests and social credit limits, it is possible

that not all requests can be satisfied. In this case, a natural objective from the

platform’s view is to maximize the total utility of provided service. The next result

follows from Lemma 3.1.

Theorem 3.2. The maximum utility of sensing service provided under STAR is equal

to the maximum utility of a circulation flow in the social-request graph.

Note that the flow on a social edge does not generate any utility. By Theo-
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rem 3.2, our problem can be written as

maximize
fS
ij
,fR

ij

X
i,j:eij∈ER

Uijf
R
ij (3.5)

subject to constraints (3.2), (3.3), (3.4).

Note that we can maximize the total amount of service provided under STAR by

solving problem (3.5) with the utility Uij set to 1 for each request edge.

In the following, we will solve problem (3.5) using an algorithm inspired by

the cycle-canceling algorithm for solving the minimum cost flow problem [28]. We

should note that problem (3.5) is quite different from a typical network flow problem

in that two nodes can be connected by multiple edges (request edges and social

edges). Furthermore, request edges and social edges carry different types of flows

(as illustrated in Fig. 3.8(a)): the flows on all request edges are non-negative and

independent (as in constraint (3.3)), while the flows on social edges can be negative

and must be inverse between a pair of users (as in constraint (3.2)).

We start with constructing a residual graph Gf , (V,ES
f ∪ ER

f ) of the social-

request graph G for a given flow f . Specifically, for each request edge eRij ∈ ER,

we construct a pair of forward edge −→e R
ij ∈ ER

f and backward edge ←−e R
ji ∈ ER

f with

capacities

−→
R ij = Rij − fR

ij ,
←−
R ij = fR

ij

respectively. For each pair of social edges eSij, e
S
ji ∈ ES, we construct a pair of edges

−→e S
ij ,
−→e S

ji ∈ ES
f with capacities

−→
S ij = Sij − fS

ij ,
−→
S ji = Sji − fS

ji

respectively. We do not construct an edge in the residual graph if its capacity is zero.

Then we set the weights of each forward edge −→e R
ij ∈ ER

f and each backward edge
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Figure 3.9: Illustration of Algorithm 1.
←−e R

ji ∈ ER
f as

−→
WR

ij = Uij ,
←−
WR

ij = −Uij

respectively. The weights of each pair of edges −→e S
ij ,
−→e S

ji ∈ ES
f are set to

−→
W S

ij =
−→
W S

ji = 0.

We show how to construct the residual graph by an illustrative example in Fig. 3.8.

In particular, for each edge, the number before / is the flow value; the number before

() is the capacity; the number in () is the weight. The following lemma establishes

the optimality condition for solving problem (3.5).

Lemma 3.2. A flow f is optimal for problem (3.5) if and only if there exists no cycle

of positive weight in the residual graph Gf .
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Algorithm 1: Find the optimal flow for problem (3.5) in social-request graph G

input : Social-request graph G
output: The optimal flow for problem (3.5)

1 Initialize an empty flow f in G;
2 while There exists a cycle of positive weight in the residual graph Gf of flow f do

3 Find a cycle c of positive weight in Gf ;
4 Compute the residual capacity rc of cycle c;
5 Augment flow f with a balanced flow of value rc along cycle c;

6 end

7 return Flow f ;

Proof : The “only if” part is easy to show: If there exists a cycle of positive

weight in Gf , then we can augment the flow f with a balanced flow of value ǫ > 0

along that cycle to construct a circulation flow with larger utility.

Next we show the “if” part. Suppose there exists no cycle of positive weight in

Gf but there exists a circulation flow f ′ in G with larger utility than f . Similar to the

residual graph Gf , we construct a graph G , (V,E
S ∪ E

R
) from G by constructing

−→e R
ij ,
←−e R

ij ∈ E
R
for each eRij ∈ ER and −→e S

ij ,
−→e S

ji ∈ E
S
for each pair of eSij , e

S
ji ∈ ES,

and setting their weights the same as those in Gf . The difference between Gf and

G is that all the edges are constructed in G (an edge is not constructed in Gf if its

capacity is 0) and have unlimited capacities. Therefore, the edges in Gf is a subset

of the edges in G. Then we can define a flow g in G by defining the flows in g on the

edges of G as

−→g R
ij = max{0, f ′Rij − fR

ij }, ∀−→e R
ij ∈ E

R

←−g R
ij = max{0, fR

ij − f ′Rij }, ∀←−e R
ij ∈ E

R

−→g S
ij = f ′Sij − fS

ij , ∀−→e S
ij ∈ E

S
.

It follows from the definition that

−→g R
ij −←−g R

ij = f ′Rij − fR
ij , ∀eRij ∈ ER.
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Then the net flow value at each node i ∈ V in flow g isX
j:−→e R

ij
∈E

R

−→g R
ij +

X
j:←−e R

ji
∈E

R

←−g R
ji +

X
j:−→e S

ij
∈E

R

−→g S
ij −

X
j:←−e R

ij
∈E

R

←−g R
ij −

X
j:−→e R

ji
∈E

R

−→g R
ji

=
X

j:eR
ij
∈ER

�
f ′Rij − fR

ij

�
−
X

j:eR
ji
∈ER

�
f ′Rji − fR

ji

�
+
X

j:eS
ij
∈ES

�
f ′Sij − fS

ij

�
=

� X
j:eR

ij
∈ER

f ′Rij +
X

j:eS
ij
∈ES

f ′Sij −
X

j:eR
ji
∈ER

f ′Rji

Ǒ
−

� X
j:eR

ij
∈ER

fR
ij +

X
j:eS

ij
∈ES

fS
ij −

X
j:eR

ji
∈ER

fR
ji

Ǒ
= 0

where the last equality follows from that f ′ and f are circulation flows inG. Therefore,

g is a circulation flow in G. We observe that the flow on any edge e ∈ E
R \ER

f is zero

in g because 1) if e = −→e R
ij, then we have fR

ij = Rij and hence −→g R
ij = 0; 2) if e =←−e R

ij,

then we have fR
ij = 0 and hence ←−g R

ij = 0. We further observe that −→g S
ij ≤ 0 for any

edge −→e S
ij ∈ E

S \ ES
f since we have fS

ij = Sij . Since
−→
W S

ij = 0, ∀−→e S
ij ∈ E

S
, the weight

of flow g in G isX
i,j:−→e R

ij
∈E

R

�−→
WR

ij
−→g R

ij +
←−
WR

ij
←−g R

ij

�
=
X

i,j:eR
ij
∈ER

Uij

�
f ′Rij − fR

ij

�
=
X

i,j:eR
ij
∈ER

Uijf
′R
ij −

X
i,j:eR

ij
∈ER

Uijf
R
ij > 0

where the last inequality follows from the assumption that f ′ has larger utility than

f in G. Since g only has positive flows on the edges in Gf , using a similar argument

as in the proof of Lemma 3.1, g is the aggregate flow of balanced flows along cycles

each comprised of edges in Gf . Then the total weight of these flows along the cycles

in Gf is equal to the weight of flow g in G, which is greater than 0. This implies

that there must exist a cycle of positive weight in Gf , which is a contradiction to the

previous assumption. This completes the proof. �

Using Lemma 3.2, we can develop an algorithm as described in Algorithm 1

to solve problem (3.5). The algorithm starts with the empty flow in the network.

It iteratively finds a cycle of positive weight in the residual graph and cancels each

cycle by augmenting the current flow in the graph with a balanced flow along that

cycle, until no cycle of positive weight exists. In each iteration, the value of the flow
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to augment with is set to be the residual capacity of the cycle, which is the minimum

capacity of all edges in that cycle. We show how Algorithm 1 works by an illustrative

example in Fig. 3.9. In particular, for each edge, the number before () is the capacity;

the number in () is the weight. Fig. 3.9(a) shows the initial social-request graph with

the empty flow; Fig. 3.9(b) shows the residual graph after augmenting with a flow

of value 1 along cycle 2 → 3 → 4 → 2; Fig. 3.9(c) shows the residual graph after

augmenting with a flow of value 2 along cycle 1→ 2→ 3→ 1; Fig. 3.9(d) shows the

residual graph after augmenting with a flow of value 1 along cycle 1→ 4→ 3→ 1.

As for the step 2 in Algorithm 1, we can use an algorithm similar to the

Bellman-Ford algorithm [29] to find a cycle of positive weight in the residual graph,

if there exists one. In particular, the algorithm iteratively updates the maximum

weight M(t) from a source node s ∈ V to each other node t ∈ V \ {s}. In each

iteration, the algorithm checks each edge eSij ∈ ES
f or eRij ∈ ER

f once, and increases

the maximum weight M(j) to M(i) +
−→
W S

ij if M(i) +
−→
W S

ij > M(j). The algorithm

runs for |V | − 1 iterations. When it terminates, if M(t) for some t ∈ V \ {s} can be

further reduced by checking some edge, then there exists a cycle of positive weight in

the graph. The algorithm has running time O(|V |(|ES|+ |ER|).

For ease of exposition, we will focus on problem (3.5) with rational parameters:

the utilities and capacities of all social and request edges are rational numbers. This

setting is of important interest in general, since the parameters of most practical

problems are rational numbers. Then problem (3.5) with rational parameters can be

equivalently converted to one with integral parameters by multiplying with a suitably

large integer4 K. The solution of the original problem (with rational parameters) is

equal to the solution of the new problem (with integral parameters) divided by K.

4For example, it can be the least common multiple of the denominators in the fractional forms
of the rational numbers.
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For problem (3.5) with rational parameters, let U and R denote the maximum

utility and maximum capacity of a request edge, respectively (i.e., U = maxeij∈ER Uij ,

R = maxeij∈ER Rij). The following theorem shows that Algorithm 1 is correct and

efficient when the service divisible.

Theorem 3.3. For problem (3.5) with divisible sensing service and rational parame-

ters, Algorithm 1 computes the optimal flow and has running time O(|V ||ER|(|ER|+

|ES|)RUK2).

Proof: As discussed earlier, we first equivalently convert the problem to one

with integral parameters by multiplying them by an integer K.

Since the capacities of all edges in the graph are integral and the initial empty

flow is integral, the residual capacity of the cycle found in the first iteration of the

algorithm is integral, and hence the flow after augmentation is integral. Thus, by

induction, the updated flow after each iteration is also integral. This shows that the

algorithm finds an integral flow when it terminates, which is optimal by Lemma 3.2.

The utility of the initial empty flow is 0. The utility of any flow is up-

per bounded by the utility of the flow that saturates all request edges, which is

|ER|RUK2. Since the capacities of all edges are integral, the flow utility increases

by an integer no less than one at each iteration of Algorithm 1. Therefore, it takes

the algorithm at most |ER|RUK2 iterations to terminate. Since each iteration has

running time O(|V |(|ES|+ |ER|), the desired result follows. �

In many practical situations, sensing service is indivisible such that the opti-

mization variables of problem (3.5) have to be integers. In this case, we can equiva-

lently convert problem (3.5) with rational parameters to one with integer parameters

by rounding the capacities of all social and request edges to their respective nearest in-

tegers below (i.e., taking the floor function) and multiplying the utilities of all request
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edges by a suitably large integer K. Using a similar proof as that of Theorem 3.3,

we have the following result.

Theorem 3.4. For problem (3.5) with indivisible sensing service and rational param-

eters, Algorithm 1 computes the optimal flow and has running time O(|V ||ER|(|ER|+

|ES|)⌊R⌋UK).

In Section 3.5, simulation results demonstrate that the running time of Algo-

rithm 1 is much lower than the above bound.

Remark: The underlying rational of Algorithm 1 can be interpreted as fol-

lows. In each iteration of Algorithm 1, the flow in the social-request graph is aug-

mented with a balanced flow along a cycle of positive weight in the residual graph.

For each edge with positive weight in that cycle, the utility of flow on the corre-

sponding request edge increases, while for each edge with negative weight in that

cycle, that utility decreases. Since the total weight of the edges in the cycle is pos-

itive, the total utility of flow increases. In other words, a balanced flow along the

positive weight cycle captures the tradeoff between increasing the utilities on some

request edges and decreasing the utilities on some other request edges such that the

total utility increases. Note that although the flows on social edges does not generate

utility, the edges with zero weights in the residual graph, which are constructed from

the social edges, contribute to forming a cycle, and hence the utility obtained on

request edges.

Remark: It is worth noting that, when sensing service is indivisible, prob-

lem (3.5) is essentially an integer linear program (ILP), which is NP-hard to solve

in general. However, using a network flow approach, we can capture and exploit the

specific combinatorial structure of the problem, based on which a polynomial-time

algorithm can be developed to solve it.

55



3.4.3 Further Discussions

It is a widely observed phenomenon in real social networks that people tend to be

similar to their friends in a variety of ways (e.g., age, gender, affiliation), which is

known as the principle of homophily [30]. As a result, social friends are also likely to

be similar in physical locations (e.g., colleagues in the same workplace). Therefore,

when a user’s request can only be served by a physical neighbor, it is likely to be

served by a social friend nearby under the STAR mechanism. However, even when

the user has no social friends nearby, it can still be served by any physical neighbor if

they are both in a STAR cycle (as illustrated in Fig. 3.4). Furthermore, depending on

the specific context of a sensing service, a user’s request is not necessarily served by

its physical neighbors. For example, a user can request to know the traffic condition

at a remote location that it will visit later, or the availability of a channel used

by a licensed transmitter at a distant location. In other words, if two users are

connected in the request graph, they are not necessarily close physically. Therefore,

the effectiveness of the STAR mechanism does not rely on significant overlapping of

a user’s social friends and physical neighbors.

Although each social credit limit is set by a user individually, users can ne-

gotiate the credit limits for each other. After the initial declaration, credit limits

are updated by the platform in each round according to the credit transfers among

users in that round. In addition, users can also change the credit limits based on the

dynamics of their social trust. For example, users can increase the credit limits to

each other if their social trust improves.

3.5 Performance Evaluation

In this section, we provide simulation results to evaluate the performance of the STAR

mechanism. We compare STAR with two incentive mechanisms as benchmarks, which
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Figure 3.10: Social network structure in
real dataset.
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Figure 3.11: Degree of social edge in real
dataset.

use social trust only and reciprocity only, respectively:

• Social trust based mechanism (ST): Under this mechanism, a user is willing to

provide service to another if and only if it receives social credit from that user

or an intermediate user. Therefore, in the social-request graph, this mechanism

can use a cycle consisting of social edges and exactly one request edge (e.g., as

illustrated in Fig. 3.4(c),(d));

• Reciprocity based mechanism (RP): Under this mechanism, a user is willing to

provide service if and only if it also receives service from another. Therefore,

in the social-request graph, this mechanism can use a cycle consisting of only

request edges (e.g., as illustrated in Fig. 3.4(a),(b)).

We observe that each benchmark mechanism only uses a subset of the incentive

structures (i.e., the cycles in the social-request graph) used in the STAR mechanism.

Note that the incentive mechanism only using social trust is equivalent to that in [27].
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Figure 3.12: Average number of social edge
in real dataset.
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Figure 3.13: Average degree of social edge
in real dataset.
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Figure 3.14: Impact of PS for random set-
ting.
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Figure 3.15: Impact of PR for random set-
ting.

3.5.1 Simulation Setup

To illustrate the impact of different parameters of the mobile social network on the

performance, we consider a random setting as follows. We simulate the social graph

GS and the request graph GR using the Erdős-Rényi (ER) graph model [31], where

a social edge and a request edge exist from one node to another with probability PS

and PR, respectively. We assume that service is divisible. If a social edge exists, its

social credit limit follows a normal distribution N(µS, σ
2
S), where µS and σ2

S denote

58



1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

Mean of social credit limit

N
or

m
al

iz
ed

 to
ta

l s
er

vi
ce

 

 

RP
ST
STAR

Figure 3.16: Impact of µS for random set-
ting.
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Figure 3.17: Impact of µR for random set-
ting
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Figure 3.18: Impact of N for random set-
ting.
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Figure 3.19: Impact of µU for random set-
ting.

the mean and variance, respectively; if a physical edge exists, the amount of requested

service and the utility per unit service follows a normal distribution N(µR, σ
2
R) and

N(µU , σ
2
U) respectively. We set default parameter values as: N = 10, PS = 0.2,

PR = 0.2, µS = µR = 5, σ2
S = σ2

R = 1, µU = 10, σ2
U = 2.

To evaluate the performance of the STAR mechanism in practice, we also

consider a practical setting. Specifically, we generate the social graph according to

the real dataset from Brightkite [32]. Brightkite is a online social networking service

based on mobile phones where users share their checking-in locations in an explicit
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Figure 3.20: Impact of PR for random set-
ting.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Range of service request amount

R
eq

ue
st

 c
om

pl
et

io
n 

ra
tio

 

 

RP
ST
STAR

Figure 3.21: Impact of µR for random set-
ting.
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Figure 3.22: Impact of N for random set-
ting.

10 20 30 40 50

1

1.5

2

Number of users

N
or

m
al

iz
ed

 to
ta

l s
er

vi
ce

 

 

RP
ST
STAR

Figure 3.23: Impact of N for practical set-
ting.

social network. For this dataset, we illustrate the social network structure of 20

users in Fig. 3.10 and the users’ degree of social edge in Fig. 3.11. We also plot the

average number of social edge between a pair of users (in analogy to the probability

of social edge in the ER model) versus the number of users in Fig. 3.12, and plot the

average degree of social edge in Fig. 3.13. We simulate the request graph based on the

context of spectrum crowdsensing discussed in Section 3.3.2. We consider 5 licensed

transmitters and N users randomly located in a 1000m× 1000m area. The licensed

transmitters operate on 5 orthogonal channels, respectively. We assume that the
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Figure 3.24: Impact of N for practical set-
ting.
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Figure 3.25: Impact of N for practical set-
ting.
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Figure 3.26: Impact of PSi
for random set-

ting.
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Figure 3.27: Impact of PRi
for random set-

ting.

utility of a user’s sensing service for a channel is equal to the inverse of its distance

from the licensed transmitter that operates on that channel. Each user randomly

selects one channel, and requests sensing service for that channel from at most 3

users randomly selected from the other users who have better channel conditions than

itself for that channel. We assume that the sensing service is indivisible. The social

credit limit and the service request amount are randomly drawn from {1, · · · , NS}

and {1, · · · , NR}, respectively. We set NS = NR = 5 as default values.
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Figure 3.28: Impact of µSi
for random set-

ting.
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Figure 3.29: Impact of µRi
for random set-

ting.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

Individual mean of utility per unit service

N
or

m
al

iz
ed

 u
se

r 
se

rv
ic

e

 

 

RP
ST
STAR

Figure 3.30: Impact of µUi
for random set-

ting.
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Figure 3.31: Impact of µRi
for random set-

ting.

3.5.2 Simulation Results
3.5.2.1 System Efficiency

We compare the system performance of the STAR mechanism with the benchmark

mechanisms RP and ST. We first evaluate the maximum total amount of service

provided under different mechanisms. To highlight the performance comparison, we

normalize the results of STAR and ST with respect to RP. We illustrate the impact

of PS, PR, µS, µR, and N on the maximum total amount of provided service in Figs.
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Figure 3.32: Individual user service
amount for practical setting.
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Figure 3.34: Running time of Algorithm 1 for practical setting.

3.14-3.18, respectively. As expected, the performance of STAR always dominates that

of RP and ST, which is due to that STAR jointly exploits social trust and reciprocity.

Figs. 3.14 and 3.16 show that STAR and ST perform better with respect to RP as

PS or µS increases. This is because that as social trust improves, more service can be

provided using social trust under STAR and ST, while RP does not benefit from the

improved social trust. On the other hand, Figs. 3.15 and 3.17 show that STAR and

ST perform worse with respect to RP as PR or µR increases. The reason is that as

users have more service requests among each other, a significant part of the increment
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in service request can be satisfied using reciprocity. We observe from Figs. 3.14 and

3.16 that the performance gap between STAR and ST decreases as PS increases,

while it remains almost the same as µS increases. This shows that the connectivity

of the social network has a greater impact on the performance of ST than the social

trust levels. Due to this reason, Fig. 3.18 shows that the performance gap between

STAR and ST decreases as N increases, since the connectivity of the social network

improves as the number of users increases. We also evaluate the maximum total

utility of service provided under different mechanisms. We illustrate the impact of

µU on the maximum total utility of provided service in Fig. 3.19. We observe that the

performance gaps among RP, ST, and STAR remain almost the same as µU increases.

This is as expected, since the utility per unit service acts as a “scaling” factor that

has the same effect on the performance of different mechanisms.

Next we evaluate the request completion ratio under different mechanisms,

which is defined as the ratio of the amount of provided service to the amount of re-

quested service. We illustrate the impact of PR, µR, and N on the request completion

ratio in Figs. 3.20-3.22, respectively. We observe from Figs. 3.20 and 3.21 that for

all mechanisms, the total amount of provided service increases faster than that of re-

quested service as PR increases, while it increases slower as µR increases. This shows

that a large diversity of users’ service requests is beneficial for system efficiency. Due

to this reason, as illustrated in Fig. 3.22, the request completion ratio improves for

all mechanisms as the number of users increases.

For the practical setting, Figs. 3.23-3.25 illustrate the total service amount,

total service utility, and request completion ratio when the total utility of provided

service is maximized, respectively, as N increases. We can see that STAR always

significantly outperforms RP and ST, with a performance gain ranging from 14% to

82%, especially when the number of users is small.
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3.5.2.2 Individual Performance

We evaluate individual users’ performance under different mechanisms when the sys-

tem efficiency is maximized. To demonstrate the impact of a particular parameter,

we vary that parameter for different users, while keeping other parameters the same

for all users. We also normalize the results to highlight the performance comparison.

In Figs. 3.26-3.29, we illustrate the amount of received service of each user (i.e., the

amount of satisfied service requests of each user) for a system of 10 users when the

total amount of provided service is maximized, where users are different only in a

user’s probability of having a social edge from another user PSi
, probability of having

service request from another user PRi
, mean of social credit limit from another user

µSi
, and mean of service request amount from another user µRi

, respectively. In Figs.

3.30-3.31, we illustrate each user’s received service amount and received service utility

when the total utility of provided service is maximized, where users are different only

in a user’s utility per unit service µUi
. We observe that each user always performs

better under STAR than under RP and ST. This shows that STAR can improve

each individual user’s performance while the system objective is to maximize system

efficiency. We also observe that an individual user performs better than other users

if it has a larger parameter value than others. This shows that STAR can achieve

service differentiation, which is a desirable property for fairness: if a user has more

social trust or service requests from others than other users have, then that user can

also receive more service than others.

Fig. 3.32 illustrates each individual user’s received service amount for the 20

users in the real dataset [32] with the social network structure as given in Fig. 3.10.

We observe from Fig. 3.11 that the degree of social edge can be very different for

different users in real social networks. Accordingly, Fig. 3.32 shows that users with
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higher degrees (with larger user indices) receive more service than those with lower

degrees.

3.5.2.3 Computational Complexity

We evaluate the computational complexity of using Algorithm 1 to find the maximum

total utility of provided service under the STAR mechanism for the practical setting.

We convert the service utility values into integers by multiplying them by a large

integer K and rounding them down to the respective nearest integers. We run simu-

lations on a Windows 7 desktop with 3.1GHz CPU and 8GB memory. We illustrate

the number of cycle-canceling iterations (i.e., the iterations of the while loop) and

the running time of executing Algorithm 1 as N increases for different values of NR

and K in Fig. 3.33 and Fig. 3.34, respectively. We assume that NS = NR. We observe

that the number of iterations increases almost linearly in the number of users while

the running time is increasing quadratically. This shows that Algorithm 1 is scalable

for large systems in practice. As expected, we also observe that the computational

complexity is higher when NR or K is larger.

3.6 Related Work

There have been numerous studies on incentive design for stimulating user coop-

eration in networks. Existing literature on this subject can be broadly classified

into three categories. One category of work makes use of reciprocity (also known as

barter) [33–38]. Although a reciprocity-based approach is simple to implement, it

is inefficient in general since synchronously matched requests are unusual. Another

category is based on (virtual) currency [39–42], in which a user earns currency by pro-

viding service to others and spends currency to receive service from others. The use

of currency as a medium of exchange overcomes the shortcoming of reciprocity-based

approaches by enabling users to “asynchronously trade” service. However, a major
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drawback of using currency is that it incurs a high implementation overhead, mainly

due to the need to inhibit malicious manipulation among users without mutual trust.

Consider, for example, Bitcoin [43] which has recently drawn widespread attention

as a promising digital currency. The creation and transfer of bitcoins need to con-

sume considerable computing resources so that they can be secured against potential

cheating using cryptographic tools. Reputation-based approaches [44–46] constitute

the third category. Since reputation score can be viewed as a form of currency, these

approaches share the same advantages and disadvantages as the currency-based ones.

The social credit model used in this chapter falls into the class of credit net-

works [27, 47–50]. The credit is similar to a currency in that there is a need to keep

track of the credit information between each pair of neighbor users in the credit net-

work. However, since the credit is ensured by existing trust among users, it obviates

the need to secure the credit against cheating, and therefore can reduce implementa-

tion overhead significantly.

Compared to the studies mentioned above, the STAR mechanism overcomes

the inefficiency of only using reciprocity by using social credit as a “local” currency,

while it also circumvents the high implementation overhead incurred by a currency-

based approach since social credit is “secured” by existing social trust. Therefore,

STAR can efficiently stimulate users to provide service in a cost-effective way.

Exploiting social aspect for mobile networking is an emerging paradigm for

network design and optimization [16, 51–53]. Very few work have exploited both

social trust and reciprocity for stimulating cooperation in networks. [16] has recently

studied using social trust and reciprocity to stimulate cooperative communication

based on a coalitional game. Our work is different from [16] in that each user in

the latter can participate in at most one reciprocity cycle and social trust levels are

unlimited therein.
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3.7 Conclusion

In this chapter, we have proposed a socially-aware crowdsensing system that exploits

social trust to stimulate users’ participation. The incurred implementation overhead

is low since it obviates the need of a global currency. For this system, we have de-

signed STAR, an incentive mechanism using a synergistic marriage of social trust

and reciprocity. Based on the STAR mechanism, we have shown that all sensing

requests can be satisfied if and only if users who request more sensing service than

they can provide can transfer sufficient social credit to users who can provide more

than they request. We have also developed an efficient algorithm to maximize the

utility of sensing service provided under STAR, for both cases of divisible and indi-

visible service. Extensive simulation results have confirmed that STAR can achieve

significantly better efficacy than using social trust only or reciprocity only.
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Chapter 4

EXPLOITING SOCIAL SERVICES TO BOOST DATA USAGE IN WIRELESS

SERVICES

4.1 Introduction

The past few years have witnessed pervasive penetration of mobile devices in people’s

daily life, thanks to the wireless technology advances. Motivated by many social

applications on mobile platforms (e.g., WeChat, WhatsApp [54, 55]), mobile users’

data usage behaviors have been increasingly influenced by their social relationships.

In 2014, the number of online social media users on mobile platforms has reached 1.6

billion, accounting for 44% of mobile users and 80% of online social media users [56].

The popularity of social services on mobile platforms also gives opportunities

to wireless service providers who operate the mobile networks. Intuitively, social

services can encourage mobile users to demand more data usage by stimulating their

interactions with each other through these services (e.g., online social gaming and

blogging). When a user increases its activity in a social service, its social friends

would also increase their activities. Therefore, users’ data usage levels for social

services present social network effect to others [57]. This demand increase provides a

great potential for wireless providers’ revenue increase.

However, this potential benefit is subject to the limited wireless capacity in

physical communication networks (e.g., spectrum). As users increase their data usage,

they also experience more congestion (e.g., service delays), which discourages them

to use more. The increasing congestion poses a significant challenge for wireless

providers to increase their revenues.

As a result, mobile users’ data usage behaviors are not only subject to con-

gestion effect in the physical network, but also social network effect in the social
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Figure 4.1: Illustration of socially-aware mobile users.

network (as illustrated in Fig. 4.1), which has been largely overlooked by traditional

wireless providers. To fully exploit the potential benefit brought by social services, it

is necessary to investigate users’ data usage behaviors in these two domains, so that

a wireless provider can take the best strategy in favor of its revenue. With this in-

sight, we not only analyze users’ interactions subject to both network and congestion

effects, but also study the optimal pricing strategy for the wireless provider.

The main contributions of this chapter can be summarized as follows.

• Stackelberg game formulation: By jointly considering users’ social relationships

and the wireless network’s congestion, we formulate the interaction between

the wireless provider and mobile users as a Stackelberg game: In Stage I, the

wireless provider chooses a price to maximize its revenue; in Stage II, mobile

users choose their data usage levels based on the price to maximize their socially-

aware payoffs.

• Equilibrium analysis for user demands in Stage II: We first give a general con-

dition under which there exists a user demand equilibrium (UDE), and then we

show that under a further general condition the game is a concave game and

thus admits a unique UDE. We also propose a distributed algorithm for users
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to achieve the UDE. Next we show that a user’s usage can increase when price

increases. We further show that if the social network is symmetric, the total

usage always increases when a user’s parameter (e.g., social tie) improves.

• Provider’s optimal pricing in Stage I: Finally, by taking into account users’

equilibrium demands, we develop an optimal pricing algorithm to maximize the

revenue of the wireless provider. We evaluate the performance of total usage and

revenue by simulations, and draws useful engineering insights for the wireless

provider’s operation.

The rest of this chapter is organized as follows. In Section 4.2, we formulate the

Stackelberg game between the wireless provider and mobile users. Section 4.3 studies

users’ demand equilibrium in Stage II. Section 4.4 studies the provider’s optimal

pricing strategy in Stage I. Simulation results and discussions are given in Section

4.5. Related work are reviewed in Section 4.6. Section 4.7 concludes this chapter.

4.2 System Model

4.2.1 Socially-aware Wireless Service

Consider a set of users N , {1, . . . , N} participating in a wireless data service pro-

vided by a wireless operator (e.g., AT&T). Each user i ∈ N consumes an amount

of data usage in the wireless service, denoted by xi where xi ∈ [0,∞). Let x ,

(x1, . . . , xN) denote the usage profile of all the users and x−i denote the the usage

profile without user i. Affected by the other users’ usage subject to congestion effect

due to the limited network resource, the payoff of user i by consuming data usage xi

is

vi(xi,x−i, p) = aixi −
1

2
bix

2
i −

1

2
c(
X
j∈N

xj)
2− pxi,

where ai > 0 and bi > 0 are internal utility coefficients that capture the intrinsic

value of wireless service to user i, c > 0 is a congestion coefficient that is determined
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by the resources constraints of the wireless network, and p is the usage-based price

charged by the wireless provider1. As in [58], the quadratic form of the internal utility

function not only allows for tractable analysis, but also serves as a good second-

order approximation for a broad class of concave utility functions. In particular,

ai models the maximum internal demand rate, and bi models the internal demand

elasticity factor. For the congestion model, the quadratic sum form reflects that a

user’s congestion experience is affected by all the users, and the marginal cost of

congestion increases as the total usage increases.

Traditional wireless providers’ operation does not take into account the fact

that social services encourage mobile users to demand more data usage. We thus

account for this effect in our model. Then user i’s payoff includes the addition of

social utility, i.e.,

ui(xi,x−i, p) = aixi −
1

2
bix

2
i +

X
j 6=i

gijxixj −
1

2
c(
X
j∈N

xj)
2 − pxi (4.1)

where gij ≥ 0 is the social tie that quantifies the social influence from user j to user

i. As in [58], the product form gijxixj of the social utility function captures that a

user derives more utility by increasing its usage in social services, and the marginal

gain of social utility increases as its social friends increase their usage. Therefore,

the social services bring in social network effect among users and can increase their

utilities.

4.2.2 Stackelberg Game Formulation

We model the interaction between the wireless provider and mobile users for the

socially-aware wireless service as a two-stage Stackelberg game.

Definition 4.1 (Two-Stage Pricing-Usage Game).

1Usage-based pricing is widely used in practice by wireless operators to control the demand.
The price is the same here for all users to ensure fairness.
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• Stage I (Pricing): The wireless provider chooses price p to maximize its revenue:

p∗ = arg max
p∈[0,∞)

t(x)p

where t(x) ,
P

i∈N xi denotes the total usage under strategy profile x;

• Stage II (Usage): Each user i ∈ N chooses its data usage level xi to maximize

its payoff given the price p and the usage levels of the other users x−i:

x∗i = arg max
xi∈[0,∞)

ui(xi,x−i, p).

We study the two-stage pricing-usage game by backward induction [59]. For

Stage II, given a price p chosen by the wireless provider in Stage I, we are interested in

the existence of a stable outcome of users’ interactions at which no user will deviate.

This leads to the concept of user equilibrium.

Definition 4.2 (User Demand Equilibrium). For any price p given in Stage I, the

user demand equilibrium (UDE) in Stage II is a strategy profile x∗ such that no user

can improve its payoff by unilaterally changing its usage, i.e.,

x∗i = arg max
xi∈[0,∞)

ui(xi,x
∗
−i, p), ∀i.

Given the UDE in Stage II, we will study the optimal pricing strategy for the

wireless provider in Stage I.

4.3 Stage II: User Demand Equilibrium

In this section, we study users’ demands in Stage II.

Using the concave payoff function (4.1), by setting the derivative ∂ui(xi,x−i)
∂xi

= 0 as the first-order condition, we obtain the best response function of user i as

ri(x−i) = max

8<:0, ai − p

bi + c
+
X
j 6=i

gij − c

bi + c
xj

9=; . (4.2)
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According to (4.2), each user i’s usage demand consists of two parts: internal demand

ai−p
bi+c

that is independent of the other users, and external demand
P

j 6=i
gij−c
bi+c

xj that

depends on the other users. The coefficient
gij−c
bi+c

represents the marginal increase or

decrease of user i’s demand as user j’s usage increases: when gij > c, user i’s impact

from user j is dominated by social network effect; when gij < c, it is dominated by

congestion effect.

4.3.1 Existence and Uniqueness of UDE

We first investigate the existence of UDE in Stage II. We make the following assump-

tion.

Assumption 4.1.
X
j 6=i

|gij − c|
bi + c

< 1, ∀i.

This assumption is for analysis tractability. It is an important condition to

guarantee the existence of UDE, as there can exist no UDE when it does not hold

(as illustrated by an example in Fig. 4.2). According to the best response function

(4.2), Assumption 1 implies that any user’s absolute external demand |Pj 6=i
gij−c
bi+c

xj |

is less than the maximum usage maxj 6=i xj among all the other users. This is a mild

condition as the aggregate effect experienced by a user from all the other users would

be less than the largest effect the user can experience from an individual of the other

users. A similar assumption is made in [58] for similar considerations.

Now we can show that there always exists a UDE in Stage II.

Theorem 4.1. Under Assumption 1, the Stage II game admits a UDE.

The proof is given in Appendix and the main idea is to show that the game

has an equivalent game which admits a UDE.

Next we give another general technical condition under which the game admits

a unique UDE.
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r1(x2)

r2(x1)

0

a2−p
b2+c

Figure 4.2: Illustration of Stage II for two users.

Theorem 4.2. Under Assumption 1, the Stage II game admits a unique UDE ifP
j 6=i

|gji−c|
bi+c

< 1, ∀i.

The proof is given in Appendix and the main idea is is to show that the game

is a concave game [60], and thus admits a unique UDE.

Remark: According to Theorem 4.2, it is worth noting that the Stage II game

admits a unique UDE when users’ social ties are symmetric (i.e., gij = gji, ∀i 6= j).

The symmetric setting of social networks is of great interests. Motivated by the idea

of social reciprocity [33], a user’s social behavior to another is likely to imitate the

latter’s behavior to the former. As a result, two users’ social ties to each other tend

to be the same.

4.3.2 Computing and Achieving UDE

As we have showed the existence of UDE, we then design an algorithm to compute the

UDE, as described in Algorithm 2. The algorithm iteratively updates users’ strategies

based on their best response functions (4.2) and converges to the UDE.

Theorem 4.3. Algorithm 2 computes the UDE in Stage II.

The proof is given in Appendix and the main idea is to show that the best re-
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Algorithm 2: Compute the UDE in Stage II

1 input: precision threshold ǫ;

2 x
(0)
i ← 0, ∀i ∈ N ; t← 1;

3 repeat

4 foreach i ∈ N ;
5 do

6 x
(t+1)
i = max

n
0, ai−p

bi+c
+
P

j 6=i
gij−c
bi+c

x
(t)
j

o
;

7 end

8 t← t + 1;

9 until ‖x(t) − x(t−1)‖ ≤ ǫ;

10 return x(t);

sponse updates in the algorithm result in a contraction mapping and hence converges

to a fixed point.

It is desirable for users to reach the UDE in a distributed manner. We then

propose a distributed update algorithm based on Algorithm 2, as described below.

Algorithm 3: Distributed algorithm to achieve the UDE in Stage II

1 each user i ∈ N chooses an initial usage x
(0)
i ≥ 0;

2 loop at each time interval t = 1, 2, . . .
3 each user i ∈ N in parallel:

4 updates its usage by max

8<:0, ai − p

bi + c
+

1

bi + c

X
j 6=i,gij>0

gijx
(t)
j −

c

bi + c

X
j 6=i

x
(t)
j

9=;
5 end loop

Note that the usage update in Algorithm 3 is equivalent to the best response

update in Algorithm 2. Each user i chooses its best response usage based on the usage

of its social friends who have social influences to it (i.e., each user j with gij > 0),

which can be obtained from the social friends, and the total usage of all users, which

can be obtained from the wireless provider. The correctness of Algorithm 3 follows

from that of Algorithm 2 and is thus omitted.

Proposition 4.1. Algorithm 3 achieves the UDE in Stage II.
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4.3.3 Parameter Analysis of UDE

We first investigate the impact of price on the UDE. To draw clean insights, we start

with the case for two users. Without loss of generality, assume that a1 ≥ a2.

Proposition 4.2. For Stage II for two users, there exists a price threshold pth ∈ [0, a1]

where

pth =
a2(b1 + c)− a1(c− g21)

b1 + g21
(4.3)

such that the UDE x∗ is given as follows, depending on the price p:

• High price regime: When p ≥ a1, x
∗
1 = x∗2 = 0;

• Medium price regime: When pth ≤ p < a1, x
∗
1 =

a1−p
b1+c

and x∗2 = 0;

• Low price regime: When 0 ≤ p < pth,

x∗1 =
(a1−p)(b2+c)−(a2−p)(c−g12)

b1b2−g12g21+c(b1+b2+g12+g21)

and x∗2 =
(a2−p)(b1+c)−(a1−p)(c−g21)

b1b2−g12g21+c(b1+b2+g12+g21)
.

The proof is given in Appendix. According to (4.3), there are three cases of

the threshold pth depending on which effect dominates user 2’s experience from user

1 (as illustrated in Fig.4.3).

1. Neither effect: When g21 = c, we have pth = a2. As social network effect and

congestion effect cancel each other, user 2 experiences neither effect from user

1. Then user 2’s usage demand is equal to its internal demand, and it reaches

0 when p = a2.

2. Congestion effect: When g21 < c, we have pth < a2. As user 2 experiences

congestion effect from user 1, even when p is less than a2 such that user 2 has a

positive internal demand, its external demand can be sufficiently negative such
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Figure 4.3: Total usage at the UDE in Stage II for two users.

that user 2’s usage demand is negative. In particular, when a1
a2
≥ b1+c

c−g21
, user 2’s

usage is 0 even when the price is 0.

3. Social network effect: When g21 > c, we have pth > a2. As user 2 experiences

social network effect from user 1, even when p is greater than a2 such that user 2

has a negative internal demand, its external demand can be sufficiently positive

such that user 2’s usage demand is positive.

Next we study the general case with multiple users. For convenience, let us

define

B=

266666666664
b1 + c c · · · c

c b2 + c · · · c

...
...

. . .
...

c c · · · bN + c

377777777775 , G=

266666666664
0 g12 · · · g1N
g21 0 · · · g2N
...

...
. . .

...

gN1 gN2 · · · 0

377777777775 .
Also define C as the N × N matrix with each entry being c. For a UDE x∗, let S be

the set of users with positive usage in x∗ (i.e., x∗i > 0, ∀i ∈ S and x∗i = 0, ∀i /∈ S).

For convenience, let vS denote the |S| × 1 vector comprised of the entries of a vector

v with indices in S, MS denote the |S| × |S| matrix comprised of the entries of a

matrix M with indices in S × S, and [M ]i,S denote the 1 × |S| vector comprised of

the entries of the ith row of a matrix M with column indices in S. According to the
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best response function (4.2), x∗S is the solution to the system of equations

BSxS = aS − p1S + GSxS

where 1 denotes the N × 1 vector of 1s. We need the following lemma:

Lemma 4.1. (BS −GS) is invertible for any set S ⊆ N .

The proof of Lemma 4.1 is given in our anonymous online technical report [61].

Thus we have

x∗S = (BS −GS)
−1(aS − p1S). (4.4)

When users have the same internal coefficients ai, we can show that the same

set of users have positive equilibrium usage at different prices.

Proposition 4.3. For Stage II, when ai = a, ∀i, the UDE x∗ is given as follows,

depending on the price p:

• when p > a, x∗i = 0, ∀i;

• when 0 ≤ p ≤ a, there exists a set S ⊆ N such that for any p ∈ [0, a),

x∗i = [(BS −GS)
−1(aS − p1S)]i > 0, ∀i ∈ S,

and x∗i = 0, ∀i /∈ S, where [M ]i denotes the ith row of matrix M .

The proof is given in Appendix. Proposition 4.3 shows that the set of users

with positive equilibrium usage (if they exist) does not change with price, and each

user’s positive usage decreases when price increases.

We then show by a counterexample that if users have different internal co-

efficients ai, a user’s equilibrium usage can increase when price increases. Consider
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a three-user game where a1 = 2, a2 = a3 = 1.5, bi = 3, ∀i, c = 2, p = 0.4, and

g23 = g32 = 4, gij = 0, ∀{i, j} 6= {2, 3}2. We can show that there exists a unique

UDE x∗ and it is the solution to the system of equations:

5x1 + 2x2 + 2x3 = 1.6

5x2 + 2x1 − 2x3 = 1.1

5x3 − 2x2 + 2x1 = 1.1.

Solving these equations, we have x∗1 = 0.0571, x∗2 = 0.3286, x∗3 = 0.3286. When price

p increases to 0.5, the new UDE is the solution to

5x1 + 2x2 + 2x3 = 1.5

5x2 + 2x1 − 2x3 = 1

5x3 − 2x2 + 2x1 = 1

which is x∗1 = 0.0714 > 0.0571, x∗2 = 0.2857, x∗3 = 0.2857. Thus the usage of user 1

increases.

Remark: Intuitively, when the price increases, the usage of both user 2 and 3

decrease and the internal demand of user 1 decreases. However, as user 1 experiences

strong congestion effect from both user 2 and 3, user 1’s external demand increases

due to the decrease of congestion effect, and it increases faster than the decrease of

user 1’s internal demand as price increases, such that the total of internal and external

demand increases. In addition, a larger internal coefficient a1 of user 1 than that of

user 2 and 3 allows user 1 to have a positive equilibrium usage x∗1 = 0.0714 even when

its external demand is negative due to the strong congestion effect. Indeed, if user 1

has the same internal coefficient a1 = 1.5 as user 2 and 3, then we can show that its

equilibrium usage is 0.

2Note that Assumption 1 holds under this setting.
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Figure 4.5: Total revenue at the UDE is a
piece-wise quadratic function of price.

Furthermore, when users have different internal coefficients ai, we have the

following result.

Proposition 4.4. For Stage II, the UDE x∗ is given as follows, depending on the

price p:

• when p > max
i∈N

ai, x
∗
i = 0, ∀i;

• when 0 ≤ p ≤ max
i∈N

ai, there is a set of prices p0 , 0 < p1 < · · · < pM < pM+1 ,

max
i∈N

ai, and for each k ∈ {0, . . . ,M}, there exists a set Sk ⊆ N such that for

any p ∈ [pk, pk+1],

x∗i = [(BSk −GSk)
−1(aSk − p1Sk)]i > 0, ∀i ∈ Sk

and x∗i = 0, ∀i /∈ Sk.

The proof is given in Appendix. Proposition 4.4 shows that each user’s equi-

librium usage is a piece-wise linear function of price: within each interval of price

[pk, pk+1], the equilibrium usage is a linear function of the price p.
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Figure 4.6: An example of Stage II for two users.

Next we investigate the impacts of other parameters on the UDE.We show that

total usage always increases when a user’s parameter improves, under the condition

that users’ social network is symmetric. For tractable analysis, we assume that users

have the same internal coefficient ai
3.

Proposition 4.5. For Stage II, when ai = a, ∀i and social ties are symmetric (i.e.,

gij = gji, ∀i 6= j), the total equilibrium usage increases when a or any gij increases,

or any bi or c decreases.

The proof is given in Appendix. We illustrate Proposition 4.5 by an example

in Fig. 4.6. In particular, the unique UDE x∗ is achieved at the intersection of

the best response functions (bold lines): (a) g12−c
b1+c

∈ (−1, 0), g21−c
b2+c

∈ (−1, 0); (b)

g12−c
b1+c

∈ (0, 1), g21−c
b2+c

∈ (0, 1). When g12 = g21 increases, the UDE x∗ moves to x′. As

mentioned before, users’ social ties tend to be symmetric in practice due to social

reciprocity [33]. In Section 4.5, simulation results will show that the performance

under asymmetric social ties is very close to that under symmetric social ties.

3Users can still have different bi.
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4.4 Stage I: Optimal Pricing

In the previous section, we have investigated UDE in Stage II given a price chosen

by the wireless provider. In this section, we study the optimal pricing of the provider

in the Stage I game.

We first observe from Proposition 4.4 that the total usage is a piece-wise

linear function of price (as illustrated in Fig. 4.5(a)). As a result, the total revenue is

a piece-wise quadratic function of price (as illustrated in Fig. 4.5(b)). Based on this

observation, we develop an algorithm that computes the optimal price to maximize the

provider’s revenue, as described in Algorithm 4. The basic idea is to first determine

the price intervals that characterize the piece-wise structure, such that within each

price interval, the set of users with positive usage is the same at any price. Then we

find the optimal price within each interval that maximizes the revenue. Thus we can

find the optimal price with the maximum revenue among all the intervals.

In particular, Algorithm 4 starts with computing the set of users S with pos-

itive usage at price 0 by using Algorithm 2. Then this set S serves as the initial

condition for the following steps. As the price p increases from 0 to maxi∈N ai (which

is the largest possible value of the optimal price according to Theorem 4.4), it itera-

tively finds the critical prices at which the set S changes. In each iteration, given the

current critical price p, the next critical price p is the minimum price greater than

p at which some user i ∈ S with positive usage decreases its usage to 0, or some

user i /∈ S with usage 0 increases its usage to a positive value4. Within each price

interval [p, p], as the revenue R is a quadratic function of price p, the optimal price

in [p, p] that maximizes the revenue is the price p̂ such that ∂R(p)
∂p
|p=p̂ = 0, if p̂ is in

4Recall that some user’s equilibrium usage can increase when price increases as illustrated by
the example in Section 4.3.

83



Algorithm 4: Compute the optimal price to maximize revenue in Stage I

1 compute the UDE x∗ at price 0 using Algorithm 2;
2 find the set of users S with positive usage at the UDE x∗;
3 p← 0; p∗ ← 0; r∗ ← 0;
4 while p ≤ maxi∈N ai and S 6= ∅ do

5 S ′ ← ∅; S ′′ ← ∅;
6 foreach i ∈ S do

7 if [(BS −GS)
−1]i1S > 0 then

8 S ′ ← S ′ ∪ {i}; p̃i ← [(BS−GS)
−1]iaS

[(BS−GS)−1]i1S
;

9 end

10 end

11 foreach i /∈ S do

12 if [G− C]i,S(BS −GS)
−11S < −1 then

13 S ′′ ← S ′′ ∪ {i}; p̃i ← [G−C]i,S(BS−GS)
−1aS+ai

[G−C]i,S(BS−GS)−11S+1
;

14 end

15 end

16 p← min
i∈S′∪S′′

p̃i; k ← arg min
i∈S′∪S′′

p̃i; p̂← 1T
S
(BS−GS)

−1aS

21T
S
(BS−GS)−11S

;

17 if p̂ ∈ [p, p] then
18 p′ ← p̂;
19 else

20 if p̂ < p then

21 p′ ← p;
22 else

23 p′ ← p;
24 end

25 end

26 end

27 end

28 r′ ← p′1T
S (BS −GS)

−1(aS − p′1S);
29 if r′ > r∗ then
30 p∗ ← p′; r∗ ← r′;
31 end

32 p← p;
33 if k ∈ S then

34 S ← S \ {k};
35 else

36 S ← S ∪ {k};
37 end

38 end

39 end

40 return p∗, r∗;
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Figure 4.7: Probability of social edge in
real data trace.
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Figure 4.8: Impact of PS.

[p, p]; otherwise, the optimal price is one of the endpoints p and p. By comparing

the maximum revenues at the optimal prices for all the price intervals, the algorithm

finds the optimal price in the entire range of price.

Theorem 4.4. Algorithm 4 computes the optimal price in Stage I.

The proof is given in Appendix. In the next section, numerical results will

show that the computational complexity of Algorithm 4 is linear in the number of

users.

4.5 Performance Evaluation

In this section, we first use simulation results to evaluate the performance of the

two-stage game between the mobile users and wireless provider. Then we discuss the

engineering insights that can be drawn from the simulation results.

4.5.1 Simulation Setup

To illustrate the impacts of different parameters of mobile social networks on the

performance, we consider a random setting as follows. We simulate the social graph

G using the Erdős-Rényi (ER) graph model [31], where a social edge exists between
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Figure 4.9: Impact of µG.
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Figure 4.12: Impact of N .

each pair of users with probability PS. If a social edge exists, the social tie follows a

normal distribution N(µG, 2) (with mean µG and variance 2). We assume that each

ai follows a normal distribution N(µA, 2), and each bi follows a normal distribution

N(µB, 2). We set default parameter values as follows: N = 10, Ps = 0.8, µA = 4,

µB = 10, µG = 4, c = 4. To evaluate the performance in practice, we also simulate

the social graph according to the real data trace from Brightkite [32], which is a

social friendship network based on mobile phones. For this data trace, we plot the

average number of social ties between two users versus the number of users in Fig. 4.7.

If a social edge exists based on the real data, the social tie also follows a normal
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Figure 4.14: Computational complexity of
Algorithm 4.

distribution N(µG, 2).

As a benchmark, we evaluate the performance when users demand non-socially-

aware usage (NSU) in comparison to our proposed socially-aware usage (SU). Since

NSU is a special case of SU with all social ties being 0, the UDE and optimal pricing

for NSU can be computed as for SU. To highlight the performance comparison, we

normalize the results with respect to NSU. We also compare the performance under

SU with ER model based social graph (SU-ER) and with real data based social graph

(SU-real).

4.5.2 Simulation Results
4.5.2.1 Total Usage in Stage II

We first evaluate the performance of total usage in Stage II.

We illustrate the impacts of PS, µG, c on total usage in Figs. 4.8-4.10, re-

spectively. As expected, we observe from all these figures that SU always dominates

NSU, and can perform significantly better than NSU. From Figs. 4.8-4.9, we can see

that the performance gain of SU over NSU increases as PS or µG increases, and the

marginal gain is also increasing. Similarly, we can see from Fig. 4.10 that the perfor-

mance gain of SU over NSU increases as congestion coefficient c decreases, and the
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marginal gain is also increasing. We also evaluate the performance under SU with

ER model based the asymmetric social graph. We observe that its performance is

very close to that with the symmetric social graph.

Fig. 4.11 illustrates the impact of N on total usage. As expected, we observe

that the total usage always increases with the number of users. However, for the case

of NSU and SU-real, the marginal gain of total usage decreases with the number of

users, while for the case of SU-ER, the marginal gain increases. Intuitively, in the

former case, when a new user joins the network, as the new user’s social ties with the

existing users are weak, the congestion effect between the new user and the existing

users outweighs the social network effect between them. Furthermore, as more users

exist in the network, the weight difference between the congestion effect and the social

network effect increases, and thus the marginal gain of total usage by adding a user

decreases. In the latter case, as the new user’s social ties with the existing users are

strong, the roles of the congestion effect and social network effect are switched.

4.5.2.2 Optimal Price in Stage I

Next we evaluate the performance of the optimal price and optimal revenue in Stage I.

Fig. 4.12 illustrates the optimal price as the number of users increases. We

observe that the optimal price always decreases with the number of users. Intuitively,

this is because that as the number of users increases, more users have a higher internal

demand, so that increasing the price does not result in significant decrease in total

usage. Comparing different curves, we can also see that the optimal price decreases as

PS increases from 0 to 0.3 and then to 0.8. Intuitively, this is because that when social

network effect is strong, a low price is desirable, since it encourages users’ internal

usage which further stimulate significantly more usage by social network effect; when

congestion effect is strong, a high price is desirable, since decreasing the price cannot

significantly encourage users’ usage due to the congestion effect.
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Fig. 4.13 illustrates the optimal revenue achieved at the optimal price as the

number of users increases. As expected, we can have similar observations as for Fig.

4.11: when social network effect dominates congestion effect, the marginal gain of

optimal revenue by taking in more users is increasing; otherwise, the marginal gain

is decreasing.

Fig. 4.14 illustrates the computational complexity of Algorithm 4 as the num-

ber of users increases. The number of iterations is equal to the number of price

intervals that determine the piece-wise structure of total usage and revenue as a

function of price. We observe that the complexity is O(N).

4.5.3 Further Discussions

Based on the simulation results, we can draw the following engineering insights for

the operation of wireless providers.

• The observations from Figs. 4.8-4.10 suggest that as users’ social ties become

stronger (which can be promoted by social services), the wireless provider can re-

ceive an increasing total usage and thus revenue, and also an increasing marginal

gain. In addition, the wireless provider can also receive an increasing marginal

return by incorporating more resources for the wireless service to mitigate con-

gestion.

• The observations from Figs. 4.11 and 4.13 suggest that the wireless provider

should be aware of whether the social network effect determined by users’ social

ties dominates the congestion effect. If the social network effect dominates, it

receives an increasing marginal gain by taking in more users; otherwise, the

marginal gain is decreasing and the total usage will saturate when the number

of users is sufficiently large.
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• The observations from Fig. 4.12 suggest that the wireless provider should set

a low price when users’ social ties are strong (evidenced by the popularity of

social services), as the decrease of price will be outweighed by the increase of

total usage resulted from the social network effect, so that the total revenue

increases. Otherwise, the wireless provider should set a high price, as cutting

the price cannot stimulate sufficiently more usage due to the congestion effect

to compensate the price decrease.

4.6 Related Work

There have been many studies on users’ behaviors and the provider’s pricing strategy

when either network effect (also known as positive externality) or congestion effect is

present, respectively [58,62,63]. In [58], different pricing strategies of a provider have

been studied where users’ behaviors are only subject to network effect. When users

experience both network effect and congestion effect as considered in this chapter,

the coupling among users is very different and more complex than when only network

effect is present as in [58]. Very few work have studied the case where both net-

work effect and congestion effect are present. [64] has studied users’ behaviors when

they experience both network effect and congestion effect. However, it assumes that

the network effect is the same for all users, which does not capture the fact that

users experience different levels of network effect based on their diverse social ties as

considered in this chapter.

The social aspect of mobile networking is an emerging paradigm for network

design and optimization. Social contact patterns have been exploited for efficient

data forwarding and dissemination in delay tolerant networks [65, 66]. Social trust

and social reciprocity have been leveraged in [16] to enhance cooperative D2D com-

munication based on a coalitional game. A social group utility maximization (SGUM)
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framework has been recently studied in [51,52,67], which captures the impact of mo-

bile users’ diverse social ties on the interactions of their mobile devices subject to

diverse physical relationships.

4.7 Conclusion

In this chapter, we have formulated the interaction between mobile users and a wire-

less provider as a Stackelberg game, by jointly considering the social effect in the

social domain and the congestion effect in the physical wireless domain. For Stage

II, we have analyzed users’ demand equilibrium given a price chosen by the wireless

provider. For Stage I, we have developed an algorithm to compute the optimal price

to maximize the wireless provider’s revenue. We have also conducted simulations

using real data to evaluate the performance, and drawn useful engineering insights

for the operation of wireless providers.

Appendix

Proof of Theorem 4.1

To show the existence of UDE, we make use of the following lemma, which shows that

the Stage II game with unbounded usage range is equivalent to that with bounded

usage range.

Lemma 4.2. Under Assumption 1, the Stage II game G , {N , {ui}i∈N , [0,∞)N}

admits the same set of UDEs as the game G ′ , {N , {ui}i∈N , [0, x̄]N}, where x̄ is any

number that satisfies x̄ > maxi∈N |ai − p|/(bi + c−Pj 6=i |gij − c|).

Proof: Let x∗ be any UDE of game G and x∗i be the largest in x∗, i.e., x∗i ≥ x∗j ,

∀i 6= j. If x∗i > 0, using the best response function (4.2), we have

x∗i =
ai − p

bi + c
+
X
j 6=i

gij − c

bi + c
x∗j ≤

|ai − p|
bi + c

+
X
j 6=i

|gij − c|
bi + c

x∗i . (4.5)
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Using Assumption 1, it follows from (4.5) that

x∗i ≤ |ai − p|/(bi + c−
X
j 6=i

|gij − c|) < x̄.

Since x∗i is the largest in x∗, we have x∗j ∈ [0, x̄], ∀j ∈ N , and thus x∗ ∈ [0, x̄]N .

Therefore, as game G and game G ′ have the same set of payoff functions and the

strategy spaces in both games contain [0, x̄]N , they have the same set of UDEs. �

Using a celebrated result in [68–70], the infinite game G ′ admits a UDE if

the strategy space [0, x̄]N is compact and convex, the payoff function ui(xi,x−i) is

continuous in xi and x−i, and the payoff function ui(xi,x−i) is concave in xi. It is

easy to check that all these conditions hold, and thus the game G ′ admits a UDE.

Then it follows from Lemma 4.2 that the Stage II game G admits a UDE.

Proof of Theorem 4.2

We will show that the UDE is unique by showing that the game G ′ defined in

Lemma 4.2 is a concave game. The Jacobian matrix ▽u(x) of the payoff function

profile u(x) , (u1(x), . . . , uN(x)) of game G ′ is given by

▽u(x) =

266666666664
∂2u1(x)

∂x2
1

∂2u1(x)
∂x1∂x2

· · · ∂2u1(x)
∂x1∂xN

∂2u2(x)
∂x2∂x1

∂2u2(x)
∂x2

2
· · · ∂2u2(x)

∂x2∂xN

...
...

. . .
...

∂2uN (x)
∂xN∂x1

∂2uN (x)
∂xN∂x2

· · · ∂2uN (x)
∂x2

N

377777777775
=

266666666664
−b1 − c g12 − c · · · g1N − c

g21 − c −b2 − c · · · g2N − c

...
...

. . .
...

gN1 − c gN2 − c · · · −bN − c

377777777775
= −(B −G).
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Using Assumption 1, it follows that

[B −G]ii ≥
X
j 6=i

|[B −G]ij |, ∀i

where [M ]ij denotes the entry in the ith row and jth column of matrix M . Therefore,

B−G is strictly diagonal dominant [71]. It follows from the condition
P

j 6=i
|gji−c|
bi+c

< 1,

∀i that (B −G)T is also strictly diagonal dominant. Then we have that

▽u(x) + ▽u(x)T = −(B −G)− (B −G)T

is strictly diagonal dominant. Also observe that it is symmetric. It is known that a

symmetric matrix that is strictly diagonally dominant with real nonnegative diagonal

entries is positive definite [71]. Therefore, ▽u(x) + ▽u(x)T is negative definite. It

follows from [60, Theorem 6] that u(x) is diagonally strictly concave. Therefore,

using [60, Theorem 2], game G ′ has a unique UDE.

Proof of Theorem 4.3

Let ∆x
(t)
i , x

(t)
i −x∗i , ∀i. For any i ∈ N , according to step 6 in Algorithm 2, we have

|∆x
(t+1)
i | ≤ |

X
j 6=i

gij − c

bi + c
∆x

(t)
j | ≤

X
j 6=i

|gij − c|
bi + c

|∆x
(t)
j |. (4.6)

Let ‖∆x(t)‖∞ be the l∞-norm of vector (∆x
(t)
i , . . . ,∆x

(t)
N ), i.e.,

‖∆x(t)‖∞ , max
i∈N
|∆x

(t)
i |.

Then, using Assumption 1 and (4.6), we have

‖∆x(t+1)‖∞ ≤ max
i∈N

�X
j 6=i

|gij − c|
bi + c

|∆x
(t)
j |
�

≤
�
max
i∈N

X
j 6=i

|gij − c|
bi + c

��
max
i∈N
|∆x

(t)
j |
�

=

�
max
i∈N

X
j 6=i

|gij − c|
bi + c

�
‖∆x(t)‖∞.

According to Assumption 1, we have
�
maxi∈N

P
j 6=i

|gij−c|
bi+c

�
< 1. Then it follows that the algorithm results in a contraction mapping of |∆x

(t)
i |,

and thus converges to the UDE.
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Proof of Proposition 4.2

If the UDE is positive, i.e., x∗1 > 0 and x∗2 > 0, according to 4.2, we have x∗ > 0 is

the solution to

x1 =
a1 − p

b1 + c
+

g12 − c

b1 + c
x2, x2 =

a2 − p

b2 + c
+

g21 − c

b2 + c
x1.

Solving it, we have the expression given in the low price regime. Then observe that x∗1

and x∗2 are both positive when p = 0, and decrease when p increases. Also observe that

x∗1 = 0 when p = p1 ,
a1(b2+c)−a2(c−g12)

b2+g12
, and x∗2 = 0 when p = p2 ,

a2(b1+c)−a1(c−g21)
b1+g21

.

We can check that p1 ≥ p2. Therefore, when p > p2 = pth, we have x
∗
1 > 0 and x∗2 = 0.

Thus x∗1 =
a1−p
b1+c

according to (4.2). Then we further observe that x∗1 = x∗2 = 0 when

p > a1.

Proof of Lemma 4.1

We only prove the case when S = N , since the case when S ⊂ N can be proved

similarly. Let

B̄=

266666666664
b1 + c 0 · · · 0

0 b2 + c · · · 0

...
...

. . .
...

0 0 · · · bN + c

377777777775 ,
Ḡ=

266666666664
0 g12 − c · · · g1N − c

g21 − c 0 · · · g2N − c

...
...

. . .
...

gN1 − c gN2 − c · · · 0

377777777775 .
Since B̄ is a diagonal matrix with positive diagonal entries, it is invertible. Let λ

be any eigenvalue of B̄−1Ḡ with v being the corresponding eigenvector. Let vi be

the largest entry of v in absolute value, i.e., |vi| ≥ |vj|, ∀j. Since (B̄−1Ḡ)v = λv, it
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follows that

|λvi| = |[B̄−1Ḡ]iv| ≤
X
j∈N

|[B̄−1Ḡ]ij ||vj| ≤ |vi|
X
j∈N

|gij − c|
bi + c

< |vi|

where the last inequality follows from Assumption 1. It follows that the spectral

radius of B̄−1Ḡ is strictly less than 1. Since each eigenvalue of I − B̄−1Ḡ is equal

to 1 − λ where λ is an eigenvalue of B̄−1Ḡ, where I denotes the N × N identity

matrix, it follows that I − B̄−1Ḡ has no eigenvalue of 0, and thus is invertible. Thus

B −G = B̄ − Ḡ = B̄(I − B̄−1Ḡ) is also invertible.

Proof of Proposition 4.3

We first show part 1). Suppose p > a and x∗i > 0 is the largest in x∗, i.e., x∗i ≥ x∗j ,

∀i 6= j. Using the best response function (4.2), we have

x∗i =
a− p

bi + c
+
X
j 6=i

gij − c

bi + c
x∗j ≤

X
j 6=i

|gij − c|
bi + c

x∗i < x∗i

where the last inequality follows from Assumption 1. This shows a contradiction.

Thus we have x∗i = 0, ∀i.

Next we show part 2). Let S be the set of users with positive usage in x∗ at

price 0. For any i /∈ S, using (4.2), we have

x∗i = 0 ≥ a

bi + c
+

a

bi + c
[G− C]i,S(BS −GS)

−11S . (4.7)

For any p ∈ (0, a], we next show that x′ with x′S = (a−p)(BS −GS)
−11S and x′i = 0,

∀i /∈ S is the UDE at price p. We observe that for any i ∈ S, x′i is its best response

at x′. For any i /∈ S, using (4.7), we have

a− p

bi + c
+

a− p

bi + c
[G− C]i,S(BS −GS)

−11S ≤ 0 = x∗i ,

and thus is user i’s best response at x′.

95



Proof of Proposition 4.4

The proof of part 1) is the same as the proof of part 1) of Proposition 4.3 except that

a should change to maxi∈N ai. Now we show part 2). For any price p ∈ [0,maxi∈N ai],

the usage of the set of users S with positive usage at the UDE (if they exist) is given

by (4.4). Observe that the usage demand ai−p
bi+c

+
P

j 6=i
gij−c
bi+c

x∗j of any user i at the

UDE is a continuous function of price p and other users’ usage x∗j . Therefore, when

the price p increases by a sufficiently small amount to p′, the set of user with positive

usage at the UDE is still the set S, and thus their usage is still given by (4.4) except

with p replaced by p′. Therefore, the set of user with positive usage is the same at

any price in a continuous price interval. Then the desired result follows.

Proof of Proposition 4.5

We only prove the case when any gij increases, since the cases when a increases, any

bi decreases, or c increases can be proved similarly. Then it suffices to prove the case

when any gij increases by any small amount. Let G be a symmetric matrix. Let

x∗ be the UDE under G and S be the set of users with positive usage in x∗. It is

easy to check that the UDE is a continuous function of the matrix G. Then we can

always find a symmetric matrix G′ with [G′]ij ≥ [G]ij , ∀i, j and at least one strict

inequality, such that the set of users with positive usage at the UDE x′ under G′ is

also S. Therefore, using the best response functions (4.2), we have

BSx
∗
S = (a− p)1S +GSx

∗
S (4.8)

BSx
′
S = (a− p)1S +G′Sx

′
S . (4.9)

Subtracting (4.8) from (4.9), we have

BS(x
′
S − x∗S) = GS(x

′
S − x∗S) + ∆GSx

′
S (4.10)
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where ∆GS , G′S − GS . According to Lemma 4.1, BS − GS is invertible. Then it

follows from (4.10) that

x′S − x∗S = (BS −GS)
−1∆GSx

′
S . (4.11)

On the other hand, it follows from (4.8) that

x∗S = (a− p)(BS −GS)
−11S . (4.12)

Using (4.11) and (4.12), we have

t(x′)− t(x∗) = 1T
S (x

′
S − x∗S)

= 1T
S (BS −GS)

−1∆GSx
′
S

= [(BS −GS)
−11S ]

T∆GSx
′
S

=
1

a− p
(x∗S)

T∆GSx
′
S

where the third equality is due to the fact that (BS − GS)
−1 is symmetric since

BS − GS is symmetric. Since a > p and x∗S , ∆G, x′S only have nonnegative entries,

it follows that t(x′) ≥ t(x∗).

Proof of Theorem 4.4

We will show that given the current critical price p and the set of users S with positive

usage at the UDE at the price p, each iteration from step 4 to step 39 finds the next

critical price p, and the optimal price and revenue in the price interval [p, p]. For any

i ∈ S with x∗i > 0, it follows from (4.4) that

x∗i = [(BS −GS)
−1]iaS − p[(BS −GS)

−1]i1S > 0. (4.13)

Therefore, x∗i decreases when the price p increases if

[(BS −GS)
−1]i1S > 0. (4.14)
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For any i /∈ S with x∗i = 0, it follows from (4.2) that the usage demand of user i is

no greater than 0 such that

0 ≥ [G− C]i,S(BS −GS)
−1(aS − p1S) + ai − p

= [G− C]i,S(BS −GS)
−1aS + ai − p([G− C]i,S(BS −GS)

−11S + 1) (4.15)

Therefore, the usage demand of user i /∈ S increases when the price p increases if

[G− C]i,S(BS −GS)
−11S < −1. (4.16)

Using (4.13), the price at which a user i ∈ S changes its usage from positive to 0 is

p̃i ,
[(BS −GS)

−1]iaS
[(BS −GS)−1]i1S

where S ′ is the set of users such that (4.14) holds. Using (4.15), the price at which a

user i /∈ S changes its usage from 0 to positive is

p̃i ,
[G− C]i,S(BS −GS)

−1aS + ai
[G− C]i,S(BS −GS)−11S + 1

where S ′′ is the set of users such that (4.16) holds. Therefore, the next critical price

p is

p = min
i∈S′∪S′′

p̃i

Using (4.4), the revenue R is given by

R(p) = p1T
Sx
∗
S = p1T

S (BS −GS)
−1(aS − p1S)

which is a concave quadratic function of p. By setting ∂R(p)
∂p

= 0, we obtain that the

optimal price p′ in the price interval [p, p] that maximizes the revenue is

p′ = p̂ ,
1T
S (BS −GS)

−1aS

21T
S (BS −GS)−11S

(4.17)

if p̂ ∈ [p, p]. If p̂ /∈ [p, p], the optimal price is p′ = p if p̂ < p, or p′ = p if p̂ > p. Thus

the optimal revenue r′ in the price interval [p, p] is

r′ = p′1T
S (BS −GS)

−1(aS − p′1S).
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Then the optimal price and revenue in the entire range [0,maxi∈N ai] is found by

comparing the optimal revenue for all the iterations from step 4 to step 39.
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Chapter 5

DISTRIBUTED OPPORTUNISTIC SCHEDULING FOR COOPERATIVE

NETWORKING

5.1 Introduction

There has been extensive research on channel-aware scheduling, which exploits the

rich diversities inherent in wireless communications by scheduling links with favorable

channel conditions [5,6]. While most existing studies focus on centralized scheduling

(see, e.g., [5–7]), a distributed opportunistic scheduling (DOS) framework is developed

for ad hoc networks in [8], in which multi-user diversity and time diversity in wireless

channels are exploited jointly in a distributed manner. Assuming perfect channel

estimation, it is shown that the optimal opportunistic scheduling in such a scenario is

intimately related to the fundamental tradeoff between throughput gain from better

channel conditions and the cost of further probing.

Along a different avenue of research, cooperative communication has recently

been studied as a promising technique for improving communication efficiency, be-

cause it can achieve spatial diversity without equipping individual nodes with multiple

antennas. For instance, the severe fading in the direct link between a source and a

destination can be overcome by employing a relay to assist the transmission. Two

popular mechanisms among the existing relaying techniques are decode-and-forward

(DF) and compress-and-forward (CF) [72–74]. Simply put, with DF relaying, the

relay decodes and re-encodes the received signal from the source before forwarding

it to the destination. In contrast, with CF relaying, the relay first compresses the

received signal from the source and then forwards it to the destination. While most of

the existing studies on cooperative communication focus on the physical (PHY) layer,

notably a few works have explored cooperation at the medium access control (MAC)
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layer and above (see, e.g., [75–77]). Nevertheless, cross-layer design for cooperative

networking is still not well understood.

Clearly, cooperative relaying can be of great value for enhancing ad hoc com-

munications via exploiting spatial diversity. Thus motivated, a primary goal of this

study is to obtain a rigorous understanding of cooperative networking for ad hoc

communications from a holistic perspective. More specifically, in an ad hoc network

based on random access, even if a user with successful contention observes a poor con-

dition in the direct link (source-destination link), it is possible that the relay channel,

consisting of source-destination (S-D), source-relay (S-R) and relay-destination (R-D)

links, can support a much higher transmission rate. What remains to be quantified

in this line of inquiry, however, is the additional overhead needed to probe a relay for

possible cooperative transmission. From the point view of opportunistic scheduling,

channel state information (CSI) of the relay channel is crucial for the successful user

to know the achievable rate of cooperative transmission, which then serves as the ba-

sis for it to decide if it should pursue cooperative transmission. Intuitively speaking,

if the overhead for probing the relay is overwhelming, the rate gain by conducting

cooperative transmission may not be worthwhile. In this chapter, we shall study the

tradeoff between throughput gain from cooperative relaying and the probing cost for

establishing cooperative relaying. In particular, we seek to answer the following ques-

tions: How should the successful user probe for cooperative relaying? How should it

decide whether to probe for cooperative relaying?

To this end, we cast the problem of opportunistic cooperative networking

(OCN) as an optimal stopping problem with two-levels of incomplete information [78].

Specifically, we consider two cases: i) OCN with dedicated relays (OCN-DR), and

ii) OCN without dedicated relays (OCN-NDR). We show that the optimal strategies

exist for both cases. In particular, our investigation yields the following interesting
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findings: For OCN-DR, it is optimal for the successful user to probe the relay when

the signal-to-noise ratio (SNR) of the S-R link is higher than some threshold; for

OCN-NDR, under more restrictive conditions (to be clarified in Section 5.5), it is

optimal for the successful user to probe potential relays when the SNR of the S-D

link lies between two thresholds. Furthermore, the thresholds in the optimal strategy

can be computed based on statistical information, making it amenable to distributed

implementation.

Before proceeding further, we emphasize the main contributions distinguishing

this work from other existing related works. It is clear that this work goes beyond [8]

by opening up the possibility of cooperative networking under the DOS framework.

Recently, DOS with imperfect channel estimation has been investigated in [79]. De-

spite one common feature that both this work and [79] cast DOS as an optimal

stopping problem with incomplete information, this work concentrates on exploit-

ing cooperative networking to reap multi-user diversity from a global perspective,

whereas [79] aims to improve transmission rates by refining local channel estimation.

The rest of this chapter is organized as follows. Section 5.2 gives the back-

ground and the system model for opportunistic cooperative networking. The problem

of opportunistic cooperative networking is formulated in Section 5.3. We then study,

in Section 5.4 and Section 5.5, the optimal strategies for OCN-DR and OCN-NDR.

Section 5.7 concludes this chapter.

5.2 Background and System Model

5.2.1 Opportunistic Cooperative Networking

Consider a single-hop ad hoc network in which L users (source-destination node pairs)

contend for a channel using random access. A slotted contention model is assumed

for the random access, in which each user sends a probing packet with a pre-defined

contention probability in a slot. At the end of a contention slot, each user learns from
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its received packet if there was a successful contention, a collision, or the channel was

idle. A channel contention of a user is said to be successful if no other users contend

in the same slot. Then, the overall successful channel contention probability ps is

given by ps =
PL

l=1(pl
Q

i 6=l(1 − pi)), where pl is the probability that user l contends

for the channel. The random duration of achieving one successful channel contention

is called one channel probing round for brevity. It can be seen that the number of

slots in a channel probing round, denoted as K, is a geometric random variable with

parameter ps. Let τ denote the duration of one slot. Then the random duration of a

channel probing round is Kτ , the expectation of which is τ/ps.

Since the transmission rate of a successful user depends on the time-varying

wireless channel condition(s), it is random. We assume that after a channel probing

round, the channel is available to the successful user for a fixed duration of T , during

which the channel condition(s) remains constant. Depending on the observed CSI,

the successful user may decide to transmit data via the direct link (S-D link) for a

duration of T , or may skip the transmission opportunity and let all users recontend.

For ease of exposition, we assume that the CSI obtained by channel probing is error

free.

With the potential rate gain due to cooperative communication, the success-

ful user may seek the help of a relay, in the hope of achieving a higher rate with

cooperative relaying (consisting of the S-D, S-R and R-D links), besides the options

of transmitting directly or skipping transmission. However, in order to carry out

cooperative communications, the user has to know the full CSI of the relay channel,

which would not be available after probing the direct link only. That is to say, to

obtain the full CSI, the user has to probe the relay channel, say for a duration of τ ′,

which would however reduce the duration for data transmission to T − τ ′. It is worth

noting that even if the cooperative transmission achieves a higher rate than the direct
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transmission, it is still possible for the user to skip the transmission opportunity.

For the successful user after the nth round of channel probing, let Rd,n denote

its direct transmission rate, and Rm,n denote the maximum of its direct transmission

rate and cooperative transmission rate(s), which can only be achieved after probing

for cooperative relaying. The successful user makes a first-level decision from the

following three options:

1) skip transmission and let all users recontend; or

2) probe for cooperative relaying; or

3) transmit data directly (via the S-D link only) at rate Rd,n for a duration of

T .

Further, under the option 2, the user makes a second-level decision from the following

two options: transmit data (either directly or with cooperative relaying) at rate Rm,n

for a duration of T − τ ′; or skip transmission and let all users recontend.

5.2.2 Channel Model and Relaying Techniques

We now discuss the channel model briefly. Let ρ denote the normalized SNR, hsd be

the channel coefficient and γsd = ρ|hsd|2 be the SNR of the S-D link. For the relay

channel, let hsr, and hrd denote the channel coefficients of the S-R, and R-D link,

respectively. Also, let γsr and γrd denote the corresponding link SNRs, denoted by

γsr = ρ|hsr|2 and γrd = ρ|hrd|2. We assume that all links are subject to independent

random fading and additive white Gaussian noise (AWGN). For ease of exposition,

we assume that all links have identical channel fading statistics with finite means and

variances (e.g. Rayleigh fading). Let G(·) and g(·) denote the cumulative distribution

function (CDF) and probability distribution function (PDF) of a link channel gain

(e.g., |hsd|2, |hsr|2, |hrd|2), respectively. Also let G(·) denote the complementary CDF

of G(·). When CSI is available to the user, the instantaneous achievable rate of direct
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transmission is given by

Rd = log(1 + γsd). (5.1)

We briefly discuss two relaying techniques as follows.

Decode-and-forward relaying: Under full duplex DF relaying, the following

instantaneous rate is achievable with full CSI [72]:

RDF
r = max

0≤β≤1
min{log(1 + (1− β)γsr), log(1 + γsd + γrd + 2

È
βγsdγrd)}. (5.2)

Note that the rate of DF relaying can be less than that of the direct transmission since

RDF
r < Rd when γsr < γsd. The rate in (5.2) corresponds to the case of synchronous

DF relaying, where it is assumed that the source, the relay and the destination are

perfectly phase-synchronized. However, in many practical situations, this assump-

tion may not hold, leading to the case of asynchronous DF relaying [73]. Under

asynchronous DF relaying1, the instantaneous achievable rate is given by

RDF−
r = min{log(1 + γsr), log(1 + γsd + γrd)} (5.3)

which is equal to (5.2) if and only if γsr ≤ γsd + γrd. In light of its practicality, we

shall focus on asynchronous DF relaying in Section 5.5.

Compress-and-forward relaying: If full duplex CF relaying is adopted, it yields

the following instantaneous rate with full CSI [72]:

RCF
r = log

�
1 + γsd +

γsrγrd
1 + γsd + γsr + γrd

�
. (5.4)

Note that the rate of CF relaying is always greater than that of the direct transmission.

In this chapter, we focus on how to establish opportunistic cooperative relaying

on the fly and on quantifying when it is worthwhile to pursue cooperative relaying.

Specifically, we adopt full-duplex relaying which fully exploits the rate gain over direct

1In the sequel, we will use “DF relaying” to imply “synchronous DF relaying” for brevity.

105



transmission. However, all the approaches for the case of full-duplex relaying can be

directly carried over to study the case of half-duplex relaying.

5.3 Problem Formulation

In this section, we cast the problem of opportunistic cooperative networking as an

optimal stopping problem with incomplete information.

Let φn and θn denote the successful user’s first-level and second-level decisions,

respectively, after the nth round of channel probing. In particular, φn = 1, 2 or 3

refers to the option 1, 2 or 3 described in the last section, correspondingly; under the

option 2, θn = 1 or 2 means transmitting or skipping transmission, respectively. Let

Rn and Td,n denote the transmission rate and transmission duration of the successful

user after the nth round of channel probing, respectively, which are then given by

Rn = 1(φn = 3)Rd,n + 1(φn = 2)1(θn = 1)Rm,n
2 and Td,n = 1− 1(φn = 2)1(θn = 1)τ ′

with 1(·) being the indicator function. Let Tn =
Pn

i=1Kiτ + 1 denote the total

time of n rounds of channel probing and a transmission duration. The decision

sequences φn and θn determine a stopping rule N given by N = inf{n ≥ 1|φn =

3, or φn = 2 and θn = 1}. Our main objective is to find a stopping rule N (i.e.,

decision sequences) that maximizes the throughput λ of the network. The optimal

throughput λ∗ and the corresponding optimal stopping rule N∗ are defined by

λ∗ , sup
N∈Q

E[RNTd,N ]

E[TN ]
and N∗ , arg sup

N∈Q

E[RNTd,N ]

E[TN ]

where Q , {N : N ≥ 1, E[TN ] <∞}.

Let λ denote the cost per unit system time. The optimal expected net reward,

given a particular λ, is defined as

r(λ) , E[RNTd,N − λTN ]. (5.5)

2In the sequel, we will omit the index n in Rd,n and Rm,n for brevity.
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The following lemma relates the optimal throughput λ∗ to the optimal expected

return.

Lemma 5.1. The optimal strategy for OCN exists, with

r(λ∗) = sup
N∈Q

E[RNTd,N − λ∗TN ] = 0

N∗ = arg sup
N∈Q

E[RNTd,N − λ∗TN ].

The proof is given in Appendix. Let X denote the CSI observed by the suc-

cessful user based on which it makes the first-level decision. (The particular channel

condition(s) that X represents will be specified in Section 5.4 and Section 5.5.) The

expected net reward corresponding to the three options 1, 2, and 3 of the first-level

decision can be expressed as r(λ), V (X|λ, r(λ)), and Rd − λ, respectively, where

V (X|λ, r(λ)) represents the expected reward of probing for cooperative relaying as a

function of the observed CSI X given the system cost λ, and is given by

V (X|λ, r(λ)) = r(λ)FRm
(
r(λ)

1− τ ′
+ λ|X)

+ (1− τ ′)
Z ∞

r(λ)

1−τ ′
+λ

(z − λ)fRm
(z|X)dz − λτ ′ (5.6)

with FRm
(·|X) and fRm

(·|X) denoting the CDF and PDF of Rm conditioned on the

knowledge ofX , respectively. The first and second terms on the right-hand side (RHS)

of (5.6) stand for the expected reward of transmitting or skipping transmission after

probing for cooperative relaying, respectively.

It follows that the Bellman optimality equation for (5.5) is given by

EX [max{r(λ), V (X|λ, r(λ)), Rd(X)− λ}]− λτ

ps
= r(λ) (5.7)

where the expectation is taken over X . Using Lemma 1, we have r(λ∗) = 0, and

hence (5.7) can be rewritten as

EX [max{0, V (X|λ∗, 0), Rd(X)− λ∗}] = λ∗τ

ps
. (5.8)
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Figure 5.1: Network model for OCN-DR.

In order to find the optimal throughput λ∗, it suffices to characterize the expected

reward associated with each option of the first-level decision for any λ > 0, and then

solve the optimality equation (5.8) for λ = λ∗.

5.4 Opportunistic Cooperative Networking with Dedicated Relays

In this section, we consider ad hoc networks in which relays are pre-deployed to assist

the transmissions of all users, and furthermore, we assume that each user has one

dedicated relay.

5.4.1 Probing the Dedicated Relay

After a successful channel contention, the destination node d of the successful user

acquires hsd, based on the probing packet from its source node s. For d to make a well-

informed first-level decision, the knowledge of either hsr or hrd is crucial. However,

observe that, due to the broadcast nature of the wireless medium, the dedicated relay

r overhears the probing packet, and hence it can acquire hsr and report hsr to d, the

overhead of which is negligible. Then d can make the first-level decision based on the

knowledge of (hsd, hsr). The network model for OCN-DR is illustrated in Fig. 5.1.

When it is optimal to probe the dedicated relay, the successful user needs to

probe hrd to make the second-level decision. The user then performs the probing for

a fixed duration of τ1: d sends a probing packet to r to acquire hrd, assuming that

the channel is reciprocal. After that, using the full CSI (hsd, hsr, hrd), d computes Rm
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and then makes the second-level decision based on Rm.

5.4.2 Optimal Strategy

The successful user makes the first-level decision based on the knowledge of X =

(γsd, γsr), which is obtained directly from (hsd, hsr). We can see that the transmission

rate after probing the dedicated relay is Rm = max{Rd, Rr}, where Rr depends on

the relaying technique adopted. Let V0(γsd, γsr|λ) , V (γsd, γsr|λ, 0) for brevity.

Then, for the case with DF relaying, V0(γsd, γsr|λ) can be expressed as

V0(γsd, γsr|λ) =8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

(1− τ1)[log(1 + γsd)− λ]+ − λτ1, γsd ≥ γsr (5.9a)

(1− τ1)
Z log(1+γsr)

log(1+γsd)
G(γDF

rd (γsd, γsr, z)/ρ)dz

+(1− τ1)(log(1 + γsd)− λ)− λτ1,

eλ − 1 ≤ γsd < γsr (5.9b)

(1− τ1)
Z log(1+γsr)

λ
G(γDF

rd (γsd, γsr, z)/ρ)dz − λτ1,

γsd < eλ − 1 < γsr (5.9c)

−λτ1, γsd < γsr ≤ eλ − 1 (5.9d)

where γDF
rd (γsd, γsr, z) is given by

γDF
rd (γsd, γsr, z) =

 s
(ez − 1)

�
1− γsd

γsr

�
−
s�

1− ez − 1

γsr

�
γsd

!2

(5.10)

and, for the case with CF relaying, V0(γsd, γsr|λ) can be expressed as

V0(γsd, γsr|λ) =
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8>>>>>>>>>>>>><>>>>>>>>>>>>>:
(1− τ1)

Z log(1+γsd+γsr)

log(1+γsd)
G(γCF

rd (γsd, γsr, z)/ρ)dz

+(1− τ1)(log(1 + γsd)− λ)− λτ1,

eλ − 1 ≤ γsd (5.11a)

(1− τ1)
Z log(1+γsd+γsr)

λ
G(γCF

rd (γsd, γsr, z)/ρ)dz − λτ1,

γsd < eλ − 1 < γsd + γsr (5.11b)

−λτ1, γsd + γsr ≤ eλ − 1 (5.11c)

where γCF
rd (γsd, γsr, z) is given by

γCF
rd (γsd, γsr, z) =

(ez − γsd − 1)(γsd + γsr + 1)

γsd + γsr + 1− ez
. (5.12)

The details for deriving (5.9) and (5.11) are given in Appendix.

Next, we examine the structure of the optimal strategy. For convenience,

define W (γsd, γsr|λ) , Rd(γsd) − λ − V0(γsd, γsr|λ). Let A1(λ) , {(γsd, γsr) ∈ R2
+ :

Rd(γsd) − λ ≤ 0 and V0(γsd, γsr|λ) ≤ 0}, A2(λ) , {(γsd, γsr) ∈ R2
+ : V0(γsd, γsr|λ) ≥

0 and W (γsd, γsr|λ) ≤ 0}, and A3(λ) , {(γsd, γsr) ∈ R2
+ : Rd(γsd) − λ ≥ 0 and

W (γsd, γsr|λ) ≥ 0} denote the optimal decision regions of the three options, each

standing for the set of channel conditions (γsd, γsr) under which an option (the option

1, 2, and 3, respectively) achieve the maximum expected reward among the three.

Also, define L1,2(λ) , {(γsd, γsr) ∈ R2
+ : V0(γsd, γsr|λ) = 0}, L1,3(λ) , {(γsd, γsr) ∈

R2
+ : Rd(γsd) − λ = 0} and L2,3(λ) , {(γsd, γsr) ∈ R2

+ : W (γsd, γsr|λ) = 0}, each

standing for the set of channel conditions (γsd, γsr) under which a pair of options (the

option 2 and 3, 1 and 3, 1 and 2, respectively) achieve the same expected reward.

Before we present the main result of this section, we need the following lemmas

to characterize the optimal decision regions.

Lemma 5.2. For any λ > 0, the optimal decision regions A1(λ), A2(λ), and A3(λ)

are nonempty connected sets, and are uniquely characterized by curves L1,2(λ), L1,3(λ),

and L2,3(λ) in R2
+.
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Figure 5.2: Optimal decision regions for OCN-DR.

The proof is given in Appendix. The structures of the optimal decision regions

described in Lemma 5.2 are depicted in Fig. 5.2.

The optimal throughput is the unique solution λ = λ∗ to the following equa-

tion:

E(γsd ,γsr)[V0(γsd, γsr|λ); (γsd, γsr) ∈ A2(λ)]

+ E(γsd ,γsr)[Rd(γsd)− λ; (γsd, γsr) ∈ A3(λ)] =
λτ

ps
. (5.13)

Indeed, we can see that the left hand side (LHS) of (5.13) is continuously decreasing

in λ and is greater than 0 when λ = 0 and approaches to 0 as λ → ∞, while the

RHS of (5.13) is continuously increasing in λ and is equal to 0 when λ = 0. Thus,

we conclude that (5.13) has a unique solution.

We can see from the proof of Lemma 5.2 that, for a particular γsd, if γsd ≥

eλ
∗−1, there is a unique γ∗sr,1(γsd) such that (γsd, γ

∗
sr,1(γsd)) ∈ L2,3(λ

∗); if γsd < eλ
∗−1,

there is a unique γ∗sr,3(γsd) such that (γsd, γ
∗
sr,3(γsd)) ∈ L1,2(λ

∗). We have the following

theorem regarding the structural properties of the optimal strategy.
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Theorem 5.1. For OCN-DR with DF relaying or with CF relaying, the optimal

strategy takes the following form: after observing γsd and γsr, it is optimal for the

successful user to

1) skip transmission and let all users recontend if γsd < eλ
∗ − 1 and γsr ≤

γ∗sr,3(γsd); or

2) probe the dedicated relay if γsd ≥ eλ
∗ − 1 and γsr > γ∗sr,1(γsd), or if γsd <

eλ
∗ − 1 and γsr > γ∗sr,3(γsd), and after the probing and obtaining Rm, proceed to

transmit if Rm > λ∗, or skip transmission and let all users recontend otherwise; or

3) transmit directly otherwise.

Proof: This result follows directly from Lemma 5.2 and its proof when

λ = λ∗. �

Remarks:

• The above results reveals that the successful user’s decision on whether to probe

the dedicated relay hinges heavily on γsr. In particular, it is optimal to probe the

dedicated relay if γsr is above some threshold, where the value of the threshold

depends on γsd. If γsr is below that threshold, the optimal strategy then depends

on γsd: if γsd is above a threshold, it is optimal to transmit directly; otherwise,

it is optimal to skip transmission. Our intuition is that the S-R link condition

determines the potential advantage of probing the dedicated relay over the

other options, while the S-D link condition determines the decision between

transmitting directly and skipping transmission.

• It is clear that, for the case with DF relaying, if γsr ≤ γsd, Rm must be no greater

than Rd, and hence, in this case, it is never optimal to probe the dedicated relay.
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We note that the optimal strategy holds a threshold structure and is amenable

to distributed implementation. Indeed, using the knowledge of channel statistics, each

user can independently compute off-line λ∗ by numerically solving the equation (5.13),

and then compute off-line curves L1,2(λ
∗), L1,3(λ

∗), and L2,3(λ
∗) by numerically solv-

ing their defining equations. These curves determine the thresholds of the optimal

strategy.

5.5 Opportunistic Cooperative Networking without Dedicated Relays

In this section, we consider another interesting network scenario in which users have

no dedicated relays and the successful user needs to look for cooperative relaying from

other neighboring nodes.

5.5.1 Probing Potential Relays

Suppose that there are M > 1 nodes, denoted by r1, · · · , rM , each of which can serve

as a relay for the successful user upon request. For fair comparison with the case with

dedicated relays, we assume that the successful user can select only one among the

potential relays r1, · · · , rM for cooperation. After a successful channel contention, the

destination node d of the successful user acquires hsd using the probing packet sent

from its source node s. Also, r1, · · · , rM overhear the probing packet, and acquire the

local CSI hsr1, · · · , hsrM , respectively. Note that different from the case with dedicated

relays, d cannot acquire all of hsr1, · · · , hsrM , because the overhead of message passing

by a large number of potential relays can be too costly. Hence, d has to make the

first-level decision based only on hsd. The network model for OCN-NDR is illustrated

in Fig. 5.3.

When probing the potential relays is preferable, the successful user needs to

perform the probing with minimum possible overhead. Under the assumption that

only one relay is employed in cooperative transmission, the relay CSI of only one
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Figure 5.3: Network model for OCN-NDR.

potential relay is required for the user to make the second-level decision. In light of

this, we adopt a distributed approach in which only the “best” potential relay feeds

back its local CSI to node d. To this end, d first broadcasts hsd and also a probing

packet to all potential relays such that each of {r1, · · · , rM} acquires hsd and the local

observation hr1d, · · · , hrMd, respectively. Next, based on the CSI of the relay channel,

each potential relay independently estimates its rate of cooperative transmission,

denoted by Rr1 , · · · , RrM , respectively. Then the potential relay with the highest

estimated rate can report its local CSI to d, e.g., via a backoff-based carrier sensing

protocol [80]. Specifically, in this protocol, each potential relay chooses a backoff

time based on a pre-determined backoff function that maps an estimated rate to a

backoff time, and then it listens to the channel for a duration of a pre-determined

maximum backoff time. A potential relay would transmit a beacon signal delayed

by its chosen backoff time if and only if no one else transmits before its backoff time

expires. A properly designed backoff function ensures that only the potential relay

with the highest estimated rate transmits, and then it is detected by node d (see [80]

for more details). We denote by τ2 a fixed time for probing the potential relays, which

is chosen conservatively a priori such that the destination node is guaranteed to hear

the response of the best relay. Clearly, this probing overhead is larger than that in
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the case with dedicated relays, i.e., τ2 > τ1. After the probing, d can compute Rm

and then make the second-level decision based on Rm.

We emphasize that τ2 is a fixed time chosen conservatively a priori. If τ2 is

assumed to be random depending on the response time of the relay node with the best

channel conditions, there could be some performance gain (mainly) due to the reduced

overhead. However, the subsequent analysis would be coupled with the specific design

of the backoff function, which would unnecessarily complicate the analysis.

It is worth noting that a relay assists the successful user at the cost of con-

suming its own resources, and hence requires an incentive for cooperation. Therefore,

we introduce c > 0 to be the price paid by the user to the selected relay. A plausible

price has the same unit as rate such that the cost of employing a relay is propor-

tional to the duration of cooperative relaying. Then the effective rate of cooperative

transmission using relay ri, i ∈ {1, · · · ,M}, is Rri − c.

5.5.2 Optimal Strategy

Note that the first-level decision is based only on the knowledge of X = γsd, which

is obtained directly from hsd. The transmission rate after probing potential relays is

Rm = max{Rd, Rr1 − c, Rr2 − c, · · · , RrM − c}, where Rri , i ∈ {1, · · · ,M}, depends

on the relaying technique adopted. Let V0(γsd|λ) , V (γsd|λ, 0) for brevity.

Then, V0(γsd|λ) can be expressed as

V0(γsd|λ) =8>>>><>>>>: (1− τ2)
Z ∞
log(1+γsd)

(1− FM
Rr1

(z + c|γsd))dz

+(1− τ2)(log(1 + γsd)− λ)− λτ2, eλ − 1 ≤ γsd (5.14a)

(1− τ2)
Z ∞
λ

(1− FM
Rr1

(z + c|γsd))dz − λτ2, γsd < eλ − 1 (5.14b)
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where FRr1
(z + c|γsd) for the case with synchronous DF relaying is given by

FRr1
(z + c|γsd) = G((ez+c − 1)/ρ)

+
Z ∞
(ez+c−1)/ρ

g(v)G(γDF
rd (γsd, ρv, z + c)/ρ)dv (5.15)

with γDF
rd (γsd, ρv, z + c) given by (5.10), and FRr1

(z + c|γsd) for the case with asyn-

chronous DF relaying is given by

FRr1
(z + c|γsd) = G((ez+c − 1)/ρ)

+G((ez+c − 1)/ρ)G((ez+c − γsd − 1)/ρ) (5.16)

and FRr1
(z + c|γsd) for the case with CF relaying is given by

FRr1
(z + c|γsd) =

Z ∞
0

g(v)G(γCF
rd (γsd, ρv, z + c)/ρ)dv (5.17)

with γCF
rd (γsd, ρv, z + c) given by (5.12). The details for deriving (5.14) are given in

Appendix.

Next, we investigate the structural properties of the optimal strategy. The

optimal strategy for the case with synchronous DF relaying turns out to be diffi-

cult for analysis due to the complex expression in (5.2). However, for the cases

with asynchronous DF relaying or with CF relaying, the optimal strategy admits a

threshold-based structure. In what follows, we present our results for these two cases.

For convenience, define W (γsd|λ) , Rd(γsd) − λ − V0(γsd|λ). Let B1(λ) ,

{γsd ∈ R+ : Rd(γsd)−λ ≤ 0 and V0(γsd, γsr|λ) ≤ 0}, B2(λ) , {γsd ∈ R+ : V0(γsd|λ) ≥

0 and W (γsd|λ) ≤ 0}, and B3(λ) , {γsd ∈ R+ : Rd(γsd)− λ ≥ 0 and W (γsd|λ) ≥ 0}

denote the optimal decision regions of the three options, each standing for the set of

channel conditions γsd under which an option (the option 1, 2, and 3, respectively)

achieve the maximum expected reward among the three. Also, let γsd,1(λ) denote

some γsd ≥ eλ − 1 such that W (γsd|λ) = 0, and γsd,2(λ) and γsd,3(λ) denote some
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γsd > 0 such that Rd(γsd)− λ = 0 and V0(γsd|λ) = 0, respectively, each standing for

the channel condition γsd under which a pair of options (the option 2 and 3, 1 and 3,

1 and 2, respectively) achieve the same expected reward.

Before presenting the main result of this section, we give the following lemmas

to characterize the optimal decision regions.

Lemma 5.3. Consider the case with asynchronous DF relaying or with CF relaying.

For any λ > 0, γsd,2(λ) exists and is unique; γsd,1(λ) and γsd,3(λ) may or may not

exist, and are unique if they exist. Furthermore,

I) if γsd,3(λ) exists and γsd,2(λ) ≤ γsd,3(λ), then γsd,1(λ) does not exist and

B1(λ) = [0, γsd,2(λ)), B2(λ) = ∅, B3(λ) = [γsd,2(λ),∞);

II) if γsd,3(λ) exists and γsd,3(λ) < γsd,2(λ), then γsd,1(λ) exists and B1(λ) =

[0, γsd,3(λ)), B2(λ) = [γsd,3(λ), γsd,1(λ)), B3(λ) = [γsd,1(λ),∞);

III) if γsd,3(λ) does not exist, then γsd,1(λ) exists and B1(λ) = ∅, B2(λ) =

[0, γsd,1(λ)), B3(λ) = [γsd,1(λ),∞).

The proof is given in Appendix. The structures of the optimal decision regions

described in Lemma 5.3 are depicted in Fig. 5.4, Fig. 5.5 and Fig. 5.6.

The optimal throughput is the unique solution of λ = λ∗ to the following

equation:

Eγsd [V0(γsd|λ); γsd ∈ B2(λ)] + Eγsd [Rd(γsd)− λ; γsd ∈ B3(λ)] =
λτ

ps
. (5.18)

Indeed, similarly to (5.13), we can see that there is a unique solution to (5.18).

For notational simplicity, let γ∗sd,1 , γsd,1(λ
∗) and γ∗sd,3 , γsd,3(λ

∗) if they exist.

We have the following theorem regarding the structural properties of the optimal

strategy.
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Figure 5.4: Optimal decision regions for OCN-NDR: Case I.
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Figure 5.5: Optimal decision regions for OCN-NDR: Case II.

Theorem 5.2. For OCN-NDR with asynchronous DF relaying or with CF relaying,

the optimal strategy takes one of the following three forms:

I) If γ∗sd,1 does not exist and γ∗sd,3 exists, after observing γsd, it is optimal for

the successful user to transmit directly if γsd ≥ eλ
∗ − 1; or skip transmission and let

all users recontend otherwise.
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Figure 5.6: Optimal decision regions for OCN-NDR: Case III.

II) If both γ∗sd,1 and γ∗sd,3 exist, after observing γsd, it is optimal for the suc-

cessful user to transmit directly if γsd ≥ γ∗sd,1; or skip transmission and let all users

recontend if γsd < γ∗sd,3; or probe potential relays otherwise, and after the probing

and obtaining Rm, proceed to transmit if Rm > λ∗; or skip transmission and let all

users recontend otherwise.

III) If γ∗sd,1 exists and γ∗sd,3 does not exist, after observing γsd, it is optimal

for the successful user to transmit directly if γsd ≥ γ∗sd,1; or probe potential relays

otherwise, and after the probing and obtaining Rm, proceed to transmit if Rm > λ∗;

or skip transmission and let all users recontend otherwise.

Proof: This result follows directly from Lemma 5.3 and its proof when

λ = λ∗. �

Remarks:

• The above results indicate that for each form of the optimal strategy, if γsd is

above some threshold, it is optimal for the successful user to transmit directly.
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The underlying rationale behind this is two-fold: first, the rate gain of Rd with

the increase of γsd is larger than that of RDF−
r or RCF

r ; second, the transmission

duration reduces after probing potential relays. These combined makes trans-

mitting directly a better option than probing potential relays when γsd is large

enough.

• We note that the form taken by the optimal strategy hinges on the price of

relaying c and the number of potential relays M . Specifically, if the conditions

are unfavorable for cooperative relaying, i.e., c is high and M is small, the

optimal strategy may take Form I, in which probing potential relays is never

optimal; in contrast, if the conditions are favorable for cooperative relaying,

i.e., c is low and M is large, the optimal strategy may take Form III, in which

skipping transmission is never optimal, even when the S-D link condition is very

unfavorable.

We note that the optimal strategy is threshold-based and is amenable to dis-

tributed implementation. Indeed, using the knowledge of channel statistics, each user

can independently compute off-line λ∗ by numerically solving the equation (5.18), and

then compute off-line γ∗sd,1, γ
∗
sd,2 and γ∗sd,3 by numerically solving their defining equa-

tions, which are the thresholds of the optimal strategy.

5.6 Numerical Results

In this section, we provide some numerical examples to illustrate the effectiveness

of our proposed schemes for opportunistic cooperative networking. Specifically, we

compare the performance of OCN-DR and OCN-NDR with that of DOS [8]. We

focus on the throughput gain defined as

Γ , (λ∗ − λ∗0)/λ
∗
0
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where λ∗0 denotes the optimal throughput in DOS. We adopt the DF relaying tech-

nique and set ps = 0.1 and τ = 0.1. We assume that path loss fading effects are

reflected in the normalized SNRs. Fig. 5.7 depicts the throughput gain of OCN-DR

over DOS where we set τ1 = 0.1 and T = 1. It is clear that OCN-DR substantially out-

performs DOS. In particular, the performance improvement is more significant when

ρ is small. This shows that cooperative relaying is more efficient for improving the

rate when SNR is low. Moreover, we observe that the throughput gain significantly

increases as ρsr improves. This illustrates that the S-R link condition is crucial for

the cooperative relaying rate. In Fig. 5.8, we present the performance comparison of

OCN-NDR with DOS where we set τ2 = 0.2 and T = 1. Fig. 5.8 also illustrates higher

throughput gains when ρ is small. Furthermore, we observe that the throughput gain

degrades when ρ becomes too small. This implies that the price of relaying offsets the

rate gain provided by cooperative relaying when the rate is small. In addition, it can

be seen that the throughput gain is higher for smaller c and larger M . This confirms

our intuition that cooperative relaying is more favorable when the relaying price is

low or the number of potential relays is large. In Fig. 5.9, we examine the impact of

τ1, τ2, and T on the performance of OCN-DR and OCN-NDR where we set c = 0.1

and M = 5 for OCN-NDR. We can see that the throughput gain decreases as τ1 and

τ2 increases, indicating that the benefit of cooperative relaying is degraded when the

time overhead of probing for cooperative relaying is large. Moreover, we observe that

the throughput gain degrades faster for a smaller T . This implies that the impact of

probing cost for cooperative relaying is more significant when the channel available

duration is shorter.

5.7 Conclusion and Discussions

We have considered distributed opportunistic scheduling for ad hoc networks in which

a user with successful contention may look for cooperative communication from relays.
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Specifically, we have investigated opportunistic cooperative networking by character-

izing and optimizing the tradeoff between throughput gain via cooperative commu-

nication and the probing cost of establishing cooperative relaying. We have studied

two cases: OCN with dedicated relays (OCN-DR) and OCN without dedicated relays

(OCN-NDR). Casting opportunistic cooperative networking as an optimal stopping

problem with two-levels of incomplete information, we have shown that the optimal
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strategies exist for both cases. In particular, for OCN-DR, it is optimal to probe the

dedicated relay when the SNR of the S-R link is above some threshold; for OCN-

NDR, it is optimal to probe potential relays when the SNR of the S-D link is between

two thresholds. Furthermore, the optimal strategies are amenable to distributed im-

plementation.

We offer some comments on comparing the optimal strategies of OCN-DR

and OCN-NDR. Recall that for OCN-DR, the decision on whether to probe for co-

operative relaying is based on the knowledge of both S-D and S-R link conditions,

while for OCN-NDR, only the S-D link condition is available for making the decision.

Thus, intuitively, the optimal strategy of OCN-DR is more favorable for achieving a

higher throughput in the sense that it makes a more educated decision. Indeed, as we

discussed earlier, the knowledge of the S-R link is crucial for evaluating the potential

reward of cooperative relaying. Furthermore, OCN-DR is more advantageous in that

cooperative relaying entails a smaller probing overhead and no price for the relay.

Generally speaking, the existence of dedicated relays facilitates establishing and con-

ducting cooperative relaying. However, it is worth noting that OCN-NDR benefits
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from multi-user diversity for cooperative relaying through the best relay selection.

5.8 Appendix

5.8.1 Proof of Lemma 5.1

Using [81, Ch.6,Th.1], it suffices to show that there exist a stopping rule N(λ) for a

given λ > 0 such that

N(λ) = arg sup
N∈Q

E[RNTd,N − λTN ].

Let Zn , RnTd,n − λTn for brevity. It then follows from [81, Ch.3,Th.1] that N(λ)

exists if the following two conditions are satisfied:

(A1) E[sup
n

Zn] <∞ and (A2) lim sup
n→∞

Zn = −∞ a.s.

Since all link channel gains have finite means and variances, it can be shown

that the transmission rates Rd, RDF
r , RDF−

r and RCF
r also have finite means and

variances. Therefore, we have E[Rn] <∞ and E[Rn
2] <∞. It then follows from [81,

Ch.4,Th.1] that (A2) holds. Also, observing that

E[sup
n

Zn] ≤ E

�
sup
n

¨
RnT − nλτ

�
1

ps
− ǫ

�«�
+ E

24sup
n

nX
j=1

λτ

�
1

ps
− ǫ−Kj

�35− λT (5.19)

where ǫ is chosen to satisfy 0 < ǫ < 1/ps, it follows from [81, Ch.4,Th.1 and 2] that

the first two terms on the RHS of (5.19) are finite, and hence (A1) holds.

5.8.2 Derivation of (5.9) and (5.11)

Applying integration by parts to (5.6), V0(γsd, γsr|λ) can be written as

V0(γsd, γsr|λ) = (1− τ1)
Z ∞
λ

(1− FRm
(z|γsd, γsr))dz − λτ1. (5.20)

Case with DF relaying:
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Consider the case γsd ≥ γsr. Observe from (5.2) that RDF
r ≤ log(1 + γsr) ≤

log(1 + γsd) = Rd, and hence Rm = Rd. Then we have

FRm
(z|γsd, γsr) =

8<: 1, z ≥ log(1 + γsd)

0, z < log(1 + γsd)

which, upon substituting into (5.20), yields (5.9a).

Consider the case γsd ≥ γsr. It follows from (5.2) that RDF
r ≥ log(1+γsd) = Rd,

and hence Rm = RDF
r . Also observe from (5.2) that, for given γsd and γsr, we have

log(1 + γsd) < RDF
r ≤ log(1 + γsr). Further, if the strict inequality log(1 + γsd) <

RDF
r < log(1 + γsr) holds, from (5.2) it follows that RDF

r = log(1 + (1 − β∗)γsr) =

log(1 + γsd + γrd + 2
√
β∗γsdγrd), where β∗ is the optimal β in (5.2). Solving this

equation for γrd with z = RDF
r , we obtain γDF

rd (γsd, γsr, z) which is given by (5.10).

Note that γDF
rd (γsd, γsr, z) is increasing in z. From the above observations we have

FRm
(z|γsd, γsr) =

8>>><>>>: 1, z ≥ log(1 + γsd)

G(γDF
rd (γsd, γsr, z)/ρ), log(1 + γsd) < z < log(1 + γsr)

0, z ≤ log(1 + γsd)

Substituting FRm
(z|γsd, γsr) into (5.20) yields (5.9b)-(5.9d).

Case with CF relaying:

From (5.4) we note that RCF
r ≥ log(1 + γsd) = Rd, and hence Rm = RCF

r .

Also observe from (5.4) that, for any given γsd and γsr, we have log(1+γsd) < RCF
r <

log(1+γsd+γsr). Solving z = log(1+γsd+
γsrγrd

1+γsd+γsr+γrd
) for γrd, yields γ

CF
rd (γsd, γsr, z)

which is given by (5.12). Observe that γCF
rd (γsd, γsr, z) is increasing in z. Thus, we

have

FRm
(z|γsd, γsr)=

8>>><>>>: 1, z ≥ log(1 + γsd + γsr)

G(γCF
rd (γsd, γsr, z)/ρ), log(1+γsd)<z< log(1+γsd+γsr)

0, z ≤ log(1 + γsd)

Substituting FRm
(z|γsd, γsr) in (5.20) yields (5.11a)-(5.11c).
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5.8.3 Proof of Lemma 5.2

We first show that L2,3(λ), L1,3(λ) and L1,2(λ) are curves in R2
+, and each curve

divides R2
+ into optimal decision regions for the pair of options associated with the

curve.

It is clear that L1,3(λ) is the curve given by {(γsd, γsr) : γsd = eλ− 1, γsr ≥ 0}.

Furthermore, since Rd(γsd)− λ is increasing in γsd, we have Rd(γsd) − λ > 0 on one

side of L1,3(λ) and Rd(γsd)− λ < 0 on the other side.

Next, we consider L1,2(λ) for the case with DF relaying, that is, the set

{(γsd, γsr) ∈ R2
+} such that V0(γsd, γsr|λ) = 0. Clearly, in the case of (5.9a), L1,2(λ)

is the curve given by {(γsd, γsr) : γsd = eλ/(1−τ1) − 1, 0 ≤ γsr ≤ eλ/(1−τ1) − 1}. It

is also clear that L1,2(λ) does not exist in the case of (5.9d). Consider now the

cases of (5.9b) and (5.9c). Note that V0(γsd, γsr|λ) > 0 for all {(γsd, γsr) : γsr >

γsd ≥ eλ/(1−τ1) − 1}. Also observe that for any γsd with 0 ≤ γsd < eλ/(1−τ1) − 1,

we have lim
γsr→max{eλ−1,γsd}

V0(γsd, γsr|λ) < 0 and lim
γsr→∞

V0(γsd, γsr|λ) =∞. Then, since

V0(γsd, γsr|λ) is increasing in γsr, for any γsd ∈ [0, eλ/(1−τ1) − 1), there exists a unique

γsr,3(γsd) such that V0(γsd, γsr,3(γsd)|λ) = 0, and hence (γsd, γsr,3(γsd)) ∈ L1,2(λ).

Thus, it follows from the continuity of V0(γsd, γsr|λ) that L1,2(λ) is a curve. Further-

more, it is easy to see from the above discussions that we have V0(γsd, γsr|λ) > 0 on

one side of L1,2(λ) and V0(γsd, γsr|λ) < 0 on the other side. Using similar arguments,

we can establish the proof of L1,2(λ) for the case with CF relaying.

Then, consider L2,3(λ) for the case with DF relaying, that is, the set {(γsd, γsr) ∈

R2
+} such that W (γsd, γsr|λ) = Rd(γsd) − λ − V0(γsd, γsr|λ) = 0. It is clear that

in the case of (5.9a) and (5.9d), L2,3(λ) is the curve given by {(γsd, γsr) : γsd =

eλ(1−τ1) − 1, 0 ≤ γsr ≤ eλ − 1}. Consider now the cases of (5.9b) and (5.9c). We

note that for any γsd > eλ(1−τ1) − 1, we have lim
γsr→max{eλ−1,γsd}

W (γsd, γsr|λ) > 0 and
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lim
γsr→∞

W (γsd, γsr|λ) = −∞. Then, since W (γsd, γsr|λ) is decreasing in γsr, for any

γsd ∈ (eλ(1−τ1)−1,∞), there exists a unique γsr,1(γsd) such that W (γsd, γsr,1(γsd)|λ) =

0, and hence (γsd, γsr,1(γsd)) ∈ L2,3(λ). Thus, from the continuity of W (γsd, γsr|λ) it

follows that L2,3(λ) is a curve. Furthermore, from the above discussions we can easily

see that we have W (γsd, γsr|λ) > 0 on one side of L2,3(λ) and W (γsd, γsr|λ) < 0 on

the other side. We can use similar arguments to establish the proof of L2,3(λ) for the

case with CF relaying.

It can be seen from the above discussions that L1,3(λ) has a unique intersection

point with L2,3(λ) and L1,2(λ), respectively. Also, it is clear from the definitions of

L2,3(λ), L1,3(λ) and L1,2(λ) that any intersection point of two of them is an intersec-

tion point of the three. We thus conclude that L2,3(λ), L1,3(λ) and L1,2(λ) intersect

at a unique point.

Based on the above results, now we can see from Fig. 5.2 that R2
+ is divided

by one section of L2,3(λ), one section of L1,3(λ) and one section of L1,2(λ) into three

nonempty and connected sets, which are exactly the optimal decision regions A1(λ),

A2(λ) and A3(λ). This completes the proof.

5.8.4 Derivation of (5.14)

Applying integration by parts to (5.6), V0(γsd|λ) can be written as

V0(γsd|λ) = (1− τ2)
Z ∞
λ

(1− FRm
(z|γsd))dz − λτ2. (5.21)

Since Rm is bounded by Rd = log(1 + γsd) ≤ Rm for a given γsd, we have

FRm
(z|γsd) = 0 when ez − 1 < γsd. When γsd ≥ ez − 1, it follows that FRm

(z|γsd) =
MY
i=1

FRri
(z + c|γsd), where FRri

(·|γsd) denotes the CDF of Rri conditioned on γsd.

Since the links are homogeneous, we have FRr1
(·|γsd) = · · · = FRrM

(·|γsd), and hence

FRm
(z|γsd) = FM

Rr1
(z + c|γsd). Then (5.14) follows.
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Since Rr1 is bounded by log(1 + γsd) ≤ Rr1 for a given γsd, we have FRr1
(z +

c|γsd) = 0 when ez+c − 1 < γsd. Consider the case γsd ≤ ez+c − 1. For the case with

synchronous DF relaying, since RDF
r1 ≤ log(1+γsr1) and RDF

r1 ≤ log(1+(1−β∗)γsr1) =

log(1+ γsd+ γr1d+2
È
β∗γsdγr1d), we have (5.15). For the case with asynchronous DF

relaying, it follows from RDF−
r1
≤ log(1+ γsr1) and RDF−

r1
≤ log(1+ γsd+ γr1d) that we

have (5.16). For the case with CF relaying, we have (5.17).

5.8.5 Proof of Lemma 5.3

It is clear from the definition of γsd,2(λ) that γsd,2(λ) = eλ−1. Further, since Rd(γsd)−

λ is increasing in γsd, we have Rd(γsd)−λ < 0 when γsd ∈ [0, eλ−1), and Rd(γsd)−λ >

0 when γsd ∈ (eλ − 1,∞).

Consider then γsd,3(λ), i.e., some γsd > 0 such that V0(γsd|λ) = 0. Observe

from (5.16) and (5.17) that FRr1
(Rm + c|γsd) is decreasing in γsd, then it follows

from (5.14a) and (5.14b) that V0(γsd|λ) is increasing in γsd. It is clear from (5.14a)

that V0(γsd|λ) > 0 when γsd > eλ/(1−τ2) − 1. We also note from (5.14b) that V0(0|λ)

can be greater or less than 0, depending on system parameters such as c and M .

Thus, if V0(0|λ) ≤ 0, γsd,3(λ) exists and is unique, and we have V0(γsd|λ) < 0 when

γsd ∈ [0, γsd,3(λ)), and V0(γsd|λ) > 0 when γsd ∈ (γsd,3(λ),∞); if V0(0|λ) > 0, γsd,3(λ)

does not exist, and we have V0(γsd|λ) > 0 for any γsd ∈ [0,∞).

Next, consider γsd,1(λ), i.e., some γsd ≥ eλ−1 such that W (γsd|λ) = Rd(γsd)−

λ−V0(γsd|λ) = 0. Recall from (5.3) and (5.4) that we can write the rate of cooperative

transmission as a function Rr(γsd, γsr, γrd). Using (5.6), for any γsd ≥ eλ − 1, we can
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write V0(γsd|λ) as

V0(γsd|λ) = (1− τ2)
Z ∞
λ

(z − λ)FRm
(z|γsd)dz − λτ2

(a)
= (1− τ2)

Z
S
(Rm(γsd,x)− λ)fΓ(x)dx− λτ2

= (1− τ2)
Z
S
(max{Rd(γsd), Rr1(γsd, x1, x2)− c,

· · · , RrM (γsd, x2M−1, x2M)− c} − λ)fΓ(x)dx− λτ2 (5.22)

where S , {(γsr1, γr1d, · · · , γsrM , γrMd) : γsr1 > 0, γr1d > 0, · · · , γsrM > 0, γrMd > 0},

x , (x1, x2, · · · , x2M−1, x2M) ∈ R+
2M , fΓ(·) denotes the joint PDF of Γ , (γsr1, γr1d,

· · · , γsrM , γrMd), and (a) follows from the fact that, given γsd ≥ eλ−1, Rm(γsd,x) ≥ λ

for any x ∈ S. Observe from (5.3) and (5.4) that, for any i ∈ {1, · · · ,M}, γsri > 0

and γrid > 0, we have

∂RDF−
ri

(γsd, γsri, γrid)

∂γsd
≤ 1

1 + γsd + γrid
<

1

1 + γsd
(5.23)

for the case with asynchronous DF relaying, and

∂RCF
ri

(γsd, γsri, γrid)

∂γsd
=

1− γsriγrid
(1+γsd+γsri+γrid)

2

1 + γsd +
γsriγrid

1+γsd+γsri+γrid

<
1

1 + γsd
(5.24)

for the case with CF relaying. Then, for any γsd ≥ eλ − 1, from (5.22) we have

∂V0(γsd|λ)
∂γsd

≤ (1− τ2)
Z
S
max{∂Rd(γsd)

∂γsd
,
∂Rr1(γsd, x1, x2)

∂γsd
,

· · · , ∂RrM (γsd, x2M−1, x2M )

∂γsd
}fΓ(x)dx

(b)

≤ (1− τ2)
Z
S

1

1 + γsd
fΓ(x)dx

= (1− τ2)
1

1 + γsd

<
1

1 + γsd
=

∂(Rd(γsd)− λ)

∂γsd
(5.25)
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where (b) follows from (5.23) and (5.24). Thus, W (γsd|λ) is increasing in γsd for

γsd ∈ [eλ − 1,∞). We also observe that for any γsd ≥ eλ − 1,

W (γsd|λ) = W (eλ − 1|λ) +
Z γsd

eλ−1

∂W (x|λ)
∂x

dx

(c)

≥ W (eλ − 1|λ) +
Z γsd

eλ−1

τ2
1 + x

dx

= W (eλ − 1|λ) + τ2 log(1 + x)
����γsd
eλ−1

where (c) follows from (5.25). Hence, we have lim
γsd→∞

W (γsd|λ) = ∞. Recall that

V0(γsd|λ) is increasing in γsd. Then we note that if eλ − 1 ≤ γsd,3(λ), we have

W (eλ−1|λ) = −V0(e
λ−1|λ) ≥ −V0(γsd,3(λ)|λ) = 0, and hence γsd,1(λ) does not exist,

and we further have W (γsd|λ) > 0 for any γsd ∈ (eλ − 1,∞); if γsd,3(λ) < eλ − 1 or

γsd,3(λ) does not exist, we have W (eλ−1|λ) = −V0(e
λ−1|λ) < −V0(γsd,3(λ)|λ) = 0 or

W (eλ−1|λ) = −V0(e
λ−1|λ) < −V0(0|λ) < 0, and hence γsd,1(λ) exists and is unique,

and we further have W (γsd|λ) < 0 when γsd ∈ (eλ − 1, γsd,1(λ)), and W (γsd|λ) > 0

when γsd ∈ (γsd,1(λ),∞).

Lemma 5.3 directly follows from the above discussions.
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Chapter 6

OPTIMAL PLACEMENT FOR BARRIER COVERAGE IN BISTATIC RADAR

SENSOR NETWORKS

6.1 Introduction

Wireless sensor networks have received tremendous attention over the past decade.

Typically, it is assumed that a sensor network is composed of passive sensors (e.g.,

thermal, acoustics, optic sensors) which detect radiation that is emitted or reflected by

an object. In contrast, an active radar (RAdio Detection And Ranging) purposefully

emits radio waves with the objective of collecting echoes. The ability to design

the structure and power of the transmitted radio signal imbues active radars with

performance advantages over passive sensors in many application scenarios, though

this is typically at the expense of additional system complexity.

Thanks to recent technological advances, radars are becoming less expensive

and more compact, making it feasible to deploy a network of radars working in con-

cert. Indeed, the application scale and scope of networked radar sensors1 are expected

to expand significantly. Due to the advantages of radars over traditional passive

sensors, radar networks have great potential for many applications, such as border

security [82] and traffic monitoring [83]. Nevertheless, to fully exploit this potential,

radar networks should be judiciously designed.

Coverage, which defines how well the object of interest is monitored, is a crit-

ical performance metric for sensor networks. Barrier coverage has recently emerged

as an efficient coverage strategy for numerous sensor network applications centered

around intruder detection, such as border monitoring and drug interdiction, and has

drawn a surge of research interest [12,84–86]. Despite tremendous research efforts on

1For brevity, we use “radar” and “radar sensor” interchangeably.
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Figure 6.1: Illustration of bistatic radar network.

coverage problems for sensor networks [9], those pertaining to radar sensors remain

largely unexplored, and this is the main subject of this study.

In this chapter, we consider the problem of deploying a network of bistatic

radars (BRs) for intrusion detection. Due to the flexibility to deploy the radar trans-

mitter and receiver separately, a BR is more favorable than a monostatic radar (MR)

for coverage. Our goal is to build a fundamental understanding of a bistatic radar

network (BRN) for coverage. In particular, a central question we ask here is: Where

should the BRs be placed to achieve the optimal coverage quality?

The coverage problem of a BRN is dramatically different and more challenging

than that of a network of traditional passive sensors, because 1) departing from the

disk sensing region of a passive sensor, the sensing region of a BR depends on the

locations of both the transmitter and receiver, and is characterized by a Cassini oval.

Formally, a Cassini oval is a locus of points for which the distances to two fixed

points (foci) have a constant product. Fig. 6.2 illustrates Cassini ovals with foci at

BR transmitter T and receiver R for different distance products: c1 < c2 < c3 <

c4; 2) the sensing regions of different BRs are coupled with each other, since each
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Figure 6.2: Bistatic radar SNR contours as Cassini ovals.

BR transmitter2 (or receiver) can potentially pair with different BR receivers (or

transmitters, respectively) to form multiple BRs such that its location would impact

multiple BRs.

Next we summarize the main contributions of this chapter.

• We consider the problem of deploying a network of BRs in a region to maximize

the worst-case intrusion detectability, which is equivalent to minimizing the

vulnerability of the optimal barrier in the region. We show that it is optimal to

place BRs on the shortest barrier if it is the shortest line segment that connects

the left and right boundary of the region.

• The main thrust of this study is devoted to characterizing the optimal place-

ment of BRs on a line segment to minimize its vulnerability, which is a highly

non-trivial optimization problem due to its non-convexity. To tackle the chal-

lenges herein, we recast the problem as finding the optimal placement order of

BR nodes with the optimal placement spacing. Based on an important structure

2For brevity, we use “transmitter” and “BR transmitter”, “receiver” and “BR receiver” inter-
changeably, respectively.
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of detectability, we characterize balanced placement spacing and show that it is

optimal. Using the optimal placement spacing, we then characterize the opti-

mal placement orders, which also present balanced structures. These findings

provide valuable insights into the placement of BRs for barrier coverage.

Although it is somewhat idealized, the Cassini oval sensing model (see SNR

equation (7.1)) used in this chapter can capture the essential feature of a BR, com-

pared to a passive sensor or MR. Furthermore, the coverage problem of a BRN corre-

sponding to the Cassini oval sensing model gives rise to significant technical difficulties

(as will be seen later). Needless to say, future work is needed to generalize this study

to more complex and realistic situations. In short, we believe that this study will

open a new door to explore radar sensor networks.

The rest of this chapter is organized as follows. Section 6.2 introduces the

model of bistatic radar network and the worst-case coverage, and defines the optimal

placement problem. In Section 6.3, we address the optimal placement problem based

on the barrier coverage strategy. We study the optimal placement of BRs on a line

segment in Section 6.4. Numerical results are provided in Section 6.5 and related

work is reviewed in Section 6.6. Section 6.7 concludes this chapter and discusses

future work.

6.2 Model and Problem Definition

In this section, we first describe the model of bistatic radar network and the worst-case

coverage, and then define the optimal placement problem.

6.2.1 Bistatic Radar Network

The radar transmitter and receiver of a BR are at different locations, whereas they

are co-located for a MR. Intuitively, a BR can achieve better coverage than a MR by

appropriate placement of the transmitter and receiver, such that the target is more
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likely to be physically closer to either the transmitter or receiver, and thus attains

a high signal-to-noise ratio (SNR). This advantage of BR will be illustrated by an

example in Section 6.3.

One fundamental metric of target detection for a BR is its received SNR: the

strength of the received radar signal indicates how likely the target is present. Let

‖AB‖ and AB denote the (Euclidean) distance and the line segment between point

A and B, respectively. For convenience, we also use Ti or Rj to denote the location

(point) of a transmitter node Ti or receiver node Rj, respectively. For a BR Ti-Rj,

the received SNR from the target located at a point X is given by [87]:

SNR =
K

‖TiX‖2‖RjX‖2
(6.1)

where K denotes a bistatic radar constant that reflects physical characteristics of the

BR, such as transmit power, radar cross section3, and antenna power gains. The SNR

contours of a BR are characterized by the Cassini ovals with foci at the transmitter

and receiver of the BR.

For a network of BRs, we assume that all transmitters operate on orthogonal

radio resources (e.g., by using orthogonal waveforms [88–91]) to avoid mutual inter-

ference at a receiver. While multiple receivers can pair with the same transmitter

to form multiple BRs, a receiver can also pair with multiple transmitters. Typically,

a BRN has more receivers than transmitters, mainly because that a transmitter in-

curs higher cost than a receiver (e.g., since signal transmission consumes more energy

than other sensor activities such as signal reception and processing). In addition, the

number of transmitters can also be limited by the available radio resources (e.g., the

number of orthogonal waveforms).

3Radar cross section measures the amount of radar signal energy reflected by an object depending
on its physical characteristics (e.g., shape, material).
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We consider the deployment of a BRN consisting of M transmitters Ti ∈ T ,

i ∈ M , {1, · · · ,M} and N receivers Rj ∈ R, j ∈ N , {1, · · · , N}. We assume

that transmitters and receivers, respectively, have homogeneous physical character-

istics such that all BRs have the same bistatic radar constant. We assume that a

receiver can potentially pair with all transmitters to form multiple BRs. However, in

Section 6.4 we will show that it suffices for a receiver to pair with at most two trans-

mitters. We also assume that transmitters and receivers are omnidirectional. We

further assume that the radar signals reflected by the target are omnidirectional4.

6.2.2 Worst-case Coverage

The BRN is deployed in a 2D geographical region of interest F to detect an intruder

that traverses through the region. The region F is defined by an entrance side,

a destination side, a left boundary Fl, and a right boundary Fr (as illustrated in

Fig. 6.3). The intruder can choose any intrusion path P in region F that connects

the entrance to the destination.

Existing studies on sensor network coverage [93–95] use the distance from a

point to its closest sensor to measure the coverage of the point (also known as the

closest sensor observability). In the same spirit, we measure the coverage of a point

by the highest SNR received by a BR among all BRs, when the target is present at

the point. In Section 6.4.4, we will discuss the case where data fusion is used such

that the coverage depends on the SNRs received by multiple BRs. Considering (7.1),

we have the following definition.

Definition 6.1 (Detectability). The detectability5 of a point X, denoted by I(X), is

4The reflected radar signals may not be omnidirectional. For the sake of tractability, most of
the literature on bistatic radar (e.g., [82, 87, 92]) assumes that they are omnidirectional.

5With a little abuse of notation, we use I(X) to denote the detectability of X , while the de-
tectability of X changes inversely with the value of I(X).
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the minimum distance product of X with respect to a BR among all BRs:

I(X) , min
Ti∈T ,Rj∈R

‖TiX‖‖RjX‖. (6.2)

In other words, the detectability of a point is determined by the closest BR

to the point, which consists of its closest transmitter and closest receiver. Similar

to [93–95], we use the worst-case intrusion to quantify the coverage of the intruder.

Definition 6.2 (Worst-case Intrusion [93]). The worst-case intrusion path, denoted

by P ∗, is the intrusion path with the minimum detectability among all possible intru-

sion paths:

P ∗ , argmax
P∈P

D(P ) (6.3)

where P denotes the set of all possible intrusion paths, and D(P ) denotes the de-

tectability of intrusion path P , which is the maximum detectability of a point among

all the points in P :

D(P ) , min
X∈P

I(X). (6.4)

6.2.3 Problem Definition

We are interested in finding the optimal placement of the BRN (i.e., the optimal

locations of M transmitters and N receivers) in region F that maximizes the worst-

case intrusion detectability:

minimize
Ti∈F,Rj∈F

D(P ∗). (6.5)

Based on the notion of worst-case coverage, problem (6.5) is of great interest

for the intruder detection problem. In particular, solving problem (6.5) provides the

answer to an important question: How many transmitters and receivers are needed,

and where should they be placed to provide the required coverage quality such that

at least one BR will receive an SNR above a predefined threshold, regardless of the

intruder’s path?
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Note that problem (6.5) is difficult to solve in general (even for sensors with

disk sensing regions). This is because the shape of region F can be arbitrary, and the

feasible solution space contains infinitely many placements in region F .

6.3 Placement for Barrier Coverage

In this section, we address problem (6.5) using the approach of barrier coverage. We

show that under certain conditions it is optimal to place BRs on the shortest barrier

in the region, in which case it is a line segment. We also investigate the placement

on the shortest barrier that is an arbitrary curve. All the proofs of this chapter are

given in Appendix.

6.3.1 Optimality Condition for Shortest Barrier based Placement

Similar to [12,84–86], we define a barrier as a curve in region F such that any intrusion

path intersects with the curve. We use the following concept as the coverage metric

of a barrier.

Definition 6.3 (Vulnerability). The vulnerability V (U) of a barrier U is the mini-

mum detectability of a point among all the points in U :

V (U) , max
X∈U

I(X). (6.6)

The rationale of using vulnerability as the coverage metric is that, since a

barrier intersects with any possible intrusion path, the vulnerability of a barrier serves

as an upper bound on the worst-case intrusion detectability. Furthermore, this bound

is tight when all the barriers are taken into account, such that

D(P ∗) = min
U∈U

V (U) (6.7)

where U denotes the set of all the barriers in region F .
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Figure 6.3: Examples of region of interest F (a) with and (b) without the shortcut
barrier.

Using (6.7), problem (6.5) boils down to finding the optimal barrier, which is

the optimal solution of the following problem:

minimize
U∈U

V ∗(U) (6.8)

where V ∗(U) denotes the minimum vulnerability of U , which is the optimal value of

the following problem:

minimize
Ti∈F,Rj∈F

V (U). (6.9)

It is plausible that the optimal barrier for problem (6.8) should be the shortest

barrier, denoted by U∗, which is the barrier with the minimum length among all the

barriers. However, this strategy is not optimal in general, because V ∗(U∗) can be

greater than V ∗(U) for a barrier U with a greater length than U∗. We give an

illustrative example in Fig. 6.4. For line segment AB with ‖AB‖ = 2
√
2 in Fig. 6.4

(a), it is clear that the optimal placement of a BR T1-R1 that minimizes V (AB) is

to set ‖AT1‖ = ‖R1B‖ =
√
2 − 1 such that V ∗(AB) = ‖AT1‖‖AR1‖ = 1. For curveÞCF 6 in Fig. 6.4 (b) with ‖CD‖ = ‖DE‖ = ‖EF‖ = 1 and CD,EF ⊥ DE, it has a

greater length than AB, while we have V ∗(ÞCF ) ≤ V (ÞCF ) = ‖TE‖‖ER‖ =
√
5/4 <

6We use gPQ to denote a curve with endpoints P , Q, and ‖gPQ‖ to denote its length.
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1 = V ∗(AB), where V (ÞCF ) denotes the vulnerability of ÞCF when T1 and R1 are

placed at the midpoint of CD and EF , respectively. Therefore, if AB is the shortest

barrier in region F while ÞCF is another barrier in F (which is possible), the optimal

barrier cannot be AB.

Before proceeding further, we use a simple example to illustrate the advantage

of a BR over a MR for barrier coverage. If we place a MR (which consists of a pair

of co-located radar transmitter and receiver) on AB in Fig. 6.4 (a) to minimize

V (AB), the optimal placement location is clearly at the midpoint YAB of AB such

that V (AB) = ‖AYAB‖2 = 2. This is greater than V ∗(AB) = 1 which is achieved

under the optimal placement of a BR T1-R1.

Although it is in general not optimal to place BRs on the shortest barrier U∗,

this strategy is optimal if U∗ is also the shortcut barrier defined as follows.

Definition 6.4 (Shortcut Barrier). The shortcut barrier, denoted by H, exists and is

the shortest barrier U∗ if and only if U∗ is the shortest line segment that connects left

boundary Fl and right boundary Fr (i.e., the length of U∗ is the minimum distance

between a point in Fl and a point in Fr).

Although the shortest line segment that connects Fl and Fr always exists, it

may not be in region F , and therefore is not a barrier. As illustrated in Fig. 6.3 (b),

H ′ is the shortest line segment that connects Fl and Fr but is not a barrier, and thus

the shortcut barrier does not exist. The shortcut barrier exists for a large class of

shapes of region F (e.g., any convex region). Note that if the shortest barrier U∗

is also the shortcut barrier, then U∗ must be a line segment; otherwise, U∗ may or

may not be a line segment. As illustrated in Fig. 6.3 (b), the shortest barrier U∗ is a

line segment but is not the shortcut barrier. We next show that the existence of the

shortcut barrier is the optimality condition.
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Figure 6.4: An example that shows the optimal barrier may not be the shortest
barrier.

Theorem 6.1. If the shortcut barrier H exists, then H is the optimal barrier for

problem (6.8). As a result, it suffices to solve problem (6.9) for H in order to solve

problem (6.5).

Note that Theorem 6.1 provides a sufficient condition under which the optimal

barrier is the shortest barrier. With regard to the optimal placement of BRs for a

line segment, we have the following result.

Proposition 6.1. For a line segment AB, the optimal placement for problem (6.9)

for AB is on AB, and the optimal value of problem (6.9) for AB increases as its

length ‖AB‖ increases.

The proof is based on a similar argument as in the proof of Theorem 6.1, and

is thus omitted. By Theorem 6.1 and Proposition 6.1, as it is optimal to place BRs on

the shortcut barrier H , which is a line segment, in Section 6.4 we will focus on finding

the optimal placement of BRs on a line segment that minimize its vulnerability.

6.3.2 Placement on Curved Shortest Barrier

If the shortest barrier U∗ is not the shortcut barrier, it can be an arbitrary curve

and may not be the optimal barrier for problem (6.8). Furthermore, it is in gen-

eral difficult to find the optimal placement for problem (6.9) for an arbitrary curve

(even for sensors with disk sensing regions). In this case, we can find a placement
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{T ′,R′} on U∗ that imitates the optimal placement {T ,R} for problem (6.9) for

a line segment U∗ that has the same length as U∗, such that ‖AT1‖ = ‖ßA′T ′1‖,
‖T1T2‖ = ‖ßT ′1T ′2‖, · · · , ‖TMB‖ = ‖àT ′MB′‖ and ‖AR1‖ = ‖ßA′R′1‖, ‖R1R2‖ = ‖àR′1R′2‖,
· · · , ‖RMB‖ = ‖áR′MB′‖, where A, B are the endpoints of U∗ and A′, B′ are the

endpoints U∗. For example, in Fig. 6.4 (a) and (c), the placement {T ′1, R′1} on ßA′B′
imitates the placement {T1, R1} on AB with ‖AB‖ = ‖ßA′B′‖ = 2

√
2, such that

‖ßA′T ′1‖ = ‖àR′1B′‖ = √2− 1.

It has an appealing property as stated in the following result.

Proposition 6.2. For the optimal placement {T ,R} on the line segment U∗ and the

imitation placement {T ′,R′} on the shortest barrier U∗, we have V ∗(U∗) ≥ V ′(U∗).

The proof is based on a similar argument as in the proof of Theorem 6.1,

and is thus omitted. By Proposition 6.2, V ∗(U∗) is no less than V (U∗) under the

imitation placement, and thus V ∗(U∗) serves as an upper bound for the worst-case

intrusion detectability D(P ∗), which is the objective that we aim to minimize (i.e.,

the objective value of problem (6.5)). Since the shortest barrier U∗ has the minimum

length among all the barriers, according to Proposition 6.1, the imitation placement

on U∗ gives the minimum upper bound V ∗(U∗) for D(P ∗) among all the barriers.

6.4 Optimal Placement on A Line Segment

In this section, we study the optimal placement of BRs on a line segment, say the

shortcut barrier H , to minimize its vulnerability V (H).

6.4.1 Problem Recast

Let Hl and Hr be the left and right endpoint of H , respectively, and h be the length

of H . Also let ti , ‖HlTi‖ and rj , ‖HlRj‖. Mathematically, our problem can be
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written as

minimize
ti,rj

max
0≤x≤h

min
i∈M,j∈N

|x− ti||x− rj| (6.10)

subject to 0 ≤ ti ≤ h, ∀i ∈M

0 ≤ rj ≤ h, ∀j ∈ N

where mini∈M,j∈N |x− ti||x− rj| represents the detectability of a point X ∈ H with

‖HlX‖ = x, and max0≤x≤hmini∈M,j∈N |x− ti||x− rj | represents the vulnerability of

H . In general, we can show that problem (6.10) is non-convex. Therefore, standard

optimization methods would not work well here.

To gain useful insight into problem (6.10), we view the line segment based

placement in an intuitive way as follows. First we treat Hl and Hr as two (virtual)

nodes and relax the constraint ‖HlHr‖ = h. Then we place all the BR nodes T and

R as well as Hl and Hr on a horizontal line subject to the constraint that Hl and Hr

are the leftmost and rightmost node, respectively. We can use the following concepts

to characterize any placement on a line.

Definition 6.5 (Placement Order and Spacing). A placement order (referred to as

“order” for brevity) S is an order of all the nodes on the line from left to right:

S , (Hl, S1, · · · , SJ , Hr)

where J , M + N and (S1, · · · , SJ) is a permutation of the BR nodes such that

‖HlHl‖ ≤ ‖HlS1‖ ≤ · · · ≤ ‖HlSJ‖ ≤ ‖HlHr‖. The placement spacing (referred to

as “spacing” for brevity) DS of a placement order S consists of the distances each

between a pair of neighbor nodes in S:

DS , (‖HlS1‖, · · · , ‖SJHr‖).
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Table 6.1: Frequently used notation

Notation Description

AB line segment between point A and B
‖AB‖ distance between point A and B (length of AB)
YAB midpoint of AB
M , N total number of BR transmitters, BR receivers
T , R set of all BR transmitters, BR receivers
Ti, Rj BR transmitter i, BR receiver j
Ti-Rj BR consisting of Ti and Rj

I(X) detectability of X
V (AB) vulnerability of AB
H , h shortcut barrier and its length
Hl, Hr left and right endpoint (node) of H
S placement of T , R, Hl, and Hr on a line

S, DS placement order and its placement spacing
Si, DSi

independent local placement order and its
local placement spacing

ZSi
, LSi

local zone of Si and its length
eic parameter that characterizes balanced spacing

A local placement order (referred to as “local order” for brevity) (Si+1, · · · , Si+j) is

an order of a set of neighbor nodes in S, and its placement spacing is

D(Si+1··· ,Si+j) , (‖Si+1Si+2‖, · · · , ‖Si+j−1Si+j‖).

We can see that any order S with any spacing DS characterize a unique place-

ment of BRs on a line segment with length ‖HlHr‖; conversely, any placement of

BRs on the line segment H can be uniquely characterized by some order S with some

spacing DS that satisfies ‖HlHr‖ = h. Therefore, our problem (6.10) can be recast

as

minimize
S,DS

V (HlHr) (6.11)

subject to ‖HlHr‖ = h.

It is clear that the optimal value of problem (6.11) increases as h increases.
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Algorithm 5: Compute the optimal placement for problem (6.11)

input : line segment length h, precision threshold ǫ
output: optimal order S∗, optimal spacing D∗

S∗ , optimal value c∗

1 c1 ← 0, c2 ← h2, c← c1+c2
2

;
2 repeat

3 Compute the optimal order S∗ and the optimal spacing D∗
S∗ for problem (6.12)

subject to V (HlHr) ≤ c;
4 if lc > h+ ǫ then
5 c2 ← c; c← c1+c2

2
;

6 end

7 if lc < h− ǫ then
8 c1 ← c; c← c1+c2

2
;

9 end

10 until |c− c1| ≤ ǫ;
11 return S∗, D∗

S∗, c∗ ← c;

As a result, we can formulate a problem relevant to problem (6.11) as

maximize
S,DS

‖HlHr‖ (6.12)

subject to V (HlHr) ≤ c.

Let lc denote the optimal value of problem (6.12) under the constraint V (HlHr)

≤ c. It is also clear that lc is increasing in c and, in particular, lc → 0 when c → 0

and lc → ∞ when c → ∞. Therefore, if we can solve problem (6.12) for any c > 0,

we can also solve problem (6.11) by a bisection search as described in Algorithm 5.

Specifically, Algorithm 5 keeps track of an interval [c1, c2] that must contain the

optimal value c∗ of problem (6.11), and reduce the interval by half at each step,

until the interval is sufficiently small such that the difference between c∗ and the

endpoint c1 or c2 is upper bounded by a predefined precision threshold ǫ. Since the

initial interval is set to [0, h2], the number of steps for running Algorithm 5 is upper

bounded by O(log(h2/ǫ)).

We make two observations regarding any placement of BRs. First, since all

BRs are homogeneous, swapping the locations of any pair of transmitters (or receivers,
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respectively) results in an equivalent placement. Second, transmitters and receivers

are reciprocal in the sense that replacing all transmitters by receivers while replacing

all receivers by transmitters results in an equivalent placement. As a result, for ease

of exposition, in the rest of this chapter we assume that M ≤ N . All the analysis

hereafter can directly apply to the case M > N by treating transmitters as receivers

while treating receivers as transmitters.

6.4.2 Optimal Placement Order and Spacing

In this subsection, our goal is to characterize the optimal order and the optimal

spacing for problem (6.12). We outline the major steps to achieve this goal as follows.

1) We show an important structure of detectability for any placement on a line

(Lemma 6.1), based on which we define balanced spacings and independent local

orders.

2) We characterize the balanced local spacing for an independent local order

(Lemma 6.2), and show that it is optimal (Lemma 6.3).

3) We show that the balanced spacing for a dividable order consists of balanced

local spacings for independent local orders, and it is optimal (Theorem 6.2).

4) We show that there exist optimal orders in the class of dividable orders

(Lemma 6.4), based on which we characterize the optimal orders (Theorem 6.3).

We start with the observation that the optimal order S∗ for problem (6.12) is

equivalent to the optimal order of the following problem:

maximize
S

fS

c (6.13)
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where fS

c denotes the optimal value of the following problem for order S:

maximize
DS

‖HlHr‖

subject to V (HlHr) ≤ c. (6.14)

Therefore, the optimal spacing D∗
S∗ for problem (6.12) is equivalent to the optimal

spacing for problem (6.14) for the optimal order S∗.

The following lemma presents an important structure of detectability for any

placement on a line. We use YAB to denote the midpoint of a line segment AB.

Lemma 6.1. For any order S with any spacing DS, the detectability on HlHr attains

local maximums at the end nodes and at the midpoint of each pair of neighbor BR

nodes (as illustrated in Fig. 6.5):

arg max
X∈HlS1

I(X) = Hl, arg max
X∈SJHr

I(X) = Hr

arg max
X∈SiSi+1

I(X) = YSiSi+1
, ∀i ∈ {1, · · · , J − 1}.

Definition 6.6 (Local Vulnerable Point). A local vulnerable point is a local maximum

point of detectability on HlHr, and a local vulnerable value is its detectability.

By Lemma 6.1, it suffices to examine the local vulnerable values to determine

the vulnerability of a line segment. Based on Lemma 6.1, we define the following

concept.

Definition 6.7 (Independent Local Order). A local order Si is an independent local

order if it has any of the following types:

(T,R), (R, T )

(T,Rk, Hr), (R, T k, Hr), (Hl, R
k, T ), (Hl, T

k, R), k ≥ 1

(T,Rk, T ), (R, T k, R), k ≥ 1
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Hr

Hr

Hl

Hl

(a)

(b)

I(X)

I(X)

local vulnerable value

Figure 6.5: Local vulnerable values under (a) arbitrary and (b) balanced placement
spacing.

where T k and Rk denote k consecutive transmitters and receivers, respectively. The

independent local zone ZSi
of an independent local order Si is the line segment between

the two end nodes in Si, with its length denoted by LSi
.

For any local placement with any independent local order Si, the closest BR

for any local vulnerable point on the independent local zone ZSi
consists of the nodes

in Si. For example, for Si = (T1, R1), the closest BR for YT1R1 is T1-R1; for Si =

(T1, R1, · · · , Rk, Hr), the closest BR for any of YT1R1 , · · · , YRk−1Rk
, and Hr, consists

of transmitter T1 and some receiver among R1, · · · , Rk. Therefore, all the local

vulnerable values on ZSi
, and hence the vulnerability V (ZSi

), are determined by the

spacing DSi
(i.e., independent of any distance not in DSi

). Based on this property,

the following concept is well-defined for an independent local order.

Definition 6.8 (Balanced Spacing). The spacing DS (or local spacing DSi
) of an

order S (or an independent local order Si, respectively) is balanced if all the local

vulnerable values on HlHr (or the independent local zone ZSi
, respectively) are equal
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(as illustrated in Fig. 6.5 (b)).

The next lemma characterizes the balanced local spacing for an independent

local order.

Lemma 6.2. For any c > 0, define e0c , 2
√
c and let ejc denote the unique positive

value of x such that �
j−1X
i=0

eic +
x

2

�
x

2
= c (6.15)

for each j ∈ N+. For any c > 0 and any independent local order Si, there exists a

unique balanced local spacing DSi
such that V (ZSi

) = c, and furthermore, it can be

characterized by eic, i ∈ N as follows: for Si with type (T,R) or (R, T ),

DSi
= (e0c);

for Si with type (T,Rk, Hr) or (R, T k, Hr),

DSi
= (e0c , e

1
c , · · · , ek−1c ,

ekc
2
);

for Si with type (Hl, R
k, T ) or (Hl, T

k, R),

DSi
= (

ekc
2
, ek−1c , · · · , e1c , e0c);

for Si with type (T,Rk, T ) or (R, T k, R), if k is even,

DSi
= (e0c , e

1
c , · · · , e

k
2
−1

c , e
k
2
c , e

k
2
−1

c , · · · , e1c , e0c);

if k is odd,

DSi
= (e0c , e

1
c , · · · , e

k−1
2

c , e
k−1
2

c , · · · , e1c , e0c).

By definition, given c, the value of eic, i ∈ N+ can be found iteratively us-

ing (6.15), which decreases as i increases (as shown in Table 6.2).
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Table 6.2: Values of balanced spacing

c e0c e1c e2c e3c e4c
1 2.0000 0.8284 0.6357 0.5359 0.4721
5 4.4721 1.8524 1.4214 1.1983 1.0557
10 6.3246 2.6197 2.0102 1.6947 1.4930
20 8.9443 3.7048 2.8428 2.3966 2.1115

Based on the independent property, we can cast a problem in the same spirit

as problem (6.14) but for an independent local order Si as

maximize
DSi

LSi

subject to V (ZSi
) ≤ c. (6.16)

The next lemma shows that the balanced local spacing is optimal for problem (6.16).

Lemma 6.3. For any c > 0 and any independent local order Si, the balanced local

spacing DSi
such that V (ZSi

) = c is the optimal local spacing for problem (6.16).

The next definition presents a useful structure of a class of orders.

Definition 6.9 (Dividable Order). An order S is dividable if it can be decomposed

into independent local orders S1, · · · ,Sm such that 1) each node in S is included in

some Si; 2) the last node of Si is the first node of Si+1 for each i = 1, · · · , m − 1.

Therefore, the spacing DS consists of disjoint independent local spacings DS1, · · · ,

DSm
. For example, the following order is dividable:

S = (

S1z }| {
Hl, R1, R2, | {z }

S2

T1, R3, R4, R5,

S3z }| {
T2, R6, T3, T4, Hr| {z }

S4

). (6.17)

For any placement with any dividable order S, the local vulnerable points on

HlHr consists of disjoint sets of local vulnerable points on the independent local zones

ZS1 , · · · , ZSm
. Therefore, problem (6.14) for S can be decomposed into independent

subproblems, each of which is an instance of problem (6.16) for S1, · · · ,Sm, with the
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optimal local spacing given by Lemma 6.3. The next theorem follows from the above

observation.

Theorem 6.2. For any c > 0 and any dividable order S, where S can be decom-

posed into independent local orders S1, · · · , Sm, the balanced spacing DS such that

V (HlHr) = c exists and consists of the balanced local spacings DS1, · · · , DSm
. Fur-

thermore, it is the optimal spacing for problem (6.14) for S.

Next we show that there exist optimal orders in the class of dividable orders.

Since all transmitters are homogeneous, we index the transmitters from left to right

such that 0 ≤ ‖HlT1‖ ≤ · · · ≤ ‖HlTM‖ ≤ ‖HlHr‖. Define

NS , (n1, n2, · · · , nM , nM+1)

where ni, n1, nM+1 denote the number of receivers in S between Ti−1 and Ti for

i ∈ {2, · · · ,M}, between Hl and T1, between TM and Hr, respectively. Since all

transmitters and all receivers are homogeneous, respectively, any order S can be

uniquely characterized by NS.

Lemma 6.4. There exists an optimal order S∗ that satisfies the following conditions:

∄i, j ∈ {1, · · · ,M} such that ni ≥ 2, nj = 0 (6.18a)

n2 6= 0, nM 6= 0. (6.18b)

Furthermore, any order S that satisfies the above conditions is dividable.

We should note that a non-optimal order (e.g., the order in (6.17)) can also

be dividable.

Based on Lemma 6.4, the following theorem provides a sufficient condition for

the optimal order.
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Theorem 6.3. An order S is optimal if it satisfies the following conditions:

|ni − nj| ≤ 1, ∀i, j ∈ {2, · · · ,M} (6.19a)

|ni − 2n1| ≤ 1,|ni − 2nM+1| ≤ 1, ∀i ∈ {2, · · · ,M}. (6.19b)

Using Theorem 6.3, we characterize the optimal order S∗ as follows. Let two

integers q and r be the quotient and remainder of N
M
, respectively. If q is even (e.g.,

as in Fig.6.6 (a) and (b)), we have

NS∗ = (
q

2
,

rz }| {
q + 1, · · · , q + 1,

M−1−rz }| {
q, · · · , q, q

2
);

if q is odd and r = 0 (e.g., as in Fig.6.6 (c)), we have

NS∗ = (
q + 1

2
,

M−1z }| {
q, · · · , q, q − 1

2
);

if q is odd and r ≥ 1, we have

NS∗ = (
q + 1

2
,

r−1z }| {
q + 1, · · · , q + 1,

M−rz }| {
q, · · · , q, q + 1

2
).

In addition, for any NS∗ , if we swap the values of n1 and nM+1, or the values of ni and

nj for i, j ∈ {2, · · · ,M}, it also satisfies (6.19a) and (6.19b), and hence is optimal.

Given the above optimal order S∗ for problem (6.13), which is dividable, we

can characterize the optimal spacing D∗
S∗ for problem (6.14) using Theorem 6.2.

6.4.3 Remarks

Regarding the analysis and results in the last subsection, we have the following re-

marks.

Remark 1: The detectability structure given in Lemma 6.1 plays a funda-

mental role in our analysis, based on which the concepts of local vulnerable point,

independent local order, balanced spacing, and dividable order can be defined there-

after. This structure is mainly due to that 1) all BRs are homogeneous and 2) for
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(a)

(b)

(c)

Figure 6.6: Optimal placement of BRs for M = 3 and (a) N = 7; (b) N = 8; (c)
N = 9.

any BR, say T1-R1, the received SNR from a point on the line segment T1R1 achieves

local minimum at the midpoint YT1R1 .

Remark 2: The optimal spacings are balanced in the sense that all the local

vulnerable values are equal under the balanced spacing. The optimality of this bal-

anced structure is due to that minimizing the vulnerability is equivalent to minimizing

the maximum local vulnerable value.

The balanced spacing is in general non-uniform in the sense that the distance

between each pair of neighbor BR nodes is not the same. For the balanced spacing

of an independent local order Si with type (T,Rk, T ), (Hl, R
k, T ), or (T,Rk, Hr),

the distance between two neighbor receivers decreases as the distance to their closest

transmitter increases (i.e., eic decreases as i increases). This non-uniform structure is

essentially due to that the detectability of a point is jointly determined by its closest

transmitter and closest receiver, while the number of transmitters is unbalanced with

that of receivers.

Remark 3: The optimal orders are also balanced but in a more subtle sense:

for the optimal order that satisfies (6.19), ni for i = 2, · · · ,M are as equal as possible,

while each ni is as equal as possible to two times n1 and nM+1, respectively (as

illustrated in Fig. 6.6). The optimality of this balanced structure is mainly because
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Figure 6.7: Optimal placement of disk sensors.

that the optimal value of problem (6.16) for an independent local order Si with type

(T,Rk, T ), (Hl, R
k, T ), or (T,Rk, Hr) increases as k increases, while the marginal

increment decreases as k increases. Therefore, to maximize the sum of the optimal

values of problem (6.16) for independent local orders (Hl, · · · , T1), (T1, · · · , T2), · · · ,

(TM−1, · · · , TM), (TM , · · · , Hr), the optimal order must have that balanced structure.

Remark 4: We can gain useful insights by comparing the placement of BRs

on a line segment to that of sensors with disk sensing regions (we assume that they

are homogeneous and refer them as “disk sensors” for brevity). For disk sensors, we

define the detectability of a point as the distance to its closest sensor. Interestingly,

for any placement of disk sensors on a line segment, we can observe the same structure

as in Lemma 6.1: the detectability on the line segment also achieves local maximums

at the midpoint of each pair of neighbor disk sensors and the endpoints. While this

detectability structure is clear for disk sensors (which are homogeneous), it is not

obvious for BRs.

Based on the detectability structure, we can show that the balanced spacing

is also optimal for disk sensors. However, as illustrated in Fig. 6.7, the balanced

spacing for disk sensors is uniform (i.e., each pair of neighbor disk sensors have the

same distance), in contrast to that it is non-uniform in general for BRs. We should

also note that while the balanced spacing is an equivalent condition for the optimal

placement of disk sensors, it is only a necessary condition for the optimal placement

of BRs. This is because that different orders of BR nodes can be non-equivalent.

Remark 5: The optimal placement results imply that one assumption made

in Section 6.2 can be relaxed without losing the optimality. Since the detectability
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of a point is determined by its closest BR, it suffices for a receiver to pair with a

transmitter only if they form the closest BR for some point on the line segment.

Therefore, for the optimal placement of a BRN consisting of more receivers than

transmitters (e.g., as in Fig. 6.6), we can see that a receiver only needs to pair with

its closest transmitter(s), the number of which is one or two.

6.4.4 Discussions

In this study, we assume that there is no data fusion among different BRs for target

detection. If data fusion is used, the metric of target detection would depend on the

SNRs received by multiple BRs (e.g., the sum of the k highest SNRs where k > 1)

rather than only the highest SNR. As a result, the detectability of a point would

depend on its distant product with respect to multiple BRs rather than only the

closest BR. As expected, it is very difficult to find the optimal placement of BRs for

problem (6.10) in this case. However, with data fusion, we can show that all the results

in Section 6.3 (including Theorem 6.1, Proposition 6.1 and 6.2) still hold via similar

analysis, as long as the data fusion model satisfies that target detection improves as

the SNR of any BR involved in the data fusion increases (which is typically true). In

addition, for the optimal placement on a line segment H under the model without

data fusion, we can analyze the coverage quality of this placement under a data fusion

model. Specifically, using the detectability of a point as a function of its distances

to certain BR nodes (which depends on the data fusion model), we can find the

local maximums of the detectability on H (as we do in Lemma 6.1), and thus the

vulnerability of H . Clearly, the vulnerability of H without data fusion serves as an

upper bound for that with data fusion.

6.5 Numerical Results

In this section, we provide numerical results to illustrate the advantage of the optimal

placement of BRs on a line segment H .
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(a)

(b)

Figure 6.8: Heuristic placement of BRs for M = 3 and N = 8: (a) HEU-1; (b)
HEU-2.

6.5.1 Comparison with Heuristic Placement

As no existing work has studied the placement of BRs for barrier coverage, we compare

the optimal placement strategy (OPT) with two heuristic strategies. The heuristics

are motivated by the rationale of the optimal placement strategy for a network of

homogeneous disk sensors, which is to minimize the maximum distance from a point

to its closest sensor among all the points on H .

The first heuristic (HEU-1) is to place transmitters (or receivers, respectively)

with uniform spacing such that the maximum distance from a point on H to its

closest transmitter (or receiver, respectively) is minimized (as illustrated in Fig. 6.8

(a)):

2‖HlT1‖ = ‖T1T2‖ = · · · = ‖TM−1TM‖ = 2‖TMHr‖

2‖HlR1‖ = ‖R1R2‖ = · · · = ‖RN−1RN‖ = 2‖RNHr‖.

Comparing Fig. 6.6 (b) with Fig. 6.8 (a) (under the same setting of M = 3 and

N = 8), we can see that neither the placement of transmitters nor receivers in OPT

is the same as that in HEU-1. Compared to OPT, the main drawback of HEU-1 is

that it places transmitters and receivers independently.

The second heuristic (HEU-2) is to place transmitters and receivers according

to the optimal order S∗, but with uniform spacing such that the maximum distance

from a point on H to its closest BR node (either transmitter or receiver) is minimized
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Figure 6.9: Impact of N for M = 3.
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Figure 6.10: Impact of N for M = 5.

(as illustrated in Fig. 6.8 (b)):

2‖HlS1‖ = ‖S1S2‖ = · · · = ‖SM−1SM‖ = 2‖SMHr‖.

Although HEU-2 follows the optimal order, its main drawback is that it treats trans-

mitters and receivers equivalently.

Figs. 6.9-6.11 depict the vulnerability of H under OPT, HEU-1, and HEU-2

for a varying number of receivers and 3, 5, 10 transmitters, respectively. We set
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Figure 6.11: Impact of N for M = 10.

the length of H to 100m. We observe that HEU-2 results in considerably lower

vulnerability than HEU-1, and OPT further outperforms HEU-2 significantly. This

shows that OPT is highly advantageous for improving the barrier coverage, which is

essentially due to that the design rationale for a BRN under the Cassini oval sensing

model is quite different from that for a network of passive sensors or MRs under the

disk sensing model. Therefore, the optimal placement of a BRN requires judicious

design of transmitters and receivers as we do in this chapter.

6.5.2 Comparison with Monostatic Radar Network

In Fig. 6.12, we compare the vulnerability of H under the optimal placement of a

BRN to that of a monostatic radar network (MRN) for a varying number of trans-

mitters and receivers. The optimal placement strategy for a MRN is to minimize

the maximum distance from a point on H to its closest MR. For fair comparison,

we set the number of transmitters in the BRN equal to that of receivers, and also

equal to the number of MRs in the MRN. We observe that the advantage of a BRN is

significant, which demonstrates that the flexibility to place transmitters and receivers

separately is highly beneficial for barrier coverage.
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Figure 6.12: Impact of M for M = N under optimal placement: BRN vs MRN.

6.6 Related Work

Radar has been extensively studied for decades [96]. However, radar sensor networks

have garnered attention only in the past few years, largely driven by the emergence

of cheaper and more compact radar sensors in place of conventionally expensive and

bulky radar systems. For example, in [97], a platform has been successfully designed

and built to integrate ultrawideband radars with mote-class sensor devices. The

existing literature has studied different problems for radar sensor networks, including

waveform design and diversity [98], radar scheduling [99], data management [100],

for a variety of objectives, such as target detection [101] and localization [92]. In

particular, BRs have also been considered in [92]. However, coverage problems of a

radar sensor network have received very little attention. Recently, a novel Doppler

coverage model has been introduced in [102] for a radar sensor network that exploits

the Doppler effect. To our best knowledge, this work is the first to explore the barrier

coverage of a network of BRs.

Numerous studies on sensor network coverage can be found in the literature [9].
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Worst-case intrusion was first introduced in [93]. [93,94,103] have studied how to find

the worst-case intrusion path for arbitrarily deployed sensors. [104,105] have consid-

ered adding sensors to improve the coverage of the worst-case intrusion path. Along

another avenue, barrier coverage was first introduced in [84] and has attracted much

research interests recently. [84,85] have studied the critical sensor density for barrier

coverage under random deployment. The coverage of a barrier has been investigated

using a quantitative metric in [12]. Barrier coverage of sensors with mobility have

been considered in [86, 106]. Barrier coverage for camera sensor networks has also

been studied recently based on a novel full-view coverage model [107, 108].

While most aforementioned studies are concerned with how to find the worst-

case intrusion path or a barrier covered by sensors (if such a barrier exists) under

an existing deployment of sensors, our work focuses on where to deploy sensors to

cover a barrier such that the worst-case intrusion detectability is maximized. More

importantly, the existing sensing models (particularly the widely used disk sensing

model) are quite different from the Cassini oval sensing model of a BR, and the latter

is further complicated by the coupling of sensing regions across multiple BRs.

6.7 Conclusion

Radar sensor networks have great potential in many applications, such as border

surveillance and traffic monitoring. In this chapter, we studied the problem of de-

ploying a network of BRs in a region for intruder detection. The optimal placement

of BRs is highly non-trivial, since 1) the coverage region of a BR is characterized by

a Cassini oval that presents complex geometry; 2) the coverage regions of different

BRs are coupled and the network coverage is intimately related to the locations of

all BR nodes. We showed that it is optimal to place BRs on the shortest barrier if

it is also the shortest line segment that connects the left and right boundary of the
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Figure 6.13: A snapshot of proof of Theorem 6.1.

region. Furthermore, we characterized the optimal placement order and spacing of

BR nodes on a line segment, both of which present elegant balanced structures.

6.8 Appendix

6.8.1 Proof of Theorem 6.1

For any barrier ÞAB and the optimal placement {T ,R} that minimizes V (ÞAB), we

can construct a placement {T ′,R′} for AB by moving each Ti ∈ T and each Rj ∈ R

to their respective projections T ′i ∈ T ′ and R′j ∈ R′ on the line passing through A and

B, respectively, as illustrated in Fig. 6.13. Then for any point X ′ ∈ AB, there exists a

point X ∈ÞAB whose projection on AB is X ′. We can observe that ‖TiX‖ ≥ ‖T ′iX ′‖,

∀i ∈M and ‖RjX‖ ≥ ‖R′jX ′‖, ∀j ∈ N . Then it follows that

I(X) = min
i∈M,j∈N

‖TiX‖‖RjX‖ ≥ min
i∈M,j∈N

‖T ′iX ′‖‖R′jX ′‖ = I ′(X ′)

where we use I ′(X ′) to denote the detectability of X ′ under placement {T ′,R′}.

Hence we have

V ∗(AB) ≤ V ′(AB) = max
X′∈AB

I ′(X ′) ≤ max
X∈ÝAB

I(X) = V ∗(ÞAB) (6.20)

where we use V ′(AB) to denote the vulnerability of AB under placement {T ′,R′}.

Since V ∗(U) for a line barrier U increases as the length of U increases, and the shortcut

barrier H is not longer than AB, using (6.20) we have V ∗(H) ≤ V ∗(AB) ≤ V ∗(ÞAB).

161



T1R2 R1 T2

YR2R1
YT1T2

YT1R1(a)

(b)
T1R1 T2 R2

YR1R2

YT1T2

R1 T1

Hl(c)

YT1R2

Figure 6.14: Snapshots of proof of Lemma 6.1.

6.8.2 Proof of Lemma 6.1

The main idea of the proof is to divide the line segment between each pair of neighbor

nodes into intervals such that all the points on each interval have the same closest BR,

and then we examine the detectability on each interval. We consider three possible

cases of two neighbor nodes as follows.

Case 1 : T1 and R1 (two nodes of different types)

As illustrated in Fig. 6.14 (a), for any point X ∈ T1R1, its closest transmitter

must be either T1 or the leftmost transmitter T2 on R1Hr, and its closest receiver

must be either R1 or the rightmost receiver R2 on HlT1. Suppose the closest BR for

a point on T1YR2R1 , YR2R1YT1T2 , YT1T2R1 is T1-R2, T1-R1, T2-R1, respectively. Then

we observe that for X ∈ T1YR2R1 , I(X) = ‖R2X‖‖T1X‖ increases as X moves closer

to YR2R1 ; for X ∈ YR2R1YT1T2 , I(X) = ‖T1X‖‖XR1‖ increases as X moves closer to

YT1R1 ; for X ∈ YT1T2R1, I(X) = ‖XR1‖‖XT2‖ decreases as X moves closer to R1.

Therefore, I(X) attains maximum on T1R1 when X = YT1R1.

Case 2 : T1 and T2 (two nodes of the same type)

As illustrated in Fig. 6.14 (b), for any point X ∈ T1T2, its closest transmitter

must be either T1 or T2, and its closest receiver must be either the rightmost receiver

R1 on HlT1, or the leftmost receiver R2 on T2Hr. Suppose the closest BR for a point
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on T1YR1R2 , YR1R2YT1T2 , YT1T2T2 is T1-R1, T1-R2, T2-R2, respectively. Then we observe

that for X ∈ T1YR1R2, I(X) = ‖T1X‖‖R1X‖ increases as X moves closer to YR1R2 ; for

X ∈ YR1R2YT1T2 , since X is on the left side of YT1R2 I(X) = ‖T1X‖‖XR2‖ increases

as X moves closer to YT1T2 ; for X ∈ YT1T2T2, I(X) = ‖XT2‖‖XR2‖ decreases as X

moves closer to T2. Therefore, I(X) attains maximum on T1T2 when X = YT1T2 .

Case 3 : Hl and T1 (two nodes including an end node)

As illustrated in Fig. 6.14 (c), for any point X ∈ HlT1, its closest transmitter

must be T1, and its closest receiver must be the leftmost receiver R1 on T1Hr. Hence

the closest BR for a point on HlT1 is T1-R1. Then we observe that for X ∈ HlT1,

I(X) = ‖XT1‖‖XR1‖ increases as X moves closer to Hl, and hence attains maximum

when X = Hl.

6.8.3 Proof of Lemma 6.2

The main idea of the proof is to sequentially determine the distance between each

pair of neighbor nodes. In the following, we consider all three cases of an independent

local order Si with balanced spacing DSi
such that V (ZSi

) = c.

Case 1 : Si = (T1, R1)

Since the closest BR for YT1R1 is T1-R1, we have I(YT1R1) = (‖T1R1‖/2)2

= c. Then it follows that ‖T1R1‖ = 2
√
c = e0c .

Case 2 : Si = (T1, R1, · · · , Rk, Hr)

Similar to case 1, we can show that ‖T1R1‖ = 2
√
c = e0c , as illustrated in
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Fig. 6.15 (a). Since the closest BR for YR1R2 is T1-R1 or T1-R2, we have

I(YR1R2) = ‖T1YR1R2‖‖YR1R2R2‖ =
‖T1R1‖+ ‖R1R2‖

2

‖R1R2‖
2

= c. (6.21)

Then using (6.21) and ‖T1R1‖ = 2
√
c, we obtain a unique value ‖R1R2‖ = e1c . Follow-

ing this argument recursively, using the values of ‖T1R1‖, ‖R1R2‖, · · · , ‖Ri−1Ri‖, we

can obtain a unique value ‖RiRi+1‖ = eic such that I(YRiRi+1
) = c for i = 2, · · · , k−1,

and at last, using the values of ‖T1R1‖, ‖R1R2‖, · · · , ‖Rk−1Rk‖, we can obtain a

unique value ‖RkHr‖ = ekc/2 such that I(Hr) = c.

Case 3 : Si = (T1, R1, · · · , Rk, T2)

Similar to case 1, we can show that ‖T1R1‖ = ‖RkT2‖ = e0c , as illustrated

in Fig. 6.15 (b). Then the closest BR for YR1R2 must be T1-R1 or T1-R2. Using

the same argument as in case 2, we can obtain a unique value ‖R1R2‖ = e1c such

that I(YR1R2) = c. Then the closest BR for YRk−1Rk
must be T2-Rk−1 or T2-Rk.

Following the above argument recursively, we can obtain that ‖Rk−1Rk‖ = e1c , then

that ‖R2R3‖ = e2c . . . until that ‖Rk
2
Rk

2
+1‖ = e

k
2
c when k is even, or ‖Rk+1

2
Rk+3

2
‖ =

e
k−1
2

c when k is odd.

6.8.4 Proof of Lemma 6.3

The proof is based on contradiction. Suppose there exists another placement S′i with

spacing DS′
i
such that V (ZS′

i
) ≤ c and ZSi

< ZS′
i
. We consider all three cases of an

independent local order Si as follows.

Case 1 : Si = (T1, R1)

Since I(YT ′
1R

′
1
) = (‖T ′1R′1‖/2)2 ≤ c = I(YT1R1) = (‖T1R1‖/2)2, we have

‖T ′1R′1‖ ≤ ‖T1R1‖, which is a contradiction.

Case 2 : Si = (T1, R1, · · · , Rk, Hr)

Similar to case 1, we can show that ‖T ′1R′1‖ ≤ ‖T1R1‖. Using this and
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Figure 6.16: Snapshots of proof of Lemma 6.3.

I ′(YR′
1R

′
2
) ≤ c = I(YR1R2), we next show that ‖T ′1R′2‖ ≤ ‖T1R2‖. Suppose ‖T ′1R′2‖ >

‖T1R2‖, as illustrated in Fig. 6.16 (a). Then we can find a placement {T̂1, R̂1, R̂2} such

that ‖T̂1R̂1‖ = ‖T ′1R′1‖ and ‖T̂1R̂2‖ = ‖T1R2‖. We observe that ‖R′1R′2‖ > ‖R̂1R̂2‖,

and hence ‖T ′1YR′
1R

′
2
‖ > ‖T̂1YR̂1R̂2

‖ and ‖YR′
1R

′
2
R′2‖ > ‖YR̂1R̂2

R̂2‖. We also observe

that ‖T̂1R̂2‖/2 > ‖YR̂1R̂2
R̂2‖ > ‖YR1R2R2‖. Using these observations, we have

I ′(YR′
1R

′
2
) = ‖T ′1YR′

1R
′
2
‖‖YR′

1R
′
2
R′2‖

> ‖T̂1YR̂1R̂2
‖‖YR̂1R̂2

R̂2‖ = Î(YR̂1R̂2
)

> ‖T1YR1R2‖‖YR1R2R2‖ = I(YR1R2) (6.22)

where Î(YR̂1R̂2
) denotes the detectability of YR̂1R̂2

under placement {T̂1, R̂1, R̂2}.

Then (6.22) contradicts that I ′(YR′
1R

′
2
) ≤ I(YR1R2). Thus we show that ‖T ′1R′2‖

≤ ‖T1R2‖.

Following the above argument recursively, using ‖T ′1R′i−1‖ ≤ ‖T1Ri−1‖ and

I(YRi−1Ri
) ≥ I ′(YR′

i−1R
′
i
), we can show that ‖T ′1R′i‖ ≤ ‖T1Ri‖ for i = 2, · · · , k, and at

last, we can show that ‖T ′1H ′r‖ ≤ ‖T1Hr‖, which is a contradiction.

Case 3 : Si = (T1, R1, · · · , Rk, T2)
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Figure 6.17: Snapshots of proof of Lemma 6.4.

Similar to case 1, we can show that ‖T ′1R′1‖ ≤ ‖T1R1‖ and ‖R′kT ′2‖ ≤ ‖RkT2‖.

If the closest transmitter for YR′
1R

′
2
is T ′1, similar to case 2, we can show that ‖T ′1R′2‖ ≤

‖T1R2‖. Next we show that the closest transmitter for YR′
1R

′
2
cannot be T ′2. Suppose

the closest transmitter for YR′
1R

′
2
is T ′2. Then we have ‖R′2T ′2‖ ≤ ‖T ′1R′1‖ ≤ ‖T1R1‖ =

‖RkT2‖. Following a similar argument as in case 2, using ‖R′2T ′2‖ ≤ ‖RkT2‖ and

I ′(YR′
1R

′
2
) ≤ I(YRk−1Rk

), we can show that ‖R′1T ′2‖ ≤ ‖Rk−1T2‖. Then it follows that

‖T ′1T ′2‖ = ‖T ′1R′1‖+‖R′1T ′2‖ ≤ ‖T1R1‖+‖Rk−1T2‖ ≤ ‖T1T2‖, which is a contradiction.

Thus we show that the closest transmitter for YR′
1R

′
2
cannot be T ′2, and hence must

be T ′1.

Using the above argument, we can show that the closest transmitter for YR′
k−1

R′
k

must be T ′2, and then similar to case 2, we can show that ‖R′k−1T ′2‖ ≤ ‖Rk−1T2‖. Fol-

lowing this argument recursively, we can show that ‖T ′1R′3‖ ≤ ‖T1R3‖, and then

that ‖R′k−2T ′2‖ ≤ ‖Rk−2T2‖ · · · until we can show that ‖T ′1R′j‖ ≤ ‖T1Rj‖ and

‖R′jT ′2‖ ≤ ‖RjT2‖ for j = k+1
2

when k is odd or j = k
2
+1 when k is even. Then we have

‖T ′1T ′2‖ = ‖T ′1R′j‖+ ‖R′jT ′2‖ ≤ ‖T1Rj‖+ ‖RjT2‖ = ‖T1T2‖, which is a contradiction.

6.8.5 Proof of Lemma 6.4

The main idea of this proof is as follows. For any placement S with an order S that

does not satisfy the condition, we can find another placement S ′ with an order S′

that satisfies the condition, such that any local vulnerable value under placement S ′,
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and hence the vulnerability, must be no greater than that under placement S. This

implies that order S′ is at least as good as order S (i.e., fS′

c ≥ fS

c , ∀c > 0).

First we show that there exists an optimal order that satisfies (6.18a). Consider

a placement S with an order S that does not satisfy (6.18a). Then we can always

find some i 6= j such that ni ≥ 2, nj = 0, and nj−1 > 0 or nj+1 > 0. Without

loss of generality, in the following we assume that nj−1 > 0, i 6= 1,M + 1, and

j 6= 1,M + 1, while the other possible cases can be proved using a similar argument.

Then S includes a local order (Ti−1, R1, R2 · · · , Rk, Ti) where k ≥ 2 and a local order

(Rl, Tj−1, Tj) (as illustrated in Fig. 6.17 (a)). We can find another placement S ′ with

an order S′ constructed from S by moving R1 to being between Tj−1 and Tj. We

construct the spacing DS′ from DS by setting ‖T ′i−1R′2‖ = ‖Ti−1R1‖, ‖T ′j−1R′1‖ =

‖R1R2‖, ‖R′1T ′j‖ = ‖Tj−1Tj‖, while keeping the distance between each other two

neighbor nodes unchanged, such that ‖HlHr‖ = ‖H ′lH ′r‖. Then we have I(YR1R2) ≥

I ′(YT ′
j−1R

′
1
), I(YTi−1R1) ≥ I ′(YT ′

i−1R
′
2
), and I(Tj−1Tj) ≥ I ′(R′1T

′
j). Furthermore, we can

observe that any other local vulnerable value under placement S ′ must be no greater

than that under placement S. This implies that S′ is at least as good as S. Repeating

the above construction, we can always find a order S′ that satisfies (6.18a), which

shows that there must exist an optimal order that satisfies (6.18a).

Next we show that among all the orders that satisfy (6.18a), there exist an

optimal order that also satisfies (6.18b), and it is dividable. We consider two cases

of an order S that satisfies (6.18a) as follows.

S = (

S1z }| {
Hl, R1, | {z }

S2

T1, R2, T2, · · · ,
Sk−1z }| {

Tk−2, | {z }
Sk

Rk−1, Tk−1, Tk,

Sk+1z }| {
Rk, Tk+1, · · · ,

SMz }| {
TM−1, RM−1, TM , RM , Hr| {z }

SM+1

)

(6.25)
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Case 1 : M < N

Since S satisfies (6.18a), we must have ni > 0 for each i = 1, · · · ,M + 1, and

hence (6.18b) is also satisfied. Then S can be decomposed into independent local

orders as

S = (

S1z }| {
Hl, · · · , | {z }

S2

T1, · · · , T2, · · · ,
SMz }| {

TM−1, · · · , TM , · · · , Hr| {z }
SM+1

) (6.23)

and hence is dividable.

Case 2 : M = N

Suppose order S does not satisfy (6.18b). Then we must have n2 = 0 and

ni = 1, ∀i 6= 2, or nM = 0 and ni = 1, ∀i 6= M . Suppose the former case holds

with out loss of generality. Then for any placement S with order S, we can find

another placement S ′ constructed from S by swapping the locations of node R1 and

node T1, such that S ′ has an order S′ that satisfies (6.18b) (as illustrated in Fig. 6.17

(b)). Then we observe that any local vulnerable value under placement S ′ must be

no greater than that under placement S, which implies that order S′ is at least as

good as order S. Thus there must exist an optimal order that satisfies both (6.18a)

and (6.18b).

For an order S that satisfies (6.18), we consider two cases: 1) if n1 = 0 and

ni = 1, ∀i 6= 1, then S can be decomposed into independent local orders as

S = (

S1z }| {
Hl, T1, | {z }

S2

R1,

S3z }| {
T2, R2, T3, · · · ,

SMz }| {
TM−1, RM−1, TM , RM , Hr| {z }

SM+1

) (6.24)

and hence is dividable. Similarly, S is also dividable if nM+1 = 0 and ni = 1,

∀i 6= M + 1; 2) if nk = 0 where k 6= 1, 2,M,M + 1 and ni = 1, ∀i 6= k, then S can be

decomposed into independent local orders as in (6.25), and hence is dividable.
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6.8.6 Proof of Theorem 6.3

By Lemma 6.4, there exists an optimal order among all the orders that satisfy (6.18),

which are dividable. We observe that any order that satisfies (6.19) also satis-

fies (6.18). Therefore, it suffices to show that for any two orders S and S′ that

satisfy (6.18): 1) if S satisfies (6.19) and S′ does not satisfy (6.19), then fS

c ≥ fS′

c ;

2) if S and S′ both satisfy (6.19), then fS

c = fS′

c .

Let gc(n) denote the optimal value of problem (6.16) for an independent local

order Si with type (T,Rn, T ) or (R, T n, R) under the constraint V (ZSi
) ≤ c. By

Lemma 6.2 and Lemma 6.3, we have

gc(n) =

8>>>><>>>>:2 n
2
−1X

i=0

eic + e
n
2
c , if n is even

2

n+1
2
−1X

i=0

eic, if n is odd.

(6.26)

Then it follows from (6.26) that

gc(n + 1)− gc(n) =

8>><>>:en
2
c , if n is even

e
n+1
2

c , if n is odd.

(6.27)

Next we consider two cases of an order S that satisfies (6.18).

Case 1 : M < N

We have shown in the proof of Lemma 6.4 that S can be decomposed into

independent local orders as (6.23). Using Theorem 6.2 and (6.23), we have

fS

c =
MX
i=2

gc(ni) +
gc(2n1)

2
+

gc(2nM+1)

2
. (6.28)

Without loss of generality, suppose S does not satisfy (6.19a). The case where

S does not satisfy (6.19b) can be proved using a similar argument. Then there

exist i, j ∈ {2, · · · ,M} such that ni ≥ nj + 2. We can find another order S′ with
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NS′ = {n′1, · · · , n′M+1} constructed from NS by setting n′i = ni − 1, n′j = nj + 1, and

n′k = nk, ∀k 6= i, j. Using (6.28) and (6.27), we have

fS

c − fS′

c = gc(ni)− gc(ni − 1) + gc(nj)− gc(nj + 1)

=

8>><>>:eni
2
c , if ni is even

e
ni−1

2
c , if ni is odd

−

8>><>>:enj

2
c , if nj is even

e
nj+1

2
c , if nj is odd

≤ 0,

which shows that S is not optimal. Furthermore, for any two orders S and S′ that both

satisfy (6.19), we can show that fS

c = fS′

c . Therefore, any order that satisfies (6.19)

is optimal.

Case 2 : M = N

Suppose S does not satisfy (6.19). Then we have nk = 0 where k 6= 1, 2,M,M+

1 and ni = 1, ∀i 6= k. Using (6.25), we have

fS

c = (M − 4)gc(1) + 2gc(2) + 2e0c . (6.29)

Suppose another order S′ satisfies (6.19) withNS′ = {n′1, · · · , n′M+1} such that n′1 = 0

and n′i = 1, ∀i 6= 1. Using (6.24), we have

fS′

c = (M − 2)gc(1) + gc(2) + e0c . (6.30)

It follows from (6.29) and (6.30) that

fS

c − fS′

c = gc(2) + e0c − 2gc(1) = e1c − e0c < 0, (6.31)

which shows that S is not optimal. Furthermore, for any two orders S and S′ that both

satisfy (6.19), we can show that fS

c = fS′

c . Therefore, any order that satisfies (6.19)

is optimal.
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Chapter 7

EXPLOITING DOPPLER EFFECT FOR COVERAGE IN RADAR SENSOR

NETWORKS

7.1 Introduction

Wireless sensor networks have potential in a wide range of applications, such as

border control, homeland security, and intruder detection. Traditional sensors in such

applications operate by passively collecting natural radiation emitted or reflected

by an object. In contrast to such passive sensors, a radar (RAdio Detection And

Ranging) performs detection by actively emitting radio waves and receiving echoes

reflected by objects. Due to this salient feature of active sensing, radars provide a

number of benefits over traditional passive sensors. For example, an ultra-wideband

(UWB) radar has a larger sensing range than either infrared or magnetic sensors.

With the emergence of cheap and compact radar devices, it is becoming feasible to

deploy a network of radar sensors working in concert1 [97]. Indeed, the radar network

has been recognized as a promising paradigm for numerous applications, including

road traffic monitoring [83] and earthquake sensing [109].

One important issue for sensor networks is how well an object of interest

(target) is monitored, referred to as the coverage problem [9]. Previous studies have

mostly assumed that a sensor’s capability of detecting a target is quantified by its

distance to the target. As a result, the coverage region of a sensor is typically modeled

as a disk or a sector. However, this distance-based coverage model is barely valid for

radar sensors in the presence of clutter. Simply put, clutter refers to echoes reflected

by undesired objects in the monitored environment, such as rocks, trees, and walls.

The clutter can be by many orders stronger than the echo from a target, making the

1For brevity, we may use “radar”, “sensor”, and “radar sensor” interchangeably throughout this
chapter.
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Figure 7.1: Illustration of Doppler frequency shift.

target detection very difficult, if not impossible.

Perhaps the most widely used method for detecting a target in the midst of

strong clutter is by taking advantage of the Doppler effect. In many applications, the

target of interest is a moving object such as an aircraft, ship, ground vehicle, or person,

while most of the objects that cause clutter are stationary or moving slowly compared

to the target. The Doppler frequency shift (DFS) is the frequency difference between

the emitted and received radar signals due to the relative velocity between a radar

and a moving target. As illustrated in Fig. 7.1, compared to the emitted frequency,

the received frequency f1 is higher than the emitted frequency f0 when the target

is approaching, and is lower f0 when it is receding. Given the speed of a moving

target V , |f1 − f0| increases as angle φ1 (< 90◦) decreases, or as angle φ2 (> 90◦)

increases. Therefore, the amount of DFS is intimately related to the target’s moving

direction with respect to the radar. Specifically, it is maximized when the target is

moving directly toward or away from the radar, and diminishes as the angle between

the moving direction and the direction toward the radar increases, until achieving

zero when the target is moving at right angles to the radar. By exploiting the DFS,

a radar can distinguish the target signal from clutter in a Doppler perspective.

As none of the existing sensor coverage models take into account the Doppler

effect for moving target detection, we develop a novel Doppler coverage model to

capture this feature of radar sensors. A target is Doppler-covered if and only if, for any
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moving direction, the target is within some radar’s sensing range, and furthermore,

the angle between the moving direction and the direction from the target to that radar

is close enough to 0 or π. In other words, if the target is Doppler-covered, then no

matter which direction it is moving, there always exists some radar that can observe

both a sufficiently high SNR and a sufficiently large DFS from its received target

signal.

This Doppler coverage model differs significantly from the traditional distance-

based coverage models, and gives rise to the following new challenges. First, the

Doppler coverage of a target depends on the angular positions of all the radars (whose

sensing ranges include the target) with respect to the target. This coupling in both

distance and angle complicates the analysis of Doppler coverage. Second, a radar

can contribute to the Doppler coverage of a target in two ways: up-Doppler coverage

with positive DFS, and down-Doppler coverage with negative DFS. In particular, as

illustrated in Fig. 7.2, the moving directions that are Doppler-covered by a radar con-

stitute two opposite angular ranges. This geometric structure introduces additional

complexity into the Doppler coverage problem.

With the proposed Doppler coverage model, it is natural to ask a fundamental

question: How to characterize the Doppler-covered regions for arbitrarily deployed

radar sensors? The answer to this question can be used to evaluate the coverage

of sensors under random deployment. In practice, one efficient sensor deployment

strategy is deterministic deployment, in which we can deploy sensors at desirable

locations. Then another important problem is to find the minimum possible number

of radar sensors in a region such that the entire region is Doppler-covered. The main

thrust of this chapter is devoted to answering these two questions.

We summarize the main contributions of this chapter as follows. First, we

develop a novel Doppler coverage model for moving target detection in radar sensor
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Figure 7.2: Illustration of Doppler coverage model.

networks by exploiting the Doppler effect. Next, we propose an efficient method to

characterize the Doppler-covered regions for arbitrarily deployed radar sensors. Then

we design an algorithm CSR for computing the minimum sensor density required to

achieve Doppler coverage in a region under any polygonal deployment pattern, and

further apply it to investigate the regular triangle deployment. To the best of our

knowledge, this work is the first to exploit the Doppler effect for coverage in radar

networks.

The rest of this chapter is organized as follows. Section 7.2 introduces the

model of Doppler coverage. In Section 7.3, we characterize the Doppler-covered re-

gions for arbitrary deployed radar sensors. We investigate in Section 7.4 the minimum

radar density required to achieve Doppler coverage in a region under deterministic

deployment. Section 7.5 provides some numerical results and Section 7.6 discusses

related work. The chapter is concluded in Section 7.7.
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7.2 Doppler Coverage Model

We consider a set of radar2 sensors S , {S1, · · · , Sn} deployed in a region of interest

F for detecting a target. For convenience, we also use Si to denote the location

(point) of a sensor Si. We denote ‖UV ‖ as the (Euclidean) distance between two

points U and V . We denote the angle between two vectors (directions) ~v1 and ~v2 as

α(~v1, ~v2).

For a radar Si, the received SNR from a target located at a point P is given

by [96]

SNR =
K

‖SiP‖4
(7.1)

where K denotes radar constant which reflects physical layer characteristics of the

radar (e.g., transmit power, radar cross section3, transmitter/receiver antenna power

gains). The sensing range r of a radar can be determined based on (7.1) such that

the SNR received by the radar is higher than certain threshold when the target is

within its sensing range. We say that a point P is covered by a sensor Si (in the sense

of SNR or distance) if it is within the sensing range of Si, i.e., ‖SiP‖ ≤ r.

Let V be the speed of a moving target, and φ be the angle at which the target

is moving with respect to a radar. Then the DFS observed by the radar, denoted by

∆f , can be expressed as

∆f =
2V cosφ

c
f0 (7.2)

where f0 is the frequency of the emitted radar signal and c is the speed of light.

We assume that the target’s speed V is known (or is lower bounded by some known

2In this chapter, we consider monostatic radars each comprised of co-located radar transmitter
and receiver, which is the typical radar configuration.

3Radar cross section measures the amount of radar signal energy reflected by an object due to
its physical characteristics such as shape, size, and material.
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Figure 7.3: Illustration of clutter filter by Doppler frequency shift.

value). This information can be obtained from some general knowledge about the

target (e.g., knowing that the target is a ground vehicle or a aircraft).

For ease of exposition, we assume that all radars have homogeneous physical

characteristics such that they have the same radar constant. We also assume that

radars share a set of orthogonal radio resources (e.g., different frequencies or time

slots, orthogonal waveforms) through proper spatial reuse so as to avoid mutual

interference. We further assume that the transmitted and reflected radar signals

are omni-directional. Therefore, a radar’s coverage region is a disk with radius r.

However, our results in this chapter can be directly extended to the case of sector-

based coverage region.

Every radar employs a filtering method to suppress clutter in the received

signal (This method is also known as “moving target indication (MTI)” in radar

literature). In particular, a band-pass filter with cutoff frequency fc is applied to the

received signal such that all the frequency components below fc are removed while

the rest are maintained (as illustrated in Fig. 7.3). We assume that the maximum

moving speed of an object that causes clutter is known. Based on this knowledge,
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the cutoff frequency fc can be determined such that the clutter is guaranteed to be

filtered out completely. Consequently, depending on the DFS ∆f , the target signal

may or may not exist in the filtered signal: it exists if and only if ∆f ≥ fc. After the

filtering, a typical signal detection method (e.g., energy detection or matched filter

detection) is used to detect the target signal in the filtered signal. We assume that

the target signal can be detected with certain required probability subject to certain

false alarm probability, if and only if it exists in the filtered signal and the SNR is

higher than certain threshold.

Definition 7.1. (Doppler Coverage) A direction
−→
D from a point P is Doppler-covered

by a sensor Si if ‖SiP‖ ≤ r (i.e., P is covered by Si) and α(
−→
D,
−−→
PSi) ≤ θ or π − θ ≤

α(
−→
D,
−−→
PSi) ≤ π where θ ∈ [0, π/2) is a pre-determined parameter called effective

Doppler angle. A point P is Doppler-covered if any direction from P is Doppler-

covered by some sensor.

Given the target’s speed V (or a lower bound of V ), the effective Doppler

angle θ can be determined based on (7.2) such that the target signal can be detected

by a radar with certain required probability (after filtering) when the target’s moving

direction is Doppler-covered by that radar. For convenience, we say that a direction

−→
D from P can be Doppler-covered by a sensor Si if it is Doppler-covered by Si

conditioned on that P is covered by Si. For example, as illustrated in Fig. 7.2,
−→
D1 is

not Doppler-covered by Si while
−→
D2 is Doppler-covered by Si. Similarly, we say that

a point P can be Doppler-covered by a set of sensors S ′ if any direction from P can

be Doppler-covered by some sensor in S ′. We say that a region is Doppler-covered if

every point in it is Doppler-covered.

The Doppler coverage model is related to but much more complicated than

traditional distance-based coverage models. In particular, Doppler coverage requires
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not only that a point is covered by multiple sensors in the sense of distance, but

also that any direction from that point is Doppler-covered by some of those sensors.

As will be shown later, this complication gives rise to significant challenges for the

analysis of Doppler coverage.

7.3 Characterization of Doppler Coverage

In this section, we propose an efficient method to characterize Doppler-covered regions

for arbitrarily deployed sensors. Our results in this section can be used to evaluate

the Doppler coverage of sensors under random deployment.

We denote a set of sensors that cover a point P as SP . We also use SA to denote

a set of sensors that cover a region A if each sensor in SA covers all the points in A.

For any point P , we can define a coverage list constructed from SP = {S1, . . . , Sm}

as follows. First, we construct an image point S ′i for each Si ∈ SP with respect to

P such that
−−→
PS ′i is opposite to

−−→
PSi. We pick any Si ∈ SP (or its image S ′i) and

place it in the coverage list. Then we rotate
−−→
PSi around P in the counter-clockwise
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(or clockwise) direction until it points to the same direction as
−−→
PSj (or

−−→
PS ′j) for

some Sj ∈ SP , and place Sj (or S ′j, respectively) in the list next to Si. We continue

rotating until all the sensors in SP and their images are placed in the list sequentially,

denoted by LP . One can easily check that LP is a circular list and can be written

as LP = (s1, . . . , sm, s
′
1, . . . , s

′
m), where si represents some sensor Sj ∈ SP or its

image S ′j, and s′i represents the counterpart of si, i.e., the image S ′j or the sensor Sj,

respectively. For example, in Fig. 7.4, the coverage list LP = (S1, S
′
2, S3, S

′
1, S2, S

′
3)

of a point P is constructed from the set of sensors SP = {S1, S2, S3} that cover P

based on their angular positions with respect to P . For convenience, we may write

LP in a compact form without ambiguity as LP = (s1, . . . , sm) by including only

half consecutive points and let sn+1 = s′1. For example, (S1, S
′
2, S3, S

′
1, S2, S

′
3) can be

written for short as (S1, S
′
2, S3), or (S

′
2, S3, S

′
1), or (S

′
3, S1, S

′
2). Also for convenience,

we use S(si) to denote the sensor represented by si if si represents a sensor, or the

sensor whose image is represented by si if si represents an image. For example,

S(S1) = S(S ′1) = S1.

Lemma 7.1. A point P is Doppler-covered by SP if and only if ∠siPsi+1 is less than

or equal to 2θ for any pair of neighbors si and si+1 in the coverage list LP constructed

from SP .

Proof: Suppose the condition holds. Then for any direction
−→
D from P , there

exists a sensor Si or an image S ′i such that α(
−−→
PSi,

−→
D) ≤ θ or π − α(

−−→
PSi,

−→
D) =

α(
−−→
PS ′i,

−→
D) ≤ θ. Thus P is Doppler-covered.

Suppose Si and Sj are neighbors in LP and ∠SiPSj > 2θ. Then there exists a

direction
−→
D from P which is parallel to the bisector of ∠SiPSj such that α(

−−→
PSi,

−→
D) =

α(
−−→
PSj,

−→
D) > θ. It follows that α(

−−→
PSk,

−→
D) > θ and π−α(

−−→
PSk,

−→
D) = α(

−−→
PS ′k,

−→
D) > θ

for any Sk ∈ SP . Thus P is not Doppler-covered. �
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Figure 7.5: Illustration of safe region and complementary safe region.

Lemma 7.1 presents a sufficient and necessary condition for a point to be

Doppler-covered. Our next goal is to characterize all the points in region F for which

this condition holds. To this end, we introduce the following concepts. For two sensors

Si and Sj, we define safe region to be the area in which ∠SiPSj ≤ 2θ for any point P ,

and complementary safe region to be the area in which π−∠SiPSj ≤ 2θ for any point

P . Accordingly, the areas complementary to the safe region and complementary safe

region are defined as unsafe region and complementary unsafe region, respectively.

Lemma 7.2. For two sensors Si and Sj, the safe region is the closed region comple-

mentary to the open region bounded by two arcs ùSiSj and ùSiSj

′
such that ∠SiPSj = 2θ

for any P ∈ùSiSj ∪ùSiSj

′
; the complementary safe region is the closed region bounded

by two arcs ùSiSj and ùSiSj

′
such that ∠SiPSj = π − 2θ for any P ∈ùSiSj ∪ùSiSj

′
.

Proof: As illustrated in Fig. 7.5, the two arcsùSiSj andùSiSj

′
are segments of the

circumscribed circles of triangles △SiPSj and △SiP
′Sj where ∠SiPSj = ∠SiP

′Sj =

2θ (or π − 2θ), and P and P ′ are two points on different sides of the line segment
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coverage lists.

SiSj. The proof of the desired property follows from elementary geometry. �

For convenience, if si and sj both represent sensors or both represent images,

we denote by R(si, sj) the safe region of two sensors S(si) and S(sj); otherwise, if si

and sj represent a sensor and an image, we denote by R(si, sj) the complementary

safe region of S(si) and S(sj). For example, R(S1, S2) and R(S ′1, S
′
2) both denote the

safe region of S1 and S2; R(S ′1, S2) and R(S1, S
′
2) both denote the complementary

safe region of S1 and S2. We use Rc(si, sj) to denote the region complementary to

R(si, sj), i.e., the unsafe or complementary unsafe region of S(si) and S(sj).

Lemma 7.3. For a region A covered by SA, A is partitioned by all the lines each

passing through a pair of sensors in SA into a set of sub-regions such that all the

points in a sub-region have the same coverage list constructed from SA.

Proof: For any point P ∈ A, depending on which side of the line l pass-
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ing through Si and Sj in SA that P is located at, the relative orders of Si, Sj,

S ′i and S ′j in the coverage list LP constructed from SA has either the form LP =

(. . . , Si, . . . , Sj, . . . , S
′
i, . . . , S

′
j, . . .) or LP = (. . . , Si, . . . , S

′
j, . . . , S

′
i, . . . , Sj, . . .). Sup-

pose Ai is a partition of A divided by all the lines each passing through a pair of

sensors in SA. Then any two points P1 and P2 in Ai are located at the same side of

each line, and hence the relative orders of any pair of sensors in SA and their images

are the same in LP1 and LP2. One can easily verify that there exists a unique coverage

list which satisfies all these relative orders. Thus all the points in Ai have the same

coverage list. �

Algorithm 6: Characterize Doppler-covered regions

input : region F , set of deployed sensors S, sensing range r, effective Doppler
angle θ

output: Doppler-covered regions in F
1 Partition F into a set of sub-regions A such that each sub-region Ai ∈ A is covered
by the same set of sensors SAi

;
2 foreach sub-region Ai ∈ A do

3 Partition Ai into a set of sub-regions Ai such that all the points in a sub-region

Aj
i have the same coverage list LAj

i
constructed from SAi

;

4 foreach sub-region Aj
i ∈ Ai do

5 return a Doppler-covered region Aj
i ∩ (∩nk=1R(sk, sk+1)) where

LAj
i
= (s1, · · · , sm);

6 end

7 end

Theorem 7.1. The Doppler-covered regions in region F can be found by Algorithm 6.

Proof: Since ∠siPsi+1 = ∠s′iPs′i+1 for any i ∈ {1, . . . , n}, by Lemma 7.1, it

suffices to check if ∠siPsi+1 for any i ∈ {1, . . . , n} is less than or equal to 2θ. Then

by Lemma 7.2, the intersection of the safe regions and complementary safe regions

constructed in Algorithm 6 within the sub-region Aj
i is a Doppler-covered region. �

Following a similar argument based on Euler’s formula as in [110], the number
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Figure 7.7: Illustration of Algorithm 6.

of sub-regions in A is O(|S|4). The number of sub-regions in Ai is O(|SAi
|4) and the

reason is as follows. The number of lines passing through a pair of points in a set of

n points is at most n(n − 1)/2. By induction, one can easily show that n lines can

partition the plane into at most n(n+1)/2+1 regions. Therefore, all the lines passing

through a pair of sensors in |Ai| sensors partition SAi
into O(|SAi

|4) sub-regions.

Fig. 7.7 gives an example to illustrate the idea of line 5 in Algorithm 6. In

Fig. 7.7 (a), we find the Doppler-covered region in a sub-region ∆S2OS3 where the

coverage list is LP = (S1, S
′
3, S2, S

′
4) for any P ∈ ∆S2OS3. Hence, we construct the

safe region for S1 and S4, the complementary safe region for S1 and S3, S2 and S3,

S2 and S4, respectively. For brevity, we only depict half of the boundary of each

constructed region. The intersection area (shaded) of the constructed safe regions

and complementary safe regions within ∆S2OS3 is the Doppler-covered region within

∆S2OS3. Similarly, in Fig. 7.7 (b), we find the Doppler-covered region within a sub-

region ∆S3OS4 with coverage list LP = (S1, S2, S
′
4, S3) for any P ∈ ∆S3OS4. In this

case, we construct the safe region for S1 and S2, the complementary safe region for

S1 and S3, S2 and S4, S3 and S4, respectively.
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7.4 Critical Sensor Density for Doppler Coverage under Deterministic Deployment

In this section, we consider deterministic deployment where sensors can be precisely

deployed at any locations in the region F . We design an algorithm to compute the

minimum sensor density required for the entire region to be Doppler-covered under a

particular deployment pattern.

7.4.1 Problem Formulation

We consider a polygonal deployment pattern in which sensors are deployed on the ver-

tices of the polygons of the same shape and size (e.g., triangles, rectangles, hexagons).

Under such a deployment, there exists a unit region U ⊂ F such that U is Doppler-

covered if and only if the entire region F is Doppler-covered. For example, as il-

lustrated in Fig. 7.8, a unit region for the regular triangle pattern can be a regular

(equilateral) triangle, or can be just a partition of a regular triangle divided by the

perpendicular bisectors of its three sides. This is because for any point P ∈ F covered

by any set of sensors SP , there exists a point P ′ ∈ U covered by some set of sensors

SP ′ such that the relative positions of sensors in SP ′ with respect to P ′ are the same

as those in SP with respect to P , and hence the Doppler coverage on P is equivalent

to that on P ′. As a result, it suffices to focus on the Doppler coverage in a unit region.

In this chapter, as the optimal deployment pattern is difficult to find in general, we

focus on any given polygonal deployment pattern.

We assume that region F is sufficiently large such that the boundary effect can

be ignored. For a polygonal deployment pattern, the sensor density (or equivalently

the number of sensors) is determined by the size of the polygons, which is a single-

valued parameter denoted by l (e.g., the side length of a regular triangle in the regular

triangle deployment). Clearly, the sensor density decreases as the size of the polygons

increases. Given a polygonal deployment pattern, an effective Doppler angle θ, and
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Figure 7.8: (a) Regular triangle deployment and (b) square deployment.

a sensing range r, our goal is to find the minimum sensor density, or equivalently

the maximum size l∗(θ, r) of the polygons, such that F is Doppler-covered. It can

be easily shown that, given any θ, l∗(θ, r) is a one-to-one increasing function of the

sensing range r. Therefore, it suffices to find the minimum sensing range r∗(θ, l)

required to Doppler-cover F as a function of θ and l, from which we can obtain

l∗(θ, r) as the inverse function (r∗)−1(θ, r) where θ is a parameter. For brevity, we

will use r∗ instead of r∗(θ, l).

We should note that it is highly non-trivial to find the critical sensing range

r∗ based on the Doppler coverage model. An intuitive approach is to first find the

minimum sensing range required to Doppler-cover each point P in U , and then r∗

can be found as the maximum of those minimum sensing ranges for all the points

in U . However, since there are infinitely many points in U , this approach is not

computationally feasible. In the next subsection, we will design an algorithm that

can find the exact value of r∗ analytically with finite computational complexity.
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Algorithm 7: CSR (Compute the Critical Sensing Range)

input : polygonal deployment pattern, effective Doppler angle θ
output: critical sensing range r∗

1 Choose a unit region U ;
2 // Phase 1: greedy search;

3
ÜS ← ∅;

4 repeat

5 S+ ← argmin
Si∈S\eS dmax

Si
(U);

6
ÜS ← ÜS ∪ S+;

7 until U can be Doppler-covered by ÜS;
8 r ← dmax

S+ (U);

9 S ′ ← {Si ∈ S \ ÜS |dmin
Si

(U) ≤ r};
10 r ← minSi∈S′∪S+ dmin

Si
(U);

11 S ← ÜS ∪ S ′;
12 S ← {Si ∈ ÜS|dmax

Si
(U) ≤ r};

13 r∗ ← r;
14 // Phase 2: divide and conquer;
15 Partition U into a set of sub-regions U such that all the points in each sub-region

Ui ∈ U have the same coverage list LUi
constructed from S;

16 foreach Ui ∈ U do

17 Split LUi
into partial coverage lists L1

Ui
, · · · ,Lk

Ui
such that Lj

Ui
= (sj, · · · , sj+1)

for any j ∈ {1, · · · , k} where S(sj) ∈ S for any j ∈ {1, · · · , k} and k = |S|;
18 foreach j ∈ {1, · · · , k} do
19 r∗ ← max{r∗, CSRP (Ui,L

j
Ui
)};

20 end

21 end

22 return r∗;

7.4.2 Algorithm Design

In this subsection, we design an algorithm named CSR for computing the Critical

Sensing Range r∗. As described in Algorithm 7, CSR consists of two phases. In the

first phase, CSR finds a lower bound and an upper bound of r∗ using a greedy search.

In the second phase, CSR takes a divide and conquer approach: it first partitions

the unit region into sub-regions based on the bounds found in the first phase; then

for each sub-region, it finds the minimum sensing range required to Doppler-cover a
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particular range of directions from any point in that sub-region. In the following, we

describe the design of CSR in details.

In the first phase, CSR constructs a set of sensors ÜS by iteratively including

the sensor that requires the minimum sensing range to cover all the points in a unit

region U , until U can be Doppler-covered by ÜS. Recall that region U can be Doppler-

covered by ÜS if it is Doppler-covered by ÜS conditioned on that U is covered by ÜS (i.e.,

when the sensing range r is sufficiently large). We use dmax
Si

(A) , maxP∈A ‖SiP‖ to

denote the minimum sensing range required for sensor Si to cover all the points in a

region A. To check if region U can be Doppler-covered by ÜS, we use a method similar

to Algorithm 6: we first partition U into a set of sub-regions U such that all the

points in each sub-region Ui ∈ U have the same coverage list LUi
constructed fromÜS, and then U can be Doppler-covered by ÜS if and only if Ui ∩ Rc(sj, sj+1) = ∅ for

each pair of neighbors sj and sj+1 in each LUi
.

Using ÜS found above, CSR finds a lower bound r and an upper bound r of r∗

(i.e., r ≤ r∗ ≤ r). Using these bounds, CSR further finds S as a set of sensors that

must cover all points in U when the sensing range r is equal to r∗ (i.e., r = r∗), and

S as a set of sensors such that any sensor not included in S must not cover any point

in U when r = r∗. In other words, S consists of all the sensors that may cover some

points in U when r = r∗ (i.e., may contribute to the Doppler coverage of some points

in U).

In the second phase, based on S and S obtained in the first phase, U is

partitioned into a set of sub-regions U such that all the points in each sub-region

Ui ∈ U have the same coverage list LUi
constructed from S. Then each coverage

list LUi
is split into k partial coverage lists L1

Ui
, · · · ,Lk

Ui
(which are not circular),

where k is the number of sensors in S, such that for any j ∈ {1, · · · , k}, Lj
Ui

starts

from some sj with S(sj) ∈ S and ends at the next sj+1 with S(sj+1) ∈ S along

187



S1

S3S2

S4

P

−→
D1

−→
D2

O

Q

Figure 7.9: Illustration of Algorithm 8.

the list LUi
. For example, if S = {S1, S2, · · · , S10}, S = {S2, S5, S6, S9}, and LU1 =

(S3, S
′
4, S2, S8, S

′
6, S1, S

′
7, S5, S10, S

′
9), then LUi

can be split into L1
U1

= (S2, S8, S
′
6),

L2
U1

= (S ′6, S1, S
′
7, S5), L

3
U1

= (S5, S10, S
′
9), L

4
U1

= (S ′9, S
′
3, S4, S

′
2).

Input with a region A and a partial coverage list (s1, · · · , sm), a subroutine

named CSRP is used to find the minimum sensing range required to Doppler-cover

any direction (if there is any) from any point in A that is between
−−→
Psj and

−−−→
Psj+1

and that cannot be Doppler-covered by S(s1) or S(sm). For example, as illustrated

in Fig. 7.9, CSRP[∆S1OS4, (S1, S
′
3, S

′
2, S4)] outputs the minimum sensing range under

which any direction from any point P ∈ ∆S1OS4 that is between
−−→
PS1 and

−−→
PS4 and

that cannot be Doppler-covered by S1 or S4 (e.g.,
−→
D1 but not

−→
D2), is Doppler-covered

by S2 or S3. Then CSR outputs the maximum among r and the outputs of executing

CSRP for each sub-region in U and the corresponding partial coverage list.

As described in Algorithm 8, CSRP also follows a divide and conquer approach.

CSRP first checks if any direction from any P ∈ A that is between
−−→
Ps1 and

−−→
Psm can

be Doppler-covered by S(s1) or S(sm), which holds if and only if A∩Rc(s1, sm) = ∅.

If it holds, CSRP outputs 0; otherwise, CSRP partitions A (if necessary) to a set of
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sub-regions A such that for each sub-region Ai ∈ A, there exists some sensor S(sk)

closest to each point in Ai among the sensors S(s2), · · · , S(sn−1). This partition

can be done by constructing the perpendicular bisectors of all the line segments (if

necessary) each connecting a pair of sensors in S(s2), · · · , S(sn−1). For example, as

illustrated in Fig. 7.9, ∆S1OS4 is partitioned by the perpendicular bisector of S2S3

(which is the line passing through O and Q) such that any point in ∆S1OQ is closer

to S2 than to S3. After the partition, CSRP outputs the maximum among the outputs

of executing CSRP for each sub-region in A and the same partial coverage list.

If the input region A does not need to be partitioned, then CSRP outputs the

maximum of dmax
S(sk)

(A∩Rc(s1, sm)) and the outputs of CSRP[A∩Rc(s1, sm), (s1, · · · , sk)]

and CSRP[A∩Rc(s1, sm), (sk, · · · , sm)]. Recall that S(sk) is the closest sensor to any

point in A among S(s2), · · · , S(sn−1). This is to guarantee that the sensing range

is sufficiently large such that any direction from any point P ∈ A ∩ Rc(s1, sm) that

is between
−−→
Ps1 and

−−→
Psm and that cannot be Doppler-covered by S(s1) or S(sm), is

Doppler-covered by some sensor in S(s2), · · · , S(sn−1).

Next we prove the correctness of CSR.

Theorem 7.2. The critical sensing range r∗ can be found by CSR.

Proof: First we show that CSR can correctly compute r, r, S, and S as

defined. Due to the construction of ÜS in line 3 to 6, when the sensing range r is

equal to dmax
S+ (U) where S+ is the last sensor included in ÜS (i.e., the S+ obtained in

line 5 during the last iteration of the repeat loop), U is Doppler-covered by ÜS. This
implies that r∗ ≤ dmax

S+ (U) = r. Due to the value assignments of S ′ and S in line

9 and 11, we observe that any Si for which dmin
Si

(U) ≤ r must be in S. Therefore,

any Si ∈ S \ S must satisfy dmin
Si

(U) > r ≥ r∗, and hence does not cover any point

in U when r = r∗. Let S ′′ = {Si|dmin
Si

(U) < minSj∈S′∪S+ dmin
Sj

(U)} be the set of all
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Algorithm 8: CSRP (Compute the Critical Sensing Range for a Partial coverage
list)

input : region A, partial coverage list L = (s1, · · · , sm)
output: critical sensing range r′ for A and LA

1 r′ ← 0;
2 if A ∩Rc(s1, sm) 6= ∅ then

3
ÒS ← {S(s2), · · · , S(sn−1)};

4 if ∄S(sk) ∈ ÒS such that ‖PS(sk)‖ ≤ ‖PS(si)‖ for any P ∈ A and any si ∈ ÒS
then

5 Partition A into a set of sub-regions A such that for any sub-region

Ai ∈ A, ∃S(sk) ∈ ÒS such that ‖PS(sk)‖ ≤ ‖PS(si)‖ for any P ∈ Ai and any
S(si) ∈ ÒS;

6 foreach Ai ∈ A do

7 r′ ← max{r′, CSRP(Ai,LA)};
8 end

9 end

10 Split L into two partial coverage lists L1
A = (s1, · · · , sk), L2

A = (sk, · · · , sm);
11 r′ ← max{dmax

S(sk)
(A ∩Rc(s1, sm)),

CSRP(A ∩Rc(s1, sm),L
1
A),CSRP(A ∩ Rc(s1, sm),L

2
A)};

12 end

13 return r′;

the sensors that cover some points in U when r = minSj∈S′∪S+ dmin
Sj

(U). We observe

that S ′′ ⊆ ÜS \ {S+}. Then U cannot be Doppler-covered by S ′′ since it cannot be

Doppler-covered by ÜS \ {S+}. This implies that r∗ ≥ minSj∈S′∪S+ dmin
Sj

(U) = r. Then

it follows from the value assignment of S in line 12 that S is a set of sensors that

must cover all the points in U when r = r∗ ≥ r.

Let r̃ be the actual output of CSR. To show that r̃ = r∗, it suffices to show

two parts: 1) U is Doppler-covered when r = r̃; 2) U is not Doppler-covered when

r < r̃.

Part 1) can be shown as follows. First we observe that CSR can always termi-

nate. The only possible case in which CSR does not terminate is when CSRP is input

with a region A and a partial coverage list (s1, s2) of length 2 while we have that
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A∩Rc(s1, s2) 6= ∅. However, this cannot occur since s1 and s2 must be neighbors in

the coverage list of any point in A constructed from S, and A ⊆ U can be Doppler-

covered by S. Next we observe that the output r′ of any execution of CSRP is set to

guarantee that all the points in A∩Rc(s1, sm) are covered by S(sk) when r = r′. Since

the recursive executions of CSRP are input with region A ∩ Rc(s1, sm) and partial

coverage lists (s1, · · · , sk) and (sk, · · · , sm), by induction, for any execution of CSRP

input with region A and (s1, · · · , sm), all the points in A are covered by both S(s1)

and S(sm) when r = r′. According to the design of CSR and CSRP, any direction

−→
D from any point P ∈ U is found to be Doppler-covered by S(s1) or S(sm) in some

execution of CSRP. Therefore,
−→
D must be Doppler-covered when r = r̃.

Next we show part 2). Suppose r < r̃. If r̃ = r, the desired result directly

follows from r < r̃ = r. Otherwise, we have r̃ > r, and r̃ must be equal to dmax
S(sk)

(A∩

Rc(s1, sm)) due to some execution of CSRP[A, (s1, · · · , sm)]. Then there must exist

a point P ∈ (A ∩Rc(s1, sm)) with ‖PS(sk)‖ = dmax
S(sk)

(A ∩ Rc(s1, sm)) = r̃, and a

direction
−→
D from P that is between

−−→
Ps1 and

−−→
Psm and that cannot be Doppler-

covered by S(s1) or S(sm). We can see that
−→
D also cannot be Doppler-covered by

any Si ∈ S \ ÒS. Due to the partition operation in CSRP, we must have r < r̃ =

‖PS(sk)‖ ≤ ‖PSi‖ for any Si ∈ ÒS. Thus P is not covered by any Si ∈ ÒS and hence

−→
D is not Doppler-covered by any Si ∈ ÒS. Therefore,

−→
D is not Doppler-covered by

any Si ∈ S. However, since P ∈ A ⊆ U can be Doppler-covered by S, there must

exist some Sj ∈ ÒS such that P is covered by Sj and
−→
D is Doppler-covered by Sj

when r = r∗. Then we have that r∗ ≥ ‖PSj‖ ≥ ‖PS(sk)‖ = r̃ > r, which implies

that P is not covered by any Si ∈ S \ S and hence
−→
D is not Doppler-covered by any

Si ∈ S \ S. Therefore,
−→
D is not Doppler-covered by any sensor, which shows that U

is not Doppler-covered. �

We have a few remarks on the complexity of CSR. Following a similar argument
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as in Section 7.3, the complexity of checking if U can be Doppler-covered by ÜS once

in line 7 is O(|ÜS|5), and hence the complexity of the repeat loop is |ÜS| × O(|ÜS|5) =
O(|ÜS|6). Since we have |U| = O(|S|4), the total number of executions of CSRP in

line 19 is |U| × |S| = O(|S|4|S|). We can see that the complexity of CSRP can be

upper bounded by some function of the length of the input partial coverage list, which

determines the maximum possible number of recursive executions of CSRP involved

in one execution of CSRP. As the input θ decreases, both |S| and |S| will increase,

and the length of a partial coverage list obtained in line 14 is on average |S|/|S|+ 1.

7.4.3 Case Study: Regular Triangle Deployment

In this subsection, as an illustrative example to show how CSR works, we use CSR to

find the critical sensing range r∗ under the regular triangle deployment. As discussed

earlier, it suffices to consider the Doppler coverage in a unit region U = △COQ as

shown in Fig. 7.10. For any θ ∈ [0, π/2), we observe that l ≤ r∗. This is because that

when r < l, there always exists a point P sufficiently close to a sensor such that P is

only covered by that sensor, and hence is not Doppler-covered. In the following, for

ease of exposition, we investigate the case θ ∈ [π/6, π/2).

Consider the case θ ∈ [π/3, π/2) as illustrated in Fig. 7.10(a). In this case, r∗

can be found as follows without using CSR. When r = l, U is covered by {A,B,C}

with coverage list (A,B′, C). Since the complementary safe regions of A and B, B

and C, A and C, respectively, all include U , U is Doppler-covered. This implies that

r∗ ≤ l. Then, using that l ≤ r∗, we conclude that r∗ = l.

Consider the case θ ∈ [π/4, π/3) as illustrated in Fig. 7.10(b). Using CSR, we

obtain that r = l, S = {A,B,C}, S = {A,B,C,E, F,G,H}, LU = (A, F ′, E, B′, G, C,H).

It follows from U ⊆ R(C,A′) and U ⊆ R(B′, C) that

CSRP[U, (C,H,A′)] = 0 and CSRP[U, (B′, G, C)] = 0. Since ‖EP‖ ≤ ‖FP‖ for

all P ∈ U and U ⊆ R(A,E), U ⊆ R(E,B′), we have (7.3), where øAB intersects
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Figure 7.10: Illustration of applying Algorithm 7 for regular triangle deployment.

OC at M and ‖EM‖ = dmax
E (U ∩ Rc(A,B′)). Therefore, the output of CSR is

r∗ = max{r, 0, 0, ‖EM‖} = ‖EM‖. By geometric calculation, the closed form ex-

pression for r∗ can be found as

r∗ = l

Ì √
3

2
− 1

sin 2θ
− 1

tan 2θ

!2

+ 1.

Consider the case θ ∈ [π/6, π/4) as illustrated in Fig. 7.10(c). Using CSR,

we obtain that r = l, S = {A,B,C}, S = {A,B,C,D,E, F,G,H, I, J}, LU1 =

(A, F ′, J, E, B′, G,D′, C,H, I ′), LU2 = (A, J, F ′, E, B′, G,D′, C,H, I ′), where U is par-
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CSRP[U, (A, F ′, E, B′)] = max{‖EM‖,CSRP[U, (A, F ′, E)],CSRP[U, (E,B′)]}
= max{‖EM‖, 0, 0} = ‖EM‖ (7.3)

CSRP[U1, (A, F
′, J, E,B′)] = max{‖ER‖,CSRP[U1

1 , (A, F
′, J, E)],CSRP[U1

1 , (E,B′)]}
= max{‖ER‖,max{‖FQ‖,CSRP[U2

1 , (A, F
′)],

CSRP[U2
1 , (F

′, J, E)]}, 0}
= max{‖ER‖,max{‖FQ‖, 0, 0}, 0} = ‖FQ‖ (7.4)

CSRP[U1, (B
′, G,D′, C)] = max{CSRP[U3

1 , (B
′, G,D′, C)],CSRP[U4

1 , (B
′, G,D′, C)]}

= max{max{‖DK‖,CSRP[U5
1 , (B

′, G,D′)],CSRP[U5
1 , (D

′, C)]},
max{‖GK‖,CSRP[U6

1 , (B
′, G)],CSRP[U6

1 , (G,D′, C)]}}
= max{max{‖DK‖, 0, 0},max{‖GK‖, 0, 0}} = ‖GK‖

(7.5)

titioned by JF into U1 and U2. Regarding U1, we have CSRP[U1, (C,H, I ′, A′)] = 0,

and also (7.4), (7.5), where all the input regions are described in Fig. 7.10(c). There-

fore, the maximum value output by CSRP executed for U1 is max{‖FQ‖, ‖GK‖,

0} = ‖GK‖. On the other hand, following similar steps (omitted), the maxi-

mum value output by CSRP executed for U2 is ‖GW‖. Therefore, CSR outputs

r∗ = max{r, ‖GK‖, ‖GW‖} = ‖GK‖. The closed form expression for r∗ is lengthy

and omitted here for brevity.

7.5 Numerical Results

In this section, we provide numerical results to evaluate the performance of Doppler

coverage. We demonstrate the impact of different parameters on Doppler coverage

under both random deployment and deterministic deployment.

We consider a region of interest F with an area of 100 × 100. We deploy

sensors in an enlarged area of (100 + 2r) × (100 + 2r) to overcome the boundary

effect. We use the percentage of Doppler coverage as the performance metric, which
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Figure 7.11: Impact of n under random
deployment: r = 5.
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Figure 7.12: Impact of n under random
deployment: r = 10.
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Figure 7.13: Impact of r under random de-
ployment: n = 400.
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Figure 7.14: Impact of r under random de-
ployment: n = 800.

is the percentage of Doppler-covered areas in region F . Following the methodology

in [111], we use a grid of discrete points to approximate region F , and we set the side

length of the grid to 0.1. As a result, given any deployed sensors, we calculate its

percentage of Doppler coverage as the percentage of Doppler-covered grid points.

7.5.1 Random Deployment

In this subsection, we study random deployment under which sensors are deployed in

region F according to uniform distribution. For each setting of parameters, we run

the simulation for 100 times and take the averaged results.
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Figure 7.15: Impact of θ under random de-
ployment: n = 400.
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Figure 7.16: Impact of θ under random de-
ployment: n = 800.
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Figure 7.17: Impact of n under random
deployment: r = 5.
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Figure 7.18: Impact of n under random
deployment: r = 10.

Fig. 7.11 and 7.12 show the impact of sensor number when the sensing range

is set to 5 and 10, respectively, for three settings of effective Doppler angle: θ =

π/6(30◦), π/4(45◦), π/3(60◦). We observe that the Doppler-covered percentage in-

creases as the number of sensors grows, which is due to that on average more sen-

sors contribute to the Doppler coverage of a point. Fig. 7.13 and 7.14 show the

impact of sensing range when the sensor number is 400 and 800, respectively, for

θ = π/6, π/4, π/3. We can observe that the Doppler-covered percentage increases as

the sensing range increases. This is because that a sensor with larger sensing range
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Figure 7.19: Impact of n under regular tri-
angle deployment: r = 5.
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Figure 7.20: Impact of n under square de-
ployment: r = 5.

can cover more points and hence contribute to the Doppler coverage of more points.

Fig. 7.15 and 7.16 show the impact of effective Doppler angle when the sensor num-

ber is 400 and 800, respectively, for two settings of sensing range: r = 5, 10. We

also observe that the Doppler-covered percentage increases as the effective Doppler

angle increases. The reason is that a sensor with larger effective Doppler angle can

Doppler-cover a wider range of directions from a point and hence contribute more to

the Doppler coverage of that point.

Next we take the probability of Doppler coverage as the performance metric,

which is the probability that all the grid points in region F are Doppler-covered. We

calculate it as the ratio between the number of times that this event occurs and the

total number of simulation runs, which is 100. Fig. 7.17 and 7.18 show the impact of

sensor number on the probability of Doppler coverage when the sensing range is 5 and

10, respectively, for θ = π/6, π/4, π/3. Similar to the Doppler-covered percentage, we

observe that the probability of Doppler coverage also increases as the sensor number,

sensing range, or effective Doppler angle increases. Compared to Fig. 7.11 and 7.12,

we observe that many more sensors are needed to achieve a high probability of Doppler

coverage than a high Doppler-covered percentage. For example, when r = 10 and
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Figure 7.21: Impact of r under regular tri-
angle deployment: n = 400.
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Figure 7.22: Impact of r under square de-
ployment: n = 400.

θ = π/4, the probability of Doppler coverage achieves 0.9 when the sensor number

is 600, while the Doppler-covered percentage is about 0.9 when the sensor number is

300.

7.5.2 Deterministic Deployment

In this subsection, we study deterministic deployment of two deployment patterns:

the regular triangle deployment and the square deployment.

In Fig. 7.19, 7.20, 7.21, 7.22, 7.23, 7.24, we show the impact of sensor num-

ber, sensing range, and effective Doppler angle, respectively, on the Doppler-covered

percentage under regular triangle and square deployment, respectively. Similar to the

case of random deployment, we observe that the Doppler-covered percentage increases

as the sensor number, sensing range, or effective Doppler angle increases. We also

observe that while the regular triangle deployment outperforms the square deploy-

ment under most parameter settings, there are cases where the square deployment

performs better. For example, comparing Fig. 7.19 and 7.20, the Doppler-covered

percentage under regular triangle deployment is lower than the square deployment

when n = 1000 and θ = π/6; comparing Fig. 7.21 and 7.22, the square deployment

outperforms the regular triangle deployment when r = 7 and θ = π/4. The above
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Figure 7.23: Impact of θ under regular tri-
angle deployment: n = 400.
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Figure 7.24: Impact of θ under square de-
ployment: n = 400.

observation implies that the regular triangle deployment is in general not always a

better deployment pattern than the square deployment.

We further observe that deterministic deployment performs better than ran-

dom deployment when the parameters are favorable for Doppler coverage. For ex-

ample, when n = 600, r = 5, and θ = π/3, the percentage of Doppler coverage is

less than 0.8 under random deployment as illustrated in Fig. 7.11, while it is very

close to 1 under both the regular triangle and square deployments as illustrated in

Fig. 7.19 and 7.20; when n = 400, r = 7, and θ = π/3, the percentage of Doppler

coverage is almost 1 under regular triangle and square deployment as illustrated in

Fig. 7.21 and 7.22, while it is less than 0.9 under random deployment as illustrated

in Fig. 7.13. This shows that deterministic deployment is more efficient than random

deployment for achieving Doppler coverage.

7.6 Related Work

Radar technologies have continued to advance ever since its invention in the early

20th century [96]. However, radar networks have begun to draw research interests

only in the past few years, largely driven by the emergence of cheap, efficient, and
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compact radar sensors in place of conventionally expensive and bulky radar systems.

For example, in [97], a platform has been successfully designed and built to integrate

ultrawideband radars with mote-class sensor devices. The existing literature have

studied different problems arising from radar sensor networks, including waveform de-

sign and diversity [88,98], radar scheduling [99], data management [100], for a variety

of objectives, such as target detection [101], localization [92], and tracking [112,113].

In particular, Doppler effect has also been considered in several studies [112, 113].

However, very little attention has been paid to coverage issues specific to radar sen-

sor networks, especially by exploring the Doppler effect. Our work fills this void by

taking into account the Doppler effect for moving target detection.

There have been vast literature on sensor network coverage. A recent and

comprehensive survey can be found in [9]. Many existing works focus on area cov-

erage problems, where the subject to be covered is the entire area of a region. It

has been proved in [114] that the regular triangle lattice is the optimal deterministic

deployment pattern in terms of requiring the minimum number of sensors to cover

a region. The optimal deployment for achieving both network coverage and connec-

tivity has been studied in a line of works [115]. Our work in this chapter also falls

into the category of area coverage. As the Doppler coverage model is very different

from traditional distance-based models, the existing results cannot be applied to our

problem.

A full-view coverage model has been recently introduced in [116] for camera

sensor networks. This model shares a similar flavor with the Doppler coverage model

proposed in our study: an object is full-view covered if its facing direction is suffi-

ciently close to some camera’s viewing direction. However, our work is quite different

from [116] due to several reasons. First, our model is motivated by the Doppler effect,

which is an utterly different physical phenomenon. Second, a direction is Doppler-
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covered if it is sufficiently close to either the direction towards or the direction opposite

to a radar, rather than only sufficiently close to a camera’s viewing direction as in the

full-view coverage model. Due to this complication, the Doppler coverage problem

studied here is more complex and challenging. Third, while the critical sensor density

for full-view coverage is derived in [116] specifically for the regular triangle deploy-

ment, the algorithm designed in our work can apply for any polygon deployment

pattern. Therefore, our algorithm can be modified to apply for the full-view coverage

model. Based on the full-view coverage model, barrier coverage for camera sensors

has been studied in [110] and [108]. [117] has investigated the full-view coverage for

heterogeneous camera sensors under random deployment.

7.7 Conclusion

The radar network has emerged as a promising paradigm for many applications.

Based on a key observation that the existing sensor coverage models cannot capture

the Doppler effect, which can otherwise be employed by a radar to distinguish a

moving target from stationary or slow-moving clutter, we introduce a novel Doppler

coverage model. A point P is said to be Doppler-covered if for any direction
−→
D

from P , there exists some sensor Si such that P is within Si’s sensing range, and

the angle between
−→
D and

−−→
PSi is no greater than θ or no less than π − θ, where θ is

a parameter that depends on the maximum moving speed of an object that causes

clutter. Based on this Doppler coverage model, we propose an efficient method to

characterize Doppler-covered regions for arbitrary deployed radar sensors. We also

design an algorithm CSR to compute the minimum sensor density required to Doppler-

cover a region under deterministic deployment of any polygonal pattern, and further

apply it to investigate the regular triangle deployment. Our results can be used to

evaluate the coverage of any radar sensor network that exploits the Doppler effect for

target detection, and also to estimate the number of sensors needed for coverage.
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Chapter 8

SOCIAL GROUP UTILITY MAXIMIZATION WITH NEGATIVE SOCIAL TIES

8.1 Introduction

In Chapter 2, we develop a social group utility maximization (SGUM) game frame-

work that takes into account mobile users’ social ties and physical relationships.

Under this framework, each user aims to maximize its social group utility, defined

as the weighted sum of the individual utilities of the users that it has social ties

with. Depending on the nature of social relationship, the social tie between two

users can be “positive” (e.g., between family members or friends) such that one user

cares about the welfare of the other, or it can be “negative” (e.g., against opponent

or enemy) such that one user intends to damage the other’s welfare. With this in-

sight, we extend the SGUM framework to capture both positive and negative social

ties. As a result, it spans the rich continuum from zero-sum game (ZSG) to standard

non-cooperative game (NCG) to network utility maximization (NUM) - tradition-

ally disjoint paradigms for network optimization (as illustrated in Fig. 8.1). These

paradigms are encompassed under the SGUM framework as special cases.

Building on the extended SGUM framework, we study the SGUM based game

for two applications: random access control and multi-channel cooperative jamming.

For the SGUM based random access control game, we show that there exists a unique

social-aware Nash equilibrium (SNE). As social ties increase, each user’s access prob-

ability at the SNE migrates from its NE strategy for a ZSG to that for a standard

NCG, and then to its social optimal strategy for NUM, while the social welfare of

all users at the SNE improves gradually. We then turn our attention to the SGUM

based multi-channel cooperative jamming game, which is always a ZSG, and show

that there exists a unique mixed strategy SNE. When the social tie between the le-
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Figure 8.1: SGUM spans the continuum from ZSG to NCG to NUM.

gitimate user and the cooperative jammer exceeds certain threshold, the cooperative

jammer always jams the eavesdropper on some channel at the SNE, and it improves

the social welfare of the legitimate user and cooperative jammer.

The rest of this chapter is organized as follows. In Section 8.2, we introduce

the social group utility maximization game framework. Section 8.3 studies the SGUM

based random access control game. Section 8.5 studies the multi-channel cooperative

jamming game. Section 8.6 concludes this chapter.

8.2 SGUM with Negative Social Ties

We consider a mobile network consisting of a set of users N , {1, · · · , N}. We model

the social ties among the users by a social graph (N , ES), where user i is connected

by a directed social edge eSij ∈ ES to user j if user i has a social tie with user j.

The social tie from user i to user j is denoted by sij . We assume that the social

tie from user i to j is 0 if no social ties exists from user i to j. For convenience,

let sii denote user i’s social tie to itself. We model the physical coupling among the

users by a physical graph (N , EP ), where user j is connected by a directed physical

edge ePji ∈ EP to user i if user j’s behavior affects user i’s welfare. Let ui denote the

individual utility of user i. To take into account the social ties among users, each

user i aims to maximize its social group utility fi, which is its payoff function in the

SGUM game, defined as

fi(ai,a−i) ,
NX
j=1

sijui(ai,a−i)
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Figure 8.2: Extended SGUM captures ZSG, NCG, and NUM as special cases.

where ai denotes user i’s strategy and a−i denotes the vector consisting of all users’

strategies except i.

We assume that each user’s social tie to itself is normalized as 1 (i.e., sii = 1,

∀i ∈ N ). We further assume that sij ∈ (−∞, 1]: When sij ∈ (0, 1], it represents the

extent to which user i cares about user j’s utility, and it reaches the highest when

sij = 1 (i.e., user i cares about user j’s utility as much as its own utility); when

sij ∈ (−∞, 0), it pinpoints to how much user i intends to damage user j’s utility,

and reaches the extreme as sij goes to −∞ (i.e., user i would sacrifice its utility to

damage user j’s utility). A strategy profile is a social-aware Nash equilibrium (SNE)

if no user can improve its social group utility by unilaterally changing its strategy.

The social group utility maximization (SGUM) game framework provides rich

modeling flexibility, and encompasses traditional network optimization paradigms as

special cases. In particular, if no social tie exists (i.e., sij = 0, ∀i 6= j), the SGUM

game degenerates to a standard non-cooperative game where each user is selfish and
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only cares about its individual utility, i.e.,

fi(ai,a−i) = ui(ai,a−i), ∀i ∈ N .

In this case, a strategy profile is a Nash equilibrium (NE) if no user can improve its

individual utility by unilaterally changing its strategy. If all users are connected by

social ties of 1 (i.e., sij = 1, ∀i 6= j), the SGUM game degenerates to network utility

maximization where each user is altruistic and cares about the individual utilities of

all other users as much as its own individual utility, i.e.,

fi(ai,a−i) =
NX
j=1

uj(aj,a−j), ∀i ∈ N .

In this case, a strategy profile is social optimal (SO) if it maximizes the social welfare

among all strategy profiles, where the social welfare v is defined as the total individual

utility of all users:

v(a) ,
NX
i=1

ui(a)

with a , (a1, · · · , aN). In a zero-sum game, all users’ payoff functions are summed

up to 0. Therefore, in an SGUM game or its equivalent game, if each user’s positive

social ties “cancel out” its negative social ties, i.e.,X
j∈N

sji = 0, ∀i ∈ N ,

the SGUM game degenerates to a zero-sum game, where each user views the total gain

of other users as its loss. For example, an SGUM game of two users with f1 = u1−u2

and f2 = u2− u1, or f1 = u1 and f2 = −u1, is a zero-sum game. Note that we obtain

an equivalent game if a user’s payoff function is multiplied by a number or added by

a function independent of that user’s strategy. For example, an SGUM game of two

users with f1 = u1 and f2 = u2 − s21u1 where s21 → ∞ is equivalent to that with

f1 = u1 and f2 = −u1, and therefore is a zero-sum game.
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To get a more concrete sense of the SGUM game framework, in Section 8.3

and 8.5, we will study the SGUM based game for two applications: random access

control and multi-channel cooperative jamming.

8.3 SGUM based Random Access Control

We consider a set of mobile users under the protocol interference model, where user

i is a link consisting of transmitter Ti and receiver Ri. Let I+i denote the set of

receivers that transmitter Ti cause interference to, and I−i denote the set of transmit-

ters that causes interference to receiver Ri. Each user i contends for the opportunity

of data transmission with probability qi in a time slot where 0 ≤ qi ≤ 1. If multiple

interfering links contend in the same time slot, a collision occurs and no link can

grab the transmission opportunity. Then the probability bi that user i can grab the

transmission opportunity is given by

bi(qi, q−i) = qi
Y

j∈I−
i

(1− qj).

We assume that the individual utility of user i is given by

ui(qi, q−i) = log(θibi)

where θi denotes user i’s efficiency of utilizing the transmission opportunity (e.g.,

transmission rate). Note that the logarithmic function is widely used for modeling

the utility of wireless users [18, 19].

8.3.1 Game Analysis

For the SGUM based random access control game, we have the following result.

Theorem 8.1. For the SGUM based random access control game, there exists a

unique SNE, where

qi =
1

1 + max
�P

j∈I+
i
sij , 0

� , ∀i ∈ N . (8.1)
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Figure 8.3: SNE for two-user SGUM based random access control.

Proof: Since

fi = log

�
θiqi

Y
j∈I−

i

(1− qj)

Ǒ
+
X
j 6=i

sij log

�
θjqj

Y
k∈I−

j

(1− qk)

Ǒ
,

it follows that

∂fi
∂qi

=
1

qi
−
X
j∈I+

i

sij
1− qi

.

When
P

j∈I+
i
sij ≤ 0, we have ∂fi

∂qi
> 0 for qi ∈ [0, 1], and therefore the SNE strategy

is qi = 1. When
P

j∈I+
i
sij > 0, we have

lim
qi→0

1

qi
−
X
j∈I+

i

sij
1− qi

=∞, lim
qi→1

1

qi
−
X
j∈I+

i

sij
1− qi

= −∞

and
∂
�

1
qi
−Pj∈I+

i

sij
1−qi

�
∂qi

= − 1

q2i
−
P

j∈I+
i
sij

(1− qi)2
< 0.

Hence, there exists a unique value of qi such that

1

qi
−
X
j∈I+

i

sij
1− qi

= 0, (8.2)

which is the value of the SNE strategy. Solving (8.2) yields qi =
1

1+
P

j∈I
+
i

sij
. Com-

bining the above two cases we have (8.1). �

The result below directly follows from Theorem 8.1.
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Corollary 8.1. Each user’s access probability at the SNE is non-increasing as social

ties get stronger.

Remark: Each user’s SNE strategy is independent of other users’ strategies

(also known as a dominant strategy), but depends on the user’s social ties with oth-

ers. When a user’s access probability increases, it raises the collision probability of

the users within its interference range, and hence reduces their individual utilities.

Therefore, a user would reduce its access probability when its social ties with those

within its interference range get stronger (as illustrated in Fig. 8.3).

Proposition 8.1. The social welfare of the SNE is non-decreasing as social ties get

stronger, and reaches the social optimal point when all social ties are equal to 1.

Proof: Since

v =
NX
i=1

log

�
θiqi

Y
j∈I−

i

(1− qj)

Ǒ
,

we have

∂v

∂qi
=

1

qi
−
X
j∈I+

i

1

1− qi
=

1

qi
− |I

+
i |

1− qi
.

Using the same argument as in the proof of Theorem 8.1, the social optimal value

qSOi of qi that maximizes v is the unique solution of

1

qi
− |I

+
i |

1− qi
= 0,

which is

qSOi =
1

1 + |I+i |
.

In particular, we have qSNE
i ≥ qSOi . Since ∂v

∂qi
< 0 when qi ≥ qSOi , v is decreasing in

qi when qi ≥ qSOi . Using Lemma 8.1, qSNE
i is non-increasing in sij , ∀j ∈ I+i , ∀i ∈ N ,

and hence v(qSNE
1 , · · · , qSNE

N ) is non-decreasing in sij, ∀j ∈ I+i , ∀i ∈ N . �
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Remark: Since users’ individual utilities are added up with equal weights in

the social welfare, a user’s SNE strategy gets closer to its social optimal strategy when

other users weigh more (i.e., the social ties get stronger) in that user’s social group

utility, and the social welfare is non-decreasing. As social ties get stronger, a user’s

SNE strategy migrates from its NE strategy for a ZSG to its NE strategy for a stan-

dard NCG, and then to its social optimal strategy for NUM. For example, in Fig. 8.3,

as the social tie s12 = s21 , s increases from −1 to 0 and then to 1, each user’s SNE

strategy qSNE migrates from its NE strategy for a zero-sum game qZS,NE to its NE

strategy for a standard non-cooperative game qNC,NE , and then to its social optimal

strategy qSO. The social welfare of the SNE vSNE also migrates correspondingly. This

demonstrates that the SGUM game framework spans the continuum between these

traditionally disjoint paradigms.

8.4 SGUM based Multi-Channel Cooperative Jamming

8.4.1 System Model

For ease of exposition, we consider a wireless network consisting of three users: a

legitimate user, a cooperative jammer, and an eavesdropper. The legitimate user (re-

ferred to as “user”) can transmit data on one of a set of channelsM , {1, · · · ,M}.

The eavesdropper can eavesdrop the data transmission on one of the M channels. As

illustrated in Fig. 8.4, to assist the legitimate user’s transmission from its transmitter

(T) to its receiver (R), the cooperative jammer (J) can jam the eavesdropper (E) by

transmitting jamming signal on one of the M channels. The desired user’s utility of

transmitting data on a channel depends on whether the eavesdropper is eavesdrop-

ping on that channel and whether the helper is jamming that channel. For example,

the user’s utility can be defined as the secrecy capacity [118]. We assume that the

channels are homogeneous, and let u, ue, uj, uj,e denote the user’s utility of trans-

mitting data on a channel when the same channel is being accessed by neither the
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Figure 8.4: Illustration of cooperative jamming model.

jammer nor eavesdropper, only the eavesdropper, only the jammer, both the jammer

and eavesdropper, respectively. We assume that u > uj > uj,e > ue to avoid the

trivial case. We use pi, p
j
i , p

e
i to denote the probability that the user, the jammer,

the eavesdropper access channel i, respectively. We assume that
P

i∈M pi = 1 andP
i∈M pei = 1 meaning that the user and eavesdropper always access some channel(s).

We also assume that
P

i∈M pji ≤ 1 meaning that the jammer can choose to keep silent.

Under the SGUM framework, the user’s expected payoff f is equal to its

expected individual utility u, and is given by

f = u =
X
i∈M

pi
�
u(1− pji )(1− pei ) + ujpji (1− pei ) + uj,epjip

e
i + ue(1− pji )p

e
i

�
.

The jammer’s expected payoff is

f j = uj + su,

where s ∈ [0, 1] is the jammer’s social tie with the user, and uj is the jammer’s

expected individual utility, which is its expected jamming cost given by

uj = −c
X
i∈M

pji

where c > 0 is the jamming cost. The eavesdropper’s expected payoff is given by

f e = −u.
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Since the eavesdropper’s payoff function is equivalent to f e = −(1 + s)u − uj, the

SGUM game is always a zero-sum game.

8.4.2 Game Analysis

For the SGUM based multi-channel cooperative jamming game, in general there does

not exist a pure strategy SNE. Therefore, we aim to find a mixed strategy SNE.

A mixed strategy profile is a SNE if no one can improve its expected payoff by

unilaterally changing its mixed strategy. For convenience, define

M0 ,
uj,e − ue

u− uj
+ 1

and

s0 ,
cM2

(uj,e − ue)− (M − 1)(u− uj)
.

Theorem 8.2. For the SGUM based multi-channel cooperative jamming game, there

exists a unique mixed strategy SNE. If M < M0 and s > s0, the SNE is given by

pi = pji = pei =
1

M
, ∀i ∈M;

otherwise, the SNE is

pi = pei =
1

M
, pji = 0, ∀i ∈M.

Proof: We first show that pi > 0 and pei > 0 for each i ∈M. To this end, we

show the following claims: 1) if pi = 0 for some i ∈ M, then pei = 0; 2) pi > 0 for each

i ∈M; 3) pei > 0 for any i ∈M with pi > 0. Claim 1 holds because if pei > 0, we can

decrease pei by a sufficiently small ∆ while increasing pek by ∆ for some k ∈ M with

pk > 0 such that f e is increased. Claim 2 holds because if pi = 0 for some i ∈ M,

we have pei = 0, and also pji = 0, since otherwise we can decrease pji such that f j is

increased. Then we can decrease pk by a sufficiently small ∆ for some k ∈ M with

pk > 0 and pek > 0 while increasing pi by ∆ such that f is increased. Claim 3 holds
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because if pei = 0, we must have pji = 0, since otherwise we can decrease pji such that

f j is increased. Then we can increase pi by a sufficiently small ∆ while decreasing pk

by ∆ for some k ∈M with pek > 0 such that f is increased. Using Claim 1, 2, and 3,

we must have pi > 0 and pei > 0 for each i ∈M.

Next we show that pi = pk, ∀i 6= k. To this end, define

fi , pi
�
u(1− pji )(1− pei ) + ujpji (1− pei ) + uj,epjip

e
i + ue(1− pji )p

e
i

�
. (8.3)

Then we have

∂fi
∂pi

= u(1− pji )(1− pei ) + ujpji (1− pei ) + uj,epjip
e
i + ue(1− pji )p

e
i . (8.4)

Since we have shown that pi > 0 for each i ∈ M, we must have ∂fi
∂pi

= ∂fk
∂pk

, ∀i 6= k.

This is because if ∂fi
∂pi

> ∂fk
∂pk

for some i 6= k, we can increase pi by a sufficiently small

∆ while decreasing pk by ∆ such that fi + fk is increased, and hence f is increased.

It follows from (8.3) that

∂fi
∂pei

= pi
�
(u− uj + uj,e − ue)pji − (u− ue)

�
. (8.5)

Since u > uj > uj,e > ue, we have

0 < u− uj + uj,e − ue < u− ue,

and then it follows from (8.5) that ∂fi
∂pe

i

< 0, ∀i ∈M. Since we have shown that pei > 0

for each i ∈ M, we must have ∂fi
∂pe

i

= ∂fk
∂pe

k

, ∀i 6= k. This is because if ∂fi
∂pe

i

< ∂fk
∂pe

k

, we

can increase pei by a sufficiently small ∆ while decreasing pek by ∆ such that fi + fk

is decreased, and hence f e is increased.

Suppose pi > pk for some i 6= k. Since ∂fi
∂pe

i

= ∂fk
∂pe

k

< 0, it follows from (8.5)

that pji > pjk. It follows from (8.3) that

∂fi

∂pji
= pi

�
(u− uj + uj,e − ue)pei − (u− uj)

�
. (8.6)
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We consider four cases as follows.

Case 1 : ∂fi
∂pj

i

≤ 0 and ∂fk
∂pj

k

≤ 0

In this case, we must have pji = pjk = 0, since otherwise we can increase pji or

pjk such that f j is increased. This contradicts to pji > pjk.

Case 2 : ∂fi
∂pj

i

≤ 0 and ∂fk
∂pj

k

> 0

Similar to Case 1, we must have pji = 0. Then it follows that 0 = pji > pjk ≥ 0,

which is a contradiction.

Case 3 : ∂fi
∂pj

i

> 0 and ∂fk
∂pj

k

≤ 0

In this case, using (8.6) we have

(u− uj + uj,e − ue)pei − (u− uj) ≥ 0

and

(u− uj + uj,e − ue)pek − (u− uj) < 0,

and therefore we must have pei > pek. It follows from (8.4) that

∂fi
∂pi∂pei

= (u− uj + uj,e − ue)pji − (u− ue) < 0. (8.7)

Since ∂fk
∂pj

k

≤ 0, we have

∂fk

∂pk∂p
j
k

= (u− uj + uj,e − ue)pek − (u− uj) =
∂fk

pk∂p
j
k

≤ 0. (8.8)

Using (8.4), we have

∂fi
∂pi

< u(1− pji )(1− pek) + ujpji (1− pek) + uj,epjip
e
k + ue(1− pji )p

e
k ≤

∂fk
∂pk

,

where the first inequality is due to pei > pek and (8.7), the second inequality is due to

pji > pjk and (8.8). This contradicts to ∂fi
∂pi

= ∂fk
∂pk

.

Case 4 : ∂fi
∂pj

i

> 0 and ∂fk
∂pj

k

> 0
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Since ∂fi
∂pj

i

= ∂fk
∂pj

k

> 0 and pi > pk, using (8.6) we have pei < pek. Since ∂fi
∂pj

i

> 0,

we have

∂fi

∂pi∂p
j
i

= (u− uj + uj,e − ue)pei − (u− uj) =
∂fi

pi∂p
j
i

> 0. (8.9)

Using (8.4), we have

∂fi
∂pi

> u(1− pji )(1− pek) + ujpji (1− pek) + uj,epjip
e
k + ue(1− pji )p

e
k >

∂fk
∂pk

,

where the first inequality is due to pei < pek and (8.7), the second inequality is due

to pji > pjk and (8.9). This contradicts to ∂fi
∂pi

= ∂fk
∂pk

. Therefore, we conclude that

pi = pk, ∀i 6= k.

Since pi = pk and ∂fi
∂pe

i

= ∂fk
∂pe

k

, ∀i 6= k, using (8.6) we have pji = pjk, ∀i 6= k.

Then since ∂fi
∂pi

= ∂fk
∂pk

, ∀i 6= k, using (8.4) we have pei = pek, ∀i 6= k. Therefore, we

have pi = pei =
1
M
, ∀i ∈ M.

Since pei =
1
M
, ∀i ∈M, using (8.6) we have that pji > 0 only if (u−uj +uj,e−

ue) 1
M
− (u − uj) > 0, or equivalently M < M0. Using pi = pei = 1

M
, ∀i ∈ M, and

pji = pjk, ∀i 6= k, we have

f j = s
�
u(1− pji )(1−

1

M
) + ujpji (1−

1

M
) + uj,epji

1

M
+ ue(1− pji )

1

M

�
− cMpji .

Then we have

∂f j

∂pji
= s

�
1

M
(uj,e − ue)− (1− 1

M
)(u− uj)

�
− cM.

Since
P

i∈M pji ≤ 1 and pji = pjk, ∀i 6= k, we have pji = 1
M

if and only if ∂fj

∂pj
i

> 0, or

equivalently s > s0 and M < M0. �

Remark: Intuitively, since the channels are homogeneous, if the user accesses

a channel with a higher probability than other channels, then the eavesdropper should

always access that channel so as to minimize the user’s payoff; if the eavesdropper
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accesses a channel with a lower probability than other channels, the user should

always access that channel so as to maximize its payoff. Therefore, both the user and

eavesdropper access all channels with equal probabilities at the SNE.

Remark: The jammer can affect the user’s utility in two inverse ways: when

the user accesses the same channel as the eavesdropper, the jammer can improve

the user’s utility by jamming that channel; when the user and eavesdropper access

different channels, the jammer reduces the the user’s utility if it jams the user’s

channel. The tradeoff between these inverse effects is captured by M0: when the

user’s utilities under the jammer’s interference (i.e., uj and uj,e) are sufficiently large,

the jammer’s “positive” effect outweighs its “negative” effect (i.e., M < M0), and it

should always jam some channel; otherwise, it should always keep silent.

Remark: The impact of social tie is captured by s0: when the social tie s

exceeds the threshold s0, the jammer has incentive to assist the user, and the social

welfare of the user and jammer (i.e., u+ uj) improves. Therefore, the positive social

tie between the user and jammer mitigates the damage from the eavesdropper who

has negative social ties with them.

Using Theorem 8.2, when M < M0 and s > s0, the user’s payoff at the SNE

is

f = u(1− 1

M
)2 + uj(1− 1

M
)
1

M
+ uj,e 1

M2
+ ue(1− 1

M
)
1

M
;

when M ≥M0 or s ≤ s0, the user’s payoff at the SNE is

f ′ = u(1− 1

M
) + ue 1

M
.

Therefore we have

f − f ′ =
1

M

�
1

M
(uj,e − ue)− (1− 1

M
)(u− uj)

�
> 0.
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This shows that the jammer’s help improves the user’s utility at the SNE. We also

observe that

∂f

∂M
=

1

M2
(1− 1

M
)(2u− uj − ue) +

1

M3
(uj − uj,e + ue) > 0

and

∂f ′

∂M
=

1

M2
(u− ue) > 0.

This shows that the user’s utility at the SNE improves when the number of channels

increases, regardless of whether the jammer helps the user or not.

Remark: Intuitively, with a larger number of channels, the user has a bet-

ter chance to avoid accessing the same channel as the eavesdropper, and therefore

achieves a higher payoff. Furthermore, as the user’s chance of not being eavesdropped

increases, the jammer’s “negative” effect grows while its “positive” effect diminishes.

As a result, when the number of channels M is sufficiently large, the jammer should

always keep silent (i.e., M < M0).

8.5 SGUM based Spectrum Access for Balanced Social Networks

8.5.1 Social Network with Structural Balance

We consider a social network of a set of users where each pair of users know each other

and they are either friends or enemies - no two users are indifferent to one another

or unaware of each other. Such a network can be represented by a complete social

graph where each edge is labeled with a positive + or negative − sign. The principles

underlying structural balance are based on theories in social psychology [30]. The

key idea is as follows: For any set of three users, only three social structures among

them are possible, as illustrated in Fig. 8.5. If a social network is weakly balanced, it

has been shown that a global structural property holds as follows: The users can be

divided into groups in such a way that every two users belonging to the same group

are friends, and every two users belonging to different groups are enemies. Therefore,
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Figure 8.5: Illustration of structural balance: A social network is weakly balanced
if only the social structures in (a), (b), and (c) exist for any set of three users; it is
strongly balanced if only (a) and (b) exist.

the social network can be partitioned into a number of social coalitions, where all

the users in the same coalition are mutual friends while any two users from different

coalitions are enemies.

8.5.2 System Model

We consider a set of users N = {1, 2, ..., N} where N is the total number of users.

We denote the set of available channels asM = {1, 2, ...,M}. Each user i chooses a

channel ai ∈M for data transmission. To capture the physical coupling, we construct

an interference graph GP , {N , EP} based on the users’ interference relationships. In

particular, the set of users N is the vertex set, and EP , {(i, j) : ePij = 1, ∀i, j ∈ N}

is the edge set where ePij = 1 if and only if users i and j can generate significant

interference that affect the data transmissions of each other. For example, we can

construct the interference graph GP based on users’ spatial relationships [119]. Let δ

denote the transmission range of each user. We then have ePij = 1 if and only if the

distance dij between user i and j is not greater than the threshold δ, i.e., dij ≤ δ. Each

edge ePij is associated with a weight Wij which represents the interference generated

by user i to user j 6= i is when they access the same channel (i.e., ai = aj). We

assume that the interference graph is symmetric such that Wij = Wji, ∀i 6= j.

Let a = (a1, ..., aN) ∈
QN

i=1M be the channel selection profile of all users.
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Given the channel selection profile a, the interference received by user i is given by

γi(a) =
X

j∈N ,j 6=i

WjiI{ai=aj} (8.10)

where I{A} is the indicator function with I{A} = 1 indicating that event A is true and

I{A} = 0 otherwise. Then we define the individual utility function ui(a) as

ui(a) = −γn(a) = −
X

j∈N ,j 6=i

WjiI{ai=aj} (8.11)

where the negative sign comes from the convention that utility functions are typically

the objectives for maximization. The individual utility reflects that each user is

interested in reducing its received interference.

To capture that users with positive social ties intend to mitigate the interfer-

ence to each other and users with negative social ties intend to enhance the interfer-

ence to each other, we apply the SGUM framework to spectrum access. Then the

social group utility of user i is given by

fi(a) =
X
j∈N

sijuj(a) = −
X
j∈N

sij
X

k∈N ,k 6=j

WkjI{aj=ak}. (8.12)

8.5.3 Game Analysis

For the SGUM based spectrum access game, we have the following result for weakly

balanced social networks.

Theorem 8.3. For a weakly balanced social network, when the physical graph is

homogeneous (i.e., ePij = 1, ∀i 6= j and W , Wij = Wkl, ∀i 6= j, k 6= l), there exist

SNEs for the SGUM based spectrum access game. Furthermore, at each SNE, for each

social coalition k ∈ K, there exist M − qk channels such that each channel is accessed

by pk users from social coalition k, and qk channels such that each channel is accessed

by pk + 1 users from social coalition k, where pk , ⌊Nk/M⌋ and qk , (Nk mod M),

∀k ∈ K.
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Proof: Let nai
k (a) denote the number of users from social coalition k that

access channel ai under strategy profile a. Using the structural balance of the social

network and (8.12), for any user i in any social coalition k, its social group utility

can be expressed as

fi(ai, a−i) =
X

l∈K,l 6=k

X
j∈Nl

WI{ai=aj} −
X

j∈Nk,j 6=i

WI{ai=aj} −
X

j∈N ,j 6=i

WI{ai=aj} + g(a−i)

= −
X

j∈Nk,j 6=i

WI{ai=aj} −
X

j∈Nk,j 6=i

WI{ai=aj} + g(a−i)

= −2
X

j∈Nk,j 6=i

WI{ai=aj} + g(a−i)

= −2(nai
k (a)− 1) + g(a−i) (8.13)

where g(a−i) is a function that is independent of user i’s strategy ai. Using (8.13),

at the SNE a∗, for any ai 6= a∗i and any i ∈ Nk, we have

fi(a
∗
i , a
∗
−i) = −2(n

a∗
i

k (a∗)− 1) + g(a∗−i) ≥ fi(ai, a
∗
−i) = −2nai

k (a
∗) + g(a∗−i) (8.14)

and it follows that n
a∗
i

k (a∗) ≤ nai
k (a

∗) + 1. Therefore the desired result follows. �

Next we consider a game G ′ , {K, {hi}i∈K, {MNi}i∈K} where each player

i ∈ K consists of the users in social coalition i with strategy xi , (an1
i
, · · · , a

n
Ni
i

) and

payoff function hi(x) , fj(a) for any j ∈ Ni. In other words, the users from the

same coalition coordinate their strategies such that they behave as a single player.

We can show that the NEs for the game G ′ coincide with the SNEs for the SGUM

game G , {N , {fi}i∈N , {M}i∈N}.

Theorem 8.4. A strategy profile x∗ is an NE for the game G ′ if and only if the

corresponding a∗ is an SNE for the game G.

Proof: For any NE x∗ for the game G ′, we must have n
a∗
j

k (a∗) ≤ n
aj
k (a∗) + 1,

∀aj 6= a∗j , ∀j ∈ Ni, and ∀i ∈ K. This is because otherwise we can find xi =
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(a∗n1
i
, · · · , aj , · · · , a∗

n
Ni
i

) such that hi(x
∗
i ,x

∗
−i) = fj(a

∗
j , a
∗
−j) < fj(aj, a

∗
−j) = hi(xi,x

∗
−i)

using the proof of Theorem 8.3, which is a contradiction. Therefore, a∗ is an SNE for

the game G. Then the desired result follows. �

8.6 Conclusion

In this chapter, we have developed a social group utility maximization game frame-

work that spans the continuum from zero-sum game to standard non-cooperative

game to network utility maximization. Then, we have studied two applications under

this framework: random access control and multi-channel cooperative jamming. Our

results shed light on the impact of social ties on users’ strategies and system perfor-

mance. We believe that this work will open a new door to exploring the impact of

social behavior on mobile networking.
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Chapter 9

SOCIAL GROUP UTILITY MAXIMIZATION FOR PERSONALIZED

LOCATION PRIVACY IN MOBILE NETWORKS

9.1 Introduction

The proliferation of mobile devices is predicted to continue in the foreseeable future.

In 2014, mobile phone shipments are projected to reach 1.9 billion units, about 7

times that of desktop and laptop combined [2]. With rapid growth of mobile net-

works, location-based services (LBS) have become increasingly popular recently (e.g.,

location-based navigation and recommendation). However, the providers of LBSs are

often considered not trustworthy, due to the risk of leaking users’ location information

to other parties (e.g., sell users’ location data). As a result, mobile users are exposed

to potential privacy threats when using a LBS. Although a user can use a pseudonym

for the LBS, an adversary can infer the user’s real identity from its location traces

(e.g., from the user’s home and work addresses). To protect location privacy, an

effective approach is to “confuse” the adversary using the notion of anonymity [120]:

mobile users in physical proximity can change their pseudonyms simultaneously to

form an anonymity set, so that the adversary cannot distinguish any of them from

the others.

Clearly, as mobile devices are carried and operated by human beings, pseudonym

change hinges heavily on human behavior. In particular, altruistic behaviors are

widely observed among people with social ties1. It is then natural to ask “Is it possi-

ble to leverage social ties for pseudonym change to enhance location privacy?” The

past few years have witnessed explosive growth of online social networks. In 2013,

the number of online social network users worldwide has crossed 1.73 billion, nearly

one quarter of the world’s population [1]. As a result, social relationships influence

1In this chapter, “social tie” refers to “positive social tie” for brevity.

221



1 
2 3 

1 1 1 2 1 3 

physical graph 

Figure 9.1: Illustration of anonymity model for personalized location privacy.

people’s interactions with each other in an unprecedented manner. This motivates

us to exploit social ties among users for pseudonym change to improve their location

privacy. Since pseudonym change typically incurs considerable overhead (e.g., service

interruption, resource consumption [121]), users need strong incentives (e.g., adequate

privacy gain) to participate in pseudonym change. We caution that secure protocols

are needed to hide users’ real identities when social information is used (which will

be elaborated further in Section 9.4.5).

A basic assumption commonly used in existing studies [121–123] is that all

users participating in pseudonym change have the same anonymity set. However,

from an individual user’s perspective, the set of users that can obfuscate its pseudonym

(i.e., its anonymity set) can be different from that of another user, depending on users’

physical locations. For example, a user with a higher level of privacy sensitivity can

have a smaller anonymity set than others. It is thus desirable to meet users’ needs for

personalized location privacy. To this end, we consider a general anonymity model

where a user can define its specific anonymity set different from others’. For ex-

ample, in Fig. 9.1, each user specifies its anonymity set for personalized location

privacy by defining an anonymity range, which is a disk centered at the user’s loca-

tion. Then user 1 and 2 are out of user 3’s anonymity range and thus are not in user

3’s anonymity set (represented by no direct edge from user 1 or 2 to user 3); user
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1 and 3 are within user 2’s anonymity range and thus are in user 2’s anonymity set

(represented by directed edges from user 1 and 3 to user 2).

In this chapter, we leverage mobile users’ social tie structure to motivate them

to participate in pseudonym change. Drawing on a social group utility maximization

(SGUM) framework recently developed in [51], we cast users’ decision making of

whether to participate in pseudonym change as a socially-aware pseudonym change

game (PCG). The SGUM framework captures the impact of users’ diverse social ties

on the interactions of their mobile devices subject to diverse physical relationships.

The PCG is based on a general anonymity model that allows each user to have its

specific anonymity set. In the SGUM-based PCG, each user aims to maximize its

social group utility, defined as the sum of its individual utility and the weighted sum

of its social friends’ individual utilities. For the SGUM-based PCG, we are interested

in answering the following important questions: Does the game admit a socially-

aware Nash equilibrium (SNE)? What is the system efficiency of SNEs? How can we

efficiently find an SNE with desirable properties?

The main contributions of this chapter can be summarized as follows.

• We propose a framework where mobile users’ social tie structure is leveraged

to motivate them to participate in pseudonym change, based on a general

anonymity model that allows each user to have its specific anonymity set for

personalized location privacy. Taking a social group utility approach, we cast

users’ decision making of whether to change pseudonyms as a pseudonym change

game.

• For the SGUM-based PCG, we first show that there always exists a socially-

aware Nash equilibrium. Then we quantify the system efficiency of the SNE by

bounding the gap between the optimal social welfare and the social welfare of
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the “best” SNE, which is the SNE that achieves the maximum social welfare

among all SNEs. We observe that the best SNE is difficult to compute in

general, and the often used best response updates would converge to an SNE

with a lower social welfare. Then we develop a greedy algorithm that myopically

determines users’ strategies, based on the social group utility derived from only

the users whose strategies have already been determined. We first show that the

algorithm can efficiently find an SNE that is socially-aware coalition proof, and

thus is also Pareto-optimal. We then show that the SNE has a social welfare

no less than that of the best SNE for the socially-oblivious PCG. Next we show

that the social welfare of the SNE increases when social ties increase, and its

performance gap with respect to the optimal social welfare is bounded above.

We further show that the Pareto-optimal SNE can be achieved in a distributed

manner.

• We evaluate the performance of the SNE by extensive simulation results for

Erdos-Renyi model and real dataset based social networks. We demonstrate

the impact of various parameters on system efficiency, individual users’ perfor-

mance, and computational complexity of the proposed algorithm. Numerical

results corroborate that social welfare can be significantly improved by exploit-

ing social ties.

The rest of this chapter is organized as follows. Related work are reviewed

in Section 9.2. In Section 9.3, we formulate the socially-aware pseudonym change

game based on a general anonymity model for personalized location privacy, under

the social group utility maximization framework. Section 9.4 focuses on the analysis

of the SGUM-based PCG. Numerical results are presented in Section 9.5. Section 9.6

concludes this chapter.
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9.2 Related Work

With growing concerns for location privacy arising from pervasive mobile commu-

nication and computing, a great deal of research have been done to protect mo-

bile users’ location privacy. This work falls in the category of anonymity-based

approaches [120–124]. Earlier studies [120, 125] show that an adversary can infer

the real identity of a mobile user by analyzing the spatial-temporal correlation of

its location traces. To overcome this vulnerability, pseudonyms should not only be

changed over time but also be obfuscated across space to prevent inference attacks.

Inspired by the notion of k-anonymity, Beresford and Stajano [120] introduced the

notion of mix zone. By changing pseudonyms within a mix zone, users can make

their new pseudonyms undistinguishable to the adversary. While the mix zone model

assumes that all users have the same anonymity set, the general anonymity model

proposed in this chapter allows each user to define its specific anonymity set differ-

ent from others’. A few work have studied users’ interactions in pseudonym change

based on game-theoretic models. The mix zone based pseudonym change has been

studied in [121] as a non-cooperative game with complete or incomplete information.

Auction-based mechanisms have been designed in [123] to incentive users to partici-

pate in pseudonym change. To our best knowledge, this chapter is the first to exploit

social relationships to improve location privacy by pseudonym change.

There have been much work on incentive design for stimulating user coop-

eration in networks. Most of the existing approaches are based on (virtual) cur-

rency [39–42], in which a user earns currency by providing cooperation to others and

spends currency to receive cooperation from others. However, a major drawback of

using currency is that it relies on a centralized authority (e.g., a bank) and typically

incurs a high implementation overhead, due to the need to inhibit malicious manip-
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ulation of the currency among users without mutual trust. Therefore, it is appealing

to motivate users to cooperate without using currency.

The social aspect of mobile networking is an emerging paradigm for network

design and optimization [126]. Social contact patterns have been exploited for effi-

cient data forwarding and dissemination in delay tolerant networks [65, 66]. Social

trust and social reciprocity have been leveraged in [16] to enhance cooperative D2D

communication based on a coalitional game. Recently, a social group utility maxi-

mization (SGUM) framework is developed in [51–53], which captures the impact of

users’ diverse social ties on the interactions of their devices subject to diverse physical

coupling. A primary merit of this framework is that it provides rich modeling flex-

ibility and spans the continuum between non-cooperative game and network utility

maximization, two traditionally disjoint paradigms for network optimization.

9.3 Model and Problem Formulation

9.3.1 Privacy Threat in Location-based Services

We consider a mobile network where users obtain their locations via mobile devices

that are capable of localization (e.g., based on GPS or wireless access points). Users

send their locations to a LBS provider for a certain LBS (e.g., location-based nav-

igation or recommendation), and the LBS provider feedbacks the desired results to

the users based on their reported locations. To protect privacy, each user uses a

pseudonym as its identity for the LBS.

As in [120,123,124], we assume that the LBS provider is untrusted, i.e., it may

leak users’ location traces to an adversary. For example, the adversary may steal the

location data by hacking into the LBS system. The adversary aims to learn the real

identity of a user by analyzing the locations visited by the user’s pseudonym. We also

assume that users are honest-but-curious in the sense that each user honestly follows

the protocols with others (which will be discussed in Section 9.4.5), but is curious
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about others’ private information. We further assume that the adversary may collude

with a limited number of users to gain useful information for inferring a user’s real

identity.

The use of pseudonym allows short-term reference to a user (e.g., one pseudonym

can be used for the navigation of an entire trip between two locations), which is useful

for many LBSs and does not disclose private information. However, long-term linking

among a user’s locations should be prevented, as it may reveal sufficient information

for inferring the user’s real identity [125,127,128]. Although a user may hide explicit

linking among its locations by changing its pseudonym, the adversary can still link

different pseudonyms of the user by exploiting the spatial-temporal correlation of its

locations. For example, consider a user that visits location l1 with pseudonym Alice

at time t1, and then visits location l2 which is close to location l1 with pseudonym

Bob at time t2. If the adversary observes from the location traces that no other user

changes its pseudonym between time t1 and t2, or there exists such a user but it does

not visit any location close to location l1 or l2, then the adversary can infer that

pseudonym Alice and Bob must refer to the same user, since only the same user can

visit both location l1 and l2 within the limited period between time t1 and t2.

9.3.2 Pseudonym Change for Personalized Location Privacy

To protect location privacy from inference attacks, an effective approach is based on

the notion of anonymity: users in physical proximity can coordinate their pseudonym

changes to happen simultaneously [120], so that the adversary cannot link their

pseudonyms before the changes to their respective pseudonyms after the changes.

Existing studies [121–123] assume that all users participating in pseudonym change

have the same anonymity set. However, based on an individual user’s belief of the

adversary’s power against its location privacy (e.g., the adversary’s side information

about that user), the set of users that it believes can obfuscate its pseudonym (i.e.,
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its anonymity set) can be different from that of another user. Thus motivated, we

consider a general anonymity model that can meet users’ needs for personalized loca-

tion privacy, depending on users’ physical locations. In particular, each user specifies

an anonymity range (a physical area) such that the set of users within the anonymity

range constitute that user’s potential anonymity set. For example, a user’s anonymity

range can be a disk centered at the user’s location, with a large radius indicating a

low level of privacy sensitivity (as illustrated in Fig. 9.1). Note that for two users

at different locations, their anonymity ranges are different even when they have the

same shape (e.g., two disks with the same radius but different centers), and thus their

potential anonymity sets can be different.

Formally, consider a set of users N , {1, · · · , N} where each user i makes a

decision ai on whether or not to participate in pseudonym change, denoted by ai = 1

and ai = 0, respectively. Based on users’ physical locations, the privacy gain perceived

by a user participating in pseudonym change depends on which users also participate.

Each user i incurs a cost ci > 0 to participate in pseudonym change. This cost is

due to a number of factors, e.g., the participating users should stop using the LBS

for a period of time. Based on the general anonymity model, the physical coupling

among users can be captured by a physical graph (N , EP ), where user j is connected

by a directed edge ePji ∈ EP to user i if user j is in user i’s potential anonymity

set, denoted by Ni− (i.e., j ∈ Ni−). Note that the physical coupling between two

users can be asymmetric. The privacy gain perceived by a participating user i is

defined as its anonymity set size, i.e., the number of participating users in Ni−. Note

that the anonymity set size is a widely adopted privacy metric2 for anonymity-based

approaches. For example, k-anonymity is used as the privacy metric in [123, 124],

2Another privacy metric is the entropy of the adversary’s uncertainty of a user’s pseudonym.
However, it is usually difficult to compute since it requires probability distribution which is difficult
to attain.
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where a user achieves location privacy if its pseudonym cannot be distinguished among

k users. Then the individual utility of user i, denoted by ui, is given by

ui(ai,a−i) , ai

� X
j∈Ni−

aj − ci

�
(9.1)

where a−i denotes the vector of the strategies of all users except user i. If a user

participates, its individual utility is its privacy gain minus its participation cost;

otherwise, it is zero. Note that ci is a relative cost compared to privacy gain.

9.3.3 Social Group Utility Maximization (SGUM)

Social relationships play an increasingly important role in people’s interactions with

each other. One important attribute of social relationship is that people are altruistic

to their social “friends” (including friends, family, colleagues, etc.), as they care about

their social friends’ welfare. As a result, a user would take into account the effect

of its behavior on its social friends. Recently, a social group utility maximization

framework has been developed in [51], which captures the impact of mobile users’

diverse social ties on the interactions of their mobile devices subject to diverse physical

relationships.

Appealing to the SGUM framework [51], we model the social tie structure

among the users in N by a social graph (N , ES), where user i is connected by a

directed edge eSij ∈ ES to user j if user i has a social tie with user j, denoted by sij.

We assume that each user i’s social tie to itself is sii = 1, and we normalize user i’s

social tie to user j 6= i as sij ∈ (0, 1], which quantifies the extent to which user i cares

about user j relative to user i cares about itself. We also assume that sij = 0 if no

social tie exists from user i to user j.

To take into account the social ties among users, each user i aims to maximize

its social group utility, defined as

fi(ai,a−i) , ui(ai,a−i) +
X

j∈Ni+

sijuj(aj ,a−j) (9.2)
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where Ni+ denotes the set of users whose potential anonymity sets include user i.

Note that a user’s social group utility consists of its own individual utility and the

sum of the individual utilities of the other users weighted by social ties. Therefore,

the social group utility captures both physical coupling and social coupling among

users in a unified way. Also note that a user does not need to know the individual

utilities of its social friends (which may be their private information) to make the

decision (as will be shown in equation (9.3)). In Section 9.4.5, we will discuss how

social information can be used while preserving the privacy of users’ real identities

with respect to each other.

9.3.4 SGUM based Pseudonym Change Game

Based on the SGUM framework, users’ socially-aware decision making for pseudonym

change boils down to a social group utility maximization game. Specifically, each user

i ∈ N is a player and its strategy3 is ai ∈ {0, 1}. Let a = (a1, · · · , an) denote the

strategy profile consisting of all users’ strategies. The payoff function of a user is

defined as its social group utility function. Given the strategies of other users, each

user i aims to choose the best response strategy that maximizes its social group utility:

maximize
ai

fi(ai,a−i), ∀i ∈ N .

Similar in spirit to the Nash equilibrium [17] of a standard non-cooperative

game, the following concept applies to the SGUM game.

Definition 9.1 (Socially-aware Nash Equilibrium [51]). A strategy profile a
sne =

(asne1 , · · · , asnen ) is a socially-aware Nash equilibrium (SNE) of the SGUM-based PCG

if no user can improve its social group utility by unilaterally changing its strategy,

i.e.,

asnei = arg max
ai∈{0,1}

fi(ai,a−i), ∀i ∈ N .

3As we focus on pure strategies in this work, we use “strategy” and “action” interchangeably.
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Due to the rational and autonomous nature of users, an SNE is a stable out-

come which is acceptable for all users.

For the sake of system efficiency, a natural objective is to maximize the social

welfare of the system, which is the total individual utility of all users denoted by

v(a) ,
P

i∈N ui(a).

Definition 9.2 (Social Optimal [17]). A strategy profile a
∗ = (a∗1, · · · , a∗n) is social

optimal if it achieves the maximum social welfare among all strategy profiles, i.e.,

v(a∗) ≥ v(a), ∀a.

Although the social optimal profile is the best outcome in terms of system

efficiency, it is often not acceptable for all users. Then, it is desirable to achieve the

“best” SNE, i.e., the SNE that achieves the maximum social welfare among all SNEs

(referred to as “the best SNE”).

Another desirable property for system efficiency is given below.

Definition 9.3 (Pareto-Optimal [17]). A strategy profile a
po = (apo1 , · · · , apon ) is

Pareto-optimal if there does not exist a Pareto-superior profile a
′ = (a′1, · · · , a′n)

such that no user achieves a worse individual utility while at least one user achieves

a better individual utility, i.e.,

ui(a
′
i,a
′
−i) ≥ ui(a

po
i ,apo

−i), ∀i ∈ N

with at least one strict inequality.

For the SGUM-based PCG, we are interested in answering the following im-

portant questions:

• Does the game admit any SNE? If yes, what is the system efficiency of the best

SNE?
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• How can we efficiently find an SNE? What is the system efficiency of this SNE?

What are the desirable properties of this SNE if any?

To answer these questions, in Section 9.4 we will focus on the analysis of the

SGUM-based PCG.

9.4 SGUM based Pseudonym Change Game

9.4.1 Benchmark: Socially-oblivious Pseudonym Change Game

As a benchmark, we start with a basic case of the PCG: the PCG for socially-oblivious

users (SO-PCG), i.e., sij = 0, ∀i 6= j. In this case, each user is selfish and the social

group utility degenerates to the individual utility.

For SO-PCG, there can exist multiple SNEs4 with different values of social

welfare. For system efficiency, it is desirable to achieve the best SNE (i.e., the SNE

that achieves the maximum social welfare among all SNEs). Let N1(a) , {i ∈

N |ai = 1} and N0(a) , {i ∈ N |ai = 0} denote the set of participating users and

non-participating users under strategy profile a, respectively. For example, in Fig.

9.2, there are three SNEs a1, a2, and a
3 with N1(a

1) = {1, 2, 4, 5}, N1(a
2) = {4, 5},

and N1(a
3) = ∅, respectively (the number beside a user is its cost). We can see that

a
1 is Pareto-superior to a

2, a3, and hence is the best SNE. To find the best SNE,

we can use best response updates as described in Algorithm 9: with all users’ actions

initially set to 1, each user asynchronously updates (i.e., no two users update at the

same time) its action from 1 to 0 if it increases its individual utility. For the example

in Fig. 9.2, using Algorithm 9, we have u6 = 2− 2.2 < 0⇒ a6 = 0⇒ u3 = 0− 0.5 <

0 ⇒ a3 = 0 ⇒ a = (1, 1, 0, 1, 1, 0) is an SNE. We show that the algorithm indeed

finds the best SNE as follows.

4For SO-PCG, an SNE is equivalent to a NE for a standard non-cooperative game. For consis-
tency of terminology, we still call it “SNE” in this case.
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Algorithm 9: Compute the best SNE for SO-PCG

1 a← (1, · · · , 1);
2 while ∃i ∈ N such that ai = 1 and ui(1,a−i) < 0 do

3 ai ← 0;
4 end

5 return a
o ← a;

Proposition 9.1. For SO-PCG, Algorithm 9 computes the best SNE which achieves

the maximum social welfare among all SNEs.

Proof: For any user i with aoi = 0, let a′ be the strategy profile right before

user i’s action is changed from 1 to 0 during the execution of Algorithm 9. Since

a
o
−i ≤ a

′
−i, we have ui(1,a

o
−i) ≤ ui(1,a

′
−i) < 0 due to the condition in line 2.

Therefore, aoi = 0 is the best response strategy for user i. According to the condition

in line 2, aoj = 1 is the best response strategy for any user j with aoj = 1. Thus the

strategy profile a
o is an SNE.

Next we show that ao achieves the maximum social welfare among all SNEs.

It suffices to show that ao is Pareto-superior to any other SNE. To this end, we first

show that a profile a
′ is not an SNE if N1(a

′) \ N1(a
o) 6= ∅. Suppose such a

′ is an

SNE. Let i ∈ N1(a
′) \ N1(a

o) be the first user among N1(a
′) \ N1(a

o) whose action

is changed to 0, and ā be the profile right before that change. Since a
′ ≤ ā, we

have ui(a
′) ≤ ui(ā) < 0 = ui(0,a

′
i−) due to that 0 is the best response strategy.

This shows that a
′ is not an SNE. Therefore, for any SNE a

′ other than a
o, we

must have a
′ < a

o. Then for each i ∈ N1(a
′), we have ui(a

′) ≤ ui(a
o). For each

i ∈ N0(a
′), since a

o is an SNE, we have ui(a
′) = 0 = ui(0,a

o
−i) ≤ ui(a

o). Therefore

a
o is Pareto-superior to a

′. Thus we show that ao is the best SNE. �

As the best SNE achieves the maximum system efficiency among all SNEs,

we will use the best SNE for SO-PCG as the benchmark for the general case of the
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Figure 9.2: An example of SO-PCG.

PCG: the PCG for socially-aware users (SA-PCG), i.e., ∃i 6= j such that sij > 0.

9.4.2 Existence and Efficiency of SNE

In this subsection we study the existence and efficiency of SNE for SA-PCG. We first

establish the existence of SNE. Using (9.1) and (9.2), we have

fi(1,a−i)− fi(0,a−i)

= ui(1,a−i)− ui(0,a−i) +
X

j∈Ni+

sij (uj(1,a−i)−uj(0,a−i))

=
X

j∈Ni−

aj − ci +
X

j∈Ni+

sijaj. (9.3)

It is clear from (9.3) that no user participating is always an SNE. Then we have the

following result.

Theorem 9.1. For SA-PCG, there exists at least one SNE.

Next we show an important property of the social group utility function. It

follows from (9.3) that

fi(1,a−i)− fi(0,a−i)−
�
fi(1,a

′
−i)− fi(0,a

′
−i)
�

=
X

j∈Ni−

aj − ci+
X

j∈Ni+

sijaj −
� X

j∈Ni−

a′j − ci+
X

j∈Ni+

sija
′
j

�
=

X
j∈Ni−

(aj − a′j) +
X

j∈Ni+

sij(aj − a′j). (9.4)
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Let a ≤ a
′ denote entry-wise inequality (i.e., ai ≤ a′i, ∀i ∈ N ). Using (9.4), we have

the following result.

Lemma 9.1. If a−i ≤ a
′
−i, then fi(1,a−i)− fi(0,a−i) ≤ fi(1,a

′
−i)− fi(0,a

′
−i).

Remark: Pseudonym change is a behavior with network effect such that each

participating user benefits more when more users participate. As a result, Lemma 9.1

shows that a user’s social group utility is a supermodular function: the marginal gain

of social group utility by participating increases when more users participate. This

implies that if a user’s best response strategy is to participate, then it remains so if

more users participate; if a user’s best response strategy is to not participate, then it

remains the so if less users participate.

To quantify the system efficiency of the SNE, we provide a bound of the gap

between the social welfare of the best SNE and the optimal social welfare in the

following result.

Theorem 9.2. The performance gap between the maximum social welfare among all

SNEs and the optimal social welfare is upper bounded by
P

i∈N

P
j∈Ni+

(1− sij).

Proof: We first show that we can construct an SNE from the social optimal

profile a
∗ using best response updates: with all users’ actions initially set according

to the social optimal profile, a user’s action is changed from 1 to 0 if that can improve

its social group utility. To this end, we first show that this algorithm can terminate.

Without loss of generality, we assume that there does not exist a′ with a
′ > a

∗ such

that v(a′) ≥ v(a∗). Suppose there exists i ∈ N0(a
∗) such that fi(1,a

∗
−i) ≥ fi(0,a

∗
−i).
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Then we have

v(1,a∗−i)− v(0,a∗−i) = ui(1,a
∗
−i) +

X
j∈Ni+

aj

≥ ui(1,a
∗
−i) +

X
j∈Ni+

sijaj = fi(1,a
∗
−i)− fi(0,a

∗
−i) ≥ 0

where the first equality follows a similar manipulation as in (9.3), and the second

equality follows from (9.3). This contradicts the previous assumption. Therefore we

must have fi(1,a
∗
−i) < fi(0,a

∗
−i) for each i ∈ N0(a

∗). Then, according to Lemma 9.1,

the algorithm must terminate and results in a profile ab, which is an SNE and satisfies

that a∗ ≥ a
b.

Next we show an upper bound on v(a∗)− v(ab). For any i ∈ N1(a
∗) \N1(a

b),

let ā be the profile right before ai is changed to 0 in the algorithm. Then we have

v∆i , v(1, ā−i)− v(0, ā−i) = ui(1, ā−i) +
X

j∈Ni+

āj

= ui(1, ā−i) +
X

j∈Ni+

sij āj +
X

j∈Ni+

(1− sij)āj

= fi(1, ā−i)− fi(0, ā−i) +
X

j∈Ni+

(1− sij)āj

<
X

j∈Ni+

(1− sij)āj ≤
X

j∈Ni+

(1− sij)

where the last equality follows from (9.3), and the first inequality is due to that 0 is

the best response strategy. Therefore we have

v(a∗)− v(ab) =
X

i∈N1(a∗)\N1(ab)

v∆i ≤
X
i∈N

X
j∈Ni+

(1− sij).

�

Remark: Theorem 9.2 shows that the performance gap decreases as social

ties increase. In particular, when users are socially-oblivious (i.e., sij = 0, ∀i 6= j), the

performance gap reaches the maximum, and the best SNE for SA-PCG degenerates
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to the best SNE for SO-PCG; when users are fully altruistic (i.e., sij = 1, ∀i 6= j),

the performance gap becomes 0, and the best SNE degenerates to the social optimal

strategy profile. This demonstrates that the best SNE spans the continuum between a

NE for a standard non-cooperative game and the optimal solution for network utility

maximization, two traditionally disjoint paradigms for network optimization.

9.4.3 Computing SNE

In this subsection, we turn our attention to finding an SNE with desirable properties.

For the PCG for fully altruistic users (i.e., sij = 1, ∀i 6= j), we can see that

the social optimal strategy profile a
∗ is an SNE, and is the solution to the following

problem:

maximize
a

X
i∈N

ai

� X
j∈Ni−

aj − ci

�
subject to ai ∈ {0, 1}, ∀i ∈ N . (9.5)

Note that problem (9.5) is an integer quadratic programming, which is in general

difficult to solve5. Since the PCG for fully altruistic users is a special case of SA-PCG,

it is also difficult to compute the best SNE for SA-PCG. Based on this observation,

our objective below is to efficiently compute an SNE with other desirable properties.

To compute an SNE for SA-PCG, a plausible approach is to use best response

updates in a similar way as Algorithm 9 for SO-PCG: with all users’ actions initially

set to 1, each user asynchronously updates its action from 1 to 0 if it increases its social

group utility. Using Lemma 9.1, we can show that such best response updates always

converge to an SNE. However, it has drawbacks: the SNE may not be Pareto-optimal

and its social welfare may be worse than that of an SNE for SO-PCG. For example, in

Fig. 9.3, using best response updates, we have f1(1, 1)− f1(0, 1) = 1− 1.5 + 0.8 > 0,

f2(1, 1)− f2(1, 0) = 1− 1.5 + 0.8 > 0, and hence a
1 with N1(a

1) = {1, 2} is an SNE.

5We conjecture that problem (9.5) is an NP-hard problem.
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Figure 9.3: An example of SA-PCG where best response updates is not desirable.

However, it is not Pareto-optimal, since it is Pareto inferior to a
2 with N1(a

2) = ∅

as u1(0, 0) = u2(0, 0) = 0 > 1 − 1.5 = u1(1, 1) = u2(1, 1). Furthermore, the social

welfare of a1 is less than that of a2 as v(1, 1) = −1 < 0 = v(0, 0), where a2 is also an

SNE for SO-PCG. Thus motivated, our objective below is to efficiently find an SNE

such that 1) it is Pareto-optimal and 2) its social welfare is no less than that of the

best SNE for SO-PCG, which is the benchmark.

9.4.3.1 Algorithm Design

To this end, we design an algorithm as described in Algorithm 10. The main idea

of the algorithm is to greedily determine users’ strategies, depending on the social

group utility derived from the users whose strategies have been determined (referred

to as “determined users”), denoted by

f ′i(ai,a−i) , ui(ai,a−i) +
X

j∈Ni+\N

sijuj(ai,a−i)

where N denotes the set of users whose strategies have not been determined (referred

to as “undetermined users”). An undetermined user’s action is fixed once it becomes

determined.

Specifically, the algorithm proceeds in rounds and each round consists of phase

I and phase II. In phase I, with all undetermined users’ actions initially set to 1, an

undetermined user’s action is changed from 1 to 0 if it increases its social group utility

derived from the determined users, i.e.,

f ′i(1,a−i)− f ′i(0,a−i) = ui(1,a−i) +
X

j∈Ni+\N

sijaj < 0
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Algorithm 10: Compute the SNE for SA-PCG

1 N ← N ;
2 repeat

3 // Phase I;

4 a← (1, · · · , 1), NI ← N ;

5 while ∃i ∈ N such that ui(1,a−i) +
P

j∈Ni+\N
sijaj < 0 do

6 ai ← 0, NI ← NI \ {i};
7 end

8 // Phase II;

9 N ← N \NI , NII ← ∅;

10 while ∃i ∈ N such that ui(1,a−i) +
P

j∈Ni+\N
sijaj ≥ 0 do

11 ai ← 1, N ← N \ {i}, NII ← NII ∪ {i};
12 end

13 until NI ∪ NII = ∅;
14 return a

e ← a;

until no such user exists. Then the undetermined users whose actions remain 1 become

determined and their actions are fixed to 1. In phase II, with all undetermined users’

actions initially set to 0, an undetermined user becomes determined and its action is

fixed to 1 if it increases its social group utility derived from the determined users, until

no such user exists. The algorithm terminates when no undetermined user becomes

determined during either phase I or phase II of a round.

We use an example in Fig. 9.4 to illustrate how Algorithm 10 works and

outline the steps as follows (the number beside a user is its cost; the number beside

a social edge is its social tie).

• Phase I of 1st round: u1 = 1 − 1.2 < 0 ⇒ a1 = 0; u5 = 1 − 1.5 < 0 ⇒ a5 = 0;

u4 = 0− 1.2 < 0⇒ a4 = 0⇒ u3 = 2− 2.5 < 0⇒ a3 = 0; u7 = 2 − 2.2 < 0 ⇒

a7 = 0 ⇒ u8 = 0 − 0.8 < 0 ⇒ a8 = 0; u2 = 1 − 0.6 > 0; u6 = 1 − 0.8 > 0;

NI = {2, 6}.

• Phase II of 1st round: u5 + s56 = 1 − 1.5 + 0.6 > 0 ⇒ a5 = 1 ⇒ u1 + s12 =

1−1.2+0.5 > 0⇒ a1 = 1; u3+s32 = 1−2.5+0.8 < 0; u7+s76 = 1−2.2+0.5 < 0;
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Figure 9.4: An example that illustrates how Algorithm 10 works.

u4 = 0− 1.2 < 0; u8 = 0− 0.8 < 0; NII = {1, 5}.

• Phase I of 2nd round: u4 = 0−1.2 < 0⇒ a4 = 0⇒ u3+s32 = 2−2.5+0.8 > 0;

u7 + s76 = 2− 2.2 + 0.5 > 0; u8 = 1− 0.8 > 0; NI = {3, 7, 8}.

• Phase II of 2nd round: u4 + s43 + s48 = 0 − 1.2 + 0.6 + 0.8 > 0 ⇒ a4 = 1;

NII = {4}.

Since the size of the set of undetermined users N is upper bounded by N , the

computational complexity of phase I and phase II of a round is bounded by O(N2).

Since at least one user is determined during a round, the algorithm must terminate

within N rounds. Therefore, the running time of the algorithm is bounded by O(N3).

In Section 9.5, numerical results will demonstrate that the computational complexity

of Algorithm 10 is nearly a quadratic function of the number of users. In Section

9.4.4, we will propose a distributed version of Algorithm 10.

9.4.3.2 Properties of the SNE

We first show that Algorithm 10 can find an SNE.
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Theorem 9.3. For SA-PCG, Algorithm 10 computes an SNE.

Proof: We consider three cases of each user i as follows.

Case 1 : i ∈ N1(a
e) and i ∈ NI,k

Let a′ be the profile right after phase I during which i remains in NI . Since

a
e ≥ a

′, using (9.3) we have

fi(1,a
e
−i)− fi(0,a

e
−i) ≥ ui(1,a

′
−i) +

X
j∈Ni+\N

sija
′
j ≥ 0

where the second inequality is due to the condition in line 5.

Case 2: i ∈ N1(a
e) and i ∈ NII,k

Let a′ be the profile right after i becomes determined in phase II. Since ae ≥ a
′,

using (9.3) we have

fi(1,a
e
−i)− fi(0,a

e
−i) ≥ ui(1,a

′
−i) +

X
j∈Ni+\N

sija
′
j ≥ 0

where the second inequality is due to the condition in line 10.

Case 3: i ∈ N0(a
e)

Since i is not included in NII in phase II of the last round, using (9.3) we have

fi(1,a
e
−i)− fi(0,a

e
−i) = ui(1,a

′
−i) +

X
j∈Ni+\N

sija
′
j < 0

where the inequality is due to the condition in line 10. �

As the strategy profile computed by Algorithm 10 is an SNE, it is acceptable

for all users. We give another desirable property as follows.

Definition 9.4 (Socially-aware Coalition-Proof). A strategy profile ascp = {ascp1 , · · · ,

ascpn } is socially-aware coalition-proof if no set of users N ′ ⊆ N can change their

strategies such that no user i ∈ N ′ or its social friend j ∈ Ni+ with sij > 0 achieves a
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worse individual utility while at least one of them achieves a better individual utility

under the strategy profile a
′ after the change, i.e.,

ui(a
′
i,a
′
−i) ≥ ui(a

scp
i ,ascp

−i ), ∀i ∈ N ′

and

uj(a
′
j ,a

′
−j) ≥ uj(a

scp
j ,ascp

−j ), ∀j ∈ {Ni+ : sij > 0}, i ∈ N ′

with at least one strict inequality.

Note that the concept of socially-aware coalition-proof for a SGUM game is

in the same spirit as strong Nash equilibrium for a non-cooperative game. Also note

that it is different from the core for a cooperative game [17]. In a cooperative game

(also known as coalitional game), a player’s payoff only depends on the strategies of

the players in the same coalition, while in a SGUM game, a player’s payoff depends

on the strategies of all other players, and furthermore, a set of players are concerned

with the payoffs of themselves and their social friends.

Next we show that the above property holds for the SNE a
e.

Theorem 9.4. For SA-PCG, the SNE a
e is socially-aware coalition-proof.

Proof : Suppose a set of users N ′ ⊆ N change their actions (some users in

N ′ may not change their actions but at least one user in N ′ changes its action) and

the strategy profile changes from a
e to a

′ such that ui(a
e) ≤ ui(a

′), ∀i ∈ N ′, and

uj(a
e) ≤ uj(a

′), ∀j ∈ {Ni+ : sij > 0}, i ∈ N ′, with at least one strict inequality. It

suffices to show that 1) N1(a
′) \ N1(a

e) = ∅ and 2) N1(a
e) \ N1(a

′) = ∅ so that

a
e = a

′.

We first show part 1). Suppose N1(a
′) \N1(a

e) 6= ∅. We observe that i ∈ N ′

for each i ∈ N1(a
′) \ N1(a

e). Let i be the first user in N1(a
′) \ N1(a

e) whose action
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is set to 0 during phase I of the last round, and ā be the profile right before ai = 0

is set. Since ā−i ≥ a
′
−i, we have

ui(1, ā−i) +
X

j∈Ni+\N

sij āj ≥ ui(1, ā−i) ≥ ui(1,a
′
−i)

= ui(a
′) ≥ ui(a

e) = ui(0,a
e
−i) ≥ 0

where the second inequality follows from that ā ≥ a
′ and the third inequality follows

from that i ∈ N ′. This contradicts the condition in line 5.

Next we show part 2). Since we have shown part 1), we must have N1(a
′) ⊆

N1(a
e) (i.e., a′ ≤ a

e). Suppose N1(a
e) \ N1(a

′) 6= ∅. According to the assumption,

there exists i ∈ N such that ui(a
e) < ui(a

′). We consider three cases of i as follows.

Case 1: i ∈ N1(a
e) \ N1(a

′)

We observe that i ∈ N ′ and ui(a
e) < ui(a

′) = ui(0,a
′
−i) = 0. Let â be the

profile right before user i becomes determined. Since ae
−i ≥ â−i, we have ui(1, â−i) ≤

ui(1,a
e
−i) = ui(a

e) < 0. According to the condition in line 5, we have

ui(1, â−i) +
X

j∈Ni+\N

sij âj ≥ 0.

Therefore, there must exist some j ∈ {Ni+ : sij > 0} such that âj = 1. Then we

observe that aej = 1 and j must become determined before i. We consider two cases

of j as follows.

Case 1.1: j ∈ N1(a
′)

In this case, we have

uj(a
e)− uj(a

′) = uj(1,a
e
−i)− uj(1,a

′
−i) =

X
l∈Nj−

ael −
X

l∈Nj−

a′l ≥ aei − a′i = 1 > 0

where the first inequality is due to the fact that a
e
−j ≥ a

′
−j and j ∈ Ni+. This

contradicts the assumption that uj(a
e) ≤ uj(a

′).
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Case 1.2: j ∈ N1(a
e) \ N1(a

′)

In this case, we observe that j ∈ N ′. Let ã be the profile right before user j

becomes determined. Since j becomes determined before i, we have ãi = 0. Then we

have

uj(1,a
e
−j)− uj(1, ã−j) =

X
l∈Nj−

ael −
X

l∈Nj−

ãl ≥ aei − ãi = 1 > 0

where the first inequality is due to the fact that ae
−j ≥ ã−j . Then it follows that

uj(1, ã−j) < uj(1,a
e
−j) ≤ uj(a

e) ≤ uj(a
′) = uj(0,a

′
−j) = 0.

According to the condition in line 5, we have

uj(1, ã−j) +
X

l∈Nj+\N

sjlãl ≥ 0.

Therefore, there must exist some k ∈ {Nj+ : sjk > 0} such that ãk = 1. Similar to

the arguments for j, we can consider two cases of k as Case 1.1 or Case 1.2 for j. If

Case 1.2 holds, we can recursively apply the arguments until Case 1.1 holds, which

leads to a contradiction.

Case 2: i ∈ N1(a
′) ⊂ N1(a

e)

Since a
e ≥ a

′, we have

ui(a
e) = ui(1,a

e
−i) ≥ ui(1,a

′
−i) = ui(a

′).

This contradicts the assumption that ui(a
e) < ui(a

′).

Case 3: i ∈ N0(a
e) ⊂ N0(a

′)

We have

ui(a
e) = ui(0,a

e
−i) = 0 = ui(0,a

′
−i) = ui(a

′)

which contradicts the assumption that ui(a
e) < ui(a

′). �
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Remark: Theorem 9.4 gives a desirable property that is particularly appeal-

ing when users are socially-aware: no group of users can collectively change their

strategies to improve the individual utility of at least one of them or their social

friends without reducing the individual utility of any of them or their social friends.

As users are aware of their social ties, some users may have incentive to form a coali-

tion based on their social ties and deviate from the SNE in the hope of improving

the individual utilities of them or their social friends. The property of socially-aware

coalition-proof eliminates this possibility so that users are willing to accept the SNE

as their strategies.

As a special case of Theorem 9.4, the set of all users N cannot improve the in-

dividual utility of at least one of them without reducing that of another by collectively

changing their strategies. This leads to the following result.

Corollary 9.1. For SA-PCG, the SNE a
e is Pareto-optimal.

Next we show that the social welfare of the SNE a
e is no less than that of the

best SNE for SO-PCG. To this end, we first show that the SNE a
e is monotonically

“expanding” with respect to social ties.

Proposition 9.2. For SA-PCG, when social ties increase (i.e., s′ij ≥ sij, ∀i 6= j),

the set of participating users at the SNE a
e grows (i.e., N1(a

e′) ⊇ N1(a
e)) and the

social welfare of the SNE a
e increases (i.e., v(ae′) ≥ v(ae)).

Proof : Let N ′I,k be the set of users in NI,k during the execution that computes

a
e′ . For each i ∈ NI,1, we have

ui(1,a
′
−i) +

X
j∈N ′

i+\N
′

s′ijaj ≥ ui(1,a−i) +
X

j∈Ni+\N

sijaj ≥ 0.

Therefore we must have NI,1 ⊆ N ′I,1. Similarly, we can show that for any i ∈ NII,1 \

N ′I,1, we must have i ∈ N ′II,1. Using this argument sequentially, we can show that
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∪ki=1 (NI,i ∪ NII,i) ⊆ ∪ki=1

�
N ′I,i ∪ N ′II,i

�
for any k, and therefore a

e ≤ a
e′. When a

user becomes determined with action 1, the increment of social welfare of determined

users by changing its action from 0 to 1 is no less than the increment of its social

group utility involving only determined users, which is non-negative. Therefore we

can see that v(ae) ≤ v(ae′). �

Remark: Intuitively, a user with larger social ties with other users is more

likely to participate in favor of its social group utility, even at the cost of obtaining

a negative individual utility. Proposition 9.2 confirms that when social ties become

larger, more users participate at the SNE. Furthermore, as each additional partici-

pating user increases the social welfare, the social welfare of the SNE also increases.

If Algorithm 10 is used for SO-PCG (i.e., sij = 0, ∀i 6= j), we can see that it

is equivalent to Algorithm 9 which is used to find the best SNE for SO-PCG, so that

they compute the same strategy profile. Based on this observation, using Theorem

9.2, we have the following result.

Corollary 9.2. The social welfare of the SNE a
e for SA-PCG is no less than that

of the best SNE for SO-PCG.

Corollary 9.2 guarantees that the social welfare of the Pareto-optimal SNE is

no less than the benchmark SNE for SO-PCG. In Section 9.5, numerical results will

demonstrate that the Pareto-optimal SNE is efficient, with a performance gain up to

20% over the benchmark.

9.4.3.3 Efficiency of the SNE

Next we investigate the social welfare of the SNE compared to the optimal social

welfare. To this end, we first show that the set of participating users at the SNE a
e

is a subset of that at the social optimal strategy profile a
∗.
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Lemma 9.2. For SA-PCG, the SNE a
e satisfies that ae ≤ a

∗.

Proof : Suppose N1(a
e) \N1(a

∗) 6= ∅. Without loss of generality, we assume

that a∗ is unique. Suppose the first participating user among N1(a
e) \ N1(a

∗) is inN , NI,k \ N1(a
∗). Let N I,k be the set of users in N right before phase I of round

k and ā be the profile right after that phase. Define a
′ , a

∗ ∨ ā where ∨ denotes

entry-wise “or” operation such that N1(a
′) = N1(a

∗) ∪ N . Then we have

v(a′)− v(a∗) =
X
i∈ÒN�ui(1,a

′
−i) +

X
j∈Ni+\ÒN a′j

Ǒ
≥
X
i∈ÒN�ui(1, ā−i) +

X
j∈Ni+\ÒN āj

Ǒ
≥
X
i∈ÒN�ui(1, ā−i) +

X
j∈Ni+\N I,k

sijāj

Ǒ
≥ 0

where the first inequality follows from ā ≤ a
′, and the last inequality follows fromN ⊆ NI,k ⊆ N I,k and the condition in line 5. This contradicts that a

∗ is unique.

Similarly, if the first participating user among N1(a
e) \ N1(a

∗) participates in phase

II of some round, we can also show a contradiction. Therefore we must have N1(a
e)\

N1(a
∗) = ∅. �

Let N∆ , N1(a
∗) \ N1(a

e) denote the set of users that participate under the

social optimal strategy profile a
∗ but not under the SNE a

e. Using Lemma 9.2, we

have the following result.

Theorem 9.5. The performance gap between the social welfare of the Pareto-optimal

SNE and the optimal social welfare is upper bounded by
P

i∈N∆

P
j∈Ni−∩N∆

1 +P
i∈N∆

P
j∈Ni+\N∆

(1 − sij). Furthermore, this bound decreases when social ties in-

crease.
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Proof : From Lemma 9.2 we have a
∗ ≥ a

e. Then we have

v(a∗)− v(ae) =
X
i∈N∆

�
ui(1,a

∗
−i) +

X
j∈Ni+\N∆

a∗j

�
=

X
i∈N∆

�
ui(1,a

e
−i) +

X
j∈Ni−∩N∆

a∗j +
X

j∈Ni+\N∆

aej

�
≤

X
i∈N∆

�
ui(1,a

e
−i) +

X
j∈Ni+

sija
e
j +

X
j∈Ni−∩N∆

a∗j +
X

j∈Ni+\N∆

(1− sij)a
e
j

�
=

X
i∈N∆

�
fi(1,a

e
−i)− fi(0,a

e
−i) +

X
j∈Ni−∩N∆

a∗j +
X

j∈Ni+\N∆

(1− sij)a
e
j

�
≤

X
i∈N∆

� X
j∈Ni−∩N∆

a∗j +
X

j∈Ni+\N∆

(1− sij)a
e
j

�
≤

X
i∈N∆

X
j∈Ni−∩N∆

1 +
X
i∈N∆

X
j∈Ni+\N∆

(1− sij).

Next we show that the above bound decreases when social ties increase. Define

N ′∆ , N1(a
∗) \N1(a

e′) where a
e′ is the SNE when social ties increase (i.e., s′ij ≥ sij,

∀i, j ∈ N ). By Theorem 9.2, we have N ′∆ ⊆ N∆. Define N̂∆ , N∆ \N ′∆. We observe

that X
i∈N∆

X
j∈Ni−∩N∆

1 =
X
i∈ÒN∆

X
j∈Ni−∩ÒN∆

1 +
X
i∈N ′

∆

X
j∈Ni−∩N ′

∆

1

+
X
i∈N ′

∆

X
j∈ÒNi−∩N∆

1 +
X
i∈ÒN∆

X
j∈Ni−∩N ′

∆

1

≥
X
i∈N ′

∆

X
j∈Ni−∩N ′

∆

1 +
X
i∈ÒN∆

X
j∈Ni−∩N ′

∆

1

=
X
i∈N ′

∆

X
j∈Ni−∩N ′

∆

1 +
X
i∈N ′

∆

X
j∈Ni+∩ÒN∆

1. (9.6)
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Figure 9.5: Impact of PS for ER model
based social network.
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Figure 9.6: Impact of R for ER model
based social network.

Then we haveX
i∈N∆

X
j∈Ni−∩N∆

1 +
X
i∈N∆

X
j∈Ni+\N∆

(1− sij)

≥
X
i∈N ′

∆

X
j∈Ni−∩N ′

∆

1 +
X
i∈N ′

∆

X
j∈Ni+∩ÒN∆

1 +
X
i∈N∆

X
j∈Ni+\N∆

(1− sij)

≥
X
i∈N ′

∆

X
j∈Ni−∩N ′

∆

1 +
X
i∈N ′

∆

X
j∈Ni+∩ÒN∆

(1− sij) +
X
i∈N∆

X
j∈Ni+\N∆

(1− sij)

=
X
i∈N ′

∆

X
j∈Ni−∩N ′

∆

1 +
X
i∈N ′

∆

X
j∈Ni+\N ′

∆

(1− sij)

where the first inequality follows from (9.6). This shows the desired result. �

Remark: Theorem 9.5 shows that the performance gap decreases when social

ties increase. The first part of the performance bound
P

i∈N∆

P
j∈Ni−∩N∆

1 is due to

the fact that we trade the optimality of the SNE in terms of social welfare (among

all SNEs) for computational tractability. As a result, when users are fully altruistic

(i.e., sij = 1, ∀i 6= j), the second part
P

i∈N∆

P
j∈Ni+\N∆

(1− sij) becomes 0, while the

first part reaches the minimum but can be greater than 0. In Section 9.5, numerical

results will demonstrate that the SNE is efficient, with a performance gap less than

5% on average compared to the optimal social welfare.
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Figure 9.7: Impact of µC for ER model
based social network.
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Figure 9.8: Impact of N for ER model
based social network.
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Figure 9.9: Impact of PSi
for ER model

based social network.
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Figure 9.10: Impact of Ri for ER model
based social network.

9.4.4 Distributed Computation of the SNE

The SNE computed by Algorithm 10 can be achieved in a distributed manner. To this

end, each user first obtains its potential anonymity set and its social ties with others

(which will be discussed in Section 9.4.5). Following Algorithm 10, each user checks if

it should change its strategy according to the condition in line 5 or 10 based on other

users’ strategies, and if yes, announces the change to all users. With time divided into

slots, a random backoff mechanism can be used so that at most one user announces a
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change of strategy in a time slot. If no user announces a change, it indicates the end

of phase I or phase II of a round. Therefore, all users keep track of the current state

of the algorithm as it proceeds, and thus can act correctly according to the algorithm.

The computational complexity of the distributed version of Algorithm 10 is almost

the same as the centralized version, and is upper bounded by O(N3). Note that each

user only knows the strategies of other users during the execution the algorithm, and

thus users’ privacy is preserved. After reaching the SNE, the users who decide to

change their pseudonyms implement their pseudonym changes.

9.4.5 Implementation Issues

We assume that there is a third party platform where users interact with each other

to make pseudonym change decisions and coordinate their pseudonym changes. The

platform only serves to allow users to exchange information. We assume that the

platform is honest-but-curious in the sense that it honestly delivers messages among

users, but is curious about users’ private information. To protect privacy, each user

also uses a pseudonym as its identity on the platform (which can be different from that

used for the LBS). To make a socially-aware pseudonym change decision, each users

needs to know its potential anonymity set and its social ties with others. This can be

achieved in a privacy-preserving manner using secure protocols as discussed below.

Note that the platform is not involved in the computing tasks of these protocols.

A user can learn whether another user is within its anonymity range using

a certain private proximity detection protocol [41, 129]. For example, the protocol

proposed in [41] can be used if the anonymity range is a disk. Specifically, the proto-

col involves several message exchanges between the two users, including one message

that contains encrypted values that are functions of a user’ location or the radius of

the anonymity range. The protocol guarantees that both users can only learn the

binary result of whether or not one is in another’s anonymity range, and neither user
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can learn the other’s location or anonymity range. In addition, since location infor-

mation is encrypted in the messages, the platform cannot learn any user’s location

information. Similarly, the protocol in [129] can be used if the anonymity range is a

convex polygon. Therefore, each user can learn its potential anonymity set without

revealing its location information.

A user can also learn its social tie with another user without disclosing one’s

real identity to the other. To this end, each user keeps a social profile consisting

of the social communities that it belongs to (e.g., a community of colleagues at the

same workplace), and sets a single social tie level for each community based on its

social relationships with those in the community. Each community is identified by

a predefined key that is only known to the community’s members. Using a certain

private matching protocol such as [130, 131], two users can learn whether they have

a community in common, and if yes, which community6 it is. In particular, the

protocol involves several message exchanges between the two users, including one

message that contains encrypted values that are functions of the keys of a user’s social

communities. The protocol ensures that both users can only know the community

they have in common (if it exists), and neither user can learn any additional social

information of the other, or pretend to have a community in common with the other.

Since a community typically has many members, neither user can know the other’s

real identity even when they know the community they both belong to. In addition,

since social information is encrypted in the messages, the platform cannot learn any

user’s social information. Therefore, each user can learn its social ties with those

in its potential anonymity set while keeping their real identities private. Note that

although the adversary might collude with multiple users, it is almost infeasible for

the adversary to find a sufficient number of colluding users who have social ties with

6To protect privacy, only one community in common is revealed if they have multiple commu-
nities in common.
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Figure 9.11: Impact of µCi
for ER model

based social network.
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Figure 9.12: Average number of social ties
per user for real dataset based social net-
work.
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Figure 9.13: Degree of social tie for real
dataset based social network.
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Figure 9.14: Impact of N for real dataset
based social network.

a specific user, in order to infer the user’s real identity.

9.5 Simulation Results

In this section, we provide numerical results to evaluate the performance of the SNE

a
e for SA-PCG computed by Algorithm 10. We compare the SNE with two bench-

marks: the best SNE a
o for SO-PCG which is computed by Algorithm 9, and the

social optimal strategy profile a∗, which is the optimal solution of problem (9.5) and

is found by exhaustive search.
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Figure 9.15: Impact of user degree for real
dataset based social network.
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Figure 9.16: Computational complexity
for real dataset based social network.

9.5.1 Simulation Setup

To illustrate the impact of different parameters of the mobile social network on the

performance, we consider a synthetic social network as follows. We simulate the social

graph GS based on the Erdos-Renyi (ER) graph model [31], where a social tie exists

between any pair of users with probability PS. We assume that the social tie is 1 if

it exists. We set N = 10, PS = 0.5 as default values.

To evaluate the performance of the socially-aware pseudonym change in prac-

tice, we also consider an empirical social network. Specifically, we generate the social

graph according to the real dataset from Brightkite [32], which is an online social net-

working service based on mobile phones. To illustrate the social network structure

of this dataset, we plot the average number of social tie between a pair of users (in

analogy to the probability of social tie in the ER model) versus the number of users

in Fig. 9.12, and the users’ degrees in the social network in Fig. 9.13.

We simulate the physical graph based on a practical setting as follows. We

consider N mobile users randomly located in a square area with side length 500 m.

We assume that the anonymity range of each user is a disk centered at the user’s
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location with radius R. Based on users’ physical locations and anonymity ranges,

there exists an edge from user i to user j in the physical graph if user i is in the

anonymity range of user j. We assume that each user’s participation cost follows a

normal distribution with mean µC and variance σ2
C . We set µC = 3, σ2

C = 1 as default

values.

9.5.2 Simulation Results
9.5.2.1 System Efficiency

We first evaluate the system efficiency of the SNE for SA-PCG. To highlight the

performance comparison, we normalize the results of the SNE for SA-PCG and the

social optimal solution with respect to the SNE for SO-PCG. We illustrate the impact

of PS, R, µC , and N on the social welfare for the ER model based social network in

Figs. 9.5, 9.6, 9.7, and 9.8, respectively. We observe from Figs. 9.5-9.8 that socially-

aware users significantly outperform socially-oblivious users, especially when PS or µC

is large, or N is small, or R is moderate. This is because more users participate when

they are socially-aware, which improves the social welfare. Fig. 9.5 shows that the

performance of socially-aware users improves when PS increases, with a performance

gain up to 16% over socially-oblivious users and a performance gap less than 10% on

average from the optimal social welfare. This is because larger social ties encourage

more users to participate. Figs. 9.7 and 9.8 show that the performance gap from

socially-oblivious users to socially-aware users and the social optimal solution is small

when µC is small or N is large. This is because with a small participation cost, or a

large privacy gain of participation due to a large number of users, many users already

participate even when they are socially-oblivious. Therefore, the performance gap is

small as it depends on the users that participate only when they are socially-aware.

We illustrate the impact of N on the social welfare for the real dataset based

social network in Fig. 9.14. We observe that the performance gain of socially-aware
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users can achieve up to 11% over socially-aware users, and its performance gap from

the optimal social welfare is less than 5% on average. This demonstrates the effec-

tiveness of exploiting social ties for improving location privacy in practice.

9.5.2.2 Individual Performance

Next we evaluate individual users’ performance at the SNE for SA-PCG. To demon-

strate the impact of a particular parameter, we vary this parameter for different users

and set other parameters the same for all users. We also normalize all the results

to highlight the performance comparison. We illustrate the impact of PSi
on users’

individual utilities in Fig. 9.9 for 10 users, where we vary a user’s probability PSi
of

having a social tie from another user from 0.1 to 1 with an increment of 0.1. We

observe that users’ individual utilities are almost the same when they are socially-

oblivious, while a user with a higher probability PSi
has a larger individual utility

when users are socially-aware. This shows that socially-aware pseudonym change can

achieve service differentiation, which is a desirable property for fairness: if a user has

more or larger social ties from others than other users have, then that user can also

achieve better individual utility than others. We also observe that each user has a

larger individual utility in the socially-aware case than in the socially-oblivious case.

This shows that each user can benefit from socially-aware behaviors of others in the

long run on average.

Fig. 9.10 illustrates users’ individual utilities when we vary a user’s radius

of anonymity range Ri from 220 to 400 with an increment of 20. We observe that

for both socially-oblivious and socially-aware users, respectively, a user with a larger

anonymity range has a larger individual utility as expected. We also observe that a

user with a small anonymity range (e.g., with the radius of 220 or 240) can have a

smaller individual utility in the socially-aware case than in the socially-oblivious case.

This is because the user incurs a larger loss of its individual utility for its social group
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utility than the gain it obtains from its social friends. Similarly, a user with a large

anonymity range can have a larger individual utility when users are socially-aware.

Fig. 9.11 illustrates users’ individual utilities when we vary a user’s mean of

participation cost µCi
from 2.4 to 6 with an increment of 0.4. We observe that for

both socially-oblivious and socially-aware users, respectively, a user with a larger

participation cost has a smaller individual utility as expected. We can also make

a similar observation as in Fig. 9.10 due to similar reasons: a user with a large

participation cost (e.g., with the mean of 6) can have a smaller individual utility in

the socially-aware case than in the socially-oblivious case.

Fig. 9.15 illustrates users’ individual utilities for the real dataset based social

network. We observe that users’ individual utilities are not significantly different from

each other for socially-aware users as in Fig. 9.9, although users’ degrees of social tie

are significantly different as illustrated in Fig. 9.13. This is because of the fact that

users’ social ties are symmetric in the real dataset based social network. As a result,

a user with a large degree of social tie (e.g., with the degree of 19) is likely to not

only receive help from its social friends but also give help to them, such that these

two effects largely cancel each other.

9.5.2.3 Computational Complexity

We evaluate the computational complexity of Algorithm 10 for finding the SNE for

SA-PCG. We plot the number of iterations for running Algorithm 10 versus N in

Fig. 9.16. We observe that the computational complexity increases nearly quadrati-

cally as the number of users increases. This shows that the algorithm is scalable for

a large number of users.
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9.6 Conclusion

In this chapter, we have studied a socially-aware pseudonym change game for per-

sonalized location privacy, based on a general anonymity model with user-specific

anonymity sets. The game is based on a social group utility maximization framework

that captures mobile users’ diverse social ties and diverse physical relationships. For

the SGUM-based PCG, we show that there exists a socially-aware Nash equilibrium,

and quantify the performance gap of the SNE with respect to the optimal social wel-

fare. Then we develop a greedy algorithm that can efficiently find an SNE that is

socially-aware coalition-proof and Pareto-optimal. The SNE also achieves a social

welfare larger than the social welfare of any SNE for the socially-oblivious PCG. We

further quantify the performance gap of the SNE with respect to the optimal social

welfare is bounded above. Numerical results demonstrate that social welfare can be

significantly improved by exploiting users’ social ties.
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Chapter 10

CONCLUSION AND FUTURE WORK

In this dissertation, we have studied design and optimization of wireless networks with

the focus on two perspectives: 1) socially-aware mobile networking and computing;

2) security and privacy in wireless networking. The dissertation can be broadly orga-

nized into three parts under this common theme. The first part (Chapters 2-5) stud-

ies socially-aware mobile networking and computing with the focus on random access

control, power control, mobile crowdsensing, wireless data pricing, and distributed

opportunistic scheduling. The second part (Chapters 6-7) studies physical security in

wireless networking with the focus on radar sensor network coverage. The third part

(Chapters 8-9) studies cyber security and privacy in socially-aware networking and

computing with the focus on random access control, cooperative jamming, spectrum

access, and location privacy. In the following, we summarize the main contributions

and discuss possible directions for future work.

Chapter 2 studies mobile users’ altruistic behaviors based on their social ties.

We develop a social group utility maximization (SGUM) framework which captures

diverse social ties among mobile users and diverse physical relationships among their

mobile devices in a unified way. Specifically, instead of maximizing one’s individual

utility, each user aims to maximize its social group utility based on its social ties

with other users. A primary merit of this framework is that it spans the continuum

between non-cooperative game (NCG) and network utility maximization (NUM) -

two traditionally disjoint paradigms for network optimization. Under the SGUM

framework, we study two important applications in wireless networks: random access

control and power control. We first derive socially-aware Nash equilibria (SNEs) for

the SGUM based random access control and power control, respectively. Then we
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show that as social ties increase, each user’s SNE strategy migrates monotonically

from the Nash equilibrium strategy for a standard NCG to the social optimal strategy

for NUM, and the social welfare of the SNE also increases. This shows that the SGUM

framework captures NCG and NUM as two special cases and spans the continuum

in between. An interesting direction for future research is to consider more general

utility functions for random access control and power control, and other wireless

networking applications under the SGUM framework.

Chapter 3 studies a socially-aware crowdsensing system in which a cloud-based

platform incentivizes mobile users to participate in sensing tasks by leveraging their

social trust. For this system, we exploit social trust assisted reciprocity (STAR) - a

synergistic marriage of social trust and reciprocity, to design an incentive mechanism

that stimulates users’ participation. Given the social trust structure among users,

we thoroughly investigate the efficacy of STAR for satisfying users’ sensing requests.

Specifically, we first show that all requests can be satisfied if and only if sufficient

social credit can be “transferred” from users who request more sensing service than

what they can provide to users who can provide more than what they request. Then

we investigate utility maximization for sensing services, and show that it boils down

to maximizing the utility of a circulation flow in the combined social graph and

request graph. Accordingly, we develop an algorithm that iteratively cancels a cycle

of positive weight in the residual graph, which finds the optimal solution efficiently,

for both cases of divisible and indivisible sensing service. Extensive simulation results

corroborate that STAR can significantly outperform the mechanisms using social trust

only or reciprocity only. For future work, it is interesting to study a game-theoretic

setting where each user makes a distributed decision of how much social credit and

sensing service to provide (or receive) to (or from, respectively) other users.

Chapter 4 studies mobile users’ data usage behaviors by jointly considering the

260



network effect based on their social relationships in the social domain and the con-

gestion effect in the physical wireless domain. Accordingly, we develop a Stackelberg

game for problem formulation: In Stage I, a wireless provider first decides the data

pricing to all users to maximize its revenue, and then in Stage II, users observe the

price and decide data usage subject to mutual interactions under both network and

congestion effects. We analyze the two-stage game using backward induction. For

Stage II, we first show the existence and uniqueness of a user demand equilibrium

(UDE). Then we propose a distributed update algorithm for users to reach the UDE.

We further investigate the impact of different parameters on the UDE. For Stage I,

we develop an optimal pricing algorithm to maximize the wireless provider’s revenue.

We evaluate the performances of the developed algorithm by simulation results using

real data. For future work, we can examine other utility functions, e.g., a logarith-

mic function for internal utility, yet the major engineering insights should remain the

same. Another interesting direction is to study the provider’s pricing strategy when

it is allowed to differentiate the price for different users. In this case, the price offered

to each user will depend on its social influences to others based on the social network.

Chapter 5 studies opportunistic cooperative networking (OCN) in wireless

ad hoc networks, with a focus on characterizing the desired tradeoff between the

probing cost for establishing cooperative relaying and hence higher throughput via

opportunistic cooperative networking. Specifically, we treat opportunistic cooperative

networking as an optimal stopping problem with two-levels of incomplete information.

We consider the cases with or without dedicated relays, and we establish the existence

of optimal strategies for both cases. Then we show that for the case with dedicated

relays, the optimal strategy exhibits a threshold structure, in which it is optimal to

probe the dedicated relay when the signal-to-noise ratio (SNR) of the source-relay link

exceeds some threshold. For the case without dedicated relays, under more restrictive
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conditions, the optimal strategy is also threshold-based, in the sense that it is optimal

to probe potential relays when the SNR of the source-destination link lies between

two thresholds. Furthermore, these strategies can be implemented in a distributed

manner. In this study, we have considered a fixed number of potential relays from

which the best one is selected. It is of great interest to consider cooperative networking

in the scenario where the number of potential relays is time-varying and unknown.

In this scenario, a dynamic relay selection approach is required.

Chapter 6 studies the coverage problem of a bistatic radar (BR) sensor net-

work, which is very challenging due to the Cassini oval sensing region of a BR and the

coupling of sensing regions across different BRs. In particular, we consider the prob-

lem of deploying a network of BRs in a region to maximize the worst-case intrusion

detectability, which amounts to minimizing the vulnerability of a barrier. We show

that it is optimal to place BRs on the shortest barrier if it is the shortest line segment

that connects the left and right boundary of the region. Based on this, we study the

optimal placement of BRs on a line segment to minimize its vulnerability, which is a

non-convex optimization problem. By exploiting certain specific structural properties

pertaining to the problem (particularly an important structure of detectability), we

characterize the optimal placement order and the optimal placement spacing of the

BR nodes, both of which present elegant balanced structures. The findings provide

valuable insights into the placement of BRs for barrier coverage. While in this study

we assume that all BRs are homogeneous, a possible future direction is to consider

heterogeneous BRs. It is also of interest to take into account the synchronization

issue among BR transmitters and BR receivers, which is quite different from that of

monostatic radars.

Chapter 7 studies radar sensor networks where the Doppler effect is exploited

to combat the effect of clutter on radar detection. We introduce the concept of
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Doppler coverage as a coverage metric for such radar sensor networks. Specifically,

a target is said to be Doppler-covered if, regardless of its direction of motion, there

exists some radar in the network whose signal-to-noise ratio (SNR) is sufficiently

high and the DFS at that radar is sufficiently large. Based on the Doppler coverage

model, we devise an efficient method to characterize Doppler-covered regions for

arbitrarily deployed radars. Then we design an algorithm for deriving the minimum

radar density required to achieve Doppler coverage in a region under any polygonal

deployment pattern, and further apply it to investigate the regular triangle based

deployment. An interesting direction for future work is to study the sensor density

required for a region to be Doppler-covered under random deployment.

Chapter 8 studies an extended social group utility maximization (SGUM)

framework that takes into account both “positive” and “negative” social ties. As a

result, this extended SGUM framework captures the rich continuum from zero-sum

game (ZSG) to non-cooperative game (NCG) to network utility maximization (NUM)

- traditionally disjoint paradigms for network optimization. Under this SGUM frame-

work, we study random access control, cooperative jamming, and spectrum access

as three applications. For the SGUM based random access control, we derive the

socially-aware Nash equilibrium. We show that as social ties increase, each user’s

SNE strategy migrates monotonically from the NE strategy for a ZSG to that for

a standard NCG, and then to the social optimal strategy for NUM, and the social

welfare of the SNE also increases. For the SGUM based multi-channel cooperative

jamming, we show that there exists a unique mixed strategy SNE. When the social

tie between the legitimate user and the cooperative jammer exceeds a certain thresh-

old, the cooperative jammer always jams the eavesdropper on some channel at the

SNE, which improves the social welfare of the legitimate user and cooperative jam-

mer. Then we consider the SGUM based spectrum access for social networks with
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structural balance. We characterize the SNE and show that it is equivalent to the

SNE for the game where each player consists of the users in the same social coalition

based on the balanced social structure. For future work, it is interesting to consider

more general utility functions for random access control and cooperative jamming,

and other wireless networking applications under the extended SGUM framework.

Chapter 9 studies mobile users’ pseudonym change to protect location privacy

where users’ social ties are leveraged to motivate them to participate. Drawing on

the social group utility maximization (SGUM) framework developed in Chapter 2,

we cast users’ decision making of whether to change pseudonyms as a socially-aware

pseudonym change game (PCG). The PCG further assumes a general anonymity

model that allows a user to have its specific anonymity set for personalized location

privacy. For the SGUMbased PCG, we show that there exists a socially-aware Nash

equilibrium (SNE), and we quantify the system efficiency of SNEs with respect to

the optimal social welfare. Then we develop a greedy algorithm that myopically de-

termines users’ strategies, based on the social group utility derived from only the

users whose strategies have already been determined. We show that this algorithm

can efficiently find an SNE that enjoys desirable properties: 1) it is socially-aware

coalition-proof, and thus is also Pareto-optimal; 2) it achieves a larger social welfare

than any SNE for the socially-oblivious PCG. We further quantify the system effi-

ciency of the SNE with respect to the optimal social welfare. We also show that the

SNE can be achieved in a distributed manner. Numerical results corroborate that

social welfare can be significantly improved by exploiting social ties. An interesting

direction for future research is to study users’ behaviors in pseudonym change under

the extended SGUM framework that captures both “positive” and “negative” social

ties.
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