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ABSTRACT

In this dissertation, we focus on multiple levels of optimized resource management tech-

niques. We first consider a classic resource management problem, namely the scheduling of

data-intensive applications. We define the Divisible Load Scheduling (DLS) problem, out-

line the system model based on the assumption that data staging and all communication

with the sites can be done in parallel, and introduce a set of optimal divisible load schedul-

ing algorithms and the related fault-tolerant coordination algorithm. The DLS algorithms

introduced in this dissertation exploit parallel communication, consider realistic scenarios

regarding the time when heterogeneous computing systems are available, and generate opti-

mal schedules. Performance studies show that these algorithms perform better than divisible

load scheduling algorithms based upon sequential communication.

We have developed a self-organization model for resource management in distributed

systems consisting of a very large number of sites with excess computing capacity. This

self-organization model is inspired by biological metaphors and uses the concept of varying

energy levels to express activity and goal satisfaction. The model is applied to Pleiades, a

service-oriented architecture based on resource virtualization.

The self-organization model for complex computing and communication systems is ap-

plied to Very Large Sensor Networks (VLSNs). An algorithm for self-organization of anony-

mous sensor nodes called SFSN (Scale-free Sensor Networks) and an algorithm utilizing the

Small-worlds principle called SWAS (Small-worlds of Anonymous Sensors) are introduced.

The SFSN algorithm is designed for VLSNs consisting of a fairly large number of inexpensive

sensors with limited resources. An important feature of the algorithm is the ability to inter-

connect sensors without an identity, or physical address used by traditional communication

and coordination protocols. During the self-organization phase, the collision-free commu-

nication channels allowing a sensor to synchronously forward information to the members

of its proximity set are established and the communication pattern is followed during the
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activity phases. Simulation study shows that the SFSN ensures the scalability, limits the

amount of communication and the complexity of coordination. The SWAS algorithm is fur-

ther improved from SFSN by applying the Small-worlds principle. It is unique in its ability

to create a sensor network with a topology approximating small-world networks. Rather

than creating shortcuts between pairs of diametrically positioned nodes in a logical ring,

we end up with something resembling a double-stranded DNA. By exploiting Small-worlds

principle we combine two desirable features of networks, namely high clustering and small

path length.
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CHAPTER 1: INTRODUCTION

In this chapter we provide the motivation for the work reported, and discuss the organization

of the dissertation. Then we present an overview of the three major topics covered by

this dissertation, discuss the contribution in each area and the related work. The in-depth

analysis of each one of the three topics is covered in Chapter 2, 3, and 4, respectively. In

each case we present the model and the algorithms, then we report on performance studies

and, when feasible, on actual implementations. The systems are generally too complex for

analytical performance evaluation and we report simulation results.

1.1 Motivation and Organization

Resource management in a world with finite resources is an enduring problem for social,

biological, as well as man-made systems. The term resource management is overloaded, it

refers not only to resource sharing among entities with conflicting requirements, but also to

aspects such as: (i) resource discovery; (ii) protection of resources from unauthorized access;

(iii) resource conservation; and (iv) optimal use of resources subject to a set of constraints.

It was recognized early on that a general-purpose computing system should operate under

the control of a software component called a Supervisor or Monitor, whose main function is

resource management. As computer and communication systems evolved from the ENIAC,

to early UNIVAC and IBM systems, time-sharing systems such as Multics, supercomputers

such as the CDC and Cray Systems, to personal computers, to clusters, to networks of

computers, computational and data Grids, and cloud computing, the problems posed by

resource management have evolved. In this evolution new challenges occurred when the

resource management was extended from a single system to multiple interconnected systems

in the same administrative domain and, finally, when multiple autonomous systems were

involved. Autonomy in this case means that systems are in different administrative domains

with distinct accounting, security, and resource management policies.
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In this dissertation we start with a “classical” resource management problem, namely the

scheduling of data-intensive applications. We focus on data-intensive applications because

of their importance for science and engineering and because they pose distinct challenges

for resource management; they demand massive amounts of resources including CPU cycles,

storage, and network bandwidth and require the cooperation of multiple sites. A techno-

logical development with potentially significant consequences for scientific and engineering

applications is the wide-spread use of many/multi-core processors which may some day lead

to the realization of “clusters on a chip.” In turn, this will open the possibility of using spare

resources of a large numbers of personal computers connected to the Internet via high-speed

links for solving data and computationally intensive problems.

A potential solution to resource management in complex systems is self-organization,

a strategy which requires systems to cooperate and relinquish for a limited time the total

control of resources once a system signs agreements to join an organization. This led us to the

second topic discussed in this thesis, a model for self-organization of large-scale distributed

systems. Then we apply this model to an architecture called Pleiades. Finally, we discuss

the application of self-organization principles to very large sensor networks. We address

the problem of resource management at opposite ends of the spectrum: from large-scale

distributed systems with abundant resources and a very large population of users sharing

these resources to networks consisting of a very large number, 108 or more, of primitive

devices with very limited resources that have to collaborate to achieve any meaningful task.

We hope that the study of such systems will provide new insights and will help us understand

the advantages and the problems posed by self-organizing systems.

In this dissertation, we focus on multiple levels of scheduling and effective resource man-

agement techniques and present:
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• A set of optimal divisible load scheduling algorithms based on a multi-port commu-

nication model to achieve the optimal task execution time in heterogenous large-scale

distributed computing environment;

• A resource self-organization model based on biological and physics metaphors to opti-

mize the organization of the resources and improve the quality of service in a large-scale

heterogeneous distributed computing environment;

• Algorithms for self-organization of anonymous sensor nodes that ensure scalability,

limit the amount of communication and the complexity of coordination, reduce energy

consumption, and improve the quality of service. We introduce two algorithms, the

SFSN (Scale-free Sensor Networks) algorithm and SWAS (Small-Worlds of Anonymous

Sensors), an algorithm based on the Small-worlds principle. .

1.2 Divisible Load Scheduling for Data-Intensive Applications

Many applications in computational sciences and engineering such as computational biol-

ogy [4], computational nanoscience, and many areas of engineering, are data-intensive and

computation-intensive. New projects in the emerging field of e-Science such as the Ter-

agrid [115], the NAREGI grid in Japan [69], and the ones promoted by the Distributed

Geospatial Computing Initiative [64] aim to support data-intensive applications in computer

simulations and virtual environments.

Data-intensive and computation-intensive applications demand enormous amounts of re-

sources such as storage space, computing cycles, and communication bandwidth. It is thus

natural to distribute a data-intensive computation over a large number of distinct, and often,

autonomous systems. The quantity of resources reflects also on the quality of the infrastruc-

ture for data-intensive applications. The processing time for a data-intensive application
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is extensive, thus we need effective coordination, an increased level of fault-tolerance, and

robust resource selection and scheduling algorithms.

The problem we want to solve is to schedule the execution of independent task instances

of a data-intensive application in a heterogenous computing environment consisting of a large

number of autonomous systems. Our model for Divisible Load Scheduling (DLS) is based on

several assumptions: (i) we assume a divisible load, one that can be arbitrarily partitioned;

(ii) a Coordinator supervises the data-intensive computation carried out by a large number

of Execution Engines; (iii) the task instances running on the Execution Engines process

different blocks of data; they are logically equivalent, but their implementations may differ

as they are optimized for a particular target system architecture and configuration; (iv) the

task instances do not communicate with one another; (v) the performance metric we wish

to optimize is the makespan, the time from the instant the schedule is generated to the

completion time of the last task instance; (vi) the Execution Engines are heterogenous and

autonomous systems; thus, the algorithms target a Grid environment.

The divisible load scheduling we consider does not assume any preconditions or depen-

dencies among individual processes. In many cases, the data and control dependencies, as

well as the checkpointing, critical for long-running applications, require some form of syn-

chronization among the members of a process group and among different process groups.

Different communication patterns lead to different scheduling algorithms. The communi-

cation pattern among the communicating processes often includes barrier synchronization,

instances when all processes have to exchange some information and thus have to wait for

each other before proceeding.

We note that by combining divisible load and co-scheduling techniques, a new coordina-

tion strategy called divisible load co-scheduling emerges. We consider a class of applications

which consist of two phases of computations. The first phase does not require individual pro-

cess groups to communicate with each other; the second one can only start after all process

groups involved in the first phase have finished. If in the first phase the completion times of
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individual process groups are {T1, T2, . . . , Tn}, respectively, the second phase can only start

at T = max{T1, T2, . . . , Tn}. The strategy we call divisible load co-scheduling guarantees

that T = T1 = T2 = . . . = Tn, thus it allows the second phase to start at the earliest possible

time and all process groups are able to communicate with each other.

Data partitioning for the divisible load co-scheduling strategy is done on two levels [130,

131]. First, the data partitions for the process groups are computed by divisible load co-

scheduling algorithms and are distributed to a collection of parallel systems with different

resources and startup times; then, when the Phase 1 finishes, the load is partitioned again

among processes within one process group based on the local scheduling strategy on each

system.

1.3 Complex Systems

The factors affecting the complexity of modern computing and communication systems and

implicitly the problems addressed by resource management in such systems are summa-

rized in Figure 1.1. New applications are developed to satisfy the more diverse needs of

an increasingly larger population of users. New devices such as sensors find a wide range

of applications and, in turn, trigger the development of new applications and attract new

users. At the same time, the individual components of a system are more complex, for ex-

ample, 2-4 core processors are ubiquitous now and will be replaced by multi-core systems

with tens to hundreds of cores in the next few years. Connectivity and mobility, required

by virtually all users of the systems, increase the complexity of the applications and of the

computer and communication infrastructure. At the same time, physical limitations, such

as heat removal, bandwidth availability, the capacity to store energy, and other factors place

additional constrains upon system design. Last, but not least, we have finite resources and

the optimization of resource consumption increases system complexity.
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Figure 1.1: Some of the factors contributing to the complexity of modern computer and
communication systems.

The computer and communication systems appear increasingly more complex to their

users and this has triggered the investigation of metrics for the complexity of use of distributed

systems. Some of these metrics are [95]: (i) task-structure complexity, how difficult it is to

understand how to perform a task; (ii) unpredictability, how difficult it is to predict the

effects of an action; (iii) size complexity; (iv) chaotic complexity, reflects the fact that small

variations in a certain part of the system can have large effects on overall system behavior;

and (v) algorithmic complexity.

The very practical question on how to design, maintain, and use complex computing

and communication systems cannot be answered without some understanding of the general

characteristics of complex systems, the metrics that allow us to assess the complexity of a

system, and without some insight into how complex systems in nature behave. Some of these

considerations lead to very abstract questions that have preoccupied the minds of humans for

millennia. For example, Aristotle stated that “...the whole is something over and above its

parts, and not just the sum of them all..” In “The Republic” Plato, introduces the concept

of “level of knowledge” ranging from total ignorance to total knowledge. True knowledge

exists only if a foundation of axioms or a priori knowledge exists [50] and this cannot be the

case for complex systems.
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While we have an intuitive notion of what complexity means, a rigorous definition al-

lowing us to quantify and measure the complexity of a system is not universally accepted.

Certainly, the scale of a system, the dynamics of the system behavior, the unpredictability

of the next state, the time a system has been around may affect its complexity, but as we

shall see none of these elements by itself allows us to conclude that a system is complex or

not.

The thermodynamic entropy, von Neumann entropy, and Shannon entropy are related to

the number of states of a system, thus they reflect to some extent the system complexity

[30]. A measure of complexity introduced by Crutchfield is the relative predictive efficiency,

e = E/C with E the excess entropy and C the statistical complexity [31]. The excess entropy

measures the complexity of the stochastic process and can be regarded as the fraction of

historical information about the process that allows us to predict the future behavior of the

process. The statistical complexity reflects the size of the model of the system at a certain

level of abstraction. The scale of organization considered by an external observer plays a

critical role in assessing the relative predictive efficiency. For example, at the microscopic

level the calculation of e for a volume of gas requires very complex molecular dynamics

computations to accurately predict the excess entropy; both E and C are very high and the

predictive efficiency is low. On the other hand, at the macroscopic level the relationship

between the pressure P , the volume V , the temperature T is very simple PV = nRT with

n the number of moles of gas and R the universal gas constant. In this case E maintains a

high value, but now C is low and the predictive efficiency E/C is large.

Kolmogorov entropy [61,66] of an object is a measure of computational resources needed

to specify the object. Using a Markovian assumption and a Kolmogorov complexity model, it

was shown that scheduling and resource management are more complex on a computational

grid than on a service grid due to the finer granularity of resource allocation [71].

We propose to use the complexity of a program that simulates the system as a measure

of complexity of the system; this will reflect not only the number of states but also the
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transitions among states. This proposal has its own limitations, as we generally simulate

approximate models of a system, rather than exact ones. The proposal is consistent with

the concept of depth defined as the number of computational steps needed to simulate a

system’s state [70]. Machta argues that the emergence of complexity requires a long history,

but one needs a measure stricter than physical time to reflect this history [70]. The depth

reflects not how long the system remains in equilibrium, but how many steps are necessary

to reach equilibrium following some efficient process. The rate of system state changes and

the communication time do not reflect the complexity of a system. Indeed, two rotating

structures involving very different physical processes, a hurricane and a spiral galaxy are at

the limit of today’s realistic computer simulation thus, of similar depth and, consequently,

of similar complexity. Yet, galaxy formation occurs at a scale of million light years and it is

bounded by communication at the speed of light, while the time for hurricane formation is

measured in days, the atmospheric disturbances propagate more slowly, but the the scale of

hurricane formation is only hundreds of kilometers.

Physical systems in equilibrium display their most complex behavior at critical points (in

thermodynamics a critical point specifies the conditions, temperature and pressure, at which

a phase boundary, e.g., between liquid and gas, ceases to exist). The time to reach equilib-

rium becomes very high at critical points, a phenomena called critical slowing. Wolpert and

Macready [117] argue that self-similarity can be used to quantify complexity; the patterns

exhibited by complex systems at different scales are very different, while the patterns exhib-

ited by simple systems such as gases and crystals do not vary significantly from one scale to

another.

The two most important concepts for understanding complex systems are emergence

and self-organization. Emergence lacks a clear and widely accepted definition, it is gen-

erally understood as a property of a system that is not predictable from the properties of

individual system components. There is a continuum of emergence spanning multiple scales

of organization. Halley and Winkler argue that simple emergence occurs in systems at, or
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near thermodynamic equilibrium while complex emergence occurs only in non-linear systems

driven far from equilibrium by the input of matter or energy [44].

1.4 Self-organization

The term “self-organization” is used in the literature in several contexts; Minsky [83] has

distinguished the informal from the technical use of the term “self-organization,” while Gell-

Mann [40] has questioned the usefulness of the technical use of it without precisely defining

concepts such as levels of organizations, global and local information, and patterns of be-

havior [29]. Though the concept of self-organization is difficult to define [81] its intuitive

meaning is reflected by the observation of Alan Turing that “global order can arise from

local interactions” [108]. In his seminal paper on morphogensis Turing suggests that a mech-

anism based upon slow diffusion of an activator and fast diffusion of an inhibitor can lead

to formation of stable stationary non-equilibrium patterns through the diffusion of some

key compounds. There is no straightforward path from this idea to the design principles

for self-organizing computing and communication systems. Known techniques for solving

optimization problems such as genetic algorithms or simulated annealing cannot be applied

directly to self-organization when we wish to reach stable stationary non-equilibrium pat-

terns.

Inspired by biological systems, self-organization was proposed for networking [81] and

even for economical systems [62]. Self-organization of biological systems is defined as “a

process in which patterns at the global level of a system emerge solely from numerous in-

teractions among the lower-level components of the system. Moreover, the rules specifying

interactions among the systems’s components are executed only with local information, with-

out reference to global patterns” [24]. In this dissertation we adopt the view that a system

is self-organizing if its components interact to dynamically achieve a global function or be-

havior. Self-organizing systems have higher level properties that cannot be observed at the
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level of the individual components and that can be seen as a product of their interactions,

they are more than the sum of their parts.

Self-organization is used by different flavors of neural networks including Hopfield net-

works [47], or the networks proposed in [81]. The “swarm” algorithms [20], e.g., the Ant

Colony Routing, mimic self-organization of social insects. Self-organization schemes have

been proposed for ad-hoc [110] and sensor networks [29, 75]. The current literature on self-

organization provides theoretical insights, but few clues on how to apply the basic principles

for systems design [42, 46]. Indeed, this is a daunting task due to the wide spectrum of

potential applications with dissimilar physical constrains and objectives.

Several ad-hoc solutions for managing complexity have been proposed. The autonomic

computing initiative [28,45] is motivated partially by the fact that advances in scale and com-

plexity of modern systems outpace the ability to configure, maintain, and run these systems.

An autonomic system is composed of components expected to exhibit self-configurability,

self-healing, self-optimization, and self-protection. The components of an autonomic system

are required to be self-aware and contextually aware (knowledge of itself, its environment,

and the environment that it is executing in), open (to support the wide range of different

components that could be incorporated into the system), and anticipatory (to anticipate re-

sources needed). These desiderates, though consistent with the self-organization principles,

did not lead to the development of a coherent autonomic computing model.

Two other approaches to managing the complexity of modern computer and commu-

nication systems are based upon economic models and self-organization. Economic mod-

els and financial markets offer an alternative perspective on the management of complex

systems. The on-going effort to apply concepts from financial markets to large-scale dis-

tributed computing, and to grid computing in particular, has generated a number of research

ideas [6, 77,98,102]. However, financial markets concepts have not been applied in practice,

though it is agreed that computing and communication resources such as CPU cycles and

communication bandwidth are perishable commodities that can be traded.
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Table 1.1: Self-organization and complexity
Simple systems lacking self-organization Complex systems exhibiting self-organization
Mostly linear Non-linear
Close to equilibrium Far from equilibrium
Tractable at component level Intractable at component level
One or few scales of organization Many scales of organization
Similar patterns at different scales Very different patterns at different scales
Do not require a long history Require a long history
Simple emergence Complex emergence
Limited scalability Scale-free

A market-oriented approach to resource management seems antithetic to self-organization;

the former is a product of the human mind and reflects societal and economic views, while

the latter is inspired by nature and attempts to mirror the behavior of biological systems.

Markets assume global knowledge and, occasionally, the intervention of a controlling author-

ity, such as the Federal Reserve Board or the European Central Bank, while the entities of a

self-organizing system act primarily based on local information. Moreover, agents operating

in a market environment react to the market, while the entities of a self-organizing system

act on their own initiative. In the case of the markets, a self-stabilizing mechanism does

not exist, thus, the need for the controlling authority mentioned above; in self-organizing

systems the information spreads relatively slowly thus, the danger of catastrophic events

caused by panic is limited.

Our limited understanding of system complexity and the highly abstract concepts devel-

oped in the context of natural sciences do not lend themselves to design principles for modern

computing and communication systems. Nevertheless, the generic attributes of complex sys-

tems exhibiting self-organization, summarized in Table 1.4, allow us to identify some of the

specific factors affecting the complexity of these systems [1]:

• The physical nature and the physical properties of computing and communication

systems must be well understood and the system design must obey the laws of physics.
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• The behavior of the systems is controlled by phenomena that occur at multiple scales/levels.

As levels form or disintegrate, phase transitions and/or chaotic phenomena may occur.

• The systems have no predefined bottom level; it is never known when a lower level

phenomena will affect how the system works.

• Abstractions of the system useful for a particular aspect of the design may have un-

wanted consequences at another layer.

• The systems are entangled with their environment. A system depends upon its envi-

ronment for its persistence, therefore it is far from equilibrium. The environment is

man made and the selection required by the evolution can either result in innovation,

generate unintended consequences, or both.

• The systems are expected to function simultaneously individually and as groups of

systems (systems of systems).

• Typically, computing and communication systems are both deployed and under devel-

opment at the same time.

The question “where can the boundary between abstract and practical knowledge about

complex systems be drawn?” led us to the development of the generic model introduced

in [77] and expanded in the next sections where we introduce a generic model by applying

concepts from natural sciences for self-organization.

1.5 Self-organization, Large-scale Distributed Systems and the Pleiades

We develop a self-organization model for resource management in large-scale distributed

systems consisting of a very large number of sites with excess computing capacity. Based

on the current trends in microprocessor, memory, and disk technology it seems reasonable

to expect that the personal computer of the future will be a multi-core system with tens,
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if not hundreds, of cores, Gbytes of cache, tens of Gbytes of main memory and hundreds

of Gbytes, if not Terabytes, of secondary storage. If a secure and reliable infrastructure

supporting resource virtualization is in place then one could expect that the owners of such

systems will be motivated to trade their excess computing capacity for a variety of incentives

such as monetary rewards, service credits, and software maintenance contracts.

Pleiades 1 is a proposed service-oriented architecture based on resource virtualization [76].

This architecture supports an infrastructure enabling resource-starved service providers to

gather and use computing resources from a very large number of systems connected to the

Internet via high-speed links. The resource providers could also be clients and users of

services.

The actual realization of such an architecture requires a paradigm shift in resource man-

agement and system security. In [76] we propose a hierarchy of virtual machines (VMs) to

run on each system involved. The top VM supports negotiations with the outside world and

enforces a strict division of the system into a host and a guest partition; a partition consists

of cores, disk space, network bandwidth, and other resources and it is isolated from the

other. Once negotiated, such a division is enforced until the contract to provide resources to

the outside world is fulfilled; breaking a contract incurs severe penalties. To be efficient, the

contracts should cover a reasonable time, minutes or tens of minutes. The second level VMs

manage the two partitions: one VM controls the host partition and supports multiple oper-

ating systems; the other VM controls the guest partition and allows services to be installed

at the request of service providers. Such a strategy guaranties a stable supply of resources

for service providers.

In this dissertation, we outline a self-organization model and apply it to study a Pleiades-

type system.

1The Pleiades (Messier object 45) are an open star cluster in the constellation of Taurus. The cluster
core radius is about eight light-years; the cluster contains over 1,000 statistically confirmed members and
the total mass contained in the cluster is estimated to be about 800 solar masses.
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1.6 Communication Scheduling in Self-organizing Very Large Sensor Networks (VLSNs)

A sensor network consists of spatially distributed autonomous devices equipped with a radio

transceiver or other wireless communication device, a micro-controller, a power source, and

sensors that monitor temperature, sound, vibration, pressure, motion, chemical pollutants,

radiation, or other physical characteristics of the environment. The application software

on the nodes of a sensor network typically uses a network stack communicating with a

middleware layer running on top of a real-time operating system.

We consider networks consisting of a very large number of tiny and inexpensive sensors.

The nodes of Very Large Sensor Networks (VLSN) have limited resources; to reduce the

power consumption the processor is less powerful and the amount of storage available is

smaller than those of traditional sensor networks. Moreover, the nodes are indistinguishable

from one another; they do not have a physical address, as required by the traditional com-

munication protocols and mimic biological systems where individual cells of the same type

are indistinguishable.

Deployment of such systems with a high density of sensors over a large geographic area

could be used to monitor the environment and study climate changes; the system could

produce a histogram used to calculate the moments of the distribution of one or more physical

or chemical properties of the environment monitored by the sensors. For example, when the

area to be monitored is 10 mile2, and the density is 4 sensors/10 ft2, the total number of

sensors is about 108.

Typical applications could be studies of the temperature of the polar cap, of the glaciers

in the Alps, of the sol humidity in a forest, or of the tremors in an earthquake prone region.

The sensors should be able to operate with their power reserves for a year or more. The

maintenance, as well as the operation of the network, must be inexpensive. The sensors are

dropped from an aircraft or planted by a specialized device and are stationary or experience
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very limited mobility; an unmanned aircraft flies over the area and collects the information

at pre-determined time intervals.

In this dissertation, we present communication scheduling for two self-organization algo-

rithms for the VLSNs: Scale-free Sensor Network (SFSN) and Small-worlds of Anonymous

Sensors (SWAS).

1.6.1 Scale-free Sensor Networks (SFSN)

An important attribute for self-organizing systems is scalability, the ability of the system

to grow without affecting its global function(s). Complex systems encountered in nature,

or man-made, exhibit an intriguing property, they enjoy a scale-free organization [8, 9]. We

believe that this property reflects one of the few attributes of self-organization that can

be precisely quantified. The scale-free organization can be best explained in terms of the

network model of the system, a random graph with vertices representing the entities and the

links representing the relationships among them. In a scale-free organization the probability

P (m) that a vertex interacts with m other vertices decays as a power law, P (m) ≈ m−γ,

with γ a constant, regardless of the type and function of the system, the identity of its

constituents, and the relationships between them.

Empirical data available for power grids, the Web, social networks, or the citation of

scientific papers, confirm this trend; the systems discussed in [8, 9] are complex and based

upon accumulated knowledge of past behavior. An interesting question is if scale-free, self-

organizing primitive systems like sensors which have limited resources and cannot store

historical information, receive, process, or transmit large volumes of data, exhibit notable

advantages over more traditional organizations of sensor networks.

The SFSN algorithm is based upon the idea that a sensor should only maintain informa-

tion about a very small number of sensors in its proximity and about a small number of events

when it is expected to wake up and transmit or receive data. The algorithm shares some
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ideas with the Self-organizing Medium Access Control for Sensor Networks (SMACS) [99].

SFSN and SMACS first determine the radio connectivity in the network and then assign

collision-free channels to the links; both assume limited mobility. Unlike the Link Cluster-

ing Algorithm in [7] which performs two passes, the first carried over the entire network to

discover neighbors and the second to assign channels to links between two neighbors, SFSN

and SMACS assign immediately a channel to a link. Other similarities: both assume that

nodes are able to turn their radio on and off; the nodes are able to tune the carrier frequency

to different bands and the number of available bands is quite large; the nodes form a flat

topology rather than clusters.

The major differences between SFSN, the algorithms we propose, and SMACS [99] are:

(i) The nodes of a SFSN network are anonymous, they do not have either a physical or a

logical address;

(ii) A node of a SFSN network communicates using multiple unidirectional channels;

(iii) For SFSN the reorganization of the network occurs periodically, while for SMACS there

is only one setup phase followed by a steady-state operation mode;

(iv) The virtual channels assigned during the self-organization phase in SFSN network are

implicit and related only to the index of the communication event, the nodes do not exchange

a schedule for communication. In SMACS networks the assignation of the channels is explicit,

the carrier frequencies are chosen once and for all and two nodes exchange the schedule of

transmissions for the entire duration of the steady-state operation;

(v) Multiple nodes may choose to respond to an invitation to transmit during the self-

organization phase in SFSN and collisions are likely; though collisions may occur during the

assignation of the channel in SMACS, these are rare events;

(vi) For SFSN the self-organization phase proceeds strictly sequentially, thus, the setup phase

may take longer; an extension of the basic algorithm allows concurrent setup. The network
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setup can be done in parallel in SMACS, multiple nodes may initiate the assignment of the

channel at the same time.

1.6.2 Small-worlds of Anonymous Sensors (SWAS)

The small-world phenomenon known also as “six degrees of separation” reflects the fact that

we are all linked by short chains of acquaintances. The question we addressed is if this

principle could be applied to create sensor networks with several properties: (i) they are not

in danger to be disconnected when sensors fail; (ii) they have a relatively short average path

length; (iii) they minimize the power consumption to communicate, in other words establish

collision-free communication channels as well as a schedule that minimizes the time when

each has to wake up and transmit or receive; (iv) each sensor maintains a very limited amount

of information.

Traditionally, the connection topology of a network was assumed to be either completely

regular, or completely random. Regular graphs are highly clustered and have large charac-

teristic path length, while random graphs exhibit low clustering and have small characteristic

path length. The characteristic path length, L, is the number of edges in the shortest path

between two vertices averaged over all pairs of vertices. The clustering coefficient C is defined

as follows: if vertex a has ma neighbors, then a fully connected network of its neighbors could

have at most Ea = ma(ma − 1)/2 edges. Call Ca the fraction of Ea of edges that actually

exist; C is the average of Ca over all vertices. Clearly, C measures the degree of clusterings

of the network.

In 1998, D. Watts and S. H. Strogatz studied the graphs combining the two desirable

features, high clustering and small path length, and introduced the Watts-Strogatz graphs

[113]. They proposed the following procedure to interpolate between regular and random

graphs: starting from a ring lattice with n vertices and m edges per node rewire each edge

at random with probability 0 ≤ p ≤ 1; when p = 0 the graph is regular and when p = 1
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the graph is random. When 0 < p < 1 the structural properties of the graph are quantified

by: (i) the characteristic path length, L(p), and (ii) the clustering coefficient, C(p). If the

condition n >> m >> ln(n) >> 1 is satisfied then p → 0 leads to Lregular ≈ n/2m >> 1

and Cregular ≈ 3/4, while p → 1 leads to Lrandom ≈ ln(n)/ ln(m) and Crandom ≈ m/n << 1.

The small-worlds networks have many vertices with sparse connections, but are not in

danger of getting disconnected; moreover, there is a broad range of the probability p such

that L(p) ≈ Lrandom and, at the same time C(p) >> Crandom. The significant drop of L(p)

is caused by the introduction of a few shortcuts which connect vertices that otherwise would

be much further apart. For small p, the addition of a shortcut has a highly nonlinear effect;

it affects not only the distance between the pair of vertices it connects, but also the distance

between their neighbors. If the shortcut replaces an edge in a clustered neighborhood, C(p)

remains practically unchanged, as it is a linear function of m.

Self-organizing small-worlds networks pose a fair number of challenges. It is non-trivial

to apply Watts-Strogatz ideas to construct a regular graph, e.g., a ring, and then to create

shortcuts among distant nodes in the logical network. The problems are even more difficult,

when the nodes are indistinguishable and have a limited ability to store state information.

The SWAS algorithm ensures scalability, as the number of nodes each sensor communicates

with and the amount of state information each node has to maintain are strictly limited,

regardless of the total number of sensors in the network. This scheme limits the amount of

communication and the complexity of coordination.

1.7 Contributions

The work we report is tied to our effort to build an intelligent resource management environ-

ment for the complex systems scaled from large-scale distributed systems to the very-large

sensor networks. The contribution of our work includes:
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• A set of optimal divisible load scheduling algorithms for data-intensive applications in a

heterogeneous large-scale distributed environment that exploit parallel communication,

consider realistic scenarios regarding the time when target systems are available, and

generate optimal schedules; the simulation shows the model presented outperforms the

corresponding models with one-port communication;

• A self-organization model based on biological and Physics metaphors for resource

management in large-scale distributed computing environment; the algorithm for self-

organization is introduced with the simulation that shows that the presented model

efficiently reduces the resource consumption and increases the quality of service.

• An algorithm for self-organization of anonymous sensor nodes called SFSN (Scale-

free Sensor Networks) and an algorithm utilizing the Small-worlds principle called

SWAS (Small-worlds of Anonymous Sensors). The self-organization scheme we propose

ensures scalability, the number of sensors each sensor communicates with and the

amount of state information each node has to maintain are strictly limited regardless

of the total number of sensors in the network; a node in the random graph showing the

system’s connectivity is linked with at most a pre-determined number of nodes, thus

the system is scale-free. The application of Small-worlds principle further combines

two desirable features of networks namely high clustering and small path length. These

schemes limit the amount of communication and the complexity of coordination.
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CHAPTER 2: DIVISIBLE LOAD SCHEDULING
ALGORITHMS BASED ON THE MULTI-PORT

COMMUNICATION MODEL

In this section, we introduce the divisible load scheduling model, present the optimal divisible

load scheduling algorithms, report performance evaluation results, and outline the design of

a divisible load scheduling meta-scheduler.

2.1 Divisible Load Scheduling

Scheduling policies for heterogeneous and autonomous systems [37] consider the service avail-

ability, computation power, network characteristics, and the workload of individual systems.

Scheduling decisions are made locally and not under the control of a single authority. Space

sharing of a single cluster ensures that all nodes available start processing at the same time

but this is no longer true in a Grid environment where individual systems become available at

different times. Thus, the classic data partitioning and scheduling algorithms for the SPMD

model [32, 89, 114] in the dedicated parallel environment as well as the co-scheduling algo-

rithms [5,48,56] for the heterogeneous computing platform cannot be efficiently exploited as

the preemptive condition that the resources are simultaneously allocated to all the various

parallelized processes is difficult to achieve. In addition, the remote input data needs to be

fetched to the Grid resource before the computation starts, a process called data staging.

The relatively low speed network bandwidth and high latencies may lead to substantial per-

formance degradation in a Grid environment and impose notable penalties [79]. Hence, the

scheduling algorithms that only take into account the computation power of the resources

and ignore the network transfer costs are unlikely to be efficient. Many works such as [10,82]

incorporate the data transfer cost into the scheduling process with the assumption that the

expected data transfer cost (communication cost) is known or can be estimated beforehand.

On the contrary, our work is more sophisticated as we have no knowledge of the expected
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data transfer cost to be provided to the scheduling algorithm as input. It becomes clear only

after the schedule is generated and the data partitions are computed.

The study of the Divisible Load Theory (DLT) was initiated in 1996 [13] and a comprehen-

sive summary of the research prior to 2003 can be found in [14]. DLT is a linear mathematical

model and provides a practical framework for the mapping of the independent task instances

onto heterogeneous computing platforms. Applications of image processing [63], biological

computing [54, 65], multimedia applications [3], or database record searching [15] can be

approached as divisible load. Initially one-round algorithms that allocate exactly one block

of data to each system were studied for several network topologies: linear [26], star) [12],

multi-level tree [27], bus [11], hypercube [16] and mesh [17]. Multiple-round algorithms were

introduced in [125]; in this case a pipelined execution was carried out; a fraction of the load

assigned was processed while receiving the next.

Minimization of the makespan of an application with multiple independent tasks on

heterogenous environments is discussed in the literature [10, 22, 67, 96, 106]. For example,

in [22], the authors compare eleven static heuristics for mapping a class of independent

tasks onto heterogeneous distributed computing systems while in this dissertation we discuss

a single data intensive computation rather than trying to optimizing the performance of

multiple tasks. Although the problems seem similar, there are subtle differences making it

impossible to apply the heuristics of [22] to our problem. First, we have no a priori knowledge

of the expected execution time (computation and communication cost) for each task instance;

in our case the partitioning of the data across heterogeneous systems and the scheduling are

intimately correlated. The execution time is directly related to the workload allocated to

each task instance which needs to be computed by the scheduling algorithm. The scheduling

algorithm for the DLS problem not only generates the optimal schedule but also calculates

the data assigned to each task instance. The number of task instances can either be statically

(e.g., required by application) or dynamically produced by the DLS scheduling algorithm.
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Several papers discuss the application of the DLT to Grid computing [60,84,92,109,120,

132, 133]. The DLT strategies for the star-shaped and tree-shaped topologies are studied

in [12]. In the one-port model the coordinator site cannot distribute the workload to execu-

tion engines in parallel, it can only communicate with a single execution engine at a time.

Both the one-round and multi-round algorithms are discussed together with the analysis of

optimality of the solution. Despite the similarity of the platform and application model,

there are a number of important differences between previously reported work e.g., [12],

and the work reported in this dissertation. First, we assume a multi-port communications

model which enables the coordinator to distribute the load to execution engines in parallel.

For reasons of performance and data security, data-intensive tasks store the data at “data

centers” with massive communication bandwidth and low communication latencies. New

network technologies substantially reduce the overhead of parallel data transfer and we ex-

pect that multi-port communications will become increasingly more popular. Second, we

introduce a new data staging strategy different from one-round and multi-round strategies;

we assume the data staging can begin after the schedule is generated and terminate before

the scheduled computation start up time on an execution engine. It has been proved that all

execution engines should finish computing at the same time to achieve the optimal solution

for one-round and multi-round strategies [12,121], but we will show this is not always true for

the data staging strategy we just defined. Last but not least, resource selection is included

in the DLS algorithms. In contrast to the linear case where all available execution engines

participate we select a subset of resources from the resource pool for parallel execution.

2.2 Basic Concepts

A process group G = {P1, P2, . . . , Pn} is a set of n processes running concurrently on a set of

cores of a multi-core system, on the nodes of a cluster, or on several systems interconnected

by a high-speed network. Scheduling a process group in the context of this dissertation means
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the ability to first select a subset of target systems from a pool of potential candidates, subject

to the constraints regarding the resources available on each system (including the existence

of binaries for a specific application) and the time when they are available, compute an

optimal load distribution, and finally start the computation on each system. The first aspect

of scheduling is known as mapping ; the second is load balancing. Starting the computations

requires interactions with the host operating system and involves some form of pre- and

post-processing including data staging which is the process of transfering the workload to a

site prior to the start of the computation.

As multi-core systems become ubiquitous, more and more applications require a large

amount of computing cycles and it makes sense to consider multiple process groups, one per

multi-core system, running concurrently. Concurrent execution on multiple systems requires

some form of coordination [18]. The coordination algorithm is executed by a workflow

enactment engine [68] that supervises not only the execution of the computation, but also

the pre- and post-processing activities including data staging and exception handling, e.g.,

the failure of one or more target systems. In the general case the systems we target for

execution are autonomous, they belong to different administrative domains, and scheduling

requires an agreement among them.

Several factors contribute to making the effective scheduling and coordination strategies

a hard problem:

• Heterogeneity of the target systems. The parallel machines that comprise the dis-

tributed system may differ in the number of nodes, main memory and cache per node,

secondary storage, communication bandwidth, etc.

• Autonomy of the individual systems usually located in different administrative do-

mains. Scheduling decisions are made locally and not under the control of a single

authority. Indeed, space sharing of a single cluster ensures that all nodes available for
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a given computation start processing at the same time, while this is no longer true for

multiple clusters that may become available at different times.

• High data staging costs among systems. Data staging for massive amounts of data

requires substantial communication bandwidth and takes a considerable amount of

time.

• Reliability considerations. We have to maintain a considerable amount of state infor-

mation to be able to recover from possible faults.

• The need to coordinate execution among several systems. The larger the number of

systems involved, the larger the overhead for coordination and the probability of failure.

Co-scheduling is a technique to schedule all processes in a process group for execution at

the same time; when a process in the group blocks while communicating with another process

in the group, the local scheduler leaves its state loaded on the processor for a short time,

under the assumption that it will receive a response shortly [5]. Co-scheduling of process

groups had been investigated since early 1990’s when networks of workstations were used

for parallel computing [5, 48]. The objective of co-scheduling is to finish the computation

at the earliest time. Thus, the local schedulers of the autonomous systems must reach an

agreement regarding the earliest time when all systems we target are available.

The divisible load scheduling strategy we introduce in this dissertation can be com-

bined with co-scheduling techniques and thus leads to a different communication pattern.

We consider a class of applications that share the following characteristics: the compu-

tations consist of two phase; the first phase does not require individual process groups

to communicate with one another; the second one can only start after all process groups

involved in the first phase have finished. If the completion time for the first phase of in-

dividual process groups are {T1, T2, . . . , Tn}, respectively, then the second phase can only

start at T = max{T1, T2, . . . , Tn}. The divisible load strategy we introduce guarantees that
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T = T1 = T2 = . . . = Tn, thus it allows the second phase to start at the earliest possible

time and all process groups are able to communicate with one another. Thus, the data par-

titioning for this two phased execution model is done at two levels [128, 130, 131]; first, the

data partitions for the process groups are computed by divisible load scheduling algorithms

and are distributed to a collection of parallel systems with different resources and available

times; then, when the Phase 1 finishes, the load is partitioned again among processes within

one process group based on the local scheduling strategy on each system.

Figure 2.1 illustrates graphically the timing constrains of the execution model combining

the divisible load scheduling and co-scheduling and of the traditional co-scheduling models;

in the first case, process groups start Phase 1 at different times but finish it at the same

time, thus are able to start Phase 2 at the same time. In case of traditional co-scheduling

all process groups must start Phase 1 at the same time.

Any co-scheduling algorithm satisfies the condition that all parallel processes or process

groups terminate computation at the same time, but will not guarantee optimality, the

earliest possible completion time. The need to use multiple multi-core systems is predicated

upon the fact that such applications require massive amounts of CPU cycles; moreover,

many applications are data-intensive and using a limited number of cores on each system

may alleviate the I/O bottleneck problem. While the local scheduler of a multi-core system

may be able to guarantee that all processes of the process group Gi can start at the same time,

there is no guarantee that two process groups Gi and Gj running on two different systems will

be able to start at the same time. This may exclude some potential target systems even if

they have the superior computation power, the system E in figure 2.1 for example, and will

delay the computation startup time for the Phase 1. Indeed, if the n systems selected by the

co-scheduling algorithm from a pool of N systems lead to a completion time T for the first

phase, than any one of the remaining N − n systems available at a time before T could be

added to the set of previously selected systems and thus, the first phase of the computation

could finish at a time earlier than T .
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Figure 2.1: (a) Divisible load scheduling combined with co-scheduling. The solid bars show
the intervals when the five systems labeled A, B, C, D and E are available starting at times
σA, σB, σC , σD and σE, respectively. The lower blocks correspond to phase 1 when processing
starts as soon as a system becomes available, the upper blocks correspond to phase 2; all
systems finish phase 1 at the same time, Teph1, start phase 2 at the same time, and finish
phase 2 at the same time, Tend. (b) Co-scheduling. All processes start phase 1 at the same
time, σB = max (σA, σB, σC , σD); all finish phase 1 at the same time, Teph1 and phase 2
at Tend; E is not chosen because it would delay the start-up time of phase 1 and it is not
available for the entire duration of the execution of phase 2.

An important class of scientific applications that fit this coordination pattern is the Monte

Carlo (MC) simulation used in nanoscience, physics, chemistry, and many other areas of com-

putational sciences. For example, virtually all simulators of fault-tolerant quantum circuits

use MC simulation and the error threshold for a particular set of quantum gates and error

correcting codes is given by the ratio of the number of runs when the system “crashed” to

the total number of runs. In this case, the first phase is the actual MC simulation and the

second phase covers the reliability analysis. There are other computational science appli-

cations in the same class. Our interest in the divisible load co-scheduling was motivated
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by a real-life application for virus structure determination [54] which uses a parallel algo-

rithm for origin and orientation refinement for the first phase of an iteration and then a

3D-reconstruction algorithm for the second phase. To reconstruct a 3D electron density map

of a virus, we use a number of 2D projections from micrographs obtained experimentally

with a cryo transmission electron microscope. The computing time required to improve the

resolution of a medium-sized virus such as the Mammalian Reovirus (MRV), from about 7.6

Å to better than 7.0 Å on 42 processing nodes of one cluster, is about 14 hours/iteration.

The refinement process requires about 100 iterations, thus the total time is about 1, 400

hours, or nearly 60 days. Such sobering statistics show the benefit of using concurrently

multiple parallel systems.

2.3 Problem Formulation

In this section we discuss the characterization of resources, the model of the system, and

data staging strategies.

2.3.1 Characterization of Resources

We discuss four elements used in our quantitative analysis of the system: the execution rate,

the duty cycle, the available time, and the data transfer rate.

2.3.1.1 Execution Rate

Different measurements of the bandwidth of a computing engine have been defined in the

literature. For example, in [10], the MFLOP (mega floating-point operations per second)

is used to quantify the task’s computation requirement and the resource’s computational

capability. Another commonly used measurement is MIPS (million instructions per second),

which indicates integer operation performance.
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Each of these measurements focus on one aspect of the computation power, but we argue

that the computational capability should be a synergistic measure of the computation power

that reflects a wide range of computational resource attributes, such as the system architec-

ture, the CPU clock rate, the memory access time, the amount and speed of memory cache,

and the I/O latency and bandwidth. The comprehensive consideration of these attributes is

significant for a reasonable estimate of the computational capability of a resource on a given

data intensive task which may involve intensive I/O operations or memory accesses leading

to substantial performance degradation.

Assuming the input data is available at the computation resource where the execution

engine resides, the execution of a data-intensive task involving the large-scale input data

exhibits the behavior that the data processing time dominates the total computation time

which includes the program start up, data processing and program termination cost. As

a result, it is a reasonable approximation to represent the computational capability by the

amount of input data processed per unit of time.

In this thesis we measure the size of input data set, denoted by ω, for a data intensive

task by data unit (dtu), which reflects the logical organization of the data for the task. For

example, for the virus origin and orientation refinement application [54], a dtu consists of a

number of virus projections extracted from a micrograph. We define the execution rate µi of

a task on resource i as the amount of input data, locally available on resource i, processed

in one unit of time when resource i is fully loaded with this task.

It is challenging to practically measure or predict the execution rate of a data-intensive

computation on a resource. One approach to estimate the execution rate is to run the code

with sample input on the target resource. With less accuracy, the static estimation can

also be made by comparing the resource attributes of a new resource to the others with

known execution rate. The resource attributes may show different weights when making

the comparison, accounting for the characteristics of the task. In addition, although we use

the abstract concept, the data unit, to measure the problem size, the scheduling algorithms
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presented in the following section work on the other measurements as well, MFLOP/MIPS

for instance.

2.3.1.2 Duty Cycle

A computing engine can be time-shared or space-shared depending on the machine architec-

ture or operating system. Time-sharing refers to multitasking, while a multiprocessor system

can be space-shared by allocating processors to multiple tasks running concurrently. The

resource sharing strategy is controlled by the local scheduler or vendor supplied operating

system. Determining the practical execution rate of a task on a resource requires a prediction

of the computation power allocation either implicit or explicit.

We do not differentiate between two resource sharing models above and define the duty

cycle ηi as the fraction of the computation power available for the given task on the resource

i. With the execution rate µi and the duty cycle ηi, the practical execution rate of the task

on resource i will be: µiηi.

The sharing of the computation power reflects the resource allocation on a wide rage of

resource attributes: the CPU clock rate, the I/O bandwidth, the memory access bandwidth

and so on, which makes it complicated to measure and predict. Although the accurate

measurement can be done by running the test process, a reasonable approximation to the duty

cycle in most cases is the CPU availability. For the time-sharing system, CPU availability

is defined to quantify the fraction of the CPU that can be exploited by a given task [23,97].

In [118], the authors discussed a model to predict the CPU availability on the time-shared

Unix systems. In the case of space-sharing system, the CPU availability is the fraction of

CPUs that will be allocated to the given task, a decision made by the local scheduler or

vendor supplied operating system.
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2.3.1.3 Available Time

The local scheduler on a resource maintains the job queues and the time when a job is sched-

uled to start the execution can be estimated. The estimation is explicit with the knowledge

of jobs’ submission description files, the resource allocation strategy, local scheduling strat-

egy, and historical task execution statistics. This estimated computation start up time on

resource i for a given task is called the available time of resource i for this task, denoted as

σi.

There is a notable difference between the available time and the time when all jobs in the

job queue complete execution when the resource is time-shared or space-shared. Multiple

jobs run in parallel by multitasking or processors allocation making the resource available

time for a new task much earlier than the time when all jobs in queue finish in many

cases. The estimation is made by the local scheduler on the resource when receiving the

task execution request from the task coordinator. The capability to estimate the available

time of a resource allows us to reserve the resource predictably and achieve the improved

makespan, since the resource with longer available time can be superior to the resource with

immediate availability if the former shows much better computational capability.

2.3.1.4 Data Transfer Rate

data-intensive tasks require data to be replicated to geographically distributed resources seg-

mentally or entirely. If data does not exist at the site where the task instance is supposed to

be executed, the data need to be fetched from the data repository. This data staging pro-

cess over the network connection will degrade the overall performance of the task execution

and the cost on data staging contributes to the task makespan substantially if it cannot be

eliminated or hidden from the makespan [79].

Several parameters such as bandwidth, latencies, packet loss, jitter and anomalies of

network links affect data staging cost. The fourth performance evaluator, the Data Transfer
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Rate Ri, characterizes the sustained data transfer rate between the resource i and the data

repository for a given task. The data transfer rate is the comprehensive measurement on the

network link performance involving all parameters mentioned above.

Several theoretical models predicting the bandwidth of a sustained TCP connection have

been presented in the literature. In [80] the authors introduce a formula to derive the

maximum TCP throughput subjected to light to moderate packet losses for TCP Con-

gestion Avoidance algorithm [53, 101]. The end-to-end TCP/IP performance (bandwidth

and latency) can also be returned by tools like Network Weather Service (NWS) [119] and

iperf [52].

2.3.2 Application Model and Target Systems

We consider a data-intensive task C that consists of m independent duplicates, called m task

instances (or process groups), all of which execute logically equivalent programs on different

computing resources but each on a different input data segment: C = {G1,G2, . . .Gm}. We

assume that we have n ≥ m heterogeneous computing resources that form the target systems

set S = {S1,S2 . . .Sn} which are able to execute the task C. These resources can be owned

by different persons, organizations, or institutions and thus are in different administrative

domains but we assume that all of them can report the performance evaluators to the task

coordinator.

A subset of target systems, forming the restricted target set Q(π) such that |Q(π)| = m,

will be selected by the scheduling algorithm from S to run the task. The task coordinator

along with the m restricted target systems form the single level tree (star) topology as

shown in Figure 2.2. There is a communication link from the task coordinator (the root of

the tree) to each of the restricted target systems (the leafs of the tree), and the coordinator

is able to dispatch the data in the data repository to the restricted target systems in parallel,

resulting in a multi-ports communication model. Without loss of generality, we assume that
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the coordinator has no data processing capability, thus all the workload will be processed by

the m task instances mapping one to one onto the m restricted target systems. We name

this scheduling model as Divisible Load Scheduling (DLS).

Figure 2.2: Single-level tree connection between task coordinator and m restricted target
systems. The m restricted target system used for task parallel execution are selected from
the target systems set.

Given the restricted target set Q(π) with |Q(π)| = m, an allocation ν of process groups

Gi ∈ C to systems Sj ∈ Q(π) is an one-to-one mapping ν : Gi 7→ Sj. Given an allocation ν, the

data partitioning for ν is to compute a decomposition δ of the input data set into segments

of size ω1, ω2, . . . ωm such that ω =
∑m

i=1 ωi based on the objective function in such a way

that process group Gi works on data segment ωi. The pair π = (ν, δ) describing both the

allocation of process groups to target systems and the data partitioning is called a mapping

of C to Q(π).

For the sake of simplicity, we set to 0 the time when the task coordinator broadcasts the

task execution request to the resources. In addition, we ignore the time spent on generating

the schedule. This approximation is reasonable as the time spent on schedule generation can

be ignored when comparing to the task execution time.

We define the makespan of a task execution as the elapsed time from the moment when

the task execution request is sent out by coordinator to the resources to the moment when

the task execution finishes, and denote it as τ (π). Given a mapping π, the individual process
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group completion time on the restricted target system Si in Q(π) is denoted as T
(π)
i . The

objective function is defined as the makespan of task C under mapping π, denoted as:

τ (π) = max(T
(π)
1 , T

(π)
2 , . . . T (π)

m ). (Eq. 2.1)

The DLS problem is to determine the optimal mapping such that the makespan τ (π) of

the task C is minimized:

min
π

[τ (π)]. (Eq. 2.2)

If there are no restrictions regarding the maximum number of task instances/process

groups, we can utilize as many target systems as we can in order to achieve the optimal

makespan. The number of task instances/process groups becomes part of the output of the

scheduling algorithm in this case. We call this scenario as FlexMap. In practice, we expect

to be limited by factors such as the cost to access a resource, or some characteristics of the

task that force us to use a definite number of target systems. The FixMap scenario addresses

this problem and the given size of the process groups becomes the input of the scheduling

algorithm instead.

2.3.3 Data Staging Strategies

Data staging affects the makespan of a task involving a large-scale input data set if it

cannot be eliminated or hidden on the platform with low-speed and high-latency network

connection. For systems utilizing the intelligent and adaptive resource management, it is

not wise to replicate the entire input data set on each of the target systems in order to

eliminate the data staging cost. The DLS meta-scheduler running on the coordinator will

select a subset of target systems for the task execution after running the DLS algorithm and

thus the approach of spreading the input data set to all target systems in advance may lead
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to substantial storage resource waste and higher coordination overhead. Some suggest to

schedule the data staging during the idle time [59, 43]; however, the available time and the

data transfer rate are different for each system and this strategy requires special features of

the execution engine on the resource that may, or may not, be available.

In this dissertation it is assumed that the data staging will not start until the coordinator

finalizes the schedule/mapping, or in other words, before the coordinator receives acknowl-

edgements of the resource reservation made from the peer systems in the restricted target

set. Once a restricted target system has been selected, data staging can be initiated before

its available time, after the available time, or after the available time but pipelining with the

data processing, which leads to the different data staging strategies:

• Data Staging Before Available Time (DSBAT)

As soon as the schedule/mapping is finalized by the coordinator, the data staging

begins on the restricted target system. The data staging terminates on or before the

available time and the computation starts immediately at the available time.

• Data Staging After Available Time (DSAAT)

The data staging begins at the available time of the restricted target system. When

data staging finishes, the computation begins immediately. This strategy corresponds

to the one-round model in [12].

• Pipelined Data Staging (PDS)

PDS model is an improved version of DSAAT model by overlapping the data staging

with computing. The data staging is carried out by a p stage pipeline such that most

of the data staging costs are hidden. This strategy corresponds to the multi-round

model in [12].

Figure 2.3 shows the behavior of three data staging strategies. Intuitively DSBAT strat-

egy can achieve the best makespan as it hides the data staging cost from the makespan
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completely. However, this is not always the case and both DSAAT and PDS strategies have

the opportunity to outperform the DSBAT strategy when the input data set size becomes

large and the number of process groups is limited to a small number. This is due to the

internal limitations on DSBAT strategy: (i) each restricted target system has the fixed data

staging period which may limit the data a system can process even if it comes with the

superior computational capability; (ii) the selection of the restricted target systems is also

influenced by the fact that all the input data must be completely dispatched to them be-

fore their available times, otherwise, there is no solution for the DSBAT strategy. DSAAT

strategy is the easiest scenario for implementation as it does not require the specific features

of the local scheduler. The PDS strategy harnesses the pipeline execution by overlapping

the data transfer and data processing under the condition that the data transfer rate Ri

is larger or equal to the practical execution rate µiηi for every restricted target system Si:

Ri >= µiηi, such that the computation starts at each consecutive phase without waiting

for the data. The DSAAT strategy is indeed a special case of the PDS strategy with the

number of pipeline stages equal to 1 but without the condition on the data transfer rate

and practical execution rate. We will further compare these three data staging strategies in

detail in section 2.5.

Given the mapping π for a data-intensive task, suppose system Si is selected as one

restricted target system with the available time σi, the execution rate µi, the duty cycle ηi

and the data transfer rate Ri. The data segment size assigned to Si is denoted by ω
(π)
i . Let

δi and γi denote the data staging cost and data processing cost, respectively.

Under DSBAT strategy, the process group completion time T
(π)
i will be:

T
(π)
i = σi + γi = σi +

ω
(π)
i

µiηi

(Eq. 2.3)

with the assumption that
ω

(π)
i

Ri
<= σi. This assumption guarantees that Si finishes the data

staging on or before its available time σi.
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Figure 2.3: Computation of the individual process group completion time computed based
on different data staging strategies on target system Si with the available time σi: (Left)
DSBAT Strategy - the data staging happens from the time when the mapping is generated to
the available time of the target system. The process group completion time is σi +γi with γi

the data processing time. (Middle) DSAAT Strategy - The data staging starts at time σi and
lasts δi seconds. The process group completion time is: σi + δi + γi. (Right) PDS Strategy
- The data staging occurs over p pipelined stages. The process group completion time is
σi + δi/p + γi. We let p = 8. Computation stages are labeled 1 − 8 and the corresponding
data staging are a− h.

Similarly, for the DSAAT strategy we have the process group completion time as:

T
(π)
i = σi + δi + γi = σi +

ω
(π)
i

Ri

+
ω

(π)
i

µiηi

. (Eq. 2.4)

When the pipeline is applied, the process group completion time for the PDS strategy

becomes:

T
(π)
i = σi + δi + γi = σi +

ω
(π)
i

pRi

+
ω

(π)
i

µiηi

(Eq. 2.5)

with p the number of pipeline stages.
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Table 2.1: Divisible load scheduling (DLS) algorithms. σi is the available time of the re-
stricted target system. DSBAT - data staging before available time; DSAAT - data staging
after available time; PDS- pipelined data staging. FLX - FlexMap, FIX - FixMap.

Data Staging (DS) No DS DS prior σi DS after σi Pipelined DS

FlexMap FLX-NODS FLX-DSBAT FLX-DSAAT FLX-PDS
FixMap FIX-NODS FIX-DSBAT FIX-DSAAT FIX-PDS

2.4 Optimal Divisible Load Scheduling Algorithms

The limitation on the number of process groups or the target systems that the task can utilize

combined with different data staging strategies leads to multiple families of algorithms. We

summarize the families of algorithms in Table 2.1.

The following input parameters are required for the DLS algorithms.

• Target systems set S with performance evaluators µi, ηi, σi, Ri for each target system

Si;

• Size of input data set ω;

• Size of restricted target set (FixMap scenario only) m;

• Number of pipeline stages (PDS model only) p.

The outputs of the DLS algorithms are:

• Task makespan τ (π);

• Restricted target system set S(π);

• Data segment size for each restricted target system ω
(π)
i .

The intended objective within the scheduling process is to optimize the makespan τ (π)

of the data-intensive task. All DLS algorithms we present in this dissertation return the

optimal schedule if the schedule exists under the given inputs. By optimal, we mean the

schedule with the shortest makespan.
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2.4.1 Divisible Load Scheduling Algorithms for DSBAT Data Staging Strategy

In this section, we discuss the Divisible Load Scheduling algorithms for the data staging

before the available time (DSBAT) strategy. In addition, the FLX-NODS algorithm appears

implicitly as a function in the description of the FLX-DSBAT algorithm and the FIX-NODS

algorithm is introduced through a comparison with the FIX-DSBAT algorithm.

Although the data staging happens after the schedule is generated by the coordinator

and before the available time on each target system, thus the data staging cost being hidden

from the task makespan completely, the DSBAT scenario is significantly different from the

case without data staging process for the following limitations: (i) the workload allocated to

each restricted target system must be no more than the amount of input data it can receive

during its data staging period; the maximal amount of data the restricted target system Si

can receive is calculated as Riσi; (ii) the sum of the workload received by all restricted target

systems needs to be equal to the input data set size, otherwise, there is no solution for the

DSBAT scenario.

2.4.1.1 FLX-DSBAT Algorithm

The FLX-DSBAT scenario does not limit the number of the process groups and the number

of target systems we can harness for task parallel execution. An iterative algorithm will be

discussed but we first present the necessary and sufficient conditions for the optimal solution.

Proposition 1. Let Q(π) be the restricted target set and τ (π) be the task makespan under

mapping π. The mapping π : C 7→ Q(π) is the optimal solution of FLX-DSBAT scenario if

and only if three conditions are satisfied:

(i) For each process group on the restricted target system in Q(π), it finishes data staging

on or before its available time:

σi ≥ ω
(π)
i

Ri

, ∀Si ∈ Q(π). (Eq. 2.6)
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(ii) The process group completion time on each restricted target system in Q(π) whose data

staging process can finish earlier than its available time is equal to τ (π):

T
(π)
i = τ (π) , ∀Si ∈ Q(π) where σi >

ω
(π)
i

Ri

. (Eq. 2.7)

(iii) Any system Sq not in Q(π) only becomes available after or at the task makespan under

mapping π:

τ (π) ≤ σq, ∀Sq /∈ Q(π). (Eq. 2.8)

Proof: We first show that the three conditions are necessary. Let π = (ν, δ) be the optimal

mapping for FLX-DSBAT scenario.

(i) Note that
ω

(π)
i

Ri
gives the time spent on the data staging. It is easy to see that Condition

1 holds based on the definition of FLX-DSBAT scenario.

(ii) Assume there exist two target systems Sx,Sy ∈ Q(π) such that:

σx >
ω

(π)
x

Rx

, σy >
ω

(π)
y

Ry

, and T (π)
x < T (π)

y .

Assume the process group completion time on target system Sz ∈ Q(π) is τ (π). Note that Sz

could be Sy or another target system, but in either case we have T
(π)
x < T

(π)
z = τ (π). If we

reassign a fraction of the workload from system Sz to Sx, we end up achieving a new data

partition scheme δ′ corresponding to a new mapping π′ = (ν, δ′) such that T
(π′)
x = T

(π′)
z <

τ (π).

This procedure can be repeated and eventually leads to a new task makespan τ (π′) with

τ (π′) < τ (π) which contradicts the fact that π is an optimal mapping.

(iii) Assume there exists Sx /∈ Q(π) such that σx < τ (π). Now we can construct a new

allocation ν ′ with Q(π′) = Q(π) ∪ {Sx}. A new data partitioning δ′ over Q(π′) will ensure a

shorter makespan because some workload will be distributed to the new system. Thus the
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new mapping π′ = (ν ′, δ′) leads to a shorter makespan τ (π′) < τ (π) which contradicts the fact

that π is an optimal mapping.

Next, we show that the three conditions are sufficient. Consider mapping π and assume

that we have τ (π) and Q(π).

(i) As the condition σi ≥ ω
(π)
i

Ri
, ∀Si ∈ Q(π) holds, all target systems in Q(π) will finish data

staging before or on their available times.

(ii) Assume all systems in Q(π) satisfying the condition σi >
ω

(π)
i

Ri
form another target systems

set S(t) and finish computing at the same time, say τ (π). Consider a new data partitioning δ′

among systems in S(t) and the corresponding mapping π′ = (ν, δ′) with the same restricted

target set. There will be at least one system, say Sx in S(t), such that τ (π) < T
(π′)
x ≤

τ (π′), which means that redistributing data among systems in S(t) cannot lead to a shorter

computation completion time. As the systems in Q(π) − S(t) cannot accept more data, the

data redistribution between systems in S(t) and systems in Q(π) − S(t) will also lead to a

longer makespan.

(iii) Consider the condition τ (π) ≤ σi, ∀Si /∈ Q(π). It implies no new target system can be

added into the the restricted target set Q(π) to improve the makespan τ (π). We conclude

that π must be the optimal solution and finish the proof.

Algorithm 1 shows the pseudo-code of the FLX-DSBAT algorithm.

The first step of the FLX-DSBAT algorithm is to verify if a solution exists by accumu-

lating the maximum data segment size that each target system in S can receive during its

data staging process and comparing the result, expressed as:

∑

∀Si∈S
Riσi, (Eq. 2.9)

with the input data set size ω. If it is less than ω, we are not able to process the whole input

data set even if all target systems in S are utilized and thus there will be no solution for the

given problem.
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Input: Target systems set S, task input data set size ω
Output: Task makespan τ (π), restricted target set Q(π), data segment size for each

restricted target system ω
(π)
i

if
∑

∀Si∈S Riσi ≥ ω then

Initialize S(π) ← ∅;
while 1 do

Generate the temporary restricted target set S(p) and temporary task
makespan τ (p) by running FLX-NODS algorithm on S and ω;
Set flag = false;
foreach Target system Si in temporary restricted target set S(p) do

Calculate the data segment size allocated to Si by FLX-NODS algorithm:
ωi=µiηi(τ

(p) − σi);
Calculate the maximum data segment size Si can get before its available
time: di=Riσi;
if ωi > di then

Remove Si from target systems set: S ← S − {Si};
Put Si into final restricted target set: S(π) ← S(π) ∪ {Si} ;
Reduce input data set size: ω = ω − di ;
Set flag = true;

end

end
if (flag == false) then

Set final restricted target set S(π) ← S(π) ∪ S(p);
Set task makespan τ (π) = τ (π);
Exit while loop;

end

end

foreach target system Si in S(π) do

Calculate data segment size allocated to Si: ω
(π)
i = min (Riσi, µiηi(τ

(π) − σi));
end

else
No solution;

end

Algorithm 1: Pseudo-code for the FLX-DSBAT algorithm.

Assume the solution exists. The FLX-DSBAT algorithm will generate the temporary

restricted target set S(p) and temporary task makespan τ (p) first by running the FLX-NODS

algorithm without considering the data staging. The Algorithm 2 shows the pseudo-code of

the FLX-NODS algorithm. The necessary and sufficient conditions for the optimal solution

of FLX-NODS scenario is similar to Proposition 1 except that there is no limitation on the
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size of the data segment each target system can get. The FLX-NODS algorithm iteratively

adds new target systems which are ordered by their available times into the restricted target

set and updates the task makespan accordingly until no more target systems can be involved

into the restricted target set such that the makespan could be further improved. One key

step of the FLX-NODS algorithm is to compute the task makespan after adding a new target

system into the restricted target set. As the sum of the size of data segments allocated to

restricted target systems should be equal to the task input data set size, we have the relation

to compute the task makespan τ (j) after the jth iteration of FLX-NODS algorithm:

ω =
∑

∀Si∈S(π)

µiηi(τ
(j) − σi), (Eq. 2.10)

with the task makespan τ (j) the only unknown.

Input: Target systems set S, task input data set size ω
Output: Task makespan τ (π), restricted target set S(π), data segment size for each

restricted target system ω
(π)
i

Sort target systems in S based on their available times, the earliest first;
S(π) ← ∅;
for i = 1 to SizeOf(S) do

Add system Si into S(π);
Generate new task makespan τ (i);
if Target system Si+1’s available time ≥ τ (i) then

Exit for loop;
end

end

τ (π) = τ (i);
foreach Target system Si in S(π) do

Compute data segment size: ω
(π)
i = µiηi(τ

(π) − σi);
end

Algorithm 2: Pseudo-code for the FLX-NODS algorithm.

With the temporary restricted target set S(p) and the temporary task makespan τ (p),

the corresponding data segment size allocated to the restricted target system Si, which is

expressed as µiηi(τ
(p) − σi), is compared with the maximum data segment size Riσi it can
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receive during its data staging period. If the former is larger, which indicates the coordinator

allocates more data than Si can actually receive before its available time, a data set reduction

operation occurs by reducing Si’s workload to Riσi, the maximum size of input data it can

get. This data set reduction allows the target system Si to begin computing at its available

time σi. The necessity of data set reduction is checked at each iteration of the FLX-DSBAT

algorithm and ensures that the first condition of Proposition 1 holds.

A consequence of reducing the data segment size assigned to Si is the longer task

makespan τ ′ because part of the workload on Si needs to be transferred to the other

target systems. Moreover, because of the data set reduction for Si, we have the relation

Ti < τ (p) < τ ′ where Ti is the process group completion time for system Si on the reduced

data segment size Riσi. This gives us the hint that Si should be in the final restricted target

set and the process group completion times of the systems in the restricted target set may

not be equal anymore. Based on this observation, the restricted target systems experiencing

the data set reduction are removed from the target systems set S and put into restricted

target set S(π). The workload they bear are deducted from the input data set ω as well. Then

the algorithm continues to the next iteration and generates the new temporary restricted

target set and temporary task makespan by FLX-NODS algorithm on the updated S and

ω.

The algorithm continues until no data set reduction operations happen (the variable flag

is used in the algorithm to identify this condition) on the target systems in the temporary

target set S(p), which indicates that all the systems in the temporary restricted target set

from the output of FLX-NODS algorithm are able to finish their data staging before their

individual available times; thus, by combining the S(p) with the current S(π) we achieve

the final S(π). This termination condition of FLX-DSBAT algorithm together with the

properties of FLX-NODS algorithm guarantee that the conditions 2 and 3 of Proposition 1

hold.
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The last step of the algorithm is to compute the data segment size allocated to each

restricted target system. If the restricted target system Si ever experiences the data set

reduction, the workload on it will be the maximum input data size it can receive before its

available time; otherwise, the workload is calculated by the simple derivation of the formula

Eq. 2.3. In summary, we have the data segment size for Si as

ω
(π)
i = min (Riσi, µiηi(τ

(π) − σi)). (Eq. 2.11)

2.4.1.2 FIX-DSBAT Algorithm

The algorithms are more intricate when we limit the number of process groups, or the size of

the restricted target set. Occasionally, the algorithm has to replace a system that is already

included in the restricted target set by a better performing one to obtain a shorter makespan

while keeping the size of restricted target set fixed. The available time of the target system

becomes less important as in the FlexMap scenario since the system with longer available

time can be superior to the one with much earlier availability if the former shows much better

computational capability. To compensate for this restriction the algorithms for the FixMap

scenario select the most “powerful” target systems, instead of using the systems with the

earliest availability.

We now present the necessary and sufficient conditions for the optimal solution of the

FIX-DSBAT scenario.

Proposition 2. Let Q(π) be the restricted target set with fixed size m and τ (π) be

the makespan under mapping π. The mapping π : C 7→ Q(π) is the optimal solution of

FIX-DSBAT scenario if and only if the following conditions are satisfied:
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(i) All process groups on the restricted target system in Q(π), finishes the data staging on

or before their available times:

σi ≥ ω
(π)
i

Ri

, ∀Si ∈ Q(π). (Eq. 2.12)

(ii) The process group completion time on each restricted target system in Q(π) whose data

staging process can finish earlier than its available time is equal to τ (π):

T
(π)
i = τ (π) , ∀Si ∈ Q(π) where σi >

ω
(π)
i

Ri

. (Eq. 2.13)

(iii) Each system Sq outside the restricted target set under mapping π, either becomes avail-

able after or at the task makespan τ (π):

τ (π) ≤ σq (Eq. 2.14)

or, if τ (π) > σq, the following relation holds:

min
∀Si∈Q(π)

ω
(π)
i ≥ min ((τ (π) − σq)µqηq, Rqσq). (Eq. 2.15)

Proof: We first show that the three conditions are necessary. Let π = (ν, δ) be an optimal

mapping. Note that the proofs for necessity of Conditions 1 and 2 are exactly the same as

their counterparts in the proof of Proposition 1. We discuss only the proof for the third

condition.

Assume there is one Sq /∈ Q(π) such that:

τ (π) > σq and min
∀Si∈Q(π)

ω
(π)
i < min ((τ (π) − σq)µqηq, Rqσq).
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The expression (τ (π) − σq)µqηq gives the projected data segment size that can be processed

by Sq in the time interval [σq, τ
(π)] and the expression Rqσq expresses the maximum size of

data that can be transferred to Sq before its available time. The smaller one of these two

values represents the actual size of data segment that Sq can process in the time interval

[σq, τ
(π)] if DSBAT strategy is considered.

Given the mapping π with the task makespan τ (π), assume that Sp ∈ Q(π) processes the

least amount of data among systems in Q(π). Thus, we have:

ω(π)
p = min

∀Si∈Q(π)
ω

(π)
i < min ((τ (π) − σq)µqηq, Rqσq), (Eq. 2.16)

which implies that when we use a new mapping π′, generated by replacing Sp by Sq, to

process the same amount of input data set (equal to ω), the new task makespan τ (π′) will

be less than τ (π) by redistributing the input data among systems in Q(π′). This contradicts

with the statement that τ (π) is the optimal mapping.

Next, we show the sufficiency of these three conditions. Consider a mapping π and

assume that we know τ (π) and Q(π). Condition 1 indicates that all systems in the restricted

target set Q(π) are able to finish their data staging on time and Condition 2 tells us that

redistributing the data among systems in Q(π) cannot lead to a shorter task makespan (see

the proof of Proposition 1). Consider a system not in Q(π). According to Condition 3, either

the system becomes available after or at τ (π) which means that adding it to Q(π) cannot

improve the makespan, or it is available before τ (π), but the amount of data it can process

is less than the amount any system in Q(π) can process; thus it makes no sense to swap it

with any system already in Q(π). We conclude that π must be an optimal mapping. That

finishes the proof.

Figure 2.4 provides an intuitive justification for the third condition of the Proposition 2.

Consider five target systems {S1,S2,S3,S4,S5} ordered by their available times, the earliest

first. Assume that the restricted target set is Q(π) = {S1,S2,S3} and that the speed factor
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Figure 2.4: Comparison of systems workloads. The X-axis represents the available time σi,
and the Y -axis the speed factor SPi, equal to the average execution rate from σi to τ (π), of
five target systems {S1,S2,S3,S4,S5}. The rectangular area bounded by τ (π), σi and SPi

corresponds to (τ (π)−σi)SPi, the workload allocated to and processed by Si. In this example
the system S4 is able to accommodate a larger workload than S2; indeed, the area of the
rectangle with length (τ (π)−σ4) and height SP4 is larger than the area of the rectangle with
length (τ (π) − σ2) and height SP2.

SPi, defined as µiηi for DSBAT strategy, for the same Computation C on each system satisfy

the condition: SP2 < SP1 < SP3 < SP5 < SP4.

On the X-axis in Figure 2.4 we represent the available time σi, 1 ≤ i ≤ 5, of each system,

and on the Y-axis the speed factor. If τ (π) is the task makespan, the workload processed by

the system Si ∈ Q(π) is (τ (π) − σi)SPi according to the formula Eq. 2.3.

We observe that the rectangular area bounded by τ (π), σi and SPi in Figure 2.4 corre-

sponds precisely to the workload allocated to and processed by the system Si. For example,

the workload processed by S2 corresponds to the rectangle with the length (τ (π) − σ2) and

height SP2. The system S5 with the available time σ5 > τ (π) cannot be involved into the

restricted target set. According to Figure 2.4, S4 can accommodate a larger workload than

S2 because the area of the rectangle with length (τ (π) − σ4) and height SP4 is larger than

the area of the rectangle with length (τ (π) − σ2) and height SP2. Thus replacing S2 with S4

in restricted target set will lead to a shorter task makespan.
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The FIX-DSBAT algorithm involves three steps: (i) sort the target systems based on

the maximum data segment size each system can receive during its data staging process and

verify the existence of the solution for the given setup; (ii) construct an initial restricted

target set Q(π) with size m and refine the initial restricted target set by replacing systems

in Q(π) with systems outside Q(π), such that the task makespan gets improved; and (iii)

compute the data segment size for each system included in the final version of Q(π). We

show the pseudo-code of the FIX-DSBAT algorithm in Algorithm 3.
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Input: Target systems set S, task input data set size ω, the number of process groups
m

Output: Task makespan τ (π), restricted target set Q(π), data segment size for each
restricted target system ω

(π)
i

Sort target systems in S based on the maximum data segment size each system can
receive during its data staging process, the largest first;
if

∑m
i=1 Riσi ≥ ω then

Put the first m target systems in the ordered S into restricted target set Q(π);
Compute task makespan τ (π) by running FLX-DSBAT algorithm on Q(π) and ω;
while 1 do

Generate candidates set S(c);
if S(c) 6= ∅ then

Find system Sp in Q(π) whose available time is before τ (π) and processed
the least workload among all systems in Q(π);
Find system Sq in S(c) who will process the largest workload between time
interval [σq, τ

(π)];
if Sq will process more data than Sp then

Remove Sp from Q(π): Q(π) ← Q(π) − {Sp};
Put Sq into S(π): Q(π) ← Q(π) ∪ {Sq};
Generate new task makespan τ (π) by running FLX-DSBAT algorithm
on the updated Q(π) and original ω;

else
Exit while loop;

end

else
Exit while loop;

end

end

foreach Target system in restricted target set Q(π) do
if its available time is before task makespan τ (π) then

Compute data segment size using formula Eq. 2.11;
else

Assign 0 workload to it;
end

end

else
No solution;

end

Algorithm 3: Pseudo-code for the FIX-DSBAT algorithm.

Step 1 (Sorting): we first sort the systems in S based on the maximum amount of data that

can be transferred to each one of them during the corresponding data staging phase which
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is computed by expression Riσi for each system Si. The solution exists if the total amount

of data that can be transferred during the data staging phase to the top m systems in the

sorted set exceeds the total amount of input data ω.

Step 2 (Scheduling): Assume the solution exists. The initial restricted target set Q(π) is

constructed by including the top m systems in the sorted set S. Then the FLX-DSBAT

algorithm runs on restricted target set Q(π) and input data set size ω which will return the

initial task makespan τ (π). With the initial task makspan, we can generate the Candidates

Set S(c) by including such systems that are not in Q(π) but their available times are earlier

than τ (π). We call such a target system in S(c) a candidate system because it is possible

to obtain a shorter makespan if we swap it with one system already in S(π) as indicated

in Figure 2.4. We search for the system in S(c) that has the largest estimated workload

and for the system in S(π) with the least workload assigned during the time interval from its

available time to the current τ (π) and swap them if the former processes more data. Note that

both the estimated workload processed by the candidate system and the actual workload

assigned to the target system in S(π) are computed by formula Eq. 2.11. After the swap

operation, the FLX-DSBAT algorithm is invoked to compute the new task makespan using

the updated S(π) and the original ω as inputs. With the new task makespan, the candidates

set is regenerated and the possibility of a new swap operation is evaluated. The procedure is

repeated until (1) there is no possibility of swap operation which indicates that the m most

“powerful” systems have been selected already; or (2) the candidates set returns empty.

Step 3 (Data Partitioning): The workload for the restricted target system whose available

time is earlier than the task makespan is computed by formula Eq. 2.11. For the systems

which become available on or after the task makespan, we set their workload to 0.

We note that when the data staging cost is not considered, we have the FIX-NODS

scenario. We can obtain the FIX-NODS algorithm by making several simple modifications

on the FIX-DSBAT algorithm: (1) order the target systems based on their available times,
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the earliest first, instead of the maximum input data size they can receive before their

available times; (2) there is no need to verify the existence of the solution as the solution

will always be reached; (3) both the estimate workload for system in candidates set and the

actual workload for system in the restricted target set are computed as µiηi(τ
(π)−σi) instead

of applying the formula Eq. 2.11.

2.4.2 Divisible Load Scheduling Algorithms for DSAAT and PDS Data Staging Strategies

As mentioned earlier, DSAAT strategy is a special case of PDS strategy. Therefore, in this

section we focus on the algorithms for PDS strategy. We assume there are p pipeline stages

and we will get the DSAAT strategy when p = 1.

2.4.2.1 FLX-PDS Algorithm

The FLX-PDS algorithm shares the same idea with the FLX-NODS and FLX-DSBAT

algorithms. The target systems set is ordered by the target systems’ available times. A

new target system with the earliest available time is added into the restricted target set

iteratively. The makespan of the task is updated during each iteration until no improvement

is achieved. We present the sufficient and necessary conditions for the optimal solution of

FLX-PDS scenario below.

Proposition 3. Let Q(π) be the restricted target set and τ (π) be the task makespan

under mapping π. The mapping π : C 7→ Q(π) is the optimal solution of FLX-PDS scenario

if and only if two conditions are satisfied:

(i) The process group completion time, ∀Gi ∈ C, under mapping π, is the same and equal

to the task makespan:

T
(π)
1 = T

(π)
2 = ... = T (π)

m = τ (π). (Eq. 2.17)
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(ii) Any system Sq /∈ Q(π) only becomes available after or at the task makespan τ (π):

τ (π) ≤ σq, ∀Sq /∈ Q(π). (Eq. 2.18)

We omit the proof here as it is quite similar to the proof of Proposition 1.

Algorithm 4 shows the pseudo-code of FLX-PDS algorithm.

Input: Target systems set S, input data set size ω, pipeline stage p
Output: Task makespan τ (π), restricted target set Q(π), data segment size for each

restricted target system ω
(π)
i

Sort target systems in S based on their available times, the earliest first;
Q(π) ← ∅;
for i = 1 to SizeOf(S) do

Add system Si into Q(π);
Generate new task makespan τ (i);
if Target system Si+1’s available time ≥ τ (i) then

Exit for loop;
end

end

τ (π) = τ (i);
foreach Target system in Q(π) do

Compute data segment size using the derivation on the formula Eq. 2.5:

ω
(π)
i = τ (π)−σi

1
pRi

+ 1
µiηi

;

end

Algorithm 4: Pseudo-code for the FLX-PDS algorithm.

The FLX-PDS algorithm is structured according to three steps.

Step 1 (Sorting): The target systems in the target systems set S are sorted based on their

available times.

Step 2 (Scheduling): The target system with the earliest available time is iteratively added

into the restricted target set Q(π), which is initialized as an empty set. During each iteration,

the task makespan is updated. Let τ (i) denotes the task makespan after the ith iteration.

For the first iteration, only one system, S1, is in Q(π). The task makespan τ (1) is computed
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by formula Eq. 2.5 as

τ (1) = σ1 + δ1 + γ1 = σ1 +
ω

pR1

+
ω

µ1η1

.

After putting S2 into Q(π), the coordinator needs to relocate some workload from system S1

to S2 and we denote the amount of workload reallocated to S2 from S1 as ∆1. Note that the

new task makespan τ (2) can be expressed by formula Eq. 2.5 as

τ (2) = σ2 + δ2 + γ2 = σ2 +
∆1

pR2

+
∆1

µ2η2

.

Considering the improvement of the task makespan, we have another way to express τ (2) as

τ (1) − τ (2) =
∆1

pR1

+
∆1

µ1η1

.

From these two different expressions of τ (2), we derive the following formulas

∆1 =
τ (1) − σ2

( 1
pR1

+ 1
µ1η1

) + ( 1
pR2

+ 1
µ2η2

)
(Eq. 2.19)

and

τ (2) = τ (1) − (
∆1

pR1

+
∆1

µ1η1

). (Eq. 2.20)

Similar to the derivation of τ (2), assume we have j systems in the restricted target set,

S1,S2, ...Sj, where j > 2, and the task makespan is τ (j). To update the task makespan after

adding the system Sj+1, we have the following observations:

(i) The process group completion time on each of the first j systems in the restricted target

set is improved by the same amount:

∆1

(
1

pR1

+
1

µ1η1

)
= ∆2

(
1

pR2

+
1

µ2η2

)
= ..... = ∆j

(
1

pRj

+
1

µjηj

)
. (Eq. 2.21)
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(ii) The total workload reallocated from the first j systems in the restricted target set to the

newly added system Sj+1 is:

ωj+1 =

j∑
i=1

∆i. (Eq. 2.22)

Note that from formula Eq. 2.5 we have another way to express the ωj+1 as

ωj+1 =
τ (j+1) − σj+1

1
pRj+1

+ 1
µj+1ηj+1

. (Eq. 2.23)

(iii) The task makespan is improved by the amount equal to the improvement of the process

group completion time on each of the first j systems:

τ (j) − τ (j+1) = ∆i

(
1

pRi

+
1

µiηi

)
, 1 ≤ i ≤ j. (Eq. 2.24)

The formulas Eq. 2.21, Eq. 2.22, Eq. 2.23, and Eq. 2.24 allow us to derive the expressions

for ∆1 and τ (j+1) as:

∆1 =
τ (j) − σj+1

( 1
pR1

+ 1
µ1η1

) + ( 1
pRj+1

+ 1
µj+1ηj+1

)(1 +
∑j

i=2(
1

pR1
+ 1

µ1η1
1

pRi
+ 1

µiηi

))
(Eq. 2.25)

and

τ (j+1) = τ (j) − (
∆1

pR1

+
∆1

µ1η1

). (Eq. 2.26)

The iteration terminates when there is no more improvement in the task makespan or

no more target systems are available with the available times earlier than the current task

makespan.

Step 3 (Data Partitioning): After achieving the task makespan τ (π) from Step 2, the size

of the data segment allocated to the restricted target system Si can be computed by the
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following formula derived from formula Eq. 2.5:

ω
(π)
i =

τ (π) − σi

1
pRi

+ 1
µiηi

. (Eq. 2.27)

2.4.2.2 FIX-PDS Algorithm

The FIX-PDS algorithm constrains the number of process groups m, or in other words, the

number of target systems that the coordinator can utilize for task parallel execution. As

before, the optimality of mapping ensures the shortest makespan of the task, but in this

case, we map the process groups to precisely m target systems.

The idea of the FIX-PDS algorithm is to generate an initial restricted target set Q(π)

of size m first by iteratively adding to Q(π) new systems. Then, the candidates set S(c) is

constructed after we compute the initialQ(π) and τ (π). All target systems with available times

earlier than the current τ (π) will be added into S(c). We call such a target system a candidate

because it is possible to obtain a shorter task makespan if we swap it with one system already

in Q(π). We compare the system in S(c) that has the largest estimated workload with the

system in Q(π) with the least workload assigned during the time interval from its available

time to the current τ (π) and swap them if the former has a larger workload. After each

swap operation, the task makespan is updated and the candidates set is regenerated. The

iterative process ends when no such swap operation is possible. The last step is to compute

the workload allocated to each restricted target system in Q(π).

The necessary and sufficient conditions for the optimality of the solution from the FIX-

PDS scenario are summarized by the following proposition.

Proposition 4. Let Q(π) be the restricted target set with fixed size m and τ (π) be the task

makespan under mapping π. The mapping π : C 7→ Q(π) is the optimal solution of FIX-PDS

scenario if and only if two conditions are satisfied:
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(i) The process group completion time T
(π)
i , Gi ∈ C, under mapping π, is the same and

equal to the task makespan:

T
(π)
1 = T

(π)
2 = ... = T (π)

m = τ (π). (Eq. 2.28)

(ii) Each system outside the restricted target set under mapping π, ∀Sq /∈ Q(π), either

becomes available after or at the task makespan τ (π): τ (π) ≤ σq, or, if τ (π) > σq, the

following relation holds:

min
∀Si∈Q(π)

(τ (π) − σi)
1

( 1
pRi

+ 1
µiηi

)
≥ (τ (π) − σq)

1

( 1
pRq

+ 1
µqηq

)
. (Eq. 2.29)

Proof. We first show that the two conditions are necessary. Let π = (ν, δ) be the optimal

mapping for the FIX-PDS scenario.

(i) Assume two process groups, Gx,Gy ∈ C exist such that, under the allocation ν corre-

sponding to the mapping π with task makespan τ (π), one process group, Gx, is able to finish

earlier than the other: T
(π)
x < T

(π)
y and T

(π)
y = τ (π). If we reassign a fraction of the workload

from system Sy to Sx, we may achieve the new data partition scheme δ′ corresponding to a

new mapping π′ = (ν, δ′) such that: T
(π′)
x = T

(π′)
y < τ (π). This process can be repeated until

the completion time of each process group becomes the same and thus will lead to a new

task makespan: τ (π′) < τ (π), which contradicts with the assumption that τ (π) is optimal.

(ii) Assume Sq /∈ Q(π) and satisfies the relation:

τ (π) > σq and min
∀Si∈Q(π)

(τ (π) − σi)
1

( 1
pRi

+ 1
µiηi

)
< (τ (π) − σq)

1

( 1
pRq

+ 1
µqηq

)
.

The expression (τ (π)−σq)
1

( 1
pRq

+ 1
µqηq

)
gives the workload that can be processed by Sq within

the time interval [σq, τ
(π)], based on the formula Eq. 2.27.
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Given the mapping π with the task makespan τ (π), assume that Sp ∈ Q(π) processes the

lowest workload among systems in Q(π). Thus, we have:

(τ (π) − σp)
1

( 1
pRp

+ 1
µpηp

)
= min

∀Si∈Q(π)
(τ (π) − σi)

1

( 1
pRi

+ 1
µiηi

)
< (τ (π) − σq)

1

( 1
pRq

+ 1
µqηq

)
.

This implies that if we create a new mapping π′, generated by replacing Sp by Sq, for

the same input workload ω, then new makespan τ (π′) < τ (π). This contradicts the statement

that τ (π) is optimal.

Next we show that the two conditions are sufficient.

(i) Assume all systems in Q(π) finish computation at the same time τ (π). Consider a new

data partitioning δ′ and the corresponding mapping π′ = (ν, δ′) with the same restricted

target set. There will be at least one system, say Sx, such that: τ (π) < T
(π′)
x ≤ τ (π′), which

will lead to a longer task makespan.

(ii) Consider a mapping π and a system Sq /∈ Q(π) such that σq ≥ τ (π). Thus, it would

not be helpful to add Sq to Q(π). On the other hand, assume Sq /∈ Q(π) has the available

time σq < τ (π). The second condition of the proposition tells us that the workload that can

be processed by Sq from its available time to the current τ (π) is less than or equal to the

minimum workload allocated to any system in Q(π). This implies that swapping Sq with any

system in Q(π) cannot shorten the task makespan. We finish the proof.

Algorithm 5 shows the pseudo-code of FIX-PDS algorithm.

The FIX-PDS algorithm involves four steps.

Step 1 (Sorting): The target systems in the target systems set S is sorted based on their

available times, the earliest first.

Step 2 (Initializing Q(π)): We need to create the initial restricted target set Q(π) with size

m. The target system with the earliest available time is added into Q(π) iteratively. During

each iteration, the task makespan is updated. The algorithm for the task makespan update
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is similar to the one introduced in FLX-PDS algorithm (formula Eq. 2.5, formulas Eq. 2.19

and Eq. 2.20, and formulas Eq. 2.25 and Eq. 2.26). It is possible that after k (k < m)

iterations, the task makespan is already shorter than or equal to the available time of any

target system not in the restricted target set, which indicates that no improvement will be

achieved by adding more target systems into Q(π). There are two options in dealing with this

situation: (i) we simple add the next m− k target systems into Q(π) from the ordered set S
such that the size m is reached. We call these systems as “dummy restricted target systems”

as they become available after the task makespan thus no formal resource reservations will

be made on them and no workload will be actually distributed to them; or (ii) we update m

to the smaller value k and thus reduce the size of the restricted target set and the number

of process groups. The FIX-PDS algorithm we present here implements the first strategy

but it can be easily modified to support the second strategy by simply replacing the clause

of adding m− k system into Q(π) by the clause of updating value of m to k.
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Input: Target systems set S, input data set size ω, the number of process groups m,
pipeline stage p

Output: Task makespan τ (π), restricted target set Q(π), data segment size for each
restricted target system ω

(π)
i

Sort target systems in S based on their available times, the earliest first;
Q(π) ← ∅;
for i = 1 to m do

Add system Si into Q(π);
Generate new task makespan τ (π);
if (Target system Si+1’s available time ≥ τ (π)) and (i < m) then

Add systems Si+1,Si+2...Sm into Q(π);
Exit for loop;

end

end
while 1 do

Generate candidates set S(c);
if S(c) 6= ∅ then

Find system Sp in Q(π) whose available time is before τ (π) and processes the
least workload among all systems in Q(π);
Find system Sq in S(c) who can process the most workload from its available
time σq to τ (π);
if Sq will process more data than Sp then

Remove Sp from Q(π): Q(π) ← Q(π) − {Sp};
Put Sq into Q(π): Q(π) ← Q(π) ∪ {Sq};
Generate new task makespan τ (π);

else
Exit while loop;

end

else
Exit while loop;

end

end

foreach Target system in restricted target set Q(π) do
if Its available time is before the task makespan τ (π) then

Compute data segment size using formula Eq. 2.27;
else

Assign zero workload to it;
end

end

Algorithm 5: Pseudo-code for the FIX-PDS algorithm.
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Step 3 (Scheduling): The candidates set S(c) is constructed starting with the initial restricted

target set and task makespan. All target systems not in Q(π) but with available time earlier

than current τ (π) are put into S(c). Then, we search for the system Sp in Q(π) which processes

the least workload and for the system Sq in S(c) which will process the most workload from its

available time to current τ (π). The workload of the systems are either estimated or computed

by applying the formula Eq. 2.27. If the estimated workload of Sq is larger than the actual

workload processed by Sp, we remove Sp from the restricted target set and put Sq in. As

indicated in Figure 2.4 (speed factor SPi becomes 1
( 1

pRi
+ 1

µiηi
)

in this case), swapping Sp and

Sq leads to a better task makespan.

After the restricted target set Q(π) is updated, the task makespan is recomputed by

simulating the FLX-PDS scenario on Q(π) with the following steps: (i) order the systems in

Q(π) based on their available times, the earliest first; (ii) iteratively add the system with the

earliest available time into the “restricted target set” of Q(π) and compute the task makespan

based on formula Eq. 2.5 for the first iteration, formulas Eq. 2.19 and Eq. 2.20 for the second

iteration, and formulas Eq. 2.25 and Eq. 2.26 for the other iterations.

With the updated task makespan, the algorithm reconstructs the candidates set and re-

peats the procedure in Step 3. The iteration terminates when (i) the candidates set becomes

an empty set; or (ii) no swap operation is possible which indicates that the maximum esti-

mated workload processed by any system in the candidates set is less than or equal to the

minimum workload handled by any system in the restrict target set.

Step 4 (Data Partitioning): Computing the data partitions is the last step of the algorithm.

It is possible that Q(π) involves systems that will be available after or at the time τ (π); we

identify them and set the workload assigned to them to zero. For the other restricted target

systems, we calculate the data segment size allocated to them based on formula Eq. 2.27.
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2.4.3 Fault-tolerant Coordination Algorithms

The computations considered in this dissertation take a very long time and the probability

that one of the target systems experiences a failure during this time cannot be neglected.

Once a systems fails, the coordination algorithm redistributes the work originally allocated

to the failing system to the systems already in the restricted target set, or attempts to

reassign the work to other systems in the original target set.

Run the FlexMap/FixMap algorithm;
Spawn m process groups, G1, G2...Gm, one for each restricted target system identified
by the FlexMap/FixMap algorithm;
Set completion = false;
while completion == false do

if Fault detected on Gi then
Construct the new restricted target set by removing system where Gi resides;
Determine the amount of data needed to be redistributed;
Setup the startup times for systems in the new restricted target set to be
current computation completion time;
Run the FlexMap/FixMap algorithm to compute new data partitions;

end
if All process groups have signaled completion then

Set completion = true;
end

end

Algorithm 6: The fault-tolerance coordination algorithm on coordination site.

In this section we sketch the coordination algorithms that redistribute the work originally

allocated to the failing system to the systems already in the restricted target set. The basic

idea of the fault-tolerant coordination is to detect the failure by estimating the completion

time of each pipeline stage on each system in the restricted target set and expect an acknowl-

edgment that the stage has finished. We assume that the partial results for each stage are

sent by each system in the restricted target set at the end of each stage to the coordinator

together with the acknowledgment. If such an acknowledgment is missing then:

61



Compute the time per pipeline stage;
Wait for the startup time on the restricted target system Si;
Send the first block of data;
Startup the computation on system Si;
Set the timer for an interrupt at the end of first pipeline stage;
Send the second block of data;
for k=1 to the number of pipeline stages - 1 do

Wait for partial results;
if timer interrupt then

Send to coordination program “fault at system Si” signal;
Kill process group Gi and exit;

else
Store partial results;
Send the next block of data;
Set a timer for an interrupt at the end of the next stage;

end

end
Wait for partial results;
if timer interrupts then

Send to coordination program “fault at system Si” signal;
Kill process group Gi;

else
Store partial results;
Send to coordination program “complete at system Si” signal;

end

Algorithm 7: The fault-tolerance coordination algorithm to manage the execution of
process group Gi on target system Si.

• If the restricted target set is Q(π) = {S1,S2, . . .Sp, . . .Sm} and Sp is the failing system,

we determine the amount of the data allocated initially to system Sp that is still

unprocessed. Call this amount ∆p.

• If the original computation completion time estimated by the algorithm was τ (π) then

we run the FlexMap/FixMap divisible load co-scheduling algorithm for the (m − 1)

systems in the new restricted target set Q(π′) = Q(π) − {Sp}. The new startup time

σ′i = τ (π), ∀Si ∈ Q(π′). The amount of input data is equal to ∆p.

• The algorithm produces an additional amount of data to be sent to each system and a

new computation completion time τ (π′) = τ (π) + ∆τ .
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The pseudo-code for the coordination algorithms are shown in Algorithm 6 and Algorithm

7.

The fault-tolerant coordination algorithms we just present maintain the resource uti-

lization rate (the number of target systems used for the computation). Another strategy

to provide the fault-tolerance computation is to exploit the idea of duplicate computation.

After the optimal mapping is generated, for each restricted target system we select a backup

system with the similar parameters. Each backup system holds the same amount of workload

as its corresponding restricted target system, and will start data processing at its available

time. Thus, if a restricted target system fails, the coordinator can gather the computation

result from the backup system instead of redistributing the unprocessed data to the other

systems. This strategy limits potentially the increase of the task makespan, if the parame-

ters of the backup system is close enough to the parameters of the corresponding restricted

target system.

2.5 Performance Evaluation

In this section we first study the behavior of the FlexMap and FixMap algorithms by simu-

lation and then compare our divisible load co-scheduling model under multi-port communi-

cation strategy with the divisible load model with one-port communication.

2.5.1 Simulation Study

We simulate an ensemble of 200 target systems and investigate the task makespan in function

of the input data set size and the number of process groups m. We also observe the size of

the restricted target set for the FlexMap scenario. Each target system is characterized by a

vector consisting of the available time σ, the execution rate µ, the duty cycle η, and the data

transfer rate R. These four random variables are normally distributed; the mean and the

standard deviations of the four random variables are, respectively: 25 and 5 hours for the
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available time σ, 450 and 80 Mdtu/hour for the execution rate µ, 0.75% and 0.05% for the

duty cycle η, and, finally, 550 and 30 Mdtu/hour for the data transfer rate R. The average

execution rate and the data transfer rate are related to the biological application discussed

in [54, 129] and measured by running the test process on the multiple clusters in University

of Central Florida. The available time and the duty cycle are selected based on the analysis

of the trace of workload on each cluster.

In our simulation we first construct 200 random vectors Si(µi, σi, ηi, Ri), ∀Si ∈ S which

characterize the target systems set S. Then the DLS algorithms select the restricted target

set Q(π), compute task makespan and the amount of data allocated to each system. The

DLS algorithms are deterministic, thus for a given target systems set configuration and input

data set size, the task makespan and the generated restricted target set are the same for

each run.

Figure 2.5: Task makespan (in hours) function of the number of iterations for a fixed input
data set size, ω = 1012 dtu, for the FLX-PDS algorithm.

Figure 2.5 shows the task makespan function of the number of iterations of the first

for loop for the FLX-PDS algorithm. At each iteration a new target system is added

into the restricted target set if the available time of that system is earlier that the current

task makespan; thus, the task makespan monotonously decreases as the iteration process

progresses. Figure 2.6 (Left) and Figure 2.6 (Right) show the first 15 and the last 15
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Figure 2.6: Task makespan (in hours) for the FLX-PDS algorithm. (Left) The first 15
iterations. (Right) The last 15 iterations.

iterations, respectively. If we define the speedup as the ratio of the task makespan at the

first iteration of an interval to the one at the last iteration of the interval, we notice that:

Speedup1−15 =
4103

221
= 18.57

while

Speedup186−200 =
40.58

40.19
= 1.01.

This indicates that the benefits of using an increasingly larger number of systems have to be

balanced against the additional cost and overhead to coordinate multiple sites. We conclude

that the FLX-PDS algorithm should have an additional termination condition:

if (τ (j)/τ (j−1) < MinSpeedupPerIteration) terminate;

We note that this conclusion applies to all FlexMap family of algorithms (FLX-NODS,

FLX-DSBAT, FLX-DSAAT, and FLX-PDS ) as they share the same idea in building up the

optimal solution.

We now compare the three different data staging strategies for the FlexMap family of

algorithms and Figure 2.7 shows the results. The three flavors of the algorithm end up using
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all 200 target systems as soon as the input data set size reaches 11× 1011 dtu, 19× 1011 dtu,

and 5 × 1011 dtu, respectively. The FLX-DSAAT leads to the longer task makespan (see

Figure 2.7 (Left)) for each input data size and requires more resources. The FLX-DSBAT

cannot guarantee the existence of the solution when the input data set size is relatively large

(in our case when the input data set size reaches 21× 1011 dtu ) and the target systems set

is relatively small [128], while the other two succeed. The FLX-PDS algorithm reduces the

task makespan substantial comparing to FLX-DSAAT algorithm and places a lower load

upon resources.

As expected, the number of systems used for a given task increases as the input data set

size increases as shown in the Figure 2.7 (Right). In this experiment, the resource vectors

(µi, σi, ηi, Ri), ∀Si ∈ S are the same, only the data set size increases. For a relatively small

input data set size, after a few iterations, the task makespan becomes shorter than the

available times of the systems outside of the restricted target set. As the input data set size

increases, the task makespan after the same number of iterations increases and allows us to

include more systems in the restricted target set.

The more complex FixMap family of algorithms is discussed next. First, we study the

the effect of the number p of pipeline stages. As expected, the larger the number p, the

shorter is the time to fill-in the pipeline and start the computation and the shorter is the

task makespan, Figure 2.8.

The effects of the data staging when we limit the number of systems included in the

restricted target set are summarized in Figure 2.9 for the three flavors of the algorithm.

The pipelined version is better than FIX-DSBAT when the number of process groups m is

relatively small because the latter chooses systems that allow staging of larger amount of

data before their available times in order to guarantee the existence of a solution and the

systems with an earlier available time, higher execution rate, and higher duty cycle, could be

excluded from the restricted target set [128]. The two versions exhibit similar behavior when

m ≥ 50, but FIX-DSBAT does not produce a solution when m < 50. When m is large, the
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Figure 2.7: The effect of the three different data staging strategies when we allow as many
systems as possible to be included in the restricted target set (FlexMap scenario). (Left)
The task makespan (in hours) function of the input data set size for the FLX-PDS with
20 stages, FLX-DSAAT and FLX-DSBAT algorithms; the input data set size increases in
units of 2 × 1011 dtu. (Right) The size of the restricted target set (the number of systems
used) when the input data set size increases in units of 2× 1011 dtu for the three flavors of
the algorithm.

Figure 2.8: Task makespan function of p, the number of pipeline stages for the FIX-PDS
algorithm; the input data set size is 1012 dtu and the number of process groups is 85.

gap between the two algorithms becomes smaller and, eventually, FIX-DSBAT outperforms

the pipelined version. In order to reduce the task makespan, we can either use more systems,

or increase the number of pipeline stages. Indeed, the FIX-PDS and FIX-DSBAT may lead

to the same computation completion time of 54 hours, but require different numbers of target

systems, m = 90 and m = 150, respectively.
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Figure 2.9: The effect of the three different data staging strategies when we limit the number
of systems included in restricted target set (FixMap scenario). We observe the task makespan
for the FIX-PDS with 20 stages, FIX-DSAAT and FIX-DSBAT algorithms. (Left) Function
of the number of the process groups; the input data set size is 1012 dtu. (Right) Function of
the input data set size when the number of process groups is 85.

For a relatively small input data size, FIX-DSBAT is slightly better than the pipelined

version but it fails to produce a solution when the input data set size is larger than 1.3×1012

dtu. As the input data set size increases, the gap between the algorithms narrows; when

the input data set size is larger than 0.9 × 1012 dtu, the pipelined version outperforms the

FIX-DSBAT. The pipelined version is always better than FIX-DSAAT and both produce

solutions regardless of the input data set size. We also study the speedup when the size of

the process groups m increases but the input data set size is fixed, ω = 1012 dtu, for the

FIX-PDS algorithm. The speedup over different ranges of target systems varies:

Speedup30−110 =
115

54
= 2.13

while

Speedup110−200 =
54

40
= 1.35.

Again, the benefits of using an increasingly larger number of systems have to be balanced

against the additional cost and overhead to coordinate multiple sites.
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2.5.2 Comparative Study of Single- and Multi-port DLS Algorithms

The divisible load model and algorithms introduced in this dissertation are based on a

multi-port communication strategy and assume that the coordination site has the capability

to distribute the workload in parallel. We expect parallel communication to lead to better

performance and in this section we show that the divisible load scheduling model based upon

multi-port communication and pipelined execution, referred to as MultiDLM outperform the

single-port multi-round model, referred to as SingleDLM. In case of pipelined execution with

ρ stages, we divide the data for each target system into ρ segments of equal size; this allows

a system to start the computations as soon as the first segment is received. When ρ = 1 we

have a single stage execution corresponding to one-round model.

Given n target systems, S = {S1,S2, ...Sn}. Let ωi be the size of the data allocated to

system Si. Call τs, τm the optimal makespan for the SingleDLM and MultiDLM models,

respectively. First, we assume that all target systems are available at the same time, σ1 =

σ2 = .... = σn, as shown in Figure 2.10 for the case n = 4. The optimal schedule, the one

leading to the shortest completion time, requires that all process groups finish at the same

time for both SingleDLM [12, 121] and MultiDLM (see proof in section 2.4.2).

The divisible load model with one-port communication not only generates the data parti-

tions for each target system, but also computes the data staging schedule, the order in which

data is transferred to the individual systems. Without loss of generality, we assume that the

data staging in the SingleDLM case follows the ordering S1,S2, ...Sn, Figure 2.10 (a), while

in the MultiDLM case data staging starts at the same time for all n target systems, Figure

2.10 (b).

In case of SingleDLM execution the data staging time and the execution time on each

system Si, i ∈ (1, n) are related to the amount of data allocated to the system:

τs − σ1 =
ω1

ρR1

+
ω1

µ1η1

, (Eq. 2.30)
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Figure 2.10: Timing diagram showing the data staging and the execution time for n = 4
when all target systems start at the same time, σ1 = σ2 = σ3 = σ4. The computation on
each system starts as soon as the first segment of data is received. (a) SingleDLM - divisible
load model with one-port communication; τs the task makespan. (b) MultiDLM - divisible
load model with multi-port communication; τm < τs the task makespan.

τs − σ1 − ω1

ρR1

=
ω2

ρR2

+
ω2

µ2η2

, (Eq. 2.31)

....................

τs − σ1 −
n−1∑
j=1

ωj

ρRj

=
ωn

ρRn

+
ωn

µnηn

. (Eq. 2.32)

Consider now the MultiDLM execution and assume that the amount of data allocated

to each system is the same as in the SingleDLM case, ωm
i = ωi. If Ti is the process group

completion time on the system Si then the data staging and the execution times for Si, i ∈
(1, n) are related to the amount of data allocated to the system:

T1 − σ1 =
ω1

ρR1

+
ω1

µ1η1

, (Eq. 2.33)

T2 − σ1 =
ω2

ρR2

+
ω2

µ2η2

, (Eq. 2.34)

....................
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Tn − σ1 =
ωn

ρRn

+
ωn

µnηn

. (Eq. 2.35)

Comparing the SingleDLM and the MultiDLM executions we notice that:

τs − σ1 =
ω1

ρR1

+
ω1

µ1η1

= T1 − σ1, (Eq. 2.36)

τs − σ1 −
i−1∑
j=1

ωj

ρRj

=
ωi

ρRi

+
ωi

µiηi

= Ti − σ1, for 2 ≤ i ≤ n. (Eq. 2.37)

From Eq. 2.36 and Eq. 2.37 it follows that:

τs = T1, (Eq. 2.38)

τs > Ti, for 2 ≤ i ≤ n. (Eq. 2.39)

The SingleDLM data partitioning may not be the optimal for MultiDLM ; moreover, the

optimal solution for MultiDLM execution requires that all process groups finish at the same

time, as proved in Section 2.4.2 thus:

τs = T1 > τm. (Eq. 2.40)

We conclude that the optimal solution from MultiDLM execution leads to a shorter comple-

tion time than the one for SingleDLM.

Now we consider the more realistic case, namely that the n target systems have different

available times and discuss first the SingleDLM case. A SingleDLM scheduling algorithm

produces in this case a data staging schedule e.g., {Si1 ,Si2 , . . . ,Sin} which means that the

data staging should first be done for Si1 and when Si1 finishes its first segment of data then

the data staging for Si2 could start, and so on. This raises the question whether a system is

available or not at the time the data stating schedule allows. We first assume that all systems
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Figure 2.11: Timing diagram showing the data staging and the execution time for n = 4
when the available times are different σ1 < σ2 < σ3 < σ4 and all systems are available when
data staging could begin. (a) SingleDLM - divisible load model with one-port communica-
tion. The data staging schedule produced by the divisible load algorithm for this example
is S2,S3,S1,S4 thus, data staging on S3 can only start after S2 has finished reviving its first
chunk of data, and so on. τs is the task makespan. (b) MultiDLM - divisible load model
with multi-port communication. Data staging starts as soon as Si becomes available at time
σi and the task makespan is τm < τs.

are available at the time when the algorithm allows data staging to begin. For system Si,

we define the system set Pi which involves all systems before the system Si in the sequence

of data staging. For example, suppose the data staging schedule on 4 systems are S2, S3, S1,

S4, then P1 = {S2,S3}. Figure 2.11(a) illustrates the case when the data staging schedule

produced by the algorithm is {S2,S3,S1,S4}. In the general case let Sa be the first system

in the data staging schedule. Then we have the following relations:

τs − σa =
ωa

ρRa

+
ωa

µaηa

, (Eq. 2.41)

τs − σa −
∑
j⊆Pi

ωj

ρRj

=
ωi

ρRi

+
ωi

µiηi

, for i 6= a. (Eq. 2.42)

Consider now the MultiDLM execution and assume that the amount of data allocated

to each system is the same as in the SingleDLM case, ωm
i = ωi. Then
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Ti − σi =
ωi

ρRi

+
ωi

µiηi

, for 1 ≤ i ≤ n. (Eq. 2.43)

From Eq. 2.41, Eq. 2.42, and Eq. 2.43 it follows that:

τs − σa = Ta − σa, (Eq. 2.44)

τs − σa −
∑
j⊆Pi

ωj

ρRj

= Ti − σi, for i 6= a. (Eq. 2.45)

A simple derivation leads to:

τs = Ta, (Eq. 2.46)

τs = Ti +
∑
j⊆Pi

ωj

ρRj

− (σi − σa), for i 6= a. (Eq. 2.47)

Consider relation Eq. 2.47, if σi ≤ σa, we will have:

τs > Ti, for i 6= a. (Eq. 2.48)

Otherwise, based on the assumption above, because system Si’s available time is earlier

than, or equal to the time when its direct predecessor finishes one round of data staging, it

follows that:

σi − σa ≤
∑
j⊆Pi

ωj

ρRj

, for i 6= a. (Eq. 2.49)

Thus τs > Ti.

The optimal solution for MultiDLM requires all process groups to finish computation at

the same time thus:

τs = Ta > τm. (Eq. 2.50)

We conclude that in this case the MultiDLM leads to an earlier completion time than Sin-

gleDLM.
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Figure 2.12: Timing diagram showing the data staging and the execution time for n = 4
when the avaliable times are different σ1 < σ2 < σ3 < σ4 and when some of the systems
become available after the data staging could start. (a) SingleDLM - divisible load model
with one-port communication. The data staging schedule produced by the divisible load
algorithm is S2,S3,S1,S4 and the data staging on S3 can only start after the one for S2

has finished, and so on. Note that S4 is available at time σ4 though the data staging could
have started earlier. τs is the task makespan. (b) MultiDLM - divisible load model with
multi-port communication; data staging starts as soon Si becomes available at time σi. The
task makespan is τm < τs.

Lastly, we examine the case when one or more systems are not available at the time when

data staging could start; obviously, this may only occur in the SingleDLM execution. Figure

2.12 (a) illustrates the case when S4 is available at time σ4 though the data staging could

have started earlier.

Under the SingleDLM algorithm, the relationship Eq. 2.41 still holds for the first system,

Sa in the data staging schedule. Call Q the subset of target systems whose available times

are later than the data staging completion times of their predecessors in the data staging

schedule. For systems in Q, we have:

τs − σi =
ωi

ρRi

+
ωi

µiηi

, for Si ⊆ Q. (Eq. 2.51)
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For the other systems, we obtain a relation similar to Eq. 2.42:

τs − σa − Φi =
ωi

ρRi

+
ωi

µiηi

, for Si ⊆ (S −Q− Sa), (Eq. 2.52)

where Φ satisfies:

Φi ≥
∑
j⊆Pi

ωj

ρRj

. (Eq. 2.53)

As Pi is the set of predecessors of Si in the data staging schedule, Φi is equal to
∑

j⊆Pi

ωj

ρRj

if no system is in both Pi and Q. Otherwise, there will be at least one system which has

to wait for its available time before it can receive the data and thus “postpone” the actual

available time of system Si.

The relationship Eq. 2.43 still holds for all systems; from the relationships Eq. 2.41,Eq. 2.51,

Eq. 2.52, and Eq. 2.43, we can derive Eq. 2.50 to conclude the proof.

2.6 Design of a Divisible Load Meta-scheduler

In this section we describe the architecture of the DLS meta-scheduler and outline the inter-

actions between the meta-schedulers on the coordinator site and the target systems during

the task submission process.

2.6.1 DLS Meta-scheduler

The DLS system is implemented as a peer-to-peer system [100]. The DLS code is replicated

on all target systems and each system can play the role of coordinator or execution engine.

Figure 2.13 shows the four components of the DLS meta-scheduler: the Resource Manager

(RM), the Monitor (M), the Scheduler (S) and the Execution Manager (EM). Each system

supports bi-directional communication interfaces.

The Resource Manager initiates the negotiation between the DLS meta-scheduler on the

coordinator site and the DLS meta-schedulers on multiple target systems. Its primary role is
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Figure 2.13: The architecture of the DLS meta-scheduler with the interface to interact with
the external services and devices.

to generate the target systems set. The RM integrates the security authentication, message

communication handling, and the data management functions for the target systems pool.

It operates by listening for incoming messages from the remote resources and responding to

remote resources on the specific ports through its external interface. The RM plays also the

role of a message dispatcher and relays messages to the appropriate units.

The role of the Monitor is to report on the status of local resources. When a system

joins the potential target systems set, the local Monitor supplies the coordinator site with

information regarding the status of local resources, i.e., the performance evaluators. The

Monitor uses several utilities to gather the necessary data: (i) the Historical Execution

Data Analyzer to predict the execution rate; (ii) network utilities such as Network Weather

Service (NWS) [119] and iperf [52] to measure the data transfer rate; (iii) the local batch-

queuing system or local scheduler such as PBS [87], Condor [105], Sun Grid Engine [103],

and WebCom [85] to estimate the available time and duty cycle.
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The Scheduler executes the DLS algorithms. It generates the mapping, stores it in the

Schedule Table and informs the Resource Manager to send resource reservation messages to

the selected sites.

The Execution Manager processes task submission requests and responses to the task

execution status queries from the user. It also acts as the interface between the DLS meta-

scheduler and the local batch-queuing system or local scheduler on the same site. It can

make resource reservation, submit the task instance and monitor the execution by inquiring

the local system, and handle the task instance execution exceptions.

2.6.2 Task Submission in DLS System

Figure 2.14 illustrates the interactions between DLS meta-schedulers on the coordinator site

and on the target system equipped with execution engine. A DLS session is initiated when

the Execution Manager receives a Task Submission request from a user; this site will play

the role of the coordinator for this transaction. The EM analyzes the request and identifies

critical information regarding the task description, the hardware/software requirements, the

QoS requirements, and location of input data. Then it passes this information to the local

RM which, in turn, initiates negotiations with the RMs on the other peers. The information

in the task submission request and the identity of the coordinator are included in a Task

Execution request sent by the local RM to the RMs of the remote peers.

Upon receiving a Task Execution request the RM of a peer collaborates with the local

Scheduler to determine if the requirements for the given task can be fulfilled. For instance,

it checks if the software environment is properly set and if a stable network connection to

the input data repository exists. If all the requirements can be satisfied, the local Monitor

predicts the performance evaluators for the given task and informs local EM to make a

temporary resource reservation; the temporary resource reservation will be canceled if the

reservation is not confirmed by the coordinator within a timeout period. Then a Request
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Figure 2.14: Task Submission in DLS Scheduling System.

Accepted message which includes the identity of the target system, the value of each perfor-

mance evaluator returned by local Monitor and the basic hardware/software setup are sent

back to the coordinator.

The RM on the coordinator site receives Request Accepted messages and creates the

target systems set S. After a certain timeout period (it is shorter than the timeout period

for the temporary resource reservations on the target systems), the coordinator will refuse

new incoming Request Accepted messages and will inform the Scheduler to carry-out the
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DLS algorithm. A set of target systems forming the restricted target set will be selected

by DLS algorithm from S to run the task. Then the RM on the coordinator site sends the

Reservation Confirmation message to the peers in the restricted target set.

As soon as the RM of a peer receives the Reservation Confirmation message it in-

forms the local EM to turn the temporary resource reservation into a permanent one. A

Reservation Made acknowledgement is sent back to coordinator to confirm a successful

reservation.

After receiving all Reservation Made acknowledgements, the coordinator finalizes the

schedule/mapping and starts the task execution and monitoring; its EM supervises the

execution of the task and periodically reports the task status, takes appropriate actions

when exception occur, forces the termination of the DLS session if necessary, and closes the

DLS session when the task finishes.
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CHAPTER 3: SELF-ORGANIZING LARGE-SCALE
DISTRIBUTED SYSTEMS

In this section we first survey a model suitable for the study of large-scale distributed system

and then apply the model to a case study.

3.1 A Framework for Modelling Self-organizing Systems

The current state of the art with respect to system complexity and self-organization and

the highly abstract concepts developed in the context of natural sciences [91] do not lend

themselves to design principles for engineering, self-organizing computing and communica-

tion systems. In response, we attempt to map the attributes of a self-organizing system into

an actionable modelling framework; actionable means that the resulting model can guide the

design of practical systems.

First, the model initially described in [76] is refined to capture the nondeterministic

behavior of large assemblies of entities. To achieve this goal we use a metaphor from quantum

mechanics [36]. The formalism we use, and discussed in detail elsewhere [77] is complex; here

we sketch the basic tenants below. An entity is characterized by a collection of properties,

or genes; a gene captures the role played by the corresponding property in any interaction

involving the entity. The genes can be classified in several categories, including makeup

genes describing the components of an entity, decision genes which affect the path taken

when multiple alternatives are available, action genes controlling the set of actions an entity

may undertake, and specificity genes such that some are specific to an entity, others to a

class of entities, or to all entities.

A gene ḡ is represented as a vector in H2, a two-dimensional vector space over the field

of complex numbers, C. For example, ḡ0, ḡ1, and ḡ are genes that affect the behavior with

probabilities 0, 1, and 0 ≤ p1 =| g1 |2≤ 1 , respectively:
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ḡ0 =




1

0


 = (1, 0)T , ḡ1 =




0

1


 = (0, 1)T and ḡ =




g0

g1


 = (g0, g1)

T .

(Eq. 3.1)

In the last expression, g0, g1 ∈ C and | g0 |2 + | g1 |2= 1. The probability that the gene

ḡ does not affect behavior is p0 =| g0 |2. Genes can be used to express nondeterministic

behavior, for example, the probability of a successful transmission on a broadcast channel.

Genes can also be used to express the relative weight of different factors affecting the behavior

of an entity.

Two genes are orthogonal if their inner product is equal to zero, e.g., ḡ0 · ḡ1 = 0; this

means that the two properties of the entity associated with these genes are independent of

each other. The genetic sub-state of a set of n related genes of an entity is the tensor product

of the corresponding genes, a vector in a 2n dimensional space. For example, the genetic

communication sub-space of a sensor is spanned by four genes; there are 24 complex numbers

describing the communication behavior of a sensor during the self-organization phase. The

moduli of these complex numbers are probabilities of different communication events.

Borrowing terms from structural biology we envision the formation of primary, secondary,

or higher level structures of increased complexity based upon the genetic state of entities. An

affinity/binding function [110] uses the genetic state, or genetic sub-states, to determine the

degree of compatibility among entities when they form such structures. An affinity function

could use not only the projections of a vector on a sub-space, e.g., the moduli of the 16

complex numbers in the previous case, but also their phases to establish the required degree

of matching of the properties expressed by the genes. For example, a phase of 0 ≤ φ ≤ π/4

could mean perfect matching of the projections, while π/4 < φ ≤ π/2 could tolerate a 20%

difference.
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Actions have genetic side-effects, they transform the gene of the system; the transforma-

tion of n genes is described by a 2n × 2n matrix; a controlled operation transforms one or

more target genes depending on a control gene. For example, I, X, and Z transform a single

gene, while a CNOT transforms a gene called a target depending on the value of another

one, called a control gene:

I =




1 0

0 1


 , X =




0 1

1 0


 , Z =




1 0

0 −1


 , and CNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




.

(Eq. 3.2)

This approach not only allows the model to capture non-deterministic behavior and

genetic evolution as a result of actions involving the entity, but also the interactions of

an entity with the environment. The model highlights the explosion of the genetic state

space when the number of genes increases. To deal with the explosion of the genetic state

space we can model an entity at various levels of detail or focus on a particular aspect of

the behavior described by a subset of genes and represented as a vector in a genetic sub-

space; for example we can focus on the communication activities of a sensor and ignore the

data collection activities. It also supports macroscopic characterization of entities based on

a very large number of microscopic attributes; for example, we can use the entropy as a

macroscopic measure of the genetic state. The model is able to describe composite entities

using the density matrix [78] and to estimate the properties of a composite entity by the

partial trace of the density matrix [78]. The question we plan to address in the future is if,

in addition to its theoretical appeal, this formalism could be useful in practice to guide the

modelling effort.

In addition to genes, an entity could have intrinsic properties such as identity, age, total

energy, the seeds for the random number generators used by the sensors of a Very Large
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Sensor Network (VLSN) to decide when to transmit and what radio frequency to use, and

so on.

The environment mediates the interactions among entities and plays a critical role in the

dynamics of self-organization described by our framework. The description of the environ-

ment includes the elements shared by all entities, including the public and private channels

used by entities to communicate, the actions feasible in the system, as well as, the standard

energetic side-effects of each action. Though not fully explored in this dissertation we believe

that the introduction of the environment as a critical component of self-organization opens

the possibility to model effectively non-linear effects, and study avalanche phenomena as well

as phase transitions.

The energetic side-effects of the actions of an entity are captured by the following cycle:

initially, when an entity is created it is provided with a certain amount of potential energy

from a common pool (the makeup gene controls the actual type and amount of resources

the entity can convert the potential energy into); to carry out an action an entity consumes

kinetic energy ; the successful completion of an action rewards the entity with effective kinetic

energy that can be transformed in kinetic, potential, and even stored for future use. The

potential energy is a metaphor for the resources e.g., CPU cycles, memory, power, and

so on, required to carry out the specific actions or transactions the entity is capable to

perform. The effective kinetic energy is provided by the environment as a side effect of a

successful transaction and, in turn, the environment recovers it from the other entity or

entities involved in the transaction. This distinction between the three forms of energy is

inspired by thermodynamics; it captures the need to transform one form of energy into

another as well as the efficiency of the energy conversion process. It also offers entities the

flexibility to store effective kinetic energy and to convert it according to the current needs.

It motivates the entities to interact, an idle entity cannot accumulate effective kinetic energy

thus, it is not capable to adapt to new conditions.
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Entities communicate using epidemic/gossiping algorithms [33]. All entities ei in the

universe U share a public communication channel C. Information broadcast by an entity ei

over this channel is received by a limited subset of entities and may be disseminated by them

using gossiping/epidemic algorithms ; there is no guarantee that information broadcast by

an entity ei will reach all entities in U . Each message m has a time to live, τm, expressed in

number of hops in the gossiping algorithm. Concurrent communication is possible because of

the limited range of individual broadcasts, but there is no guarantee that two simultaneous

broadcasts will not interfere with each other.

To prevent overloading the channel C, entities have the option, and the motivation, to

communicate through private communication channels, C(1), C(2), . . . , C(p). For example, the

goal of the self-organization phase of the VLSN is the establishment of private communica-

tion channels; these private communication channels are collision-free wireless connections

allowing the sensors to operate with minimal energy consumption during the activity phases.

Broadcasting a message on the public communication channel C, or on the private communi-

cation channel C(p), requires consumption of kinetic energy. An entity retransmits messages

from its neighbors on either the public or a private channel.

The formalism we just described is at the core of self-organization when decisions are

based solely on local information and permits the formation of stable non-equilibrium struc-

tures, but it cannot account for the non-linear behavior. Our search for a solution to this

problem was guided by an insight due to Alan Turing: in his seminal paper on morphogen-

esis [108], he suggests that a mechanism based on slow diffusion of an activator and fast

diffusion of an inhibitor can lead to formation of stable stationary non-equilibrium patterns

through the diffusion of some key compounds.

Our approach to model non-linearity is based on activator and inhibitor mechanisms. The

activator is the reward for an action, while the inhibitor is a mechanism to modulate the

reward based on the reputation of an entity defined in Equation Eq. 3.4. A reward reinforces

behavior; when offered, it causes a behavior to increase in intensity. The reputation reflects
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the level of satisfaction, how well the results match the individual expectation of each entity

involved in a transaction.

Different functions can be used to model the reward and we suggest the use of a sigmoid

[6]:

χ(n) =
(n/ω)ζ

1 + (n/ω)ζ
≤ 1 (Eq. 3.3)

where ζ and ω are constants with ζ ≥ 2, and ω > 0; then χ(ω) = 1/2, Figure 3.1. The

sigmoid is often used to model the evolution of a biological system from birth to maturity

and demise, the three stages clearly identifiable in Figure 3.1 where the argument n reflects

the number of actions in the current epoch. An epoch starts when an entity joins an existing

structure or initiates the creation of a new one. When the entity dissociates itself from a

structure the count of the number of actions or transactions is reset to zero. We believe that

an important trait of self-organization is the ability of a viable structure to transition from

one sigmoid to another at an optimal time, in order to sustain optimal behavior. In this case

an epoch may consist of several sub-epochs; for example, Figure 3.1(b) illustrates the case

when an epoch consists of three sub-epochs, the first one corresponds to evolution following

sigmoid S1, the second one follows S2, and the third S3. This type of evolution is evident in

many social and economical systems.

The reputation of an entity plays an important role in evaluating the actual reward

for the entities involved in a transaction. The main idea of the algorithm is to allow an

entity to enhance its reputation gradually in the absence of negative feedback and to heavily

penalize reputations in the light of negative feedback. In the absence of negative feedback

the reputation increases exponentially at first, then experiences a linear increase. Negative

feedback drastically lowers the reputation. The feedback is provided to the partner of a

transaction after the completion of the transaction and it may force an entity to re-adjust

the reputation of the partner.

85



χ

χ

1

2

3

(a) (b)

Figure 3.1: (a) A sigmoid is used to model the reward χ = χ(ni) for an entity ei. (b) The
behavior of a viable structure able to transition from one sigmoid to another at an optimal
time, in order to sustain optimal behavior. Three sigmoids S1, S2 and S3 are shown; the
transition from sigmoid S1 to sigmoid S2 occurs at instance A and the one from S2 to S3 at
B.

Let Ri
j(n) be the reputation of entity j evaluated by entity i after completion of n trans-

actions. Initially Ri
j(0) = 0. In the absence of negative feedback the reputation increases

exponentially at first and subsequently experiences a linear increase:

Ri
j(n) =





κ12
n Ri

j(n) ≤ Rt

min [k2n,Rh] Rt < Ri
j(n) < Rh

(Eq. 3.4)

with n the number of transactions, k1, k2, Rt and Rh constants specified by the rewards

gene. There are two thresholds Rt and Rh; the reputation increases exponentially until the

Rt threshold is reached, after that it increases linearly until it reaches the upper limit of

Rh. The negative feedback lowers the reputation to 0 if it is below the threshold Rt. The

reputation drops to Rt any time negative feedback is received after this threshold is reached:

Ri
j(n + 1) =





0 if 0 < Ri
j(n) < Rt

Rt if Rt ≤ Ri
j(n) ≤ Rh.

(Eq. 3.5)
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As the systems we are concerned with are deployed and are under development at the

same time, self-organization should create symbiotic clusters consisting of “old” and “new”

structures with the same functionality and allow the “old” ones to disappear only after the

functionality of the “new” ones has been thoroughly tested. This process can be controlled

by an aging gene, so that the aging process is slow when a new structure appears and it is

accelerated as the structure matures.

3.2 Case Study: Pleiades, A Self-Organizing Resource Sharing System

In [76] we discuss a market-centric implementation of a Pleiades system; in this disserta-

tion we consider an implementation based entirely on self-organization. The infrastructure

enables interested parties to form organizations grouping together entities based upon perfor-

mance metrics such as: security, quality of service (QoS), fault-tolerance, timing constraints,

or carbon footprint.

The entities in our generic model are computer systems and the structures are called

Virtual Organizations (VO); VOs are formed dynamically, and may be disbanded and re-

organized, as members join and leave. A majority of transactions are carried out between

the members of the same VO. An entity which has not yet joined any organization is called

a free agent. A free agent aims to join a VO to optimize its state in the goal subspace.

The interactions among entities in VO are based on genetic information and are limited

by imprecise knowledge of the global state. VOs allow members to act effectively on local

information and pursue self-sufficiency.

In our model we first describe the environment as well as the genetic makeup of individual

entities. The environment specifies the set of services available, as well as, the kinetic energy

required for a transaction involving a given service and the standard reward per transaction.

The environment also describes the communication channel and its properties. For ex-

ample, the environment specifies the probability of a successful transmission on the public
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channel. The actions in this environment are: an invitation to join a VO (such an invita-

tion can only be issued by a service provider); acceptance of an invitation to join a VO;

re-broadcasting an invitation; a request from a service provider for acquiring resources, a

reply to such a request, an offer to provide resources, a reply to such an offer.

In this initial study we have not modelled the non-linear behavior; instead the reward

mechanism favors activities with positive social impact. During the self-organization phase

the only activities are requests to form and to join a VO sent over the public channel with

a probability of success p = 0.8; the standard reward for sending such a request increases

the effective kinetic energy by a small amount, say 2 units. Communication over the private

channel increases the kinetic energy by 1 unit with a probability of success p = 0.9. Successful

formation of a VO increases the kinetic energy of the entity starting the VO and of the entities

joining the VO by 10 units and also adds 8 units of effective kinetic energy.

An entity is a computer with a genetic state consisting of several subspaces including

resources, performance, entity role, actions, energy conversion, and goals. The genes in

each subspace describe respectively: (i) the “active” material, or resources such as, CPU

cycles, main memory, secondary storage, graphics capabilities, or network bandwidth; (ii)

the performance metrics such as quality of service (QoS), security, reliability, and carbon

footprint; (iii) the function, of the entity; a service provider and consumer of resources, or a

client of services and provider of resources; (iv) the entity-specific actions, e.g., the service

provided by a service provider; (v) the efficiency of converting potential into kinetic energy,

and effective kinetic into potential energy; (vi) the entity-specific, class, and common goals;

(vii) entity-specific genes.

Initially, an entity is allocated an amount of potential energy from a common pool; the

resource genes of the entity define the relative percentage of the energy allocated for each type

of resource and operation mode, as well as, the energy conversion factors. The model is able

to capture more intricate aspects of resource management: the consumption of one type of

resource affects other resources; some resources are perishable, if not used they are wasted and
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there is a cost associated with idle resources. For example, consider an entity granted initially

1000 eu (energy units) and having only two genes ḡc = (gc0, gc1)
T and ḡm = (gm0, gm1)

T the

first describing the computing power and the second the memory; the four projections on

the subspace spanned by the two genes are: | gc0gm0 |2, | gc1gm0 |2, | gc0gm1 |2 and | gc1gm1 |2.
These projections describe respectively the amount of energy allocated for: (i) the idle mode

(none of the two perishable resources are in use); (ii) the mode when the CPU is used

intensively and memory occasionally (compute-intensive processing); (iii) the mode when

the memory is used intensively (memory-intensive processing); and, finally, (iv) the mode

when both are used intensively. When gc0 = gm0 = gc1 = gm1 = 1/
√

2 then the entity

is allocated 250 eu for each one of the four modes of operation. A more simplistic model

supports only the last mode of operation when both resources are used intensively; then

gc0 = gm0 = 0 and gc1 = gm1 = 1. Recall that gc0, gm0, gc1, gm1 are complex numbers and

that | gc0gm0 |2 + | gc1gm1 |2 + | gc0gm1 |2 + | gc1gm1 |2= 1.

The performance subspace could be spanned by several performance genes; here we con-

sider three genes ḡq, ḡs and ḡr for quality of service, security, and reliability. In this case the

performance is a vector in a 23-dimensional space. Then, the relative weight of the quality of

service, security, and reliability will be the products of complex numbers describing individ-

ual genes for either a service provider, or a resource provider: | gq1gs0gr0 |2, | gq0gs1gr0 |2, and

respectively, | gq0gs0gr1 |2, with | gq1gs0gr0 |2 + | gq0gs1gr0 |2 + | gq0gs0gr1 |2= 1. Other ap-

proaches for modelling the performance metrics are possible, for example a service provider

may use all 8 (eight) projections to quantify different mixes of measures. The reputation

parameters encode the following values k1 = 1 and k2 = 2; the ones of the reward function

are ζ = ω = 2.

Most random variables, including those representing the amount of potential energy

distributed to individual entities are modelled using heavy-tail distributions, probability

distributions whose tails are not exponentially bounded. We believe that properties of the

systems we investigate, such as heterogeneity, diversity, and dissimilarity justify the choice
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of this approach which is also supported by the self-similarity, a behavior observed in the

Internet traffic [116].

The focus of our study is the formation of VOs and resource management within a VO;

the model is designed to capture relevant performance data related to these objectives rather

than the communication aspect of self-organization. We only mention that an organization

initiating the formation of a VO includes in its invitation the identification of the private

channel used for communication by entities joining the VO. The details of the communication

protocols and the format of messages can be found elsewhere [77]. Here we only mention

that a request for resources includes the performance genes as well as the gene describing the

active material and the energetic makeup. The energetic makeup in this case is based upon

the assumption that the kinetic energy consumed by an entity in a transaction is replenished

and additional effective kinetic energy rewards a useful activity. The effectiveness of an

entity is then measured by the ratio effective kinetic energy to kinetic energy.

3.3 Evaluation of a Pleiades Model Through a Simulation Study

First, we investigate the dynamics of VO formation, the relationship between the number of

VOs and the number of entities in one VO for a fixed size of entity population. We study the

answers to several questions [77]: Is the self-organization model scalable? What is the effect

of the interplay of the population size and genetic diversity on the model? Do our metrics

of optimality lead to stable non-equilibrium patterns?

The simulation consists of three steps: (i) the creation of entities; (ii) the self-organization

phase; and (iii) the activity phase. The entity initiating the formation of a VO is a service

provider which selects an application and invites other entities to join that VO. Transactions

involving service providers and clients which are at the same time resource providers take

place during the activity phase.

90



The generation of entities and the formation of VOs is done in parallel; the common

pool of entities and active material is divided into P groups and N entities are created in

parallel using P processors. A group of n(P ) = N/P entities are allocated to each system.

We consider a fixed number N = 106 of entities; P , the number of groups/processors, ranges

from 1 to 512, and we experiment with 1, 000, 10, 000, and 100, 000 services. Call n(P ) the

size of the population of one group when there are P groups; nSP (P ), nRP (P ) and nServ(P )

are the number of service providers, resource providers, and services, respectively.

(a) (b)

Figure 3.2: (a) The number of VOs function of the number of entities in each group. (b)
The average size of a VO.

The self-organization phase. First we report on the effect of population size and the genetic

diversity. Figures 3.2(a) and 3.2(b) show that the number of services plays a critical role in

determining the number of VOs and the average size of a VO for a given size of the entity

population, N . Indeed, when there is only one group n(1) = 106 and nSP (1) ≈ nRP (1) ≈
500, 000, and there are some 1, 000 services then we have slightly more than 1, 000 VOs

and the average number of entities in one VO is slightly larger than 600. This result is

encouraging, it shows that the algorithm creates redundant structures, in other words the

service providers of the same service are likely to join the same VO and if one fails, the same

service can be provided by others.
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When the number of services increases by two orders of magnitude, nServ(1) = 100, 000

and the number of number of service providers and resource providers are nSP (1) ≈ nRP (1) ≈
450, 000 then the number of VOs is much larger, around 17, 000 and the number of entities

in each VO is around 35. As we decrease the group size by increasing the number of groups

from 1 to 2, 4, . . . , 512 we end up with smaller and smaller group sizes and the effect of the

number of services changes. For example, when the group size is n(32) = 31, 250, and the

total number of services is 1, 000, we have nSP (32) ≈ nRP (32) ≈ 16, 000. The total number

of VOs for all 32 groups is about 22, 000, so each group had roughly 22, 000/32 ≈ 680 VOs

and an average a VO has about 30 entities. When the total number of services is 100, 000

the number of VOs per group is much smaller, in the low teens.

(a) (b)

Figure 3.3: The ratio of effective kinetic energy to kinetic energy. (a) After the self-
organization phase. (b) After an activity phase consisting of 105 transactions.

Figure 3.3(a) shows that the size of the population has a significant effect on the energy

spent for VO formation. The ratio of effective kinetic to kinetic energy is abysmal, lower

than 0.01%, when the population size is very large, (106 entities), and increases 10 times to

0.1% when the population size decreases by a factor of 512. Figure 3.3(b) shows the ratio of

effective kinetic energy to kinetic energy for an activity phase consisting of 105 transactions.

The number of transactions per VO is adequate when we have fewer than 100 VOs; in this

case each VO experiences on average 1, 000 transactions. Indeed, this ratio has reasonable
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values, about 6.5% only for the small population size, n512 = 106/512 with 100,000 services.

We conclude that the population size and the genetic diversity are critical for the model and

a simulation study to determine optimal values for these parameters of the model should be

conducted before a more intricate analysis of the self-organizing system is done.

Now we discuss the stability of the structures. We consider the configuration correspond-

ing to 1, 000 services and two groups thus, 500, 000 entities per group, about 3000 VOs/group,

and an average of about 270 entities per VO. We construct 32 replicas of such groups, each

group with a different number of VOs, average number of entities in one VO, and entities in

each VO. Our results show that more than 30% of all VOs reach a ratio of effective kinetic

energy to kinetic energy better than or equal to 50% after 25,000 transactions. Only 13%

of all VOs reach a ratio of 0.25% or less. We monitor these ratios after each batch of 500

transactions per group and consider that a VO has reached a stable and optimal activity level

when the average ratio for the VO does not fluctuate during 50 consecutive batches outside a

band of width ±δ. In other words, the difference between the maximum and minimum ratio

for 50 consecutive measurements is not larger than 2δ. In our experiments, we consider two

values, δ = ±5% and δ = ±10%. A VO whose average ratio after 25, 000 transactions does

not satisfy this criteria is considered unstable and incapable of achieving optimal behavior.

Figure 3.4(a) shows that for δ = ±10% only a very small fraction, 0.04− 0.06%, of VOs

are unable to achieve optimal and stable behavior and reach stable and optimal behavior

after approximately 10, 500 to 14, 500 transactions; when δ = ±5% this fraction increases to

8− 12% and 15, 000 to 20, 000 transactions are needed to reach equilibrium, Figure 3.4(b).

The activity phase. A more realistic scenario is that, nSP , the number of service providers

is much larger than nRP , the number of resource providers. In our experiments, n = nSP +

nRP = 106, there are relatively few service providers 1, 000 ≤ nSP ≤ 5, 000 and a large ratio,

nRP /nSP ≈ 1, 000.
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(a) (b)

Figure 3.4: (a) Fraction of VOs unable to achieve stable behavior in each of the 32 groups
with δ = 5% and δ = 10%. (b) Average number of transactions needed to achieve stable
behavior in each of the 32 groups when δ = 5% and δ = 10%.

Once a VO is formed, the service providers start acquiring resources based on the charac-

teristics of the service and the expected load, modelled as an intrinsic property of the entity.

A transaction has a failure probability of pfail = 0.1. After each set of 1, 000 transactions all

VOs and all entities in a VO evaluate the ratio of effective kinetic to kinetic energy. Entities

unable to increase their effective kinetic energy to kinetic energy ratio by at least τke (in our

experiment τke = 0.1%) leave the VO; entities which maintain this ratio at least at the level

of τeff (in our experiment τeff = 50%) form new VOs. VOs with low average effectiveness

dissolve and the free-entities join new VOs.

We used 16 processors and we conducted 10 simulation runs for each experiment and

present the result. To construct confidence intervals we need much better statistics. Random

variables associated with the amount of resources owned by individual producers, the amount

of resources per service request, and the service request rate have heavy-tail distributions.

Our results in Figure 3.5(a) show that as the number of service providers increases five

fold from 1, 000 to 5, 000 the number of VOs almost doubles from about 225 to about 420,

while the average number of resource providers in each VO decreases from about 2, 900 to

about 1, 700. When we increase the number of service providers five fold, the effectiveness
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of each VO, as measured at the end of the initial self-organization stage, decreases from

about 34% to about 19% as shown in Figure 3.5(b). This trend is caused by the diminishing

number of resource providers per service provider and is consistent with a reduction of the

number of resource providers in each VO. The trend in Figure 3.5(b) is to be expected and

shows that the model captures the effect of competition among service providers.

(a) (b)

Figure 3.5: (a)The number of VOs when the number of service providers increases 5 fold
from 1, 000 to 5, 000. (b) The average effectiveness of a VO at the end of the initial self-
organization phase.

The dynamics of the system is captured by the results showing snapshots of the system

after sets of 1, 000 transactions following the initial self-organization phase. In Figure 3.6(a)

we see that the effectiveness of the system changes very little from the first snapshot taken

after the first 1, 000 transactions till the last snapshot taken after 20, 000 transactions.

In Figure 3.6(b) we see that as the time progresses, the number of VOs changes from one

snapshot to the next and the rate of change increases in some cases. For example, when we

have 1, 000 service-providers, we start with some 220 VOs and end with some 420 at the last

snapshot after 20, 000 transactions; the increase in the number of VOs is very slight at first

and proceeds at a faster pace after 13, 000 transactions. When the number of consumers

increases 4 to 5 times we see little change in the number of VOs over time.

Answers to two of the most intriguing questions regarding our model of self-organization

are provided by the simulation results in Figures 3.7(a) and (b). The answer to the question
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(a) (b)

Figure 3.6: System dynamics. (a) The effectiveness of the system changes little from the
first snapshot taken after the first 1, 000 transactions till the last snapshot taken after 20, 000
transactions. (b) The effects of self-organization reflected by the evolution of number of VOs
from the first to the last snapshot.

(a) (b)

Figure 3.7: System dynamics. (a) The number of entities which become free agents through
20 consecutive snapshots taken after every 1000 transactions. (b) Creation of new structures,
VOs developed within one VO.

if entities which do not meet the efficiency standards become free-agents is answered by the

graph in Figure 3.7(a) where we see that as the time progresses an increasingly larger fraction

of all entities are forced to join new VOs. The even more interesting questions of whether or

not higher level structures are formed by the most performing entities of a VO and whether

new structures are formed by the most effective entities in one VO are answered by the graph
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in 3.7(b). This optimal behavior is consistent with transitions from one sigmoid to the next

as discussed in Section 3.1.
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CHAPTER 4: COMMUNICATION SCHEDULING IN
SELF-ORGANIZING VERY LARGE SENSOR NETWORKS

Recall from Chapter 1 that: (i) the number of sensors in a VLSN is very large, N ≥ 106; (ii)

the sensors are indistinguishable; (iii) the sensors are tiny and inexpensive; (iv) the power

reserves and the computing and communication resources are limited; and (v) the sensors

are expected to function for a long time in rough conditions.

The self-organization schemes limit the number of partners each sensor collaborates with,

thus, it limits the amount of communication and the complexity of coordination. The system

is scalable, the amount of state information each node has to maintain is strictly limited

regardless of the total number of sensors in the network. The systems we consider mimic

biological systems where individual cells of the same type are indistinguishable.

4.1 Sensor Networks

Sensor networks [2, 57, 90] represent a distinct family of wireless networks; they are related

to mobile ad hoc networks (MANETs). The nodes of ad hoc and sensors networks form an

infrastructure, maintain the network organization in face of mobility, and route messages;

the protocols for such networks allow efficient startup and steady state operation.

The organization, routing, and mobility-management of ad hoc networks aim to maxi-

mize the throughput and minimize the delay. The objective of the organization, routing,

and mobility in a sensor network is to extend the lifetime of the network. Even though

technological advances translate into higher processing rates and storage capacity at lower

costs, the nodes of future wireless sensor networks will be required to collaborate in order

to accomplish any meaningful task. Berkeley Motes and PicoNode, UCLA sensor nodes,

and MIT AMPs are some of the devices used in sensor networks. For example, the MICA

mote uses an 8-bit microcontroller with 128 kilobytes of flash memory and runs an operating

system known as TinyOS [124]. Its radio has a range of a few hundred feet and can transmit
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about 40 Kbps; it consumes less than 1 µA when it is off, 10 mA when it receives, and 25

mA when it transmits.

Mobile devices rely on different technologies to communicate depending on the applica-

tion domain, the transmission range, and several other factors. For example, the Bluetooth

technology is widely used for personal communication at a short distance; the nodes com-

municate using a centrally-assigned time-division multiplexing (TDMA) scheduling strategy

with a master node at the center of a star topology and slave nodes synchronized to the

master.

Energy efficiency is a major concern for mobile devices as they have limited power reserves

and are able to recharge only after extended periods of time [21, 25, 39, 46, 72, 93, 94, 110].

Communication among the mobile nodes is more energy-intensive than either computing

or sensing; the energy to transmit 1 kB of data at a distance of 100 m is equal to the

energy required by a processor using the year 2000 solid state technology to execute 107

instructions [99]. The laws of physics limit the ability of new communication and energy

storage technologies to match the sharp reduction of energy consumption per instruction

we have witnessed throughout the last decades; we expect that communication efficiency

will continue to be an important design goal for sensor networks. This explains why the

research related to sensor networks is focused on energy efficient physical and MAC layer

protocols [93,112,122,126], routing and topology maintenance [21,39,46,58,110,127], coordi-

nation, synchronization, and information dissemination [25], information assurance [49, 86],

and reliability [123].

In this section we focus on self-organization and do not address either security, or syn-

chronization. Some of the security aspects of the self-organizing VLSNs are outlined in [74].

Here we only observe that the carrier frequency and the time when the sensors transmit are

random, determined by the seeds known only to the sensors in a batch; it is hard, but not

impossible, for an intruder to monitor for a long time transmissions over a wide range of
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carrier frequencies to guess the pattern of frequency and time of transmission and then to

jam.

4.2 Assumptions

The scheme we propose is based upon the following assumptions:

(i) The inexpensive sensors have “genetic information” including a random number gener-

ator, seeds, and other network parameters. During the fabrication process the seeds are

randomly chosen and the set of seeds is burned-in the ready-only memory of all sensors in

the batch. The sensors are tamper-proof, thus it is unlikely to learn the genetic information

by disassembling a sensor. The seeds αq, 1 ≤ q ≤ 3 are used as follows: α1 to determine a

random sequence of events occurring at time slots ti; α2 to determine a random sequence of

carrier frequencies λi; and α3 to determine a random hopping frequency ξλi
j for each carrier

frequency λi. The genetic material also includes: κ, the number of events in one phase and

ν, the number of activity phases, as well as µ, the cardinality of the proximity set, M , the

cardinality of the event index list used to keep track of transmission and receiving events,

and ϕ, a parameter for synchronization.

(ii) The average transmission range of a sensor is γ and we expect to have on average ρ

sensors per unit of the area covered by the network.

(iii) The network is dense; this means that ζ = π × γ2 × ρ, the average number of sensors

that are able to receive the transmission of a sensor is at least ζ ≥ p × µ with p a small

integer, 4 ≤ p ≤ 6 and µ the cardinality of the proximity sets.

(iv) The sink Σ has a larger power reserve and transmission range. It links the sensor network

with the outside world and communicates with an external controller (a satellite, a drone,

or even a stationary device) to report relevant information. For now we assume a unique

sink, but fault-tolerance requires backup sinks that can take over if the original sink fails.

Initially, all sensors are synchronized to the sink.
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(v) The sensors are reactive in terms of communication. A sensor responds to a successful

transmission of another sensor after evaluating two fitness functions f and g; only if the value

of the fitness function exceeds a certain threshold the sensor is allowed to transmit. This

threshold depends on several parameters including the strength of the incoming signal and

the power reserve of the sensor. The fitness function and the determination of the threshold

are fairly complex subjects [110] and are not discussed in this dissertation.

(vi) A sensor dwells ϕ micro-seconds on each frequency in hopping sequence. When a sensor

wakes up at the time of the event εi, its master clock is in one of the time slots ti−1, ti, or

ti+1. Each sensor knows the frequencies λi−1, λi, and λi+1 on which the sender will dwell in

the time slots ti−1, ti, and ti+1. A strategy to allow synchronization in the presence of clock

drift is: tune in, cyclically, to λi−1, λi, and λi+1 spending ϕ/3 time units on each of them.

4.3 Events and Epochs

The time evolution of the network consists of several epochs, each one starting with a self-

organization (set-up) phase followed by a number ν of activity (steady-state) phases, Figure

4.1; the names of the phases are suggestive and an in-depth discussion of the role and the

function of each phase is deferred for later sections. We use the term event to describe a

communication event, the transmission of a message at the beginning of a time slot; the

index k of the event εk occurring at time tk, the beginning at slot k, reflects the order

of the event: if k1 ≤ k2 then εk1 7→ εk2 (εk1 before εk2). All phases consist of the same

number of events, κ. We can refer to an event by its global index, its index within an

epoch, and its index within a phase, Figure 4.2. The index k of εk is a global pointer

into a random sequence of frequencies and time slots. The reciprocal of event εk during

the self-organization phase is the event εk̄ during an activity phase; the reciprocal index is

k̄ = κ−k−1. Reciprocal events occur in reverse order, if k1 ≤ k2 then k̄2 ≤ k̄1 and εk̄2
7→ εk̄1

.
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Table 4.1: Summary of Notations

N number of sensors in the batch
P(sigmai) proximity set of sensor σi

µ and µactual maximal and actual cardinality of the proximity set
κ number of events in a phase
ν number of activity phases
η number of events in one epoch
M maximum number of events in EventList
γ transmission range
ρ average sensor density
θ standard deviation of sensor density
εk k-th event during the self-organization phase
εk̄ reciprocal event of εk during an activity phase
ϕ parameter for synchronization
ζ average number of sensors receiving a transmission
λk carrier frequency in slot k

ξλk
j hopping frequency around λk

Et
o and Er

o energy for transmission and reception during a self-organization phase
Et

a and Er
a energy for transmission and reception during an activity phase

ω expected number of collisions in a CRI
δ the duration of a micro-slot
∆ = nδδ the duration of a slot (nδ = O(103))

The ordering of events is 1 7→ 2 7→ 3 . . . 7→ κ − 1 7→ κ during the self-organization phase

and κ̄ 7→ κ− 1 7→ . . . 7→ 3̄ 7→ 2̄ 7→ 1̄ during an activity phase.

time

First epoch

Self-organization

phase

Second epoch

First activity phase Last activity phase

1 2 )1(

Third epoch

2 121 2 5 64

1 2 5 64 16

Figure 4.1: Epochs, phases, and events. The number of events in an epoch is η and the
number of events in a phase is κ. Each epoch consists of one self-organization phase followed
by ν activity pases. Thus, η = κ(ν + 1).
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Global index

Epoch index

Phase index

i is the index of 

the event in the 

self-organization

phase of epoch q

i is the index of the 

event in the activity 

phase r of  epoch q

Figure 4.2: Global, epoch, and phase indices of an event. If i is the global index then the
epoch index is (i mod η) and the phase index is [(i mod η) mod κ]. If i is the index of an
event in the self-organization phase of epoch q, then its phase index is i, and the global index
is (q× η + i). If i is the index of an event in the r-th activity phase of epoch q then its phase
index is (r × κ + i), and the global index is (q × η + r × κ + i).

During the self-organization phase a sensor σi assumes a globally unique pseudo-identity,

Pid(σi). Initially the Pid of each sensor is set to zero. Pid(σi) = k, if during the self-

organization phase σi successfully transmits during slot (k − 1), possibly after a set of colli-

sions, and wins the right to be the only sensor allowed to transmit at the beginning of slot k.

The Pid is included in every message sent by σi during the self-organization phase to ensure

that the proximity set does not grow beyond the limit imposed, | P(σi) |≤ µ and also that

σi does not appear multiple times in any proximity set P(σj). The Pid is available during

the activity phase, but not used for now.

The expected duration of an epoch is application dependent and it is controlled by η,

the number of events per epoch. Some of the factors that affect the choice of η are: the

duration of the deployment, the expected life-time of individual sensors, the intensity of

communication during the deployment, and the frequency of topological changes. An epoch

could last minutes for an intense and dynamic application when new sensors are added

frequently and the life-time of sensors is very limited because they deplete their power at a

high rate, e.g., monitoring and control of a forest-fire. An epoch could be of the order of days

or even months for a low-intensity application with a relatively stable topology, e.g., long

term monitoring of volcanic activity. The expected duration of an epoch can be controlled
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by scaling the random numbers dictating the timing of events, e.g., using seconds, minutes,

hours, and so on, as units of time.

Communication efficiency is a critical aspect of sensor networks and in the next section we

discuss our proposal for a MAC layer algorithm which allows individual sensors to acquire a

unique pseudo-id and as we shall see later to establish collision-free communication channels

and a schedule when they need to wake up.

4.4 Integrated Medium Access Control (MAC) and Self-organization Algorithms

There are two basic classes of strategies for sharing a communication channel: scheduled and

non-scheduled multiple access. Both strategies are represented among the Medium Access

Control (MAC) layer protocols for ah hoc and sensor networks. Among the strategies based

upon scheduled access we mention: Code Division Multiplexing (CDMA) which employs

spread-spectrum technology and a special coding scheme (where each transmitter is assigned

a code) to allow multiple users to be multiplexed over the same physical channel; Time-

Division Multiple Access (TDMA) divides access by time, while Frequency-Division Multiple

Access (FDMA) divides it by frequency.

Several MAC-layer protocols for ad hoc networks avoid, or reduce collisions. A non-

exhaustive list of such protocols includes: Medium Access Collision Avoidance (MACA)

which uses Request to Transmit and Clear to Transmit (RTS/CTS) messages to avoid the

hidden node problem [55]; Medium Access protocol for Wireless LANs (MACAW), a protocol

similar to MACA but using additional ACK (Acknowledgment) and backoff mechanisms

[19]; Power Aware Multi Access protocol with Signaling for Ad Hoc Networks (PAMAS)

[104] which use one channel for control packets and one for data packets; Carrier Sense

Medium Access with Collision Avoidance (CSMA/CA) [34]; and IEEE 802.11 [51] which

takes advantage of RTS/CTS/DATA/ACK packets and physical and virtual carrier sensing

for collision avoidance.
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The SMACS (Self-organizing Medium Access Control for Sensor Networks) protocol [99]

uses a TDMA-like frame combined with FDMA CDMA to avoid interference among nodes.

The organized channel access method used by SMACS and by the protocol in this dissertation

can be traced back to several papers [7, 41] which propose to form a hierarchical structure

to localize groups of nodes and make the channel assignment easier.

Several other TDMA-based MAC protocols for sensor networks have been proposed in-

cluding WLC12-5 [88]. Sensor MAC (S-MAC) is a protocol inspired by PAMAS and im-

plemented over Berkeley Motes [126]. The nodes listen and sleep periodically; the radio is

set to sleep during transmissions of other nodes. Neighboring nodes form virtual clusters to

auto-synchronize on sleep schedules. The protocol divides long messages into small segments

and transmits all segments back to back; it uses RTS/CTS once per message but ACK for

each segment. The energy savings are 2.5 times larger than for IEEE 802.11.

To increase the algorithm efficiency the number of collisions experienced by a sensor

when it transmits should be minimized and a sensor should be idle as long as feasible. Thus,

it is highly desirable to integrate the MAC protocol/algorithm with the algorithm for self-

organization which determines the schedule for communication. This requirement precludes

the use of one of the existing MAC algorithms; we decided to adapt a known Collision

Resolution Algorithm (CRA) and integrate it with our self-organization scheme.

A fair number of Collision Resolution Algorithms for Random Multiple-Access are exten-

sively analyzed in the literature [38]. The basic idea of the algorithms is to split recursively

the set of nodes involved in a collision on a multiple-access channel until the cardinality of

the set is equal to one and a single node successfully transmits. This splitting is based upon

the ternary channel feedback, “Success,” “Collision,” or “Idle Slot”. Blocking algorithms

forbid new nodes to join the set of nodes involved in a collision; newcomers have to wait

until the original collision was resolved and only then transmit. Non-blocking algorithms

allow newcomers to join a game in progress. In this dissertation we consider the so called
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Stack Algorithm also known as CTM (Capetanakis-Tsybakov-Mihailov) [107], Figure 4.3

(a); CTM is non-blocking.

Transmission

in microslot 1

of slot k

In case of collision at 

stack level 0 a sensor 

remains at stack level 0 

with probability p and 

moves to stack level 1 

with probability (1-p)

The  channel feedback in a 

micro-slot is: collision (C) or  

no collision (NC) 

In case of collision (C) at 

stack level k a sensor 

moves to stack level (k+1) 

with probability 1, (C/1)
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 Sensor a “wins” the CRI in micro-slot 6 of slot k and the right to transmit alone in the 

first micro-slot of slot (k+1); then it conveys the channel feedback in odd micro-slots, 

3, 5, 7, and 9. Collisions may occur only in even micro-slots; sensor b “wins” the CRI 

in the 8-th micro-slot of slot (k+1) and will transmit in micro-slot 1 of slot (k+2). 

1 1 2 3 4 5 6 7 8 92 4 53 1 2 3

slot (k+2)

6

Figure 4.3: (a) The stack collision resolution algorithm. Each sensor creates a virtual
stack and once involved in a collision updates the stack based upon the channel feedback
(collision/no-collision). Only sensors at stack level 0 are allowed to transmit during the
collision resolution period. (b) Modified stack algorithm. The original sender conveys the
channel feedback. In this case, sensor a transmits successfully in the 6-th micro-slot of slot k
and invites other sensors to transmit. Multiple sensors including b respond to the invitation;
collisions involving sensor b occur in the micro-slots 2, 4 and 6 of slot (k + 1); finally, in
micro-slot 8 sensor b is the only one allowed by the algorithm to transmit. Sensor a conveys
the channel feedback in micro-slots 3, 5, 7, and in micro-slot 9 of slot (k+1) it announces that
sensor b was successful and has won the right to transmit undisturbed in the first micro-slot
of slot (k + 2).

The model of the multi-access channel suitable for a sensor network is slightly more

complicated than the one considered by traditional collision resolution algorithms. First,

the transmission frequency changes, and, most importantly, not all sensors involved in a

collision are able to hear the channel feedback. The transmission range of the sensors is

normally distributed around γ. It is thus possible that two sensors b and c both transmit in
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response to a request from sensor a, but they are outside of the reception range of each other,

a phenomenon encountered in wireless networks and called the hidden node problem [110].

The version of the stack algorithm used in this dissertation, Figure 4.3 (b), differs from the

original CTM algorithm in several ways:

(i) The algorithm is executed only during the self-organization phase when collisions may

occur.

(ii) During the self-organization phase the duration of a slot is ∆ = nδδ with δ the duration

of a micro-slot and nδ = O(103). The time tk of the event εk is the starting time of slot k

and of its first micro-slot. The time between two consecutive events is determined by the

random number generator, and should be at least ∆, (tk+1 − tk ≥ ∆). We expect a collision

in slot k to be resolved well before the event εk+1 as nδ = O(103).

(iii) Only one sensor is allowed to transmit in the first micro-slot of a slot: the sink transmits

during the first slot; the “winner” of a collision resolution contest during slot (k−1), transmits

in slot k.

(iv) The micro-slots are grouped in pairs. Collisions may occur only in the even micro-slots

of a slot. Odd micro-slots are collision-free and used by the sensor which initiated the CRI

to broadcast the channel feedback. This allows us to address the hidden node problem.

Indeed two sensors b and c may be in the range of a and may attempt to responding to a

in micro-slot 2k, but they may be out of each other’s range. To solve this problem a will

broadcast in micro-slot 2k + 1 the channel feedback and in this case report a collision.

(v) The algorithm is blocking, only the sensors involved in the initial collision are allowed to

compete.

(vi) Each sensor involved in a collision maintains a counter of the micro-slots involved to

determine the hopping frequency used to transmit in any micro-slot.

The algorithm is distributed in time and space; each sensor involved in a transmission

maintains a virtual stack and updates it according to the channel feedback, Figure 4.3(a).
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The splitting algorithm guarantees that only one sensor can respond successfully in a Colli-

sion Resolution Interval (CRI) thus, the Pid of a sensor is unique. Only sensors at stack level

0 are allowed to transmit in any even micro-slot; initially, all sensors wishing to transmit in

the second micro-slot of the slot k use frequency λk and set their stack level to 0. If there is

a successful transmission (this happens when only one sensor transmits) then the CRI ter-

minates after the sensor which transmitted in the first micro-slot announces the winner. If

there is no transmission, one of the sensors sends a ReqToForward message in response to an

“Idle Slot” channel feedback using the hopping frequency ξλk
1 . When multiple sensors trans-

mit in a micro-slot a collision occurs; then all sensors update their stack as follows: remain

at stack level 0 with probability ps and move to stack level 1 with probability (1− ps). It is

likely that the cardinality of the set of sensors at stack level 0, allowed to transmit during

the next pair of micro-slots will be smaller; these sensors use the first hopping frequency ξλi
1 .

The process continues; if a new collision occurs in the next pair of micro-slots all sensors at

stack level zero repeat the splitting process, while those at stack level 1 move to stack level

2 with probability one.

4.5 Pseudo-id, Proximity and Reverse Proximity Set

During the self-organization phase a sensor assumes a globally unique pseudo-identity (Pid)

given by the index of the first event when it has transmitted successfully. Before the first

successful transmission, the Pid of each sensor is set to zero and then reset to the index of

the slot when the successful transmission takes place. The Pid is stamped on every message

sent during the self-organization phase to guarantee that the proximity set of a sensor does

not grow beyond the limit imposed.

The proximity set of sensor A is a subset of neighbors within the range of A which receive

information from the sensor A during an activity phase. The reverse proximity set is a subset

of neighbors within the range of sensor A. If B is in the reverse proximity set of A then A (as
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well as the other sensors in the proximity set of B) is required to acquire during an activity

phase. Each sensor maintains information about its reverse proximity set: a list of all sensors

which have accepted it as a member of their proximity sets and a list of events when it is

expected to wake up and receive a transmission from each one and then to transmit at the

next event. The sensors do not maintain information about their own proximity set.

The information maintained by a sensor is summarized in Figure 4.4.

a

PId = k+1 Counter

Counter

Counter

EventList

EventList

EventList

Sensor with Pid= 

Pid = a

Pid = f

10=κ

Sensor with Pid=k maintains a list of all sensors that have accepted it as a member of 

their proximity set. This list includes at most      sensors and starts with the sensor with 

Pid=k+1.  During the activity phase sensor with Pid=k will wake up to  receive 

transmissions from each one of them at the events in the event list and will transmit to 

the members of its own proximity set in the following slot.  Each event list is limited to at 

most M events

Sensor with Pid=k does not maintain the information regarding its own proximity set.

κ

Figure 4.4: The information maintained by a sensor relates to its reverse proximity set.

Recall that the scheme we propose covers epochs of η events; an epoch starts with a

self-organization phase followed by multiple activity phases. Collisions occur only during

the self-organization phase when the network is organized based upon physical attributes

such as proximity, residual power, type of information the sensor is collecting, and possibly

other attributes.
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Next we discuss the self-organization phase.

The role of the self-organization phase is to establish the communication pattern between

a sensor and the members of its proximity set during all activity phases following a self-

organization phase. At the conclusion of the self-organization phase the node with Pid= k

knows the index of the events when it is scheduled to wake-up to receive a message from

one of the sensors which accepted the sensor in its proximity set and then transmit to all

members of its own proximity set. Knowing the index k of the event εk does not mean that

we know the time tk of occurrence of the event. The times tk are random, but all sensors can

determine them, as they share the seeds for the random number generators used to calculate

the times tk.

4.6 Case Study: SFSN - A Scale-free Self-organizing VLSN

The self-organization strategy supported by the SFSN algorithm guarantees that every node

is connected with a limited number of nodes. This means that a sensor σi, 1 ≤ i ≤ N is

able to construct a proximity set, P(σi), of neighboring sensors it communicates with. The

network is scale-free, | P(σi) |≤ µ, regardless of the number N of sensors of the network; σi

maintains a limited amount of state information regarding the sensors in P(σi). For example,

the proximity set of sensor a, P(a), in Figure 4.4 consists of a subset of sensors in the range

of a; a must also be in the range of the sensors in P(a). The quantities µ, M and η, ν, and κ

in Figures 4.1 and 4.4 are constants, selected at the time the network is planned; see Table

4.1 for a summary of notations.

An informal high-level description of the self-organization algorithm follows:

(i) A specially configured node called the sink, initiates the self-organization process at the

time t1 of the first event ε1 and requests to be included in the proximity set of one of the

nodes in its vicinity and assumes a Pid of 1.
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(ii) Multiple sensors receive the request and decide whether to respond or not; if more than

one responds, a Collision Resolution Algorithm (CRA) is used and eventually sensor σi

transmits successfully in the slot triggered by event ε1 and wins the right to transmit at time

t2 of the second event, ε2. Then σi assumes a Pid of 2, includes the sink in its proximity

set, P(2), and records that during the activity phases must wake-up at reciprocal event 1̄ to

receive a transmission from the sink and then transmit at reciprocal event 2̄ to a member of

its own proximity set. At the time of the second event ε2, the role of the sink is played by σi

which sends a request to join the proximity set of one of its neighbors. Eventually, a sensor

σj accepts; then σj assumes a Pid of 3 and includes σi in its proximity set, P(3). Later,

when σj receives another request from σi ∈ P(3) it records only the index of the event in

the EventList corresponding to Pid=2.

(iii) The process continues and eventually the sink responds to a request from a sensor σk

and includes σk in P(1). Recall that the sink has a Pid of 1 and each sensor assumes as Pid

the index of the first event when it sends a request to join a proximity set.

(iv) The self-organization phase ends after κ events and an activity phase starts. During

the activity phase σi wakes up at the time of the events in its EventList to receive from

one of the members of its proximity set and then transmit in the next slot to σj such that

σi ∈ P(σj). At the end of each activity phase the sink reports to an external monitor.

Three types of messages: ReqToJoin (RtJ), ReqToForward (RtF), and AcceptToJoin

(AtJ) are exchanged during the self-organization phase. ReqToJoin expresses the desire of

the sender to join the proximity set of one of its neighbors; ReqToForward signals that no

neighbor is willing to accept the sender to join its proximity set and one of them forwards

the message to others to keep the organization process going. A ReqToForward always

contains the Pid of the originator of a ReqToJoin message, rather than the Pid of the sensor

forwarding the message. An AcceptToJoin is sent in response to a ReqToJoin. Sensor σj

uses two fitness functions to determine how to respond to a successful transmission of a
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ReqToJoin from σi: fj to determine whether it should respond with an AcceptToJoin and

gj to determine whether it should respond with a ReqToForward.

When σi includes in its proximity set a sensor with Pid=Isender it also creates a counter

of events when it has received messages from it, Count(Isender), as well as an event index list

EventList(Isender), of size at most M , Figure 4.4. It follows that the storage requirements for

control information for each sensor are: µ(2+M) integers, Figure 4.4. The self-organization

algorithm followed by sensor σi with proximity set P(σi) and fitness functions fi and gi when

σi observes a successful transmission in the slot of εk from Isender is shown in Algorithm 8.

Occasionally, a sensor receiving a ReqToJoin does not accept the sender as a member of

its proximity set. In the example in Figure 4.5, b responds to a ReqToJoin from a with an

AcceptToJoin; a joins Pb in slot k, then b sends its own ReqToJoin in the first micro-slot of

slot (k+1). After noticing an empty micro-slot in slot (k+1) sensor c which has its proximity

set full, sends a ReqToForward which reaches sensor d; then d sends an AcceptToJoin and b

joins Pd. Next d sends a ReqToJoin in slot (k+2) answered by e and the process continues, d

joins Pe and so on. This strategy allows the self-organization to continue even when sensors

have their proximity sets full.

During an activity phase the sensors carry out their monitoring function and report

partial results. The schedule of events for each sensor, namely the slots when it transmitted

successfully during the self-organization phase is known, and this knowledge allows each

sensor to determine the slots during the activity phase when they have to wake-up to receive

information and then transmit.

The event εk in an activity phase is the reciprocal of the event εk in the self-organization

phase; if sensor σi transmitted in the first micro-slot of slot k during the self-organization

phase then it will be scheduled to wake-up and receive in slot k − 1, where k − 1 = κ − k,

and then transmit in slot k. During the activity phases sensors f, e, d, c, b and a in Figure
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if fi returns True when receiving a message in one of the micro-slots of event k then
if Isender ∈ P(σi) then

if Count(Isender) ≥ M then
if (gi return True) and (no transmission at the first micro-slot of event
k+1) ;
then

broadcast RtF message at the second micro-slot of event k + 1;
end

else
if messageType is RtJ then

Count(Isender) = Count(Isender) + 1;
insert k in EventList(Isender);

end
transmit an AtJ message in the next micro-slot of slot k and follow the
CRA;
if transmission is successful then

add Isender to P(σi), increment Count(Isender), insert k in
EventList(Isender);
broadcast RtJ message at the first micro-slot of event k + 1;

end

end

else if Isender /∈ P(σi) then
if |P (σi)| ≥ µ then

if (gi return True) and (no transmission at the first micro-slot of event
k+1) then

broadcast RtF message at the second micro-slot of event k+1;
end

else
transmit an AtJ message in the next micro-slot of event k and follow the
CRA;
if transmission is successful then

add Isender to P(σi), increment Count(Isender), insert k in
EventList(Isender);
broadcast RtJ message at the first micro-slot of event k + 1;

end

end

end

else if fi returns False when receiving an incoming message then
if (gi return True) and (no transmission at the first micro-slot of event k + 1)
then

broadcast RtF message at the second micro-slot of event k+1;
end

end

Algorithm 8: The self-organization algorithm followed by sensor σi with proximity
set P(σi).
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4.5 transmit in slots k + 5, k + 4, k + 3, k + 2, k + 1 and k respectively and the members of

their respective proximity sets wake-up.

a  sends RtJ

b sends AtJ

b wins CRA

a P(b)

b  sends RtJ

c sends RtF

d sends AtJ

d wins CRA

b P(d)

d wakes-up
g transmits f transmits e transmits c transmits b transmits a transmits

d  sends RtJ

e sends AtJ

e wins CRA

d P(e)

e  sends RtJ

f sends AtJ

f wins CRA

e P(f)

f  sends RtJ

g sends AtJ

g wins CRA

f P(g)

g  sends RtJ

h sends AtJ

h wins CRA

g P(h)

b wakes-up a wakes-upe wakes-upf wakes-up

Figure 4.5: Handling of ReqToForward during the self-organization and activity phases.

The algorithm followed by sensor σi in an activity phase is:

(i) Compute the index of reciprocal events in the EventList for all members of Pi.

(ii) Construct an ordered list of reciprocal events.

(iii) Compute the time of the next event in the ordered list; wake up and receive at that

time. Compute the time of the next event and transmit at that time. Increment the count

of events.

(iv) Repeat the previous step until all reciprocal events have been exhausted.

In the example in Figure 4.5 during the self-organization phase the sensors a, b, c, d, e, f ,

and g transmit in slots k, k+1, k+2, k+3, k+4, and k+5, respectively. During the activity

phases sensors f, e, d, c, b, and a transmit in slots k + 5 = κ−k+4, k + 4 = κ−k+3, k + 3 =

κ−k +2, k + 2 = κ−k +1, k + 1 = κ−k, and k = κ− k− 1, respectively, and the members

of their respective proximity sets wake-up.
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4.7 Case Study: SWAS - A Self-organizing VLSN based on Small-worlds Principles

SWAS, the algorithm introduced in this dissertation shares some ideas with the SAS algo-

rithm [78] and the Self-organizing Medium Access Control for Sensor Networks (SMACS)

[99]. SWAS, SAS and SMACS algorithms first determine the radio connectivity in the net-

work and then assign collision-free channels to the links; all three assume limited mobility.

Unlike the Link Clustering Algorithm in [7] which performs two passes, the first carried over

the entire network to discover neighbors and the second to assign channels to links between

two neighbors, SWAS, SAS and SMACS algorithms assign immediately a channel to a link.

Other similarities: all algorithms assume that nodes are able to turn their radio on and

off; the nodes are able to tune the carrier frequency to different bands and the number of

available bands is quite large.

The major differences between SWAS and SAS algorithms, on one side, and the SMACS,

on the other side are: (i) The nodes of SWAS and SAS networks are anonymous, they do not

have a physical address and they communicates using multiple unidirectional channels; (ii)

For SWAS and SAS the reorganization of the network occurs periodically, while for SMACS

there is only one setup phase followed by a steady-state operation mode; (iii) The virtual

channels assigned during the self-organization phase in SWAS and SAS networks are implicit

and related only to the index of the communication event, the nodes do not exchange a

schedule for communication. In SMACS algorithms the assignation of the channels is explicit,

the carrier frequencies are chosen once and for all and two nodes exchange the schedule of

transmissions for the entire duration of the steady-state operation; (iv) Multiple nodes may

choose to respond to an invitation to transmit during the self-organization phase in SWAS

and SAS and collisions are likely; though collisions may occur during the assignation of the

channel in SMACS, these are rare events; (v) For SWAS and SAS the self-organization phase

proceeds strictly sequentially, thus, the setup phase may take longer. The network setup can
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be done in parallel in SMACS, multiple nodes may initiate the assignment of the channel at

the same time.

The networks topology distinguishes SWAS from SAS algorithms, a Watts-Strogatz graph

for the former and a random graph for the later. In both cases the self-organization algo-

rithms and the Medium Access Control (MAC) algorithm are integrated, but they differ

substantially. The self-organization strategy of SWAS networks guarantees that every node

is connected with a limited number of nodes. A sensor σi, 1 ≤ i ≤ N is able to construct a

proximity set, Pi, of neighbors it communicates with. The network is scale-free, πi =| Pi | is

limited regardless of the number N of sensors in the batch; σi maintains a limited amount

of state information regarding the sensors in Pi.

The SWAS extends the SFSN algorithm by creating the shortcuts between two remote

nodes in order to reduce the average path length and increasing the level of clustering. We

present an informal description of the SWAS algorithm below.

The term event means a communication event, the transmission of a message at the

beginning of a time slot; the event εk occurs at time tk, and marks the beginning of slot k.

If k1 ≤ k2 then εk1 7→ εk2 (εk1 before εk2). The index k of εk is a global pointer into a random

sequence of time slots and carrier frequencies. The evolution in time of the system consists

of several epochs, each one starting with a self-organization (set-up) phase followed by a

number ν of activity (steady-state) phases, each one with κ events. The self-organization

phase consists of a regular topology build-up period with κr events leading to the formation

of a logical ring, including the sink, followed by a small-worlds topology build-up period with

κsw events and κr + κsw = κ.

We can refer to an event by its global index, its index within an epoch, and its index

within a phase. If i is the global index then the epoch index is (i mod η) and phase index

is [(i mod η) mod κ]. If i is the index of an event in the self-organization phase of epoch q,

then its phase index is i, and the global index is (q × η + i). If i is the index of an event in

the r-th activity phase of epoch q then its phase index is (r× κ + i), and the global index is
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Figure 4.6: Self-organization and activity phases. The creation of the regular topology - a
ring during the first sub-phase of self-organizations when µ = 3. The sensor with Pid = k
accepts sensor with Pid=k − 4 to join its proximity set, Pk at the time of the event εk−1.
Then sensor k requests and it is accepted to join the proximity sets of sensors with Pid=
k + 1, k + 2, k + 3 at the time of the events εk, εk+1 and εk+2; finally, at the time of the event
εk+3, sensor k requests and is accepted to join the proximity set of sensor k +4, its successor
in the ring. During the activity phase sensor k receives the communication from the sensor
with Pid=k + 4 in slot εk+3 and from sensors with Pid=k + 3, k + 2, k + 1 in slots εk+2, εk+1,
and εk, respectively, and transmits to the sensor with Pid=k − 4 in slot εk−1.

(q × η + r × κ + i). The reciprocal of event εk occurring during the self-organization phase

is the event εk̄ during an activity phase; the reciprocal index is k̄ = κ − k − 1. Reciprocal

events occur in reverse order, if k1 ≤ k2 then k̄2 ≤ k̄1 and εk̄2
7→ εk̄1

. The ordering of events

is: 1 7→ 2 7→ 3 . . . 7→ κ − 1 7→ κ and κ̄ 7→ κ− 1 7→ . . . 7→ 3̄ 7→ 2̄ 7→ 1̄ during the

self-organization and an activity phase, respectively.
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A sensor can be a cluster head and be connected to the ring, or a member of a cluster,

thus, connected to a cluster head which in turn is connected to the ring. A cluster head is a

member of the proximity sets of all the sensors in its cluster and of its successor in the ring.

During the self-organization phase a sensor assumes a globally unique pseudo-identity

Pid. The Pid is included in every message sent by a sensor during the self-organization

phase and it is available during the activity phase, but not used for now. Initially, the Pid

of every sensor other than the sink, a special sensor with Pid=1, is set to zero. The Pid of

a sensor is set to the index of the slot during the first period of self-organization following

the slot when the sensor has for the first time accepted another sensor in its proximity set.

If Pid = k this means that the sensor has transmitted successfully in slot (k − 1), possibly

after a set of collisions, and accepted a sensor with Pid= k−1 in its proximity set. The Pids

of cluster headers are k = 1 + (µ + 1), . . . , 1 + (i × µ + 1), . . . A cluster head with Pid = k

wins the right to transmit at the beginning of the slots k, k + 1, . . . k + (µ− 1) without any

interference from any other sensor. The sensors which invite sensor k to join their proximity

sets at the time of the events εk, εk+1, . . . , εk+µ−1 assume Pid= k + 1, k + 2, . . . , k + µ and

become members of its cluster; these sensors do not attempt to join the proximity set of

other sensor.

The self-organization phase consists of two periods, the first to form of a clusters and

then a ring of cluster heads and the second to create shortcuts leading to a small-worlds

topology. An informal high-level description of the self-organization algorithm follows: (i) A

specially configured node called the sink with Pid=1, initiates the self-organization process

at the time t1 of the first event ε1, by requesting to be included in the proximity set of one

of the nodes in its vicinity. (ii) Multiple sensors receive the request and decide whether

to respond or not; if more than one responds, a Media Access Control (MAC) is used and

eventually sensor σi transmits successfully in the slot triggered by event ε1 and, wins the

right to transmit at time t2, t3, . . . , tµ+1 of events ε2, ε3, . . . εµ+1. Then σi assumes a Pid=2,

includes the sink in its proximity set, P2. At the time of the events ε2, ε3, . . . , εµ+1, sensor σi
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known from now on by Pid=2, sends requests to join the proximity sets of µ of its neighbors.

In each of these slots eventually, sensors σj1 , σj2 , . . . σjµ accept the invitation, assume Pid

3, 4, . . . 2 + µ and include sensor with Pid=2in their proximity sets, P3,P4, . . .P2+µ. The

sensors σj1 , σj2 , . . . σjµ form a cluster with the sensor Pid=2 as cluster head. They monitor

the formation of the regular network but do not attempt to join the proximity set of any

sensor. Then the sensor with Pid = 2 is included in the proximity set of a sensor which

assumes the Pid = 3 + µ and becomes the next neighbor in the ring as shown in Figure

4.6. Lastly, the sensor with Pid = 2 records that during the activity phases must wake-

up at reciprocal events εµ+2, εµ+1, . . . , ε2̄ to receive a transmissions from the sensors whose

proximity set it joined during the self-organization phase and then transmit to the sink at ε1̄

as seen in Figure 4.6. Then the sensor with Pid= 3 + µ repeats the process and the process

of construction of the ring continues. (iv) Eventually a sensor with Pid close to N , the

number of sensors in the batch, will be accepted by the sink to join its proximity set and the

ring will be closed. Alternatively, the sink which keeps track of the highest Pid of a node

it hears will initiate the closing of the ring. This is not always feasible as the the sensors

joining the network are increasingly further apart from the sink; ultimately this effect not

affect the either the characteristic path length, or the clustering coefficient of the resulting

network. (v) The second period of the self-organization phase starts with event εκr+1. Each

cluster head computes the integer v = d1/pe with p the probability in the Watts-Strogatz

algorithm and for every v × s with s = 1, 2, 3, . . ., successor of the sink in the ring attempts

to create a shortcut at the time of the events εκr+s and requests to join the proximity set of

a sensor as close as possible to one “diametrically” positioned in the ring. To do so a cluster

head with Pid= k keeps updating the Pid of sensors it could hear during the κr events of

the first period of the self-organization phase, aiming to get a Pid as close as possible to

k+N/2 with N the number of sensors in the batch. During this period of self-organization a

node grants immediately the request to join its proximity from another sensor diametrically

positioned in the ring. Since the Pid are allocated sequentially it is likely that the shortcut
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thus constructed will contribute to the reduction of the average path length. Finally, after

κsw events this second period of the self-organization phase finishes. (vi) During the activity

phase a sensor examines an Event List which contains the indexes of events of interest for the

sensor, events when the sensor has to wake up and receive transmissions from the members

of its proximity set and then transmit to the sensors whose proximity sets it belongs to.

4.8 Simulation Studies of Self-organizing Sensor Networks

A review of the paper [35] shows that an analytical evaluation of a CTM algorithm is non-

trivial and that the analysis of the algorithms described in this dissertation poses significant

challenges. We decided to conduct a simulation study and in this section we report on some

of our results. A realistic simulation involves a very large number of sensors, of the order of

105 and a fairly large number of events, of the order 106. Our previous experience shows that

network simulators such as ns − 2 limit the size of the network and the number of events;

neither the time-parallel, nor the space-parallel simulation techniques are always feasible

and the accuracy of results is questionable [111]. Thus, we decided to implement a simple

simulation environment in Java to study the SFSN and the SWAS algorithms.

To generate the distributions of the random variables for the simulation we used the

Java library for stochastic simulation (SSJ). Random variables, such as the density, have a

normal distribution while others, e.g., the ones controlling the placement of the sensors, have

a uniform distribution. We discuss only the results of the simulation for the self-organization

phase; the total number of simulation events is equal to κ. Simulation of multiple activity

phases assuming a certain sensor failure rate will give us some indication of the life-time of

the sensor network and the degradation in time of the ability of sensors to provide accurate

information for the entire area covered by the sensor network.

We now discuss the simulation setup and the first issue we address is the placement of

the sensors. We consider an area of size (qa) × (qa), consisting of q2 elementary squares,
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Sij, 1 ≤ i, j ≤ q of size a× a with q and a integers, q of the order of 101 and a of the order

100. The density of sensors has a normal distribution with the mean of ρ and a standard

deviation θ. The sensors are placed in individual squares according to the normal distribution

mentioned above; the local coordinates xk, yk of sensor σk placed in the square Sij are random

variables uniformly distributed in the range 0 ≤ xk, yk ≤ a; the global coordinates of this

sensor are Xk = xk + (i − 1)a and Yk = yk + (j − 1)a. The total number of sensors in an

elementary square is Ns ≈ ρ×a2, so the total number of sensors is N ≈ Ns×q2 = ρ×a2×q2.

The average transmission range of a sensor is γ. The average number of sensors able

to receive a transmission from a centrally located sensor is ζ = π × γ2 × ρ; this number

is reduced for sensors whose global coordinates satisfy the inequalities: Xk or Yk < γ, or

Xk + γ or Yk + γ > qa. In our simulation the average density of the sensors ranges from

ρ = 0.9× 103 to 1.2× 103 per elementary square and the standard deviation is θ = 50. We

set a = 1 and q = 10 in our experiments, so the total number of sensors varies from about

N ≈ 0.9×105 when ρ = 0.9×103 to N ≈ 1.2×105 when ρ = 1.2×103. In our simulation the

probability of splitting for the MAC algorithm is p = 0.5. The probability that the fitness

function of a sensor returns “true” is 0.9.

4.8.1 Simulation Study of the SFSN Algorithm

The algorithm for self-organization does not guarantee that every sensor will be a node in

the random graph constructed during the self-organization phase, nor does it guarantee that

each node included in this random graph will be connected with precisely µ other nodes.

Sensors whose actual cardinality of the proximity set is equal to zero are isolated; the sensors

σi such that | P(σi) |<< µ may not be able to have their information disseminated in the

presence of sensor failures. Therefore, an objective of the simulation study is to construct a

histogram of the cardinality of proximity sets of all sensors at the end of the self-organization

phase.
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A fair number of parameters affect the system; among them we note the transmission

range, γ, the average density of the sensors, ρ, and the maximum cardinality of the proximity

set µ.

Figures 4.7 (a), (c), and (e) show the effect of γ, the transmission range, on µactual, the

actual number of sensors in the proximity set, when µ = 10. As the number of events

increases from 0.5 × 106 to 1.0 × 106 and then to 1.5 × 106 the percentage of sensors that

are isolated (µactual = 0) decreases from (3− 5)% to zero. At the same time, the percentage

of sensors able to fill out their proximity set to the maximum value, µ = 10, increases from

(8 − 12)% to (55 − 60)%. The histograms show that when γ is in the range 0.09a − 0.12a

then only a small fraction of 1% percent of the sensors are isolated and very few of them

have a proximity set with 2 or fewer sensors, regardless of the transmission range. A small

variation of the transmission range does not affect the random graph constructed as a result

of the self-organization phase in any significant way provided that the number of events κ

is at least one order of magnitude larger than the number of sensors. This shows that the

algorithm is robust, it is able to accommodate the reduction of the transmission range due

to depletion of power reserves of individual sensors. Figures 4.7 (b), (d), and (e) show the

effect of the maximum cardinality of the proximity set on the actual number of sensors in

the proximity set. As the number of events increases from 0.5× 106 to 1.0× 106 and then to

1.5×106 a larger percentage of sensors are able to fill up their proximity sets. The histograms

show that for µ = 4, the fraction of sensors able to fill-up their proximity set increases from

about 60% to 85%; when µ = 6 the fraction increases from about 38% to about 80% and

when µ = 10 the fraction increases from about 10% to about 52%.

From the results in Figures 4.7 we conclude that the number of events in the simulation

should be at least one order of magnitude larger than the number of sensors. Of course, even

in our relatively simple and efficient simulation environment a simulation covering more

that 1.5 × 106 events is computationally expensive. We have to balance the accuracy of
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Figure 4.7: The effect of the transmission range (γ) and of the maximum cardinality of the
proximity set (µ) on the actual number of sensors in the proximity set (µactual). N ≈ 105 and
ρ = 1× 103. The number of events per phase is: κ = 0.5× 106 in (a) and (b), κ = 1.0× 106

in (c) and (d), and κ = 1.5 × 106 in (e) and (f). The histograms in (a), (c), and (e) show
the effect of γ with γ = 0.09a, 0.1a, 0.11a, 0.12a. The histograms in (b), (d), and (e) show
the effect of µ when the average transmission range is γ = 0.09a and µ = 4, 6, 8, 10.
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the simulation results and the simulation cost and have decided to limit our experiments to

1.5× 106 events.

Figure 4.8: Histograms showing the effect of the average sensor density (ρ) upon the actual
number of sensors in the proximity set (µactual) for (a) κ = 1.0× 106 and (b) κ = 1.5× 106.
The maximum cardinality of the proximity set is set to µ = 10 and the transmission range
is set to γ = 0.09a. The average density is ρ = (0.9, 1.0, 1.1, 1.2)× 103. The total number of
sensors is in the range N ≈ 0.9× 105 − 1.2× 105.

The effect of the average sensor density on the actual number of sensors in the proximity

set is presented in Figures 4.8 (a) when κ = 1.0×106 and (b) when κ = 1.5×106. We observe

that the density affects µactual. Indeed, when κ = 1.0 × 106 then the percentage of sensors

with µactual = 10 ranges from a low of about 35% for ρ = 1.2× 103 to a high of about 55%

for ρ = 0.9× 103. When κ = 1.5× 106 the range is slightly smaller: 42% to 55%. Increasing

the average density from 0.9 × 103 to 1.2 × 103 causes the average number of sensors that

could potentially respond to an RtJ to increase by almost 40%, from an average of 26 to 35.

Of course, as the algorithm progresses many sensors do not respond to an RtJ due to the

limitations imposed by µ and M .

Another interesting question is the distribution of the reciprocal events recorded by in-

dividual sensors; these events control the time during the activity phase when each sensor

wakes up to receive communication from the sensors which have included the sensor in their
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Figure 4.9: Histogram showing the distribution of the reciprocal event indices which control
the time during the activity phase when each sensor wakes up to receive communication and
then transmits.

proximity sets and then transmits to the sensors in their own proximity set. In our simu-

lation we consider 105 sensors and 1.5 × 106 events and experiment with several values for

the maximum size of the proximity set, µ = 2, 4, 6, 8, 10. The events are grouped into 10

bins and we record the percentage of the reciprocal events in each bin. The graph in Figure

4.9 shows that a larger size of the proximity set provides a more uniform distribution of the

reciprocal events during the activity phase. For example, when µ = 10 then the distribution

of the indices of the reciprocal events is: 13% in the range 1 − 150, 000; 12% in the range

150, 001−300, 000; 12% in the range 300, 001−450, 000; 12% in the range 450, 001−600, 000;

11.5% in the range 600, 001 − 750, 000; 10.0% in the range 750, 001 − 900, 000; 8% in the

range 900, 001 − 1, 050, 000; 7.5% in the range 1, 050, 001 − 1, 200, 000; 6.5% in the range

1, 200, 001− 1, 350, 000; and 5% in the range 1, 350, 001− 1, 500, 000.

4.8.2 Simulation Study of the SWAS Algorithm

Call n ≤ N the Pid of the last node connected to sensor network, be it cluster head or a

member of cluster. If that the actual placement of the sensors allows each cluster head to

have precisely µ sensors in its cluster, then the size of a cluster including the cluster head
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(the node in the ring) is µ + 1. Then nr, total number of nodes in the ring proper and n0,

the total number of nodes connected to the nodes in the ring proper are respectively:

nr =
n

µ + 1
and no = n− nr = n

µ

µ + 1
.

The coverage of the algorithm is defined as the ratio of sensors connected to the network

to the total number of sensors c = n/N . The characteristic path length Lp is defined as

the number of edges in the shortest path between two sensors in the directional logical ring

constructed, averaged over all pairs of sensors connected to the network. The clustering

coefficient Cp is computed as the average node degree over all sensors N .

We now discuss the simulation setup and the first issue we address is the placement of

the sensors. We consider an area of size (qa) × (qa), consisting of q2 elementary squares,

Sij, 1 ≤ i, j ≤ q of size a × a with q and a integers, q of the order of 101 and a of the

order 100. The density of sensors has a normal distribution with the mean of ρ = 0.5 and a

standard deviation θ. The sensors are placed in individual squares according to this normal

distribution; the local coordinates xk, yk of sensor σk placed in the square Sij are random

variables uniformly distributed in the range 0 ≤ xk, yk ≤ a; the global coordinates of this

sensor are Xk = xk + (i − 1)a and Yk = yk + (j − 1)a. The total number of sensors in an

elementary square is Ns ≈ ρ × a2. The average transmission range of a sensor is γ. The

average number of sensors able to receive a transmission from a centrally located sensor is

ζ = π × γ2 × ρ; this number is reduced for sensors whose global coordinates satisfy the

inequalities: Xk or Yk < γ, or Xk + γ or Yk + γ > qa. In our simulation we set a = 1 and

q = 10; the average density of the sensors is ρ = 104 per elementary square and the total

number of sensors is N = 106. The probability of splitting for the splitting algorithm is

ps = 0.5. The probability that the fitness function of a sensor returns the value “true” is 0.9.

The simulation discussed in this dissertation covers only the self-organization phase; the

total number of events covered is κ = 2 × 106. Indeed, the formation of the ring requires
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a number of events equal to the total number of sensors and then only a fraction of cluster

heads on the ring attempt to create shortcuts. During the first period of the self-organization

phase the algorithm leads to the creation of a ring connecting the cluster heads. Each cluster

head σi has attached to it µ sensors in the cluster Ci; during the activity phase the cluster

head collects information from the sensors in its cluster.

A first question answered by our simulation study regards the coverage of the algorithm.

Figure 4.10 shows the percentage of sensors covered function of the transmission range and

function of the cluster size. The transmission rage is measured relative to the size of the

elementary squares used for the random placement of sensors; for example, a range of 0.2

means that the transmission range of a sensor is γ = 0.2a where a2 is the area of an

elementary rectangle. When the cluster size is µ + 1 = 20 and the transmission range is

γ = 0.4a, 98% of the sensors are connected to the network; when the transmission range is

reduced to half of its original value, namely to γ = 0.2a, then this ratio decreases to 85%

thus, the ability of the algorithm to cover a large percentage of the sensors is resilient to

changes in the transmission range. The transmission range could decrease in time as the

power reserves of the sensors are depleted; the results summarized in Figure 4.10 (Top) give

us confidence that the sensor network constructed using the SWAS algorithm satisfies one

of the desiderates of a VLSN, to be operational over long periods of time.

We are also interested in the effect of the cluster size upon coverage. We assume a

transmission range γ = 0.3a and allow cluster size to increase five fold from 20 to 100;

under these conditions the coverage decreases from 94% to 75%, Figure 4.10 (Bottom). This

somewhat surprising effect is due to the fact that there is a limited number of sensors in

the vicinity of a cluster head σi; once they are included in the cluster Ci, there are fewer

candidates to become cluster heads and join the ring. Increasing the sensor density above

the current value of ρ = 104 per elementary square will most likely counter this undesirable

effect. Yet, increasing the sensor density will lead to an increase of the number of collisions

during the first period of the self-organization phase, the formation of ring.
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Figure 4.10: Fraction of sensors connected to VLSN function of: (Top) the transmission
range, γ when the size of individual clusters is µ = 20; (Bottom) the cluster size when the
transmission range is γ = 0.3a. 95% confidence interval is shown.

Figure 4.11: The number of shortcuts function of: (Top) the transmission range γ when the
size of individual clusters is µ = 20; (Bottom) the cluster size when the transmission range
is γ = 0.3a. 95% confidence interval is shown.

To create a shortcut the sensor σi with Pid= k ≤ N/2 attempts to connect to a node

diametrically located in the ring. The sensor searches for a partner among the sensors with a

Pid in the range k+0.9×N/2 to k+1.1×N/2. To do so the sensor with Pid= k monitors the

transmissions of nodes in the target range and records the Pid of the the first sensor in this

range whose transmissions it can hear; then improves on its choice if the physical placement of

subsequent sensors in this range permits. First, we assume that every cluster head attempts

to create a shortcut, s = dpe = 1. Some fail to reach a node “diametrically” positioned in

the logical ring and, as we shall see shortly, less than half of the cluster heads are successful.
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We study the evolution of the number of shortcuts function of the transmission range for

a given cluster size, µ = 20 and function of the cluster size when the transmission range is

fixed, γ = 0.3a; Figure 4.11 summarizes our findings. As expected, when the transmission

range increases in the range 0.15a ≤ γ ≤ 0.4a the number of shortcuts increases from about

3, 500 to more than 23, 000, Figure 4.11 (Top). The cluster size has a significant effect upon

the number of shortcuts as the number of cluster heads decreases, Figure 4.11 (Bottom).

When µ = 20 there are roughly 850, 000/20 = 42, 500 clusters and we have some 18, 000

shortcuts. For µ = 100 there are roughly 750, 000/100 = 3, 750 clusters and there are about

1, 000 shortcuts.

Figure 4.12: Relative improvement of the characteristic path length due to the shortcuts
function of: (Top) the transmission range γ when the size of individual clusters is µ = 20;
(Bottom) the cluster size when the transmission range is γ = 0.3a. 95% confidence interval
is shown.

An important argument in favor of the small-worlds topologies is the reduction of the

characteristic path length. Figure 4.12 shows the improvement of the characteristic path

length L function of the transmission range and function of the cluster size. We see a

reduction of about 37.5% of the characteristic path length over the interval 0.15a ≤ γ ≤ 0.4a

of transmission range values, Figure 4.12 (Top). This result is encouraging and shows that

the algorithm is robust in terms of its ability to reduce the characteristic path length when

the power reserves are depleted and the transmission range shrinks.
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The effect of the cluster size upon the characteristic path length when the transmission

rage is γ = 0.3a is presented in Figure 4.12 (Bottom). When the cluster size increases five-

fold from µ = 20 to µ = 100 we notice a slight reduction of the improvement from about

37.5 when µ = 20 to about 34.6% for µ = 100. We conclude that the algorithm allows us

to extend the cluster size without a substantial penalty in the average characteristic path

length.

The clustering coefficient C(p) is only slightly affected by the creation of shortcuts. The

clustering coefficient increases by about 0.75% when the transmission range is γ = 0.25a;

it increase by 2.5% when γ = 0.5a. When γ = 0.3a and the cluster size is in the range

20 ≤ µ ≤ 100 the clustering coefficient increases due to addition of shortcuts by about 1.5%.

Another goal of our preliminary investigation of the algorithm is to study Lp and Cp for

0 ≤ p ≤ 1. As noted earlier, a cluster head may or may not be able to identify a target to

a shortcut subject to conditions which guarantee a range of distance between the two Pids.

Rather than allowing each cluster head to attempt to create a shortcut with probability p, we

define a shortcut index s; when s = 1, then every cluster head attempts to create a shortcut;

when s = 2 every other cluster head attempts to create a shortcut, and so on. Figure

4.13 shows the effect of this selection process when s = 4, 8, 16, 32, 64, 256, 512, 1024, 2048.

Surprisingly, the improvement of characteristic path length does not fall below 35% when

s < 512, Figure 4.13 (Top). The effect upon the clustering coefficient is negligible, Figure

4.13 (Bottom).

4.9 Conclusions

Self-organization is a trait of adaptive systems with limited resources, it ensures scalability

and confers the ability to survive. The SFSN algorithm supports free-scale, self-organizing

sensor networks. It supports reorganization at discrete moments of time controlled by a

random sequence of events. This primitive form of self-organization is more suitable for
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Figure 4.13: (Top) Relative improvement of the characteristic path length; (Bottom) Rela-
tive change of the clustering coefficient due to the shortcuts function of the shortcut index
s. The size of individual clusters is µ = 20 and the transmission range is γ = 0.3a. 95%
confidence interval is shown.

low-cost devices with limited power and storage capacity than a continuous self-organization

scheme that requires a fair amount of state and past history information [76].

During a self-organization phase the SFSN algorithm constructs a random graph con-

necting a sensor with a bounded number of other sensors. Each sensor σ builds a proximity

set, Pσ, with at most µ members. For each member of the proximity set sensor σ stores at

most M event indices; these events are used during the following activity phases to determine

when sensor σ should wake up to transmit and receive information from the members of Pσ.

Even though all sensors use the same “wake-up to receive and then transmit” pattern during

all activity phases, the actual times and frequencies used for communication are driven by

the random number generators, thus are unpredictable for an external observer.

The construction of the proximity sets of bounded cardinality, Pσ ≤ µ, is a challenging

task because the sensors are anonymous. We use the collision resolution algorithm to at-

tribute a unique Pseudo-Id (Pid) to each sensor and thus limit the number of sensors in a

proximity set; this Pid plays no role during the activity phase when sensors are only aware

of the indices of the slots when they are expected to wake up and either send or receive

a message. The communication schedule followed by all sensors prevents collisions during

the activity phases and minimizes the time when the sensors use their RF sub-system to
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send or receive messages; thus, it minimizes the power consumption of individual sensors

and extends the lifetime of the sensor network. The system provides information assurance

with minimal power consumption and avoids expensive encryption/decryption techniques

discussed in the literature; the time and the frequency used for communication are random

numbers and no external entity can either join in, or predict the time when the sensors in

the set will transmit and attempt to interfere with the transmissions.

The algorithm for self-organization does not guarantee that all sensors will be included in

the random graph, or that each sensor will be actually connected with µ other sensors. Yet

our simulation results are encouraging; a small fraction of sensors are isolated, while a very

large fraction of them are able to fill out their proximity sets. The fact that the density does

not have a significant effect upon the system is encouraging, it leads us to believe that the

system is rather resilient to failure. Indeed, reducing the sensor density approximates sensor

failures to some extent. Also the histogram of the actual number of sensors in the proximity

set shows that a small variation of the transmission range does not affect the random graph

constructed as a result of the self-organization phase in any significant way; this shows that

the algorithm is robust, it is able to accommodate the reduction of the transmission range

due to depletion of power reserves of individual sensors.

Our simulation results also show that a larger size of the proximity set provides a more

uniform distribution of the reciprocal events during the activity phase. A simulation similar

to the one reported in this dissertation is always necessary to determine the number of

events in an epoch prior to the actual deployment. Based upon these results we conclude

that our algorithm has some advantages over more traditional schemes for organization of

sensor networks.

With SFSN algorithm, we further develop the SWAS algorithm. The SWAS algorithm

allows us to create sensor networks with a topology approximating small-worlds networks.

The networks are not in danger to be disconnected when a sensor fails, have a relatively

short average path length, communicate optimally (in other words establish collision-free
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communication channels); the algorithm constructs a schedule that minimizes the time when

each sensor has to wake up and transmit or receive while the sensors maintain a very limited

amount of information.

During the self-organization phase the sensors form clusters and the cluster heads are

interconnected into a regular topology, a directed graph rooted at the sink; then, to con-

struct a small worlds network a cluster head creates a shortcut to a diametrically located

cluster head. Simulation results show that a very large fraction of all sensors (in some cases

97%) are able to join the VLSN and this fraction is affected by the cluster size and by the

transmission range The number of shortcuts increases with the transmission range and de-

creases substantially when the cluster size increases. The algorithm supports a substantial

reduction of the characteristic path length.
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CHAPTER 5: SUMMARY AND FUTURE WORK

Distributed resource management is the key to deploying the computing efforts in a large-

scale distributed environment. Effective resource management strategies and algorithms

ensure Quality of Service (QoS) and scalability. In this dissertation, we focus on multiple

levels of effective resource management techniques.

We first consider a classical resource management problem, namely the scheduling of

data-intensive applications. The throughput of computation and the execution time of the

data-intensive applications can be greatly improved by allocating the workload to multiple

computing resources for parallel processing. A large-scale distributed computing platform,

such as the Grid, characterized by the heterogeneity of the computation resources, high vari-

ability of resource availability, expensive data transfer cost, and high coordination overhead

poses great challenges on scheduling a divisible load task consisting of multiple interdepen-

dent task instances.

We define the Divisible Load Scheduling (DLS) problem, introduce the optimal divisible

load scheduling and the related fault-tolerant coordination algorithms suitable for the data-

intensive applications with divisible load. The divisible load scheduling model discussed in

this dissertation is based on the assumption that data staging and all communication with the

sites can be done in parallel, as opposed to the one-port model where data staging is strictly

sequential. We define four performance evaluators: the available time, the execution rate,

the duty cycle, and the data transfer rate, to characterize the heterogeneity of the computing

resources. Different data staging strategies are discussed and the DLS algorithms for each of

them are presented with the proof of the optimality of the solution. The DLS algorithms we

introduced exploit parallel communication, consider realistic scenarios regarding the time

when target systems are available, and generate optimal schedules. Performance studies

show that these algorithms perform better than divisible load scheduling algorithms based

upon sequential communication.
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We note that while the DLS algorithms discussed in this dissertation are optimal, they

require information that is rarely accurate. Indeed, neither the available time and duty cycle,

nor the execution rate of a program on a specific target system, or the data transfer rate,

can be determined with high accuracy. An effective strategy to improve the accuracy of the

estimation of the resource parameters is to exploit the feature of the PDS model. After each

pipeline stage, the processing rate, duty cycle and data transfer rate on each restricted target

system can be updated based on practical measurement and the FLX-PDS algorithm is run

again on the restricted target systems set to generate a new data partition. This parameter

update process can happen after each pipeline stage or after every several pipeline stages

which provides the “self-adaptation” capability for the DLS. The future work also involves

designing a system to automatically monitor the resource status and record post-mortem

data about individual executions. An analysis of these history records will allow us to better

estimate the performance evaluators for each target system.

On a higher level, the method of organizing and managing the large amount of computing

resources over the computing network to reduce the resource consumption and improve the

quality of service is another concern of this dissertation.

We have developed a model of self-organization for a complex computation and communi-

cation system inspired by biological metaphors that uses the concept of varying energy levels

to express activity and goal satisfaction. It is assumed that intentionality expressed at the

application level would be mapped to these energy values and manipulated by the actions of

genes. These genes, in turn, capture the system characteristics and express behavior. The

system was simulated and experiments that were explicitly compared to specific application

domains were performed. The self-organization property was verified. Although promising,

these results are preliminary and further studies are needed to draw general conclusions.

Here, we did not consider reorganization, which is a critical aspect of the life-cycle of

entities. In that scenario, entities that do not perform well as measured by our success
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metric should stop their activities, recharge their active material and then attempt to form

and/or to join new or existing organizations.

The model introduced seems to provide enough flexibility to allow us to consider conflict-

ing common, class, and individual goals but requires fine tuning and more testing before we

can assess its applicability to other application areas. A practical example of a conflicting

goal is when the common goal aims to reduce the carbon footprint, the class goal is to achieve

a certain level of QoS (e.g., to meet the deadlines, the class goal of producers is to maximize

their benefits), and the entity specific goal is to improve its effective kinetic to kinetic energy

ratio.

The future work includes extending the simulation results and considering different sets

of parameters. To encoding application intentionality as part of the model is a vast area

that also requires attention.

The self-organization model for complex computing and communication systems is further

applied to Very Large Sensor Networks (VLSNs). An algorithm for self-organization of

anonymous sensor nodes called SFSN (Scale-free Sensor Networks) is introduced.

The SFSN algorithm is designed for VLSNs consisting of a fairly large number of inex-

pensive sensors with limited resources yet, expected to function over prolonged periods of

time. An important feature of the algorithm is the ability to interconnect sensors without an

identity, or physical address used by traditional communication and coordination protocols.

The role of the self-organization phase is to create collision-free communication channels

allowing a sensor to synchronously forward information to the members of its proximity set

during the activity phases that follow. The self-organization phase is started by a sink node

which requests to join the proximity set of one of its neighbors.

The SFSN ensures the scalability, the number of sensors each sensor communicates with

and the amount of state information each node has to maintain are strictly limited regardless

of the total number of sensors in the network; a node in the random graph showing the

system’s connectivity is linked with at most a pre-determined number of nodes, thus the
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system is scale-free. This scheme limits the amount of communication and the complexity

of coordination.

With SFSN, we further introduce the SWAS (Small-Worlds of Anonymous Sensors) algo-

rithm. The SWAS algorithm introduced in this dissertation is unique in its ability to create a

sensor network with a topology approximating small-worlds networks. Rather than creating

shortcuts between pairs of diametrically positioned nodes in a logical ring we end up with

something resembling a double-stranded DNA. Experiments show that the characteristic

path length and the clustering coefficient are not affected when the actual placement of the

sensors does not allow the closing of the ring which supports unidirectional communication

during the activity phase.

A major problem of the algorithm is the serial nature of the process to construct the

ring of clusters. We now investigate a version of the algorithm to speed-up the process; in

this version the establishment of a cluster is done as a result of a single collision resolution

interval (CRI) that starts with the cluster head requesting to be accepted as a member of

the proximity set of another sensor. A new strategy to attribute Pids to sensors must be

considered; cluster heads could then get consecutive Pids and cluster members will get a

local Pid based upon the order they succeed to transmit during the CRI. Then, during the

activity phase, all members of a cluster could report either sequentially, when the cluster

head is allocated one slot to collect information, or in parallel, using multiple frequency

channels if the hardware permits.
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[111] G. Wang, D. Turgut, L. Bölöni, and D.C. Marinescu. Time-parallel Simulation of

Wireless Adhoc Networks with Compressed History. Journal of Parallel and Distributed

Computing (JPDC), Vol.69, No.2, pp.168–179, 2008.
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