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ABSTRACT

We are seeing an extensive proliferation of wireless devices including various types and

forms of sensor nodes that are increasingly becoming ingrained in our daily lives. There

has been a significant growth in wireless devices capabilities as well. This proliferation

and rapid growth of wireless devices and their capabilities has led to the development of

many distributed sensing and computing applications. In this dissertation, we propose

and evaluate novel, efficient approaches for localization and computation offloading that

harness distributed sensing and computing in wireless networks. In a significant part

of this dissertation, we exploit distributed sensing to create efficient localization applica-

tions. First, using the sensing power of a set of Radio frequency (RF) sensors, we propose

energy efficient approaches for target tracking application. Second, leveraging the sensing

power of a distributed set of existing wireless devices, e.g., smartphones, internet-of-things

devices, laptops, and modems, etc., we propose a novel approach to locate spectrum

offenders. Third, we build efficient sampling approaches to select mobile sensing devices

required for spectrum offenders localization. We also enhance our sampling approaches to

take into account selfish behaviors of mobile devices. Finally, we investigate an attack on

location privacy where the location of people moving inside a private area can be inferred

using the radio characteristics of wireless links that are leaked by legitimate transmitters

deployed inside the private area, and develop the first solution to mitigate this attack.

While we focus on harnessing distributed sensing for localization in a big part of this

dissertation, in the remaining part of this dissertation, we harness the computing power

of nearby wireless devices for a computation offloading application. Specially, we propose

a multidimensional auction for allocating the tasks of a job among nearby mobile devices

based on their computational capabilities and also the cost of computation at these devices

with the goal of reducing the overall job completion time and being beneficial to all the

parties involved.
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CHAPTER 1

INTRODUCTION

We are seeing an extensive proliferation of wireless devices including various types and

forms of sensor nodes that are increasingly becoming ingrained in our daily lives. Wireless

devices keep growing in sales and this growth in sales is expected to continue in the future.

Furthermore, various advances in technology are making these devices powerful tools

capable of performing complex tasks.

The ever-increasing popularity of wireless devices has created a great opportunity

for distributed sensing. Distributed sensing tries to harness pervasive wireless devices

for collecting sensing data and utilizing the collected data to provide information about

people and their surroundings. It has many applications including environment moni-

toring, and health-care, among others. In this dissertation, we exploit distributed sensing

to create novel efficient localization applications. First, we use the sensing power of a

set of Radio frequency (RF) sensors and propose energy efficient localization approaches

to track people and objects without requiring them to carry any wireless devices. Sec-

ond, leveraging the sensing power of a distributed set of existing wireless devices (e.g.,

smartphones, internet-of-things devices, laptops, and modems, etc.) we propose a novel

approach to locate spectrum offenders. Third, we build efficient sampling approaches

to select mobile sensing devices required for spectrum offenders localization. We also

enhance our sampling approaches to take into account selfish behaviors of mobile devices.

Our goal is to select a set of wireless devices that provides maximum coverage for the

monitored area considering mobility of both the sensing and the offending devices as

well as selfish behaviors in a timely manner. Apart from the above benefits, distributed

sensing in wireless networks can lead to invasion of privacy. In this dissertation, we also

investigate an attack on location privacy where the location of people moving inside a

private area can be inferred using the radio characteristics of wireless links that are leaked
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by legitimate transmitters deployed inside the private area, and develop the first solution

to mitigate this attack.

The proliferation and rapid growth of wireless devices and their capabilities also have

created a huge opportunity to harness the computing power of nearby wireless devices for

computation offloading. In this dissertation, we propose a multidimensional auction for

allocating the tasks of a job among nearby mobile devices based on their computational

capabilities and also the cost of computation at these devices with the goal of reducing the

overall job completion time to the benefit of all the parties involved.

1.1 Energy Efficient Target Tracking Application
Radio tomographic imaging (RTI) is an emerging technology that harnesses the sensing

capability of a distributed set of RF sensors to track people and objects without requiring

them to carry any wireless transmit or receive devices [1]. Moving people and objects

can be located based on the changes they cause in the received signal strength (RSS) of

the radio links they perturb between transmit and receive sensor nodes. This ”device-

free” localization of physical objects has several applications including surveillance, rescue

operations, and residential monitoring [2]. One critical issue which has been neglected

in existing RTI approaches is energy efficiency. RTI has primarily focused on location

accuracy and assumed that sensors are connected to wall power sockets or their batteries

can be recharged often. When deploying RTI in outdoor settings where wall power is not

an option, saving energy of sensor nodes becomes a key requirement. It might not be easy

to recharge sensor nodes after deploying them. Even in indoor environments, wall power

might not always be available. Therefore, it is desirable to reduce the energy consumption

of RTI sensor nodes as much as possible to prolong the lifetime of the RF sensor network.

In this dissertation, our goal is to develop approaches to reduce the energy consumption

in RTI methods without giving up accuracy.

We develop energy efficient target tracking methods that essentially limit the number

of radio links that we must measure at any given time thereby allowing us to deactivate

a large number of transceivers and hence save energy on these nodes. Our key idea is to

only measure those links that are near the current location of the moving object. In order

to find the effective links near to the current location of the moving object, we propose two



3

approaches. In our first approach, we only consider links that are in an ellipse around the

velocity vector from the current location of the moving object. In our second approach, we

only consider links that cross through a circle with radius r from the current position of the

moving object. Thus, rather than creating an attenuation image of the whole area in RTI,

we only create the attenuation image for effective links in a small area close to the current

location of the moving object. We also develop an adaptive algorithm for determining r.

We evaluate the proposed approaches in terms of energy consumption and localization

error in three different test areas: an open indoor area, a cluttered office, and the aisles

of the University of Utah campus bookstore. Our experimental results show that using

our approach, we are able to save 50% to 80% of energy. Interestingly, we find that our

radius-based approach actually increases the accuracy of localization.

1.2 Simultaneous Power-Based Localization of Transmitters for
Crowdsourced Spectrum Monitoring

RTI works with a small number of sensors in a limited environment. However, there are

newer paradigms such as crowdsourced sensing that take advantage of the pervasive wire-

less devices to collect and evaluate data beyond the scale of what was previously possible.

We envision a novel and scalable approach that crowdsources the sensing and localization

for a very important problem: that of detecting and localizing spectrum violators. We

assume a distributed set of wireless devices, e.g., smartphones, RF sensor nodes, laptops,

access points and modems, etc., will participate by sensing the use of different bands of

the spectrum over time and space and sharing their measurements with a detection and

localization module in a (cloud) server, as shown in Figure 1.1. This module requests and

collects spectrum usage information from a variety of sensors. It compares the spectrum

usage with the allowed spectrum usage information (spectrum policies and regulations,

frequency bands, locations, etc.) available in a database to determine and locate spec-

trum offenders. This spectrum usage database is akin to the whitespace database (e.g.,

an FCC-approved database that contains information on available whitespaces and their

locations).

Towards the fulfillment of this vision, in this dissertation, we focus on crowdsourced

localization of spectrum offenders. Due to privacy concerns and bandwidth and energy
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constraints, it is undesirable for mobile sensing devices to share raw signal samples with a

central server, and hence, in our work, devices collect only received power measurement.

Our mobile sensing devices do not decode any signals. A key challenge in localizing spec-

trum offenders is that of simultaneous localization of multiple transmitters.1 We develop

a simple yet efficient and accurate approach that simultaneously localizes multiple trans-

mitters using the power of sum of all signals received at the selected wireless devices. Our

localization approach relies on the fact that, even when multiple transmissions overlap,

typically the vast majority of power received by a receiver is from the nearest transmitter.

Therefore, by finding local maxima in the spatially distributed RSS measurements, we can

approximate the region of presence of each transmitter. We can then convert the problem

of simultaneous multiple transmitter localization to a set of single transmitter localization

problems and use a matrix inversion approach to find the location of each transmitter.

We experimentally evaluate our approach in two different settings: 1) an open envi-

ronment with nonuniformly distributed receivers in the Orbit testbed [3] using USRP2

nodes for transmitting and receiving signals, and 2) a cluttered office with 44 uniformly

distributed sensors [4]. Our experimental results show that using SPLOT we are able to

localize multiple transmitters with high accuracy and in a timely manner. The highest

average localization error using SPLOT measured in the open environment is 1.16 meters

for up to 4 simultaneously transmitting transmitters, and the highest average localization

error in the cluttered office with mobile transceivers is 2.14 meters. In comparison, the

highest average localization error in Quasi EM measured in the open environment is above

6 meters. Our results also show that SPLOT is tens of minutes faster than Quasi EM. We

also implement SPLOT on commodity devices and perform multitransmitter localization

in a variety of indoor and outdoor experiments. We find SPLOT to significantly outper-

form Quasi EM in these settings as well.

1.3 Sampling for Crowdsourced Spectrum Monitoring
An important aspect of offender localization is the task of selecting a set of mobile

sensing devices for RSS measurements. We build efficient sampling approaches to select

1For instance, a malware-based attack could simultaneously cause many devices to violate rules or jam the
spectrum.
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mobile sensing devices required for RSS measurements. Our goal is to select a set of

wireless devices that provides maximum coverage for the monitored area considering

mobility of both the sensing and the offending devices. We define and use a new metric

called degree expansion, and propose two sampling approaches: 1) Greedy sampling and 2)

Metropolis sampling. We also make our sampling efficient for handling mobility by using

the information from the previous sampling interval in the current sampling interval and

providing an adaptive approach to determine the number of required sensing devices in

each sampling interval. Next, we enhance our sampling approach to incentivize mobile

users such that we select nodes that maximize coverage but minimize the total payoff.

Furthermore, our incentive mechanisms motivate mobile sensing devices to act truthfully.

Our truthful sampling considers both the budget limit and mobility of mobile sensing de-

vices.

There are a great number of works that have focused on selecting a set of sensor nodes

to provide the maximum coverage in wireless sensor networks (WSNs) (e.g., [5–7]). There

are also a few existing works that consider both incentive and the coverage problem [8–

10]. However, unlike our work, none of these existing works consider mobility, truthful-

ness, and coverage problem all together. [11] tries to maximize the expected coverage for

long-term participation that does not apply to mobile environments where mobile sensing

devices can be too temporary.

We evaluate the impact of our proposed sampling approaches on the localization accu-

racy and show how we can maintain the localization accuracy by using a suitable sampling

approach to select mobile sensing devices among all available mobile sensing devices. We

also compare our sampling approaches in terms of coverage and efficiency of implementa-

tion with existing well known sensor sampling approaches; our evaluations demonstrate

the efficiency of our approach.

1.4 Preserving Location Privacy
The distributed sensing in wireless networks also leads to invasion of privacy. In this

dissertation, we investigate defense mechanisms against attacks where person location

can be inferred using the radio characteristics of wireless links (e.g., the received signal

strength, RSS, of wireless links). In these attacks, a person or a group has one or more
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wireless devices (wireless access points/sensor nodes) deployed in an area in which they

expect privacy, for example, their homes. An attacker can deploy a network of receivers

which measure the received signal strength of the radio signals transmitted by the legit-

imate wireless devices, allowing the attacker to learn the locations of people moving in

the vicinity of the devices, information that the attacker would not be able to know if

the wireless devices did not exist. Such an attack is possible even when the network is

otherwise secure against data eavesdropping.

We develop the first solution to the location privacy problem, where neither the at-

tacker nodes nor the tracked moving object transmit any RF signals, using a game theoretic

framework. In our game theoretic model, the defender (the genuine wireless network) de-

ploys multiple transmitters in different locations and changes transmitters in some random

or probabilistic fashion to minimize the chance of the attack receivers locating the people

inside certain parts of the building. Figure 1.2 shows an overview of the attack due to

radio network leakage. In this figure, an attacker is interested in monitoring an area of

interest inside the building. The defender deploys four transmitters. When transmitter

Tx 1 transmits, it would make most sense to place the attacker receivers in strategic area

1 to monitor the area of interest. When transmitter Tx 2 transmits, it would make most

sense to place the attacker receivers in the strategic area 2 to monitor the area of interest.

The attacker need not deploy attack receivers in all strategic areas because of cost. More

importantly, the higher number of attack receivers the attacker deploys the higher the

probability of it being detected (e.g., by security cameras or guards etc.). Furthermore,

the attacker cannot “quickly” move and deploy attack receivers from one strategic area to

another. Therefore, by appropriately changing the transmitter location the defender can

defend against the attacker.

Note that we only show the transmitters and attack receivers in Figure 1.2. Movement

can still be detected in the presence of other objects both inside and outside the monitored

area [12]. Furthermore, while we show only one kind of transmitter, a WiFi access point,

and only one kind of receivers, laptops, other wireless devices or nodes with wireless

capabilities can also contribute to or be used to create radio network leakage attacks.

Additionally, Figure 1.2 shows only one kind of building perimeter. Our research applies

to other building perimeters as well.
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We model this attacker-defender scenario as a Stackleberg game, which is a sequential

game where the defender plays first, then attacker selects its best strategy by observing

the defender’s strategy. Our goal is to maximize the defender’s benefit, i.e., maximize

location privacy. We define utility and cost functions related to the defender and attacker

actions. Using our utility and cost functions, we find the optimal strategy for the defender

by applying a Greedy method.

We experimentally evaluate our game theoretic model in two different settings: in an

open environment and a cluttered office. Our experimental results show that when using

our approach, the minimum localization error for the attacker increases by 36%− 240%.

Higher localization error corresponds to more privacy. We expect the localization error for

the attacker to be significantly higher for larger areas.

1.5 Computation Offloading in Mobile Cloud Computing
Rapid growth in mobile devices’ processing and storage capabilities has also created

a tremendous inexpensive amount of computing power that can provide the power of

cloud. Fortunately, mobile devices opportunistically encounter many other mobile devices

that are capable of lending their resources. Thus, instead of using a server cloud, mobile

devices are able to offload computing tasks to nearby devices. Offloading compute tasks to

nearby mobile devices rather than using a remote cloud through the mobile data cellular

network lowers the latency and the burden on network backhaul. The nearby mobile

devices, collectively and opportunistically, essentially provide the power of a cloud. In this

dissertation, we use this notion of mobile cloud computing that corresponds to offloading

of compute tasks to a group of nearby mobile devices connected by various types of links

including D2D, WiFi Direct, Bluetooth, etc.

There is a growing amount of work to utilize mobile device computing power for cloud

computing. Hyrax [13] uses the computational power of a network of Android smart-

phones in MapReduce. Mobile Device Clouds [14, 15] and Serendipity [16] are platforms

for opportunistic computing where a mobile device offloads computing tasks to nearby

mobile devices. NativeBOINC for Android [17] is another example of utilizing mobile

devices’ computing power. Recently, Habak et al. [18] proposed FemtoCloud where a

controller executes a variety of tasks arriving at controller by using the computational



8

power of nearby mobile devices. SymbIoT [19] is another platform that uses the com-

putational capability of all mobile devices within the same network to perform different

tasks. However, all of these existing works primarily assume altruistic behavior in the

distributed computing environment and do not carefully incentivize resource sharing. In

addition, existing works ignore the heterogeneity among mobile devices in task allocation.

Mobile devices can have different hardware/software and thus have different capabilities.

For this reason, the execution time of a specific task can be different across mobile devices.

Therefore, the task allocation mechanism must consider the heterogeneity of mobile de-

vices to reduce the overall job completion time. Moreover, the task allocation needs to

take into account the mobility of devices. In a mobile environment, the distributor may

observe disconnection of mobile devices with assigned tasks, and new arrivals that might

provide high computational capabilities. Thus, decisions should be made according to

the dynamics of the environment. We propose a multidimensional auction for allocating

the tasks of a job among nearby mobile devices based on their computational capabilities

and also the cost of computation at these devices with the goal of reducing the overall job

completion time and being beneficial to all the parties involved. We consider heterogeneity

among mobile devices as well as node mobility in developing our methods. We also

propose an incentive model to provide cooperation among nearby mobile devices for the

application of mobile live video up streaming.

We evaluate our framework and methods using both real world and synthetic mobility

traces. We use two models of compute jobs: a simple single job model, and a multiple

job model that uses a Directed Acyclic graph to represent causal dependencies in a set of

jobs. Our evaluation results show that our game theoretic framework improves the job

completion time by a factor of 2-5 in comparison to the local execution of the job, in both

the job models, while minimizing the number of auctions. Thus, our approach is beneficial

for the distributor in terms of enhancing its performance. We also show that the nearby

nodes that execute the distributor’s tasks receive a compensation higher than their actual

costs.

1.6 Summary of Contributions
Our key contributions in this dissertation include the following:
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1.6.1 Localization Using Distributed Sensing

• We propose two effective energy efficient RTI approaches, ellipse-based and radius-

based, for localization using RF sensor networks [20]. In addition, we propose an

algorithm to tune the radius of circle adaptively over time in the radius-based ap-

proach. We perform extensive evaluations using real experimental data in three

different test areas: an open indoor area, a cluttered office, and the aisles of the

University of Utah campus bookstore.

• We present a simple yet efficient and accurate method, SPLOT, for simultaneous

localization of multiple transmitters using crowdsourced measurements of received

power [21]. We experimentally evaluate our approach in two different settings: 1)

an open environment using USRP2 nodes in the Orbit testbed [3], and 2) a cluttered

office [4]. We also implement SPLOT on commodity devices and perform multi-

transmitter localization in a variety of indoor and outdoor experiments.

• We propose two sampling approaches: 1) Greedy sampling and 2) Metropolis sam-

pling, to select mobile sensing devices required for RSS measurements. We enhance

our sampling approach to incentivize mobile users such that we select nodes that

maximize coverage but minimize the total payoff. Our incentive mechanisms con-

sider truthfulness, the budget limit, and mobility of mobile sensing devices [21].

• We develop the first solution to the location privacy problem where the location of

people moving inside a private area can be inferred using the radio characteristics of

wireless links that are leaked by legitimate transmitters deployed inside the private

area [22]. We model the radio network leakage attack using a Stackelberg game

and find the optimal strategy for the defender by applying a Greedy method. We

experimentally evaluate our game theoretic framework.

1.6.2 Computation Offloading in Mobile Cloud Computing

• We propose a multidimensional auction for allocating the tasks of a job among nearby

mobile devices based on their computational capabilities and also the cost of com-

putation at these devices with the goal of reducing the overall job completion time

and being beneficial to all the parties involved [23]. We consider device and task

heterogeneity as well as device mobility in developing our methods. We evaluate
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our framework and methods using both real world and synthetic mobility traces.

Thesis statement: We express our thesis statement in a concise form as follows. With

the aid of distributed sensing and computing in wireless networks, we propose novel,

efficient approaches for localization and computation offloading and explore the related

problems of incentives, and privacy, that arise while using a set of distributed wireless

devices and provide solutions for them.

The rest of this dissertation is structured as follows. Chapter 2 describes our work on

energy efficient radio tomographic imaging. Chapter 3 presents our work on Simultaneous

power-based localization of transmitters for crowdsourced spectrum monitoring. In Chap-

ter 4, we describe the sampling approaches to select mobile sensing devices required for

RSS measurements for crowdsourced spectrum monitoring. In Chapter 5, we investigate

a location privacy attack in radio networks and provide a solution for that. Chapter 6

describes our work on using the compute power of nearby mobile devices for computation

offloading. In Chapter 7, we conclude the dissertation and indicate directions for future

research.
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Figure 1.1. Enabling distributed set of wireless devices to detect and locate spectrum
offenders.

Figure 1.2. Radio network leakage attack.



CHAPTER 2

ENERGY EFFICIENT RADIO TOMOGRAPHIC

IMAGING

2.1 Introduction
In this chapter, we propose two energy efficient approaches for target tracking using

the sensing power of a set of distributed RF sensors.

RF sensor networks can track people and objects without requiring them to carry any

wireless transmit or receive devices [1]. Moving people and objects can be located based on

the changes they cause in the received signal strength (RSS) of the radio links they perturb

between transmit and receive sensor nodes. This “device free” localization of physical

objects is called radio tomographic imaging (RTI) [24–30]. Localization of moving people

and objects using RF sensor networks has several applications including surveillance,

rescue operations, and residential monitoring [2].

One critical issue which has been neglected in existing RTI approaches is energy ef-

ficiency. RTI has primarily focused on location accuracy and assumed that sensors are

connected to wall power sockets or their batteries can be recharged often. When deploying

RTI in outdoor settings where wall power is not an option, saving energy of sensor nodes

becomes a key requirement. It might not be easy to recharge sensor nodes after deploying

them. Even in indoor environments, wall power might not always be available. Therefore,

it is desirable to reduce the energy consumption of RTI sensor nodes as much as possible

to prolong the lifetime of the RF sensor network. In this chapter, our goal is to develop

approaches to reduce the energy consumption in RTI methods without giving up accuracy.

A typical RTI setup deploys a mesh of n transceivers around the area that is to be

monitored. In this setup, each node takes a turn to transmit radio signals. All the other

nodes, when not transmitting, receive radio signals. The measurements of the RSS on all

the O(n2) links between the transmitters and the receivers are used for tracking moving
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objects in the monitored area. We develop energy efficient target tracking methods that

essentially limit the number of radio links that we must measure at any given time thereby

allowing us to deactivate a large number of transceivers and hence save energy on these

nodes. Our key idea is to only measure those links that are near the current location of the

moving object. In order to find the effective links near to the current location of the moving

object, we propose two approaches. In our first approach, we only consider links that are

in an ellipse around the velocity vector from the current location of the moving object. In

our second approach, we only consider links that cross through a circle with radius r from

the current position of the moving object. Thus, rather than creating an attenuation image

of the whole area in RTI, we only create the attenuation image for effective links in a small

area close to the current location of the moving object.

We propose an adaptive algorithm to change the value of r in the radius-based ap-

proach. The value of r must change over time depending on the velocity of the moving

object, the number of links that cross through the circle, and the amount of error in the

current location estimation. Moreover, the tracking accuracy and the energy consumption

in the radius-based approach is highly dependent on the value of r. For example, if we

choose a large value for r that includes all changes, then the accuracy of localization

improves at the expense of relatively high energy consumption.

Our contributions in this chapter are as follows. First, we define two energy efficient

approaches for localization using RTI. Our energy efficient approaches can be used with

both Shadowing-based RTI and variance-based RTI [24–30]. Second, we introduce an

adaptive algorithm to change the radius in the radius-based approach. Third, we evaluate

the proposed approaches in terms of energy consumption and localization error in three

different test areas: an open indoor area, a cluttered office, and the aisles of the University

of Utah campus bookstore. Our experimental results show that using our approach, we are

able to save 50% to 80% of energy. Interestingly, we find that our radius-based approach

for energy efficiency actually increases the accuracy of localization.

The rest of this chapter is organized as follows. Section 2.2 contains the relevant related

work. In Section 2.3, we briefly describe two basic approaches (Shadowing-based RTI,

and variance-based RTI) for localization using radio tomographic imaging. Section 2.4

represents the energy efficient approaches in details. In Section 2.5, we describe three con-
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ducted experiments and evaluate the results. Finally, the concluding remarks is provided

in Section 2.6.

2.2 Related Work
RF sensor networks estimate the location of people and objects using the changes in RSS

measured on the links of a wireless network. A growing body of research has developed

approaches to improve the robustness of RF sensing to the challenges of the multipath

radio channel. Experimental systems have demonstrated locating a person in offices or

homes with average errors from 17 cm to 1 m [27, 28, 31–33], even across an entire office

building floor [34], while tracking multiple people [35–38], even through exterior walls

[29, 39, 40]. Moreover, measurements from standard wireless devices have been shown ex-

perimentally to enable reliable gesture recognition [41], breathing rate estimation [42], and

fall detection [43, 44]. These experimental results are impressive despite the fact they are

predominantly tested in the 2.4 GHz band where the REM system experiences interference

from WiFi.

Several general approaches exist for using RSS in an RF sensor network for localization.

One is radio tomographic imaging (RTI), which estimates a map of the activity in the area

of deployment, computed from the changes in mean [24–28] or variance [29, 30] of RSS.

Another perspective is to use machine learning to estimate position, using a prerecorded

set of training data with a person in each position [34, 37, 44]. Another approach is to use

line crossing information directly to infer position, either using a geometrical model [31,

36] or a statistical model for RSS given person location (and statistical inversion) [32, 33].

The energy consumption of RF sensor networks has been addressed by very few works,

to our knowledge. Sensor nodes in RF networks have limited supply of energy and it is

often difficult to recharge them after deployment. Thus, in order to increase the lifetime of

network, energy consumption should be reduced. One way to reduce the energy required

for data collection is to have sensors locally process RSS data and decide when a link

is crossed, and forward data only when a link is detected as crossed [45]. This idea is

complementary to this proposed work, which would turn off sensors’ RSS data collection if

the link is not expected to be crossed due to current human positions. Compressed sensing

(CS), which estimates tomographic images using fewer link measurements, has been tested
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for tomographic building structure imaging [46, 47] and for open-area attenuation-based

RTI [48]. These papers explore sensing strategies that are fixed, even if random, not a

function of the current positions of people. In contrast, we present an adaptive strategy.

Future work might combine the benefits of both CS and adaptive strategies.

In contrast to energy efficiency in RF sensor networks, research in energy efficiency

in wireless sensor networks (WSN) is significantly more mature [49–51]. A general WSN

uses transmission and reception purely for data communication, not to measure the en-

vironment as in an RF sensor network. In an RF sensor network, it is insufficient to

find a low-energy route from source to destination. Instead, we have a tradeoff between

activating transmitter and receivers to minimize tracking error, and allowing them to

sleep to minimize energy consumption. The adaptive algorithm explored in this chapter

addresses this fundamental tradeoff.

2.3 Background on Radio Tomographic Imaging
Radio tomographic imaging is the process of imaging the attenuation caused by physi-

cal objects moving in an RF sensor network. This image can be used to find the location of

the moving objects or people within the area of deployed RF network.

In an RF network with n static sensor nodes, there are L = n(n− 1) directed links. Let

vector y = [y1, y2, . . . , yL]
T be the measurement for all links. Also, let x = [x1, x2, . . . , xM]T

be the vector of voxels values, where M is number of voxels. Then, y can be modeled as:

y = Wx + n (2.1)

where, n is L × 1 vector that represents the noise level of L links. W is a L × M matrix

where wij indicates how the voxel j’s attenuation affects link i.

The weight matrix, W, is modeled by an ellipse [25, 28, 29]. In this model, an ellipsoid

with foci at the transmitter and receiver locations determines the weight for each link.

If voxel j falls outside of link i’s ellipsoid, wij is set to zero. Otherwise, wij is set to the

constant, which is inversely proportional to the square root of the link length, as follows:

wij =

{
1√
d

drj + dtj < d + λ

0 otherwise
(2.2)

Here, d is the length of link i, drj and dtj are length of line from the center of voxel j to the



16

receiver and transmitter locations of link i, respectively, and λ represents the width of the

ellipse.

In the shadowing-based RTI, y is the change in RSS mean values and in variance-based

RTI, y is the windowed variance of RSS on each link. The image vector x is estimated from

y. However, finding y is an ill-posed inverse problem. Thus, regularization is required to

reduce the noise in the image. A regularized least square approach [24, 30] is used for both

shadowing-based RTI and variance-based RTI:

x̂ = Πy (2.3)

Π = (WTW + σ2
NC−1

x )−1WT (2.4)

in which σ2
N is the noise variance. The prior covariance matrix Cx is obtained by using an

exponential spatial decay:

[Cx]jl = σ2
x e−djl/δc (2.5)

where δc tunes the amount of smoothness in the image, σ2
x is the variance of voxel attenu-

ation, and djl is the length of line between voxel j’s center and voxel l’s center.

2.4 Energy Efficient RTI Approaches
In this section, we describe two energy efficient approach for RTI that limit the number

of radio links that we must measure at any give time thereby allowing to deactivate a large

number of transceivers and hence save energy on those nodes. In the basic RTI approach,

all transceivers are active at all times.

To reduce the energy consumption, instead of forming the image of attenuation for the

whole monitored area, we only construct the image of attenuation for the small area near

the current position of the moving object. We expect a temporal dependency in the moving

pattern of object. Therefore, the next location of the moving object is likely to be close to its

current location. Additionally, the moving object only changes the RSS of the links that are

near the moving area. In fact, as the distance of a link from the moving object increases,

it provides less information about the attenuation caused by the moving object. Thus,

only links that are within a certain distance from the current location of the moving object

contribute to the formation of the attenuation image. We refer to these links as effective
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links. Our aim is to save energy by measuring only the effective links and deactivating

those transceivers that do not construe these links.

To find the effective links, we use two approaches. In the first approach, the effective

links are those that cross through the ellipse around the velocity vector from the current

location of the moving object. In the second approach, effective links are within the circle of

radius r from the current location. We explain these two approaches in Sections 2.4.1 and

2.4.2, respectively. Then, in Section 2.4.3, we describe a scheduling policy for activating

and deactivating appropriate transceivers to reduce the energy consumption.

2.4.1 Ellipse-based Approach

Using the fact that a typical moving object changes its velocity and its direction of

movement smoothly and gently instead of abruptly, in the ellipse-based approach, we

only consider an ellipse around the velocity vector from the current position of the moving

object to form an attenuation image for localization. Figure 2.1 shows the ellipse where −→v

and θ are the velocity vector and direction of movement, respectively. The point c is the

current location of the moving object.

To estimate the velocity vector, we use the history of movements over a window of time

t. The velocity vector at time t + 1 is a function of the moving object locations during [1, t]

as follows:

−→v t+1 = −→v t + ε (2.6)

ε ∼ N(0, σ2) (2.7)

−→v t is obtained by dividing the path length by the time taken to traverse the path. A

path is the longest straight line that the moving object can traverse without changing the

direction or pausing. Since the object need not necessarily move in a straight line and there

are likely to be some deflections around the straight line, we are likely to see some small

paths around the straight line. To address these deflections, we fit a straight line between

two points with distance greater than lmin such that the other points between these two

points are a distance less than w from the line.

We first run the basic RTI approach for t seconds. Using the location histories of the

moving object over time t, we estimate the velocity vector at time t + 1. After that, we

only consider links that are in the ellipse around the velocity vector. Again, in time period
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t + 2, we set the window for estimating the velocity vector by 1. Given that we use the

ellipse-based approach from time t + 1 onwards, our estimation of the velocity vector can

contain errors. This error can gradually increase and the ellipse that we use can move far

away from the actual location of the moving object.

To tackle this potential for increase in error, we periodically (with time T > t) compare

the result of localization of our approach with the result of localization of the basic RTI

approach. If the difference between the positions obtained by the two approaches is greater

than a threshold, we run the basic RTI approach for time t to obtain a more accurate

history of movement of the object. Although, this reestimation of the history reduces

the localization error, it also increases the energy consumption because we run the basic

approach more often.

The ellipse approach can reduce the number of measured links significantly and, con-

sequently, it can save energy. However, it is expected to work well only in scenarios where

the changes in the mobility pattern are not drastic. In cases with drastic movements, e.g.,

an object moving back and forth or an object changing its direction of movement signif-

icantly because of the obstacle in the area, the localization error of the ellipse approach

can be high. In a high mobility environment, the ellipse approach can consume more

energy because of the need to run the basic RTI approach every T time units. Essentially,

the ellipse-based approach can result in high localization errors or high energy use when

the tracked object exhibits an unpredictable movement pattern. For robustness in these

mobility scenarios, we propose the radius-based approach in the next section.

2.4.2 Radius-based Approach

In the radius-based approach the effective links are those that are in a circle with radius

r from the current position of the moving object. Using a circle instead of ellipse reduces

the error of localization in case of high changes in the mobility pattern. In the radius based

approach, we start with the basic RTI approach by measuring all links. However, after

finding the current location of the moving object, we only consider links that are in the

circle with radius r from the current location.

One important challenge in the radius-based approach is the determination r. An

improper value of r can increase the energy consumption or the localization error substan-
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tially. Furthermore, the value of r should be adapted dynamically depending on (i) the

number of sensor nodes that are deployed, (ii) the obstacles (e.g., bookshelf, table, sofa)

that are placed in the area, (iii) the number of links that cross the circle, (iv) the velocity

of movement, and (v) amount of error in location estimation. Unlike the ellipse-based

approach, we find the value of r in the real time without using history of movement. Thus,

the localization error does not increase over time. In the next section, we describe our

adaptive algorithm for the selection of r.

2.4.2.1 Adaptive Algorithm for Radius Selection

In our adaptive algorithm for radius selection, we compare the location estimated using

the radius-based approach with that estimated using the basic RTI approach every T time

units. We change the value of r based on the difference between the location estimates

and also based on the current state of the algorithm. Figure 2.2 shows the three states

that we use in our adaptive algorithm to change the value of r. The algorithm starts in

an exponential decrease, ED, state and then it goes to the linear increase linear decrease,

LILD, state and then to the recovery state.

• ED: The first state of algorithm is ED. In this state, we set the initial value of r to

rmax. rmax is the radius of circle that covers the whole area of experiment and also

all links, i.e., at the first step of ED both the radius-based and basic RTI approaches

operate in a similar fashion. Then, in each time period T, we estimate the location

using the radius-based approach and compare it with that obtained from the basic

RTI approach. If the difference in the estimation is within a threshold, we reduce the

value of r by half, otherwise we go to the LILD state. Let rk−1 denotes the value of r

after k− 1 time units, the next value of r in the ED state will be:

rk = max(α ∗ rk−1, rmin) (2.8)

Here, α = 0.5 is the exponential factor and rmin is the minimum value of r.

The ED state finds the range of r which depends on several factors. We start with

r = rmax to cover the whole area. However, due to temporal dependency and the

fact that the moving object only changes the RSS of neighboring links, rmax is much

greater that the optimal value for r. Thus, in each time interval we exponentially
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reduce the current value of r when the difference in location estimates (in comparison

to basic RTI) is low. When we go to the LILD step after k time periods, the range of r

is determined to be from rk−1 to rk.

• LILD: Given that we determine the range of r, [rk−1, rk], quickly through exponential

decrease in the ED state, we now adjust the value of r much more slowly, by increas-

ing or decreasing its values linearly, to move closer to its optimal value. The value of

r in this state is obtained as follows:

rk =

{
max(rk−1 + β, rmin) Invalid Result
max(rk−1 − β, rmin) Valid Result

(2.9)

An invalid result in the above equation refers to the situation when the difference in

location estimation using the radius-based and basic RTI approaches is greater than

a threshold. A valid result is one where the difference in location estimation is less

than or equal to the threshold. Every T time units, we increase the value of r linearly

if the result is invalid and decrease the value of r linearly if the result is valid. Thus,

in LILD, the value of r fluctuates between rk−1 and rk.

In the LILD state, it is possible that we observe consecutive invalid results. If the

number of consecutive invalid results, despite linearly increasing r, is greater than

a predefined threshold then we conclude that we are not converging to the right r.

This means that the current location of the moving object is far from its true location

and even by increasing the value of r linearly in consecutive time periods, we are

unable to find the location of the moving object correctly. In such a situation, stay in

the LILD state will dramatically decrease the accuracy of localization. To avoid this,

when we receive a certain number of consecutive invalid results, we go to the ED

state again and set r to rmax. In other words, we start with the basic RTI approach

to find the current location and reduce the value of r exponentially to find its right

range all over again.

• Recovery: Although, in the ED state, we decrease the value of r exponentially, it

takes a long time for ED state to find the proper value for r and consequently the

sensor nodes consumes more energy. Thus, we should reduce the number of times

that we go to the ED state. For this, we add the recovery state in the return path from

the LILD to the ED state. Recovery state gives us a less drastic approach to find the
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proper value of r before going to the ED state.

In this state, we double the current value of r and then compare the result of local-

ization after one time period T. If the result is valid then we go to the LILD state,

otherwise we go to the ED state.

Figure 2.3 shows the changes of the value of r in these three states over time. We first

start with the ED state by setting the r to rmax = 8m. Then, we reduce the value of r to half

in each time slot. In this figure after four time units, the algorithm is able to find the range

of changes for r. In the LILD state, we change the value of r linearly. Finally, we double

the value of r in the recovery state.

2.4.3 Scheduling

In this section, we explain our scheduling policy for activating and deactivating the RF

transceivers in our energy efficient approaches.

In the basic RTI approach, all sensor nodes are on at all times whether they transmit

or receive signals. Figure 2.4 shows the scheduling policy for the basic RTI approach. In

this figure, the deployed RF sensor network has 4 sensor nodes. To estimate the image of

attenuation in the basic RTI approach, we must measure the RSS on all links in a full mesh

topology. Considering the fact that in RF sensor networks the RSS of the link from a to b

can be different from the RSS of the link from b to a, in the basic RTI approach we must

measure L = 12 links.

Our scheduling policy for activating or deactivating sensor nodes is based on the Spin

protocol [52]. The Spin protocol uses a token-based approach to prevent multiple sensor

nodes from transmitting at the same time. In this protocol, the sensor nodes transmit

in time division multiple access (TDMA) fashion with an order identified by their node

IDs. When one sensor node is transmitting, all the other nodes are in the receiving mode.

Figure 2.4 shows one round of scheduling in the basic RTI approach. In the first time slot,

t = 1, the first node is in transmitting mode (TX), and all the other nodes (2, 3, and 4) are

in the receiving mode (RX). At the end of one round, in case multiple channels are used,

the sensor nodes switch synchronously to the next frequency channel defined by the user

and use the same scheduling as the previous channel. As shown in Figure 2.4, in all time

slots, all nodes are either in the transmitting or in the receiving mode.
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Our energy efficient approaches are based on the fact that not all links in the full mesh

topology are effective. Independent of how we find the effective links (using the ellipse-

based or the radius-based approach), Figure 2.4 shows one round of the scheduling policy

for the graph with reduced links (L = 6). In the first time slot, t = 1, node 1 is in the

transmitting mode, node 2 and 3 are in the sleeping mode (deactivated), and node 4 is in

the receiving mode. As this figure shows, in one round of an energy efficient approach,

we can save 50% energy by increasing the number of times that sensor nodes are in the

sleeping mode from 0 to 6.

As shown in Figure 2.4, in energy efficient approaches, reducing the number measured

links does not change the number of nodes that are in transmitting mode. This happens

because in most real cases, sensor nodes are placed uniformly along the perimeter. For

scheduling the receivers, at the beginning of each round, the sink node sends a small

control packet to all nodes. This packet determines the receiving nodes in each time slot.

Let n be the number of sensor nodes, then size of the control packet for each node is n bits.

A bit is set to 1, if the sensor node is in the receiving mode in that time slot. Otherwise, it

is set to 0. Note the control packet is the same for all available channels and the sink node

only sends it once for all channels, in case multiple channels are used for RTI.

If the sensor nodes are placed nonuniformly, then there might be some cases where the

number of nodes that are in transmitting and receiving modes is reduced. In this case, the

scheduling policy is entirely determined by the control packet that the sink node sends to

all nodes. The control packet in this case indicates three modes (transmitting, receiving,

sleeping) for each node in each time slot. Thus, the size of control packet for each node is

2n bits in a network with n nodes as 2-bits are required to represent three modes.

Note that the energy efficient approaches determine which bits should be set in the

control packet based on the RSS of the measured links and the steps of these approaches.

Once the control packet is created, it is sent to the sink node for distribution to the sensor

nodes. The time complexity of the energy efficient approach is no worse than the basic RTI

approach that is used for real time localization. In fact, the time complexity of the energy

efficient approach is better than the basic approach. This is because, in most cases, the

actual monitored area in the energy efficient approach is much smaller than the monitored

area in the basic RTI approach.
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2.5 Evaluation
To evaluate the energy efficient approaches, we conduct experiments in three different

areas: an open environment, a cluttered office area, and a bookstore. In this section, we

first describe these three areas and then present the evaluations of our energy efficient

approaches in terms of energy consumption and localization error in these three areas.

2.5.1 Experiment Areas

• Open Environment: In the open environment, there are no objects or obstructions in

the monitoring area. Figure 2.5 shows the layout of this experiment. As shown in

this figure, 30 sensor nodes are deployed along the perimeter of a 70m2 area at the

height of one meter from the floor. The sensor nodes transmits on channels 11, 15,

18, 22 and 26. The marker points in Figure 2.5 show the true positions of the moving

person. The person starts moving at point A, then moves along the straight lines

from A to B, B to C, C to D, and D to A. Finally, the person stops moving at point A.

At each location, the person stands for 20s. We also measure the RSS of all links when

no person is present in the monitoring area for 60s and use it for RTI calibration.

• Cluttered Office: This experiment is done in a cluttered area where there are several

metallic obstructions such as desks, chairs, and monitors. In this experiment, 14

sensor nodes are deployed inside of a 52m2 area at the height of one meter from

the floor, as shown in Figure 2.6. The sensor nodes transmit on channels 11, 16,

21, and 26. The marker points in Figure 2.6 show the true locations. The person

moves along the path ABDCEFGHCEGBA. As can be seen in the movement path,

in this experimental setup, the person changes direction of movement more often

than in the open environment. Using these two experiments, we are able to compare

the results of ellipse and radius-based approaches in conditions where there are too

many changes in the movement pattern (cluttered office) with the case where the

changes in the movement pattern are minimal (open environment).

• Bookstore: This experiment is performed in the University of Utah Bookstore in a

55m2 area. As in the case of the office environment, the bookstore is cluttered with

shelves, tables, and books. There are 34 sensor nodes that are positioned in the area,

as shown in Figure 2.7. The gray rectangles in this figure are shelves. The sensor
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nodes transmit only on one channel. In one experiment (which we call Exp. 1), a

person moves along the path ABCDA twice and in the another experiment (which

we call Exp. 2), the person moves along the path EFBAE twice.

In the first two experiments (open environment, and cluttered office), the sensors are TI

CC2531 USB dongle nodes [53] and in the third experiment, bookstore, the sensor nodes

are TelosB [54].

2.5.2 Experimental Results

In this section, we evaluate the energy efficient approaches in terms of energy con-

sumption and the localization error. For evaluation, we compare our work with both

Shadowing-based RTI and variance based RTI approaches. We use the approach that is

proposed in [28] from the shadowing based approaches and VRTI [29] from the variance

based RTI approaches. In [28], the authors use channel diversity to improve the accuracy

of localization in RTI.

In order to evaluate the energy efficient approach, we use two metrics: average error

of location estimation, and energy consumption ratio. The energy consumption ratio is

obtained by dividing the total energy consumption in the energy efficient approach by the

total energy consumption in the basic approach (e.g., Shadowing-based RTI, and variance-

based RTI). The total energy consumption in an RF network with n nodes is obtained from

the following formula.

E =
T

∑
t=1

n

∑
i=1

ETx(i, t) + ERx(i, t) (2.10)

Here, ETx and ERx are energy consumptions in the transmitting and receiving modes

respectively. We set both ETx and ERx to 4.5J in all experiments. Table 2.1 shows the value

of parameters used in these three experiments.

Figure 2.8 shows the energy consumption of the ellipse, radius-based, and the multi-

channel RTI approaches in the open environment. This figure shows that both ellipse and

radius based approaches can reduce the energy consumption ratio from 1 to 0.2. In other

words, both energy efficient approaches save 80% of energy compared to the multichannel

RTI approach. Also, this figure shows that there is not too much difference between the

energy consumption ratio of ellipse and radius-based approach (see the yellow area).
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Figure 2.9 compares the energy consumption ratio of the three approaches (the ellipse,

radius-based, and multichannel RTI) in a cluttered office area. This figure shows that the

energy efficient approaches save around 60% of energy which is a little less than the energy

savings in the open environment. This is because in the office area there are only 14 nodes

which is significantly less than the number of nodes in the open area. The reduction in the

number of measured links in the office area is less than that in the open area and therefore,

we save less energy in the office area.

Figure 2.10 shows the average error of location estimation in the ellipse, radius-based

and multichannel RTI approaches for both open and cluttered office areas. In both areas

(open environment and office), the error of radius based approach is slightly less than

the multichannel RTI approach. Since in the radius-based approach we only construct

the image of attenuation for a circle around the current position, the noise in the other

places does not effect the result of localization. However, in multichannel RTI, we consider

the whole area for constructing the image of attenuation and sometimes the noise in the

environment corrupts the image and increases the error of localization. In addition, as

shown in Figure 2.10, the average error of localization in the ellipse approach is slightly

higher than the average error in multichannel RTI approach for the open environment and

it is a lot higher than the error of multichannel RTI approach in the office environment. As

we discussed earlier, one drawback of the ellipse approach is propagation of error. This

propagation has high impact when we have frequent significant changes in the movement

pattern. In the office area, the person changes direction of movement more frequently

compared to the open environment. Thus, the error of localization increases significantly

in the office area.

Figure 2.11, Figure 2.12, and Figure 2.13 show the comparison of ellipse, radius-based,

and VRTI approaches in the bookstore. Figure 2.11 and Figure 2.12 show that by using the

VRTI approach with ellipse and radius-based approach, we can save up to 50% of energy

on average compared to the basic VRTI approach. However, the amount of reduction in the

energy consumption is less than that in the open environment where we use multichannel

RTI with the energy efficient approaches. This happens because in the VRTI approach, we

need the RSS of links for a couple of rounds to be able to compute the variance. Therefore,

in the energy efficient approaches over each T time units, when we compare the basic
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approach with the energy efficient approach, we need to turn on all sensor nodes for a

couple of rounds. This increases the energy consumption in this scenario. However, we

still cut down the energy usage by half.

As shown in Figure 2.11 and Figure 2.12, sensor nodes in Exp. 2 consume more energy

than in Exp. 1. As mentioned in the previous section, in Exp. 1, the person moves along

the path ABCDA that covers the whole area. However, in Exp. 2, the person moves

along the path EFBAE that is only a part of the whole area that is surrounded by lots of

sensor nodes. Therefore, the reduction in the number of measured links in Exp. 2 is less

than the reduction in Exp. 1. As a result, in Exp. 2, we consume more energy compared

to that in Exp. 1. Also, in the bookstore experiment there is a higher difference in the

energy consumption ratio of nodes. This happens because in the bookstore environment

the sensor nodes are placed nonuniformly.

Table 2.2 shows the average location estimation error, eloc and the total energy con-

sumption ratio, ER, in all the experiments. If we only consider the energy consumption

ratio, the ellipse approach is better that the other approaches. However, the ellipse ap-

proach does not perform well in terms of localization. As we can see in this table, in all

experiments the localization error in the ellipse approach is higher than the basic and the

radius-based approaches and in some cases such as the office area the localization error

is significantly higher than the error in the other approaches. In terms of localization, the

radius-based approach performs better than the others. Also, it can save 50% energy in

the worst case which is great. Figure 2.14 shows this comparison. In this figure, the x axis

represents the total energy consumption ratio, and the y axis represents the normalized

localization error. Our goal is to find an approach with points on the left bottom corner

of the figure. This figure shows that the basic approach is on the right and close to the

bottom. Our energy efficient approaches when applied to the basic approach, moves the

points from the right to the left. Also, we decrease the distance from the bottom in the

radius based approach.

2.6 Conclusion
We introduced two effective energy efficient RTI approaches, ellipse-based and radius-

based, for localization using RF sensor networks. In both energy efficient approaches, our
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aim was to save energy by reducing the number of links that we must measure to form an

image of attenuation. In the ellipse-based approach, we only considered links in an ellipse

around the velocity vector of the current position of the moving object and in the radius-

based approach, we used links in a circle around the current position of the moving object.

In addition, we proposed an algorithm to tune the radius of circle adaptively over time. We

performed extensive evaluations using real experimental data from three different settings.

Our experimental results showed that our energy efficient approaches can save 50% to

80% of energy without seriously degrading localization accuracy. Interestingly, our radius-

based approach even increased the accuracy of localization in comparison to the basic RTI

approach.

RTI works with a small number of sensors in a limited environment. However, there

are newer paradigms such as crowdsourced sensing that take advantage of the pervasive

wireless devices to collect and evaluate data beyond the scale of what was previously

possible. In the next chapter, we exploit crowdsourcing for the spectrum monitoring

application.
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Table 2.1. Parameters used in the experiments

Parameter Description Open Office Bookstore

P Pixel width(m) 0.15 0.5 0.5

λ
Excess path length limit

0.02 0.02 0.02
of ellipse weighting(m)

σx Voxels variance(dB) 0.05 0.1 0.1

σ2
N Noise variance(dB) 1 1 1

δc Correlation coefficient 4 4 4

m Number of used channels 4 4 1

α Exponential factor 0.5 0.5 0.5

β Linear factor(m) 0.5 0.5 0.5

T Time periods for RTI 50 50 50

rmin Min radius(m) 0.5 0.5 0.5

t Window size for ellipse 5 5 5

Table 2.2. Comparison of different approaches
Open Office Bookstore Exp.1 Bookstore Exp.2

Approaches eloc(m) ER eloc(m) ER eloc(m) ER eloc(m) ER
Ellipse 0.172 0.1611 1.667 0.2862 1.7571 0.2715 0.8013 0.2871

Radius-based 0.1544 0.1899 0.7481 0.3998 0.9368 0.4823 0.7264 0.5029
Basic Approach 0.1693 1 0.8993 1 1.0245 1 0.7928 1

V


C



Figure 2.1. An ellipse around the velocity vector from the current location of the moving
object.
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Figure 2.8. The energy consumption ratio for ellipse, radius-based, and multichannel RTI
approaches in an open environment.
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Figure 2.9. The energy consumption ratio for ellipse, radius-based, and multichannel RTI
approaches in a cluttered office.



33

Open Office
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
v
e
ra

g
e

 e
rr

o
r 

o
f 
lo

c
a
ti
o
n
 e

s
ti
m

a
ti
o
n
(m

)

 

 

Ellipse

Radius−based

Multichannel RTI

Figure 2.10. The average error of location estimation for ellipse, radius-based, and multi-
channel RTI approaches in the open environment and the cluttered office.
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Figure 2.11. The energy consumption ratio for ellipse, radius-based, and VRTI approaches
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Figure 2.12. The energy consumption ratio for ellipse, radius-based, and VRTI approaches
in bookstore Exp2.
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Figure 2.13. The average error of location estimation for ellipse, radius-based, and VRTI
approaches in bookstore.
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CHAPTER 3

LOCALIZATION FOR CROWDSOURCED

SPECTRUM MONITORING

3.1 Introduction
When software defined radios (SDRs) become ubiquitous, i.e., in the hands and pock-

ets of average people, it will be easy for a selfish user to alter his radio(s) to transmit

and receive data on unauthorized spectrum, for example, using an off-limits band, or

transmitting/receiving on a channel when another device has priority. In addition, SDRs

infected by a computer virus or malware could exhibit illegal spectrum use without the

user’s awareness. The U.S. Federal Communications Commission has an enforcement

bureau which detects violations via complaints and extensive manual investigation. The

mechanisms used currently for locating spectrum offenders are a time consuming, human-

intensive, and expensive proposition. A violator’s illegal spectrum use can be too tem-

porary and mobile to be detected and located using existing processes. We envision a

novel approach that crowdsources the sensing and localization of spectrum offenders. We

assume a distributed set of wireless devices, e.g., smartphones, RF sensor nodes, laptops,

access points and modems, etc., will participate by sensing the use of different bands of

the spectrum over time and space and sharing their measurements with a detection and

localization module in a (cloud) server. This module requests and collects spectrum usage

information from a variety of sensors. It compares the spectrum usage with the allowed

spectrum usage information (spectrum policies and regulations, frequency bands, loca-

tions, etc.) available in a database to determine and locate spectrum offenders. This spec-

trum usage database is akin to the whitespace database (e.g., an FCC-approved database

that contains information on available whitespaces and their locations).

Towards the fulfillment of this vision, in this chapter, we focus on crowdsourced lo-

calization of spectrum offenders. Due to privacy concerns and bandwidth and energy
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constraints, it is undesirable for mobile sensing devices to share raw signal samples with a

central server, and hence, in our work, devices collect only received power measurement.

Our mobile sensing devices do not decode any signals. A key challenge in localizing spec-

trum offenders is that of simultaneous localization of multiple transmitters.1 We develop a

simple yet efficient and accurate approach that simultaneously localizes multiple transmit-

ters using the power of sum of all signals received at the selected wireless devices. While

localization of a transmitter based on power measurements taken by a network of sensors

has been widely studied (see [55] for a survey), we argue that the existing work on WSNs

cannot be simply adapted for localization of multiple transmitters using crowdsourcing.

If two devices transmit at the same time, the received signal is a phasor sum of the signals

from both. Simultaneous transmission in the same channel can be a consequence of an

attacker’s violation of spectrum access rules or an intentional effort to jam. In either

case, the signals may be impossible to separate, particularly when receivers report only

power measurements to the server. Furthermore, it is important for crowdsourcing-based

localization to account for the mobility and changing availability of user devices.

Many existing methods assume that if multiple transmitters are to be located, their

signals can be separated at the receivers [55]. Note that even if all receivers were sophis-

ticated enough to perform this blind source separation, a smart adversary could simply

transmit signals that are not blind separable. When multiple signals cannot be sepa-

rated, the few published methods [56–58] that are able to localize multiple transmitters

from power measurements have high time complexity and do not consider the mobility

and temporal availability of transmitters and receivers. For example, Quasi EM [58], a

statistical approach to localize multiple transmitters assumes that the transmitters and

receivers are static and that the number of transmitters is known a priori. There is existing

work on locating multiple transmitters using mobile robots [59]. However, this work

is not applicable in our setting where mobile users move without the network control.

We need a localization algorithm which minimizes time complexity without significantly

compromising the localization accuracy in dynamic environments in order to detect and

locate unauthorized transmitters.

1For instance, a malware-based attack could simultaneously cause many devices to violate rules or jam the
spectrum.
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We present a method for simultaneous power-based localization of transmitters (SPLOT)

for crowdsourced spectrum monitoring. SPLOT considers the temporal availability and

mobility of both receivers and transmitters and makes no assumptions about the number

of transmitters. SPLOT relies on the fact that, even when multiple transmissions overlap,

typically the vast majority of power received by a receiver is from the nearest transmitter.

Therefore, by finding local maxima in the spatially distributed RSS measurements, we can

approximate the region of presence of each transmitter. We can then convert the problem

of simultaneous multiple transmitter localization to a set of single transmitter localization

problems and use a matrix inversion approach to find the location of each transmitter.

Notably, we only consider an approximate region of each transmitter that is a confined

area around each local maximum and thus, improve the efficiency of localization in terms

of time complexity, accuracy, and scalability.

We experimentally evaluate our approach in two different settings: 1) an open envi-

ronment with nonuniformly distributed receivers in the Orbit testbed [3] using USRP2

nodes for transmitting and receiving signals, and 2) a cluttered office with 44 uniformly

distributed sensors [4]. Our experimental results show that using SPLOT we are able to

localize multiple transmitters with high accuracy and in a timely manner. The highest

average localization error using SPLOT measured in the open environment is 1.16 meters

for up to 4 simultaneously transmitting transmitters, and the highest average localization

error in the cluttered office with mobile transceivers is 2.14 meters. In comparison, the

highest average localization error in Quasi EM measured in the open environment is above

6 meters. Our results also show that SPLOT is tens of minutes faster than Quasi EM. We

also implement SPLOT on commodity devices and perform multitransmitter localization

in a variety of indoor and outdoor experiments. We find SPLOT to significantly outper-

form Quasi EM in these settings as well.

The rest of this chapter is organized as follows. Section 3.2 represents the localization

approach in detail. In Section 3.3 and Section 3.4, we describe the experimental setup and

the implementation, respectively. Concluding remarks are provided in Section 3.5.
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3.2 Localization
In this section, we describe our approach to simultaneously locating multiple transmit-

ters in the areas near the mobile sensing devices (also referred to here as receivers). The

localization problem considered here is challenging for several reasons. First, there may

be multiple transmitters, and the number of transmitters is unknown. Second, each mea-

surement of received power is an unknown combination of the received powers from each

transmitter. Third, the number and the locations of both transmitters and receivers might

change from one sample to the next. Fourth, each link from transmitter to receiver expe-

riences multipath fading, which is known to complicate RSS-based localization. We do

not use time-of-arrival (TOA) methods because they require recording and sharing users’

sampled signals, which violates our privacy model. We do not use angle-of-arrival (AOA)

methods because they require additional radio frequency (RF) hardware. We require an

efficient and accurate localization approach that can locate all available transmitters in a

dynamic environment using only power measurements.

3.2.1 Methodology

Our localization methodology assumes that receivers (mobile sensing devices) have

been selected using our sampling approaches and that these receivers are spread geo-

graphically across the monitored area. Let K denote the unknown numbers of transmitters

and θ = {θ1, θ2, . . . , θK} represent their unknown two-dimensional locations. Our problem

is to determine K and θ based on observed received powers reported by L receivers,

y = {y1, y2, . . . , yL}.

Our localization approach relies on two observations. First, receivers that are located

near the transmitter observe generally higher power than the receivers that are distant

from the transmitter. The second observation is that the observed RSS at each receiver is

primarily affected by the nearest transmitter. To validate this observation, we compare

the RSSs observed in selected receivers when there is no transmitter, when there is only

one transmitter, and when we add multiple transmitters in different locations. Our results

show that when there is a transmitter near a receiver, the RSS observed by this receiver

increases substantially. However, there is a small growth on the observed RSS by the

receiver when adding more transmitters at more distant locations.
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These two observations allow us to reduce the problem of locating multiple, unknown

numbers of transmitters to that of localizing a set of single transmitters as follows. First,

we find the local maxima of RSSs observed by receivers that are greater than a predefined

threshold. The predefined threshold is set to the minimum RSS that a receiver observes

when there is a transmitter near it. By defining this threshold, we are able to separate

the local maxima due to the presence of a transmitter from the local maxima due to the

different fade levels at nearby receivers.

With the knowledge of the local maxima, our localization problem can be reduced to

finding K transmitters, where K is equal to the number of local maxima. Instead of locating

K transmitters in the entire monitored area, we divide the problem into K single transmitter

localizations. For each local maximum, we locate a single transmitter. However, we

confine the area to the small area around the local maximum and only use the RSSs that

are observed by the receivers in this area for localization. Restricting the area to the small

area around the local maximum reduces the time complexity of localization approach,

and more importantly, confines the localization area and thus increases the accuracy of

localization. This is because the noise in the measurements at receivers in other areas has

little impact.

After reducing the multiple transmitter localization problem to a set of single transmit-

ter localization, we locate each single transmitter in a small area around the local maximum

using a single transmitter localization method. Specifically, in this chapter, we use a matrix

inversion approach for single transmitter localization designed for higher efficiency and

localization accuracy (see Section 3.3.3).

3.2.1.1 Single Transmitter Localization

In this section, we apply a linear model and perform inversion to localize the transmit-

ted power. Our approach is designed to accurately locate a source with unknown transmit

power. In this linear model, we estimate the power field, i.e., the power transmitted vs.

position. This power field is then used to find the location of an unknown transmitter.

Given a local maximum of RSSs observed by receivers, we find a transmitter located in

a confined area around the local maximum. The confined area is a circle of radius R from

the local maximum. Let vector y = [y1, y2, . . . , yL] be the received powers (in linear units
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of Watts) observed by L receivers located in the confined area. Also, let x = [x1, x2, . . . , xQ]

be the power field, where xi represents the transmit power sent by a transmitter in voxel i.

We select a grid of Q voxels that fill the confined area. We have a forward model for y,

y = Wx + n, (3.1)

where n is an L× 1 vector that represents the noise and fading contributing to the L RSS

measurements, and W is an L × Q matrix where Wij indicates the gain that would be

experienced on the channel between a transmitter at voxel j and receiver i, if there is a

transmitter in voxel j. The weight value Wij is inversely related to the distance of the voxel

and the receiver. We model the weight as,

Wij =

{
d−np

ij , d > minPL
minPL−np , otherwise

(3.2)

Here, dij is the Euclidean distance from the center of voxel j to the receiver i. np is the path

loss exponent and minPL is the minimum path length.

A power field estimate x̂ is estimated from y. However, finding x̂ is, in general, an

ill-posed inverse problem. We use a regularized least square approach to compute an

estimate,

x̂ = Πy (3.3)

Π =
(

WTW + σ2
NC−1

x

)−1
WT, (3.4)

where σ2
N is the noise variance, WT is the transpose of matrix W, and the prior covariance

matrix Cx is obtained by using an exponential spatial decay function,

[Cx]jl = σ2
x e− f jl/δc . (3.5)

Correlation distance constant δc describes the distance at which two voxels have correla-

tion coefficient 1/e, σ2
x is the variance of the transmit power field, and f jl is the length of

the line between the centers of voxels j and l.

Finally, the transmitter location is estimated to be the center of voxel with maximum

value of x̂.
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3.2.1.2 Dynamic Localization

We also address the problem of locating mobile transmitters. We consider two dynamic

cases: 1) the number and locations of transmitters are changing, and 2) the number and

location of both transmitters and receivers are changing.

One approach to locate these dynamic cases is to repeat the multiple transmitter local-

ization procedure every time new received power measurements are made. This approach

is not efficient since changes are likely to be small from one time interval to the next. Thus,

in this section, we present methods to use the coordinates from the previous estimate in

the current localization problem.

• Dynamic transmitters: When changes happen only in the number and location of

transmitters, our dynamic localization works as follows.

The localization module uses three data sources at time t: 1) the RSS measurements of

the selected receivers in time t− 1, which we denote yt−1; 2) the RSS measurements

of the receivers in time t, yt; and 3) the locations of detected transmitters in time

t− 1, which we denote θt−1. The first step is to estimate the number of transmitters,

which we accomplish by comparing yt−1 with yt. If there is no significant change,

the localization module sets θt = θt−1. If the RSS increases significantly for some

receivers, the localization module performs multiple transmitter localization for the

area that is covered by these receivers to find new transmitters. If the RSS decreases

significantly for some receivers, the localization module removes previous transmit-

ters if there are receivers with significant decrease in the RSS within the confined area

(circle of radius r) around the previous transmitters. The set of transmitters at time

t, θt is the union of the remaining transmitters from the previous time and the newly

added transmitters.

Note that by significant change, increase or decrease, in RSS, we mean any changes in

the RSS that is greater than a predefined threshold. The predefined threshold is deter-

mined by the localization module depending on the environment. This predefined

threshold is equal to the minimum change in the RSS measurements of receivers

when at least one transmitter is added to or removed from the environment.

One drawback of the above approach is the propagation of error. Since the local-

ization module estimates current transmitter locations using the previous results,
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the error can be carried forward from one time interval to the next, and after some

time, the detected transmitters may be far from the actual transmitters. To deal with

this problem, we periodically reinitialize by performing the multiple transmitter

localization algorithm without any previous time estimates.

• Dynamic transmitters and receivers: When the number and the location of receivers

also change over time, we cannot compare two consecutive RSS measurements on

the same link, as the change in receiver position will cause significant RSS changes.

Even by mapping the receivers in the previous time, t − 1, to the nearest receiver

available in time t and inversely relating the RSS to the distance between mapped

receivers, we are not able to compare the RSSs in two consecutive time slots. This

is due to the fact that RSS may be different for receivers with the same distance

from the transmitter due to both shadowing and small-scale fading. Therefore, while

the number or locations of receivers are changing, we perform multiple transmitter

localization without using the previous time information. However, we limit the

recalculation to at most every T seconds.

3.3 Experimental Setup
To evaluate our sampling and localization approaches, we conduct our experiment in

two different areas: an open environment and a cluttered office area. In this section, we

describe these two areas and the mobility settings for transmitters and receivers. We also

explain the evaluation metrics. The values of parameters used in our localization and

sampling are listed in Table 3.1.

3.3.1 Test Environment

• Open environment: In the open environment, there are no objects or obstructions

in the area. This experiment is performed on the Orbit testbed [3], using the USRP2

nodes to transmit and receive signals. Figure 3.1 shows the layout of this experiment.

As shown in this figure, 14 receivers and 4 transmitters are placed nonuniformly

inside of a 20 by 20 m area. The transmitters send a sinusoidal continuous wave

(CW) signal, and the receivers measure received signal strength (RSS) at the same

frequency.
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• Cluttered office: The office area is cluttered with desks, bookcases, filing cabinets,

computers, and equipment. The collected data is a public data set [4]. In this experi-

ment, 44 sensors are placed randomly in a 14 by 13 (m) area as shown in Figure 3.2.

Unlike the open environment, in the cluttered office the sensors are randomly dis-

tributed in the environment. Here, the transmitters are transmitting sequentially, and

as this is a previously collected public experimental data set, we cannot change it to

have multiple transmitters transmitting simultaneously. To approximate what the

RSS would have been if multiple transmitters had transmitted simultaneously, we

use the sum of linear received powers measured from each transmitter when trans-

mitting sequentially. We justify this approximation as follows. First, we note that

the expected value of the power in sum of multiple signals is the sum of the powers

of those individual signals [60]. Second, we perform a validation experiment in the

Orbit testbed. For this validation, we randomly select two USRP2s and set them

to transmit. We denote the receiver linear power measurements as RSS(TX1) and

RSS(TX2) when the transmitters transmit sequentially, and RSS(TX1,TX2) when they

transmit simultaneously. Figure 3.3 shows the comparison of RSS(TX1)+RSS(TX2)

vs. RSS(TX1,TX2). The data shows, in fact, that the linear approximation is very

accurate, almost always within 0.5 dB.

• Changes in number and locations of transmitters and receivers: To approximate

mobility despite the fixed locations of mobile sensing devices in the two testbeds,

we turn on and off the mobile sensing devices in the open environment and the

cluttered office. To model the on and off states of each transmitter, we use a two state

continuous time Markov chain that is able to model the bursts of device availability

(on state) [61], with state 0 indicating Off (or not transmitting) and state 1 indicating

On (transmitting). To calculate the probabilities, we need the time interval between

two decisions on whether or not to perform state transitions which is modeled to

be exponentially distributed with parameter λ, the bursts of transmitting for mo-

bile sensing devices (the expected number of consecutively transmitting), b, and the

probability that the mobile sensing device is transmitting, p (for more information

see [61]). We can find the on and off states of each device once we determine the

probabilities.
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3.3.2 Evaluation Metrics

1. Localization error: The localization error, εl , is equal to the root mean squared error of

the best assignment between estimated and actual transmitter locations [62].

εl(θ, θ̂) =
1
|θ̂|

min
a∈A

 |θ|∑
i=1

|θ̂|

∑
j=1

ai,jd(θi, θ̂j)
2

 1
2

(3.6)

where A is the set of all permutations between the set of actual transmitter locations

θ and the set of estimated transmitter locations θ̂, and d(θi, θ̂j) is Euclidean distance

between the ith actual and jth estimated transmitter locations. When |θ̂| = |θ| = 1,

single transmitter, the localization error is equal to d(θ, θ̂).

2. Cardinality error: The cardinality error, εc, is the fraction of time during which the

number of estimated transmitters differs from the actual number of transmitters [63].

3. OSPA metric: The optimal subpattern assignment (OSPA) metric, εp, penalizes the

error in the number of estimated transmitters with a constant g that is measured in

meters [64]. The OSPA metric is obtained by the following formula when |θ| ≤ |θ̂|,

εp(θ, θ̂) =

(
1
|θ̂|

min
a∈A

|θ|

∑
i=1

dg(θi, θ̂ai)
2 + g2 (|θ̂| − |θ|)) 1

2

, (3.7)

where dg(θ, θ̂) = min(g, d(θ, θ̂)). When |θ| > |θ̂|, the OSPA metric is obtained by

inverting θ and θ̂ in (3.7).

3.3.3 Results

As mentioned in Section 3.2, after finding the local maxima, we perform localization

in each subarea using the matrix inversion. This approach is simple and efficient in terms

of time complexity. Based on our evaluation, the running time of the matrix inversion

approach for a single transmitter in the open environment is 0.1 second. However, the

running time of the well-known maximum likelihood estimator (MLE) [55] is around 1

second.

In this section, we first evaluate the matrix inversion approach in terms of the localiza-

tion error. We compare the localization error of the matrix inversion approach with that

obtained from the MLE. Table 3.2 shows the localization error in the open environment

for each transmitter. As shown in this table, the matrix inversion approach performs

better in terms of the localization error. The average localization error of matrix inversion
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is 1.11 meters. In comparison, the average error of the MLE approach is 2.02 meters.

Also, the variance of the localization error of the MLE approach is 4.1 square meters

which is much higher than 0.18 square meters, the variance of the localization error of

the matrix inversion approach. We also evaluate the localization error of one transmitter

in the cluttered office. We find that the average and variance of localization error among

all possible single transmitters are 1.6 meters and 0.61 square meters, respectively, in the

matrix inversion approach. However, the average and variance of the localization error in

the MLE approach are 1.77 meters and 1.55 square meters, respectively. Given the benefits

of the matrix inversion approach in terms of both time complexity and the localization

error, we select this approach to localize a single transmitter.

Next, we analyze the performance of SPLOT for multiple transmitters. To create the

changes in number and locations of transmitters, we use the two state continuous time

Markov chain and find the on and off state of each transmitter for 1000 seconds. The

results are obtained by taking average of 100 different trials of transmitters in on and off

states over 1000 seconds. We assume that only one transmitter is turned on at any instant,

although once turned on at different time instants, multiple transmitters can be transmit-

ting simultaneously. However, we do consider the scenarios where multiple transmitters

can be simultaneously turned off.

• Number of transmitters: We consider the impact of maximum number of transmit-

ters on the performance of SPLOT. We set the maximum number of transmitters

to 1, 2, 3, and 4 in the open environment. Figure 3.4 shows the changes in the

average localization error of SPLOT and Quasi EM with the maximum number of

transmitters in open environment. To find the localization error of Quasi EM, we

provide the actual number of transmitters as an input parameter. Also to find av-

erage localization error, we run 1000 trials of Quasi EM and take the average over

these trials. The average localization errors shown in Figure 3.4 are over different

combinations of transmitters in the open environment.

Figure 3.4 shows that the average localization error increases substantially with the

increase in the number of transmitters in the Quasi EM approach. However, the

average localization error of SPLOT is at or less than 1 meter, even though SPLOT

also estimates the number of transmitters (unlike Quasi EM, SPLOT is not provided
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the number of transmitters as an input). Interestingly, we do not observe any penalty

for increasing the number of transmitters being located.

Next, we compare the running time of SPLOT with that of Quasi EM in the open

environment. Table 3.3 shows the running time of these two approaches for a trial

of 100 seconds of the transmitters being in the on and off states. The Quasi EM is

run only for one time. Table 3.3 shows that the running time of SPLOT is around

0.5 second. However, the running time of Quasi EM is above 200 seconds and the

increase in the maximum number of transmitters substantially degrades the running

time of Quasi EM degrades. We also expect the running time of Quasi EM to degrade

more with increasing number of mobile sensing devices.

We also evaluate SPLOT in terms of average cardinality error and average OSPA

error. Table 3.4 shows the average OSPA error and the average cardinality error of

SPLOT with increasing maximum number of transmitters. This table shows that an

increase in the maximum number of transmitters increases the average cardinality

error. The average cardinality error in the worst case is around 0.14 when the max-

imum number of transmitters is 4. The OSPA metric considers both the localization

error and the cardinality error in one metric. Table 3.4 shows that the average OSPA

error increases by a very small amount even when the cardinality penalty is set to

a very high value (g = 5m). This is because the fraction of times that the number

of estimated transmitters |θ̂| and the number of actual transmitters |θ| differ is very

small.

• Impact of transmitters locations: Next, we analyse the effect of transmitter locations

on the localization approach. To find the impact of transmitter locations, we use

the cluttered office data with the maximum number of transmitters equal to 2. We

consider different combinations of two transmitters such that the Euclidean distance

between two transmitters varies from 3.5 meters to 18 meters. Figure 3.5 and Fig-

ure 3.6 show the relationship between the transmitters’ Euclidean distance and the

average localization error. Here, each data point is obtained by averaging over 100

different trials, each with its own randomly generated transmitter on and off chains.

Also, note the different scales on the y-axes of the two plots. Figure 3.6 shows a linear

correlation between the transmitters’ distance and the localization error in the Quasi
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EM approach. However, in SPLOT, there is no apparent correlation between the

distance between transmitters and the localization error. The correlation coefficients

between distance and average localization error in the Quasi EM and SPLOT are 0.72

and −0.02, respectively.

Regarding the cardinality error, there is a small correlation between the distance be-

tween transmitters and the cardinality error in SPLOT. Our evaluations show that the

correlation coefficient of distance and average cardinality error in SPLOT is around

−0.35. With increasing distance, SPLOT is more successful in finding the local max-

ima and converting the multiple transmitters localization to a set of single transmit-

ter localizations. Therefore, the average cardinality error decreases with increasing

distance between transmitters. Similarly, there is also a small correlation of −0.1

between the distance and the OSPA error.

• Comparison of SPLOT and Quasi EM in the cluttered office: With the help of our

experimental results, we have shown, earlier in this section, that SPLOT performs

better than Quasi EM in the open environment. However, the number of transmitters

and mobile sensing devices in the open environment is small and there is no signif-

icant noise or obstruction in the environment. In this section, we compare SPLOT

with the Quasi EM in the cluttered office environment, where we have 44 nodes that

are located uniformly in the cluttered office and we can select any of these nodes

as a transmitter or a mobile sensing device. Figure 3.7 shows the CDF of average

localization error in the cluttered office for different combination of transmitters with

maximum number of two transmitters. The average localization error on the x-axis

corresponds to the localization error for each combination of transmitters obtained

by averaging over 100 different trails. Figure 3.7 shows that the average localization

error of SPLOT is significantly less than that of Quasi EM. Furthermore, the average

localization error for any combination of transmitters is 4.54 meters in Quasi EM

which is much higher than the average localization error in SPLOT.

3.4 Implementation
To further investigate its accuracy, we use commodity devices to implement SPLOT.

Our mobile sensing device consists of a commodity smartphone/tablet that connects to
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an inexpensive Realtek dongle (RTL-SDR for brevity) [65] via a USB cable. The RTL-

SDR acts as a sensing unit and collects raw In-phase/Quadrature(I/Q) samples while the

smartphone/tablet acts as a computing unit that receives I/Q samples from RTL-SDR and

computes the RSS value. RTL-SDR operates in 25MHZ-1750MHZ with a sample rate up

to 2.4MHZ. For transmitters, we use BaoFeng BF-F8HP (BF) [66]. BF is an FM transmitter

that is able to transmit VHF in 136MHZ-174MHZ and UHF in 400MHZ-520MHZ with up

to 8W power. We build an Android app that is able to measure spectrum in real time by

specifying the frequency range and the sampling rate. The app records the I/Q samples

obtained from the RTL-SDR and computes the RSS value. In our setup, the app generates

a (time, location, RSS) tuple every second. The location is the GPS coordinates for outdoor

experiments. For indoor experiments, the app finds the location by indoor fingerprinting

localization [67].

3.4.1 Data Gathering

We have 30 users participate in our experiments for carrying both the transmitters and

mobile sensing devices. They are of different ages, body shapes, and heights. Each user

has its own Android device (smaprtphone/tablet) with our app installed and an attached

RTL-SDR device. We collect data in different indoor and outdoor areas with at least two

transmitters. The areas of our experiments are at least 30 m by 30 m2 in size.

To determine the location and the transmission time of transmitters, a user that car-

ries the transmitter also carries a mobile sensing device (smartphone/tablet connected

to RTL-SDR). Our app on the smartphone/tablet records the transmission time and the

location of transmitter every second. In some experiments, the transmitters are transmit-

ting continuously, while in the other experiments, we give the transmitters a transcript for

transmission. The transcript shows the time of transmission for each transmitter. We create

the transcript to allow us to experiment with a different number of active transmitters

at different times. In all experiments, we configure the transmit power to 1W and the

frequency band to 443MHZ.

2We make the experiment area small to evaluate SPLOT in an environment where mobile sensing devices
are receiving signal from both transmitters and there is strong interference.
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3.4.2 Test Environment

We perform different indoor, outdoor experiments for both stationary and mobile sce-

narios.

• Engineering Building: We perform two experiments on the third floor of an engi-

neering building. In both experiments, there are at most 8 mobile sensing devices3

that are placed in four corridors of a square area of 40 m by 40 m. Two transmitters

that are located in two opposite corridors. In the first experiment (Experiment A),

the mobile sensing devices are static while the transmitters transmit continuously

and move along the corridors for 7 minutes at normal walking speed. In the second

experiment (Experiment B), the mobile sensing devices move randomly in different

corridors. This experiment takes 8 minutes and the transmitters use a transcript for

transmission.

• Food Court: We perform two experiments in a university food court area. The

food court is an indoor area of 30 m by 50 m. In both experiments, there are 6

mobile sensing devices that are located uniformly along the food court and both the

transmitters and the mobile sensing devices are static. Also, in both experiments the

transmitters use a transcript for transmission. In the first experiment (Experiment C),

there are two transmitters that are located on two ends of the food court at first. Then,

we gradually reduce the distance between the transmitters. In the second experiment

(Experiment D), there are three transmitters located in three different corners of the

food court.

• Outdoor Area: We perform two experiments in an outdoor area of size 30 m by 50

m that is a part of a campus where both static (buildings, trees) and mobile obstacles

(pedestrians) are present during the experiment. In both experiments there are at

most 8 mobile sensing devices. In the first experiment (Experiment E), both trans-

mitters and mobile sensing devices are static and the transmitters use a transcript for

transmission. In the second experiment (Experiment F), both transmitters and mo-

bile sensing devices are moving. The transmitters transmit continuously and move

3Users are not able to run the app for the duration of the experiment time for different reasons such as a
battery issue, etc.
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around a circle for 7 minutes at normal walking speed. The mobile sensing devices

also move around the circle while maintaining a distance from the transmitters.

3.4.3 Results

We evaluate SPLOT using the data from our implementation and compare its perfor-

mance with that of Quasi EM. Figure 3.8 shows the average localization error of SPLOT

and Quasi EM in experiments A to F. Figure 3.8 shows that the average localization error

of SPLOT is substantially less than the Quasi EM. The average localization error decreases

in both SPLOT and Quasi EM when both transmitters and the mobile sensing devices are

static (Experiment C, D, E). The average localization error of Quasi EM increases signifi-

cantly when transmitters and mobile sensing devices are mobile (Experiment A, B, F). In

comparison, the average localization error of SPLOT is less than 5 meters.

We also evaluate SPLOT in terms of average cardinality error and average OSPA error

for experiments A to F. Table 3.5 shows the average OSPA error and the average cardinality

error of SPLOT. This table shows that the average cardinality error increases when both

transmitters and mobile sensing devices are mobile. Also, the average cardinality error

in Experiment D is greater than that in Experiment C and E because of an increase in the

number of transmitters. Table 3.5 also shows that the average OSPA error increases by a

very small amount even with high cardinality penalty (g = 5m).

Figure 3.9 shows the changes in the average localization error of SPLOT and Quasi EM

for different number of transmitters in Experiment D. Figure 3.9 shows that the average

localization error increases with the increase in the number of transmitters in the Quasi

EM approach. However, the average localization error of SPLOT is at or less than 4

meters, even though SPLOT also estimates the number of transmitters (recall that Quasi

EM assumes that the number of transmitters is known).

Finally, we analyse the effect of transmitter locations on the localization approach. To

find the impact of transmitter locations, we use Experiment C with number of transmitters

equal to 2. We change the location of one transmitter such that the Euclidean distance be-

tween two transmitters varies from 6 meters to 45 meters. Table 3.6 shows the relationship

between the transmitters’ Euclidean distance and the localization error. Table 3.6 shows

that there is no apparent correlation between the distance between transmitters and the
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localization error in SPLOT. However, the localization error decreases in the Quasi EM

with decreasing distance between transmitters. This is because Quasi EM estimates the

locations of both transmitters close to one of the transmitters.

3.5 Conclusion
We presented a method for simultaneous power-based localization of transmitters for

crowdsourced spectrum monitoring (SPLOT). SPLOT considered the temporal availability

and mobility of both receivers and transmitters and made no assumptions about the num-

ber of transmitters. We experimentally evaluated our approach in two different settings.

We also implemented SPLOT on commodity devices and performed multitransmitter lo-

calization in a variety of indoor and outdoor experiments. Our results demonstrated the

efficiency and accuracy of our approach.

In the next chapter, we build sampling approaches to select mobile sensing devices

required for localization.
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Table 3.1. Evaluation parameters.
Parameters Values Descriptions

δp 1.5 Pixel width(m)
σ2

x 0.5 Voxels variance(dB)
σc 1 Correlation coefficient

minPL 1.5 Minimum path length(m)
np 2 Path loss exponent
λ 1 Parameter of exponential distribution in Markov chain model
b 2 Bursts of transmitting
p 0.5 Probability of transmitting
R 4 Confined area radius(m)
k 20 Number of iterations in Metropolis

Table 3.2. Localization error in Matrix inversion and MLE approaches for one transmitter
in the open environment with no mobility.

Transmitter Localization error(m)
Matrix inversion MLE approach

TX1 1.41 1.01
TX2 0.5 1.03
TX3 1.11 0.97
TX4 1.41 5.08

Table 3.3. Running time of SPLOT and Quasi EM in the open environment.
Maximum number Running time (second)

of transmitters SPLOT Quasi EM
1 0.5 211
2 0.5 985
3 0.7 2281
4 0.6 4169

Table 3.4. Average OSPA error, ε̄p(m), and average cardinality error, ε̄c, of SPLOT in the
open environment.

Maximum number ε̄p(m) ε̄c
of transmitters g = 1 g = 2 g = 5

1 0.79 1.01 1.01 0
2 0.91 1.17 1.17 0
3 1.04 1.36 1.45 0.05
4 1.14 1.51 1.74 0.14

Table 3.5. Average OSPA error, ε̄p(m), g = 5m, and average cardinality error ε̄c, of SPLOT
for experiments A to F.

Experiment A B C D E F
ε̄p(m) 5.39 5.05 4.19 5.03 3.79 6.38

ε̄c 0.18 0.11 0.04 0.16 0 0.06
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Table 3.6. Average localization error, ε̄l(m), of SPLOT and Quasi EM versus distance
between two transmitters in experiment C.

Distance (m) 45 41 36 29 18 9 6

ε̄l(m)
SPLOT 3.38 3.82 3.67 4.92 2.9 3.68 1.16

Quasi EM 18.72 17.34 14.43 11.31 8.7 4.96 5.66
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Figure 3.2. The experiment layout for a cluttered office.
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Figure 3.5. Impact of transmitters locations in SPLOT for cluttered office.
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CHAPTER 4

SAMPLING FOR CROWDSOURCED

SPECTRUM MONITORING

4.1 Introduction
In this chapter, we build efficient sampling approaches for crowdsourced spectrum

monitoring. An important aspect of offender localization is the task of selecting a set of

mobile sensing devices for RSS measurements. The selection approach must consider the

following: (i) maximum spatial coverage of the monitored area, and (ii) computational

efficiency, i.e., select the nodes in a timely manner.

We define and use a new metric called degree expansion, which represents the amount of

overlap in the sensing ranges of mobile sensing devices. A high degree expansion amounts

to selecting receivers from new uncovered geographic areas and thus maximizing cover-

age. Using this metric, we propose two sampling approaches: 1) Greedy sampling and 2)

Metropolis sampling. We also make our sampling efficient for handling mobility by using

the information from the previous sampling interval in the current sampling interval and

providing an adaptive approach to determine the number of required sensing devices in

each sampling interval. While good samaritans can be recruited for monitoring spectrum,

mobile users need not participate in crowdsourcing for selfish reasons (including depletion

of batteries and use of their processing resources) unless they receive some payoff as

a compensation. We enhance our sampling approach to incentivize mobile users such

that we select nodes that maximize coverage but minimize the total payoff. Furthermore,

our incentive mechanisms motivate mobile sensing devices to act truthfully. Our truthful

sampling considers both the budget limit and mobility of mobile sensing devices.

There are a great number of works that have focused on selecting a set of sensor nodes

to provide the maximum coverage in wireless sensor networks (WSNs) (e.g., [5–7]). There

are also a few existing works that consider both incentive and the coverage problem [8–10].
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However, unlike our work, none of these existing works considers mobility, truthful-

ness, and coverage problem all together. [11] tries to maximize the expected coverage for

long-term participation that does not apply to mobile environments where mobile sensing

devices can be too temporary.

We evaluate the impact of sampling on the localization accuracy and show how we

can maintain the localization accuracy by using a suitable sampling approach to select

mobile sensing devices among all available mobile sensing devices. We also compare our

sampling approaches in terms of coverage and efficiency of implementation with existing

well known sensor sampling approaches.

The rest of this chapter is organized as follows. Section 4.2 provides some preliminaries.

Section 4.3 and Section 4.4 describe the Greedy and the Metropolis sampling approaches.

In Section 4.5, we make our sampling approaches efficient for handling mobility. Sec-

tion 4.7 present our truthful sampling approaches. In Section 4.6, we describe our evalua-

tion results. The concluding remarks are provided in Section 4.8.

4.2 Preliminaries
We assume that the mobile sensing devices know their locations. Let T be the time

interval after which the sampling is repeated. At the beginning of each time interval T,

the central controller sends the sensing request for that time interval to the mobile sensing

devices. Then, mobile sensing devices voluntarily inform the central controller about their

current locations and their sensing ranges. The sensing range of a mobile sensing device

is the maximum radius around their current location for a given transmit power that they

are able to measure. Given the current locations of mobile sensing devices, the central

controller constructs a weighted graph G = (V, E, W) where v ∈ V represents mobile

sensing devices (nodes), ei,j ∈ E denotes a link between node i and node j, and wi,j ∈ W

represents the weight of link ei,j. There is a link between node i and node j, ei,j ∈ E, if their

sensing ranges overlap. wi,j ∈ [0, 1] shows the amount of overlap between the sensing

range of node i and node j and is obtained from the following formula:

wi,j =

{
(ri+rj−di,j)

(ri+rj)
di,j ≤ ri + rj

0 otherwise
(4.1)
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Here, ri and rj are parameters related to the sensing ranges of node i and node j respec-

tively. di,j denotes the Euclidean distance between two nodes.

We define the following:

Definition1. S is set of nodes where S ⊂ V.

Definition2. N(S) is the neighborhood of S that includes all nodes in V − S that have a

link to S.

Definition3. dG(v) is degree of node v in graph G. dG(v) is equal to sum of the weights

of links that connect to v.

Definition4. The degree expansion, DX(S), of a set S is DX(S) =

∑i∈N(S) minj∈S wi,j.

To select mobile sensing devices that maximize the coverage, we develop algorithms

for solving the optimization problem below:

arg max
S⊂V

DX(S) (4.2)

where, S is the cardinality constraint. This optimization problem is NP-Hard. It can be

reduced to the set cover problem [68]. In the following sections, we propose two algorithms

to obtain approximate solutions.

4.3 Greedy Algorithm
The Greedy approach is shown in Algorithm 1. As we can see, the selection is based on

a Greedy heuristic that selects the mobile sensing devices based on their marginal contribu-

tions to the degree expansion. The mobile sensing device with maximum degree expansion

is selected first. Then, the mobile sensing devices are selected one by one iteratively based

on their marginal contributions on degree expansion until S mobile sensing devices are

selected. By iteration j, j− 1 mobile sensing devices are selected (denoted by Aj−1), and the

marginal contribution of mobile sensing device i ∈ V − Aj−1, if represented by mi|Aj−1
is

equal to dG(i)−∑j∈N(Aj−1)∪Aj−1
wi,j−∑j∈Aj−1wi,j

. The mobile sensing device with maximum

marginal contribution to the degree expansion is selected as the winner of the j iteration.

I.e., v ∈ argmaxi∈V−Aj−1 mi|Aj−1
. To simplify the notation, we replace mi|Aj−1

by mi in the

rest of this chapter.
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Algorithm 1: Greedy Algorithm
input : G = (V, E, W)

S // cardinality constraint

output: A // selected mobile sensing devices

1 A = ∅;
2 v = argmaxv∈GdG(v);// the mobile sensing device with maximum degree is

selected first

3 A = A ∪ v;
4 while |A| < S do
5 Select new node v ∈ V − A where
6 v ∈ argmaxi∈V−Aj−1 mi|Aj−1

7 A = A ∪ v;
8 end

4.4 Metropolis Algorithm
Metropolis is a Markov Chain Monte Carlo (MCMC) method to sample and evaluate

probability distributions [69]. Recently, Metropolis sampling has been applied to subgraph

sampling [70]. In this section, we use the idea of subgraph sampling to approximate the

optimization problem of Equation 4.2.

Overview: Given a graph G = (V, E, W), the idea of Metropolis algorithm is to create

a subgraph of size S < |V| in each iteration. The first set of mobile sensing devices is

selected randomly and the subsequent sets of mobile sensing devices are constructed by

removing a node from and adding a new node to the subgraph. We choose a quality

measure, described below, to quantify the degree expansion of samples. The acceptance

or rejection of new mobile sensing devices is based on this quality measure. By selecting

mobile sensing devices until convergence is achieved while keeping the selected mobile

sensing devices with the maximum quality measure, we obtain a subgraph (selection of S

mobile sensing devices out of N users) that approximately optimizes the degree expansion.

We describe the pseudo-code of Metropolis in Algorithm 2.

Quality metric: Given a selected mobile sensing device A, the maximum possible degree

expansion of graph G = (V, E, W) is ∑v∈V−A dG(v). This implies that the selected nodes,

A, have links to all the other nodes, V − A (i.e., N(A) = V − A). As a result, a normalized

quality measure is equal to: q(A) = DX(A)
∑v∈V−A dG(v)

. The quality measure determines the

degree expansion. A higher quality measure corresponds to a higher degree expansion.
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Algorithm 2: Metropolis Algorithm
input : G = (V, E, W)

S, M // cardinality constraint and number of iterations

output: Aopt // selected mobile sensing devices

// Initial sample, S nodes selected randomly.

1 Acurrent = random(V, S);
2 Aopt = Acurrent;
3 for i = 1 to M do
4 v = rand(Acurrent, 1);
5 w = rand(V − Acurrent, 1);
6 Anew = {Acurrent − v} ∪ {w};
7 α ∈ rand[0, 1];

8 if α < q(Anew)
q(Acurrent)

then
9 Acurrent = Anew;

10 if q(Acurrent) > q(Aopt) then
11 Aopt = Acurrent;
12 end
13 end
14 end

4.5 Mobility Aware Sampling
Mobile sensing devices can frequently change their locations making the sampling

and the RSS measurements unreliable. To account for the mobility of sensing devices,

we should repeat the sampling often. Let the time interval after which the sampling is

repeated be T. We note that the sampling is not actually performed over the time interval

T but at the beginning of each interval. To reduce the time taken for node selection across

repeated sampling, we use the information from previous sampling interval in the current

sampling interval as follows.

1. Instead of constructing the whole graph again, we only update the constructed graph

after each time interval T.

2. We select some of the nodes for the current sampling interval, from those selected in

the previous sampling interval.

Besides the above optimizations to reduce the time taken for node selection, to account

for mobility and possibility of erroneous or missed measurements, we use an adaptive ap-

proach to determine S (number of selected nodes) after each time interval T. The pseudo-

code of our mobility aware Sampling approach is described in Algorithm 3.
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At the beginning of first time interval, we select S sensing devices using one of the

sampling approaches (Greedy sampling or Metropolis sampling). S1
opt represents the se-

lected sensing devices for the first time interval. Then, at the beginning of each time

interval, we perform mobility aware sampling (the value of T depends on the mobility

in the environment, for environments with high mobility the value of T should be smaller

than that in environments with lower mobility). In mobility aware sampling after each

time interval T, the selected sensing devices report their measurements along with their

current locations to the central controller. The central controller decides on sampling, how

many devices and how they are locally distributed, using the reported information and

also the constructed graph G = (V, E, W) in the previous time interval.

How many devices? The central controller uses a Linear Increase and Linear Decrease

(LILD) approach to determine the number of required sensing devices, S. The number of

required sensing devices, S, increases linearly if the received measurements are unreliable

because of mobility. The central controller determines unreliable measurements by com-

paring the current and previous locations of selected nodes. A measurement is deemed

unreliable if the difference in locations is more than a prespecified threshold.

Which devices? After selecting the number of nodes using the LILD approach, the cen-

tral controller must determine which sensing devices should be selected for measurement

in the next time interval T. We make this decision based on the graph G = (V, E, W)

constructed in the previous time interval and the current locations of previously selected

sensing devices. Let St
opt and St−1

opt represent the selected sensing devices in the current, t,

and the previous time interval, t− 1, respectively. Also, let θt(St−1
opt ) denote the locations

of St−1
opt in the current time interval. We update the graph G using the current locations of

previous nodes, θt(St−1
opt ). This update is only related to the positions of previous nodes,

St−1
opt , in the graph. We use the updated graph in our localization module for selection of

nodes in the current time interval, St
opt.

The graph G that we construct is expected to change little across adjacent time in-

tervals. Therefore, the nodes selected in a time interval can still provide high coverage

in the subsequent time interval. Therefore, we can select some of the nodes from the

selected nodes from the previous time interval. For this purpose, we map the previous

locations of selected nodes in the previous time interval, θt−1(St−1
opt ), to the current locations
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Algorithm 3: Mobility Aware Sampling
input : G = (V, E, W)

S, T // Initial number of required samples and Time interval

between two consecutive sampling

output: Sopt // selected nodes in each time slot T

1 Set S1
opt, selected nodes for the first time interval, using (Greedy or Metropolis

sampling) with G = (V, E, W) and S as input parameters.
2 Set time = 1;
3 while (1) do
4 if time mode T = 0 then
5 Select the required number of nodes, S, by using LILD approach.

6 Update G for current time interval, t, using the current locations of previous
nodes θt(St−1

opt ).

7 Map the current location and previous location of St−1
opt based on distance.

8 St
opt are selected from St−1

opt if their current locations are nearest to their
mapped previous locations and their distance is less than a threshold.

9 if |St
opt| <= S then

10 Select the remaining nodes using Greedy or Metropolis sampling.
11 end
12 else
13 Select S nodes from |St

opt| using Metropolis sampling with subgraph
G′ = (St

opt, E′, W ′).
14 end
15 end
16 time = time + 1;
17 end

of these sensing devices, θt(St−1
opt ). This mapping is based on the distance between the

current locations, θt(St−1
opt ), and the previous locations, θt−1(St−1

opt ), of nodes. Then, we

select those nodes from the previously selected nodes whose current locations is nearest

to their mapped previous locations and their distance is less than a threshold (we use a

threshold of 1 meter).

After selecting some nodes from the previously selected nodes, if the number of se-

lected nodes is less than the required nodes (the if statement in line 9 of Algorithm 3),

we perform Greedy sampling or Metropolis sampling for selecting the rest of nodes. In

Metropolis sampling, instead of selecting all required nodes randomly in the initial state,

we use the current selected nodes, St
opt, and select the remaining required nodes randomly.
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Thus, the initial state of Metropolis sampling is not completely random, which reduces the

number of iterations required in the Metropolis sampling. When the number of selected

nodes is greater than the required nodes, we prune the nodes using Metropolis sampling.

However, instead of using the whole graph G, we only use the subgraph of G′ that we

construct from the selected nodes (see line 13 of Algorithm 3).

Recovery: It is possible that we observe consecutive linear increase in the required num-

ber of nodes S. If the number of consecutive linear increases is greater than a predefined

threshold, we use the current locations of all available sensing devices to obtain a fresh

graph from scratch for accurate localization.

4.6 Truthful Sampling
A naive way to provide incentives for the mobile sensing devices is to reward them

such that the reward amount is greater than their declared cost of participation. The

problem with this approach is that mobile sensing devices can over-report their costs

and receive higher rewards. Therefore, the algorithm for selecting mobile sensing devices

should also motivate them to truthfully report their costs. In this section, we enhance

the Greedy algorithm to consider both cost and the degree expansion in selecting mobile

sensing devices and add truthfulness.

We design a time efficient payment mechanism for the case where the sampling is not

optimal. Then, we propose the budget feasible version of the Greedy algorithm. Finally, we

propose a truthful mobility aware sampling approach that prevents selfish mobile sensing

devices from cheating with regard to their availability for the sampling task. In truthful

sampling, in addition to location and the measuring range, the mobile sensing devices also

inform the central controller about their bids that can be equal or greater than their actual

costs of collecting data, ci.

Given graph G = (V, E, W), and a cardinality or a budget constraint, the central con-

troller selects winners and determines the payment, pi, for each winner. We assume that

all mobile sensing devices act rationally and selfishly, and their main goal is to maximize

their own profits, not to harm others. Also, each user has a utility of pi − ci > 0 if selected

and 0 otherwise.
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4.6.1 Truthful Greedy Algorithm

Given the cardinality constraint S, the central controller wants to select S mobile sens-

ing devices that maximize the degree expansion and minimize cost while considering indi-

vidual rationality (provides the required incentives for selfish players to participate in the

game) and incentive compatibility (truthfulness). This amounts to solving the following

optimization problem.

max
S∈V

∑
i∈S

mi

ci

s.t.

∀i, c′i, pi(ci)− ci ≥ pi(c′i)− ci (4.3)

∀i, pi(ci)− ci ≥ 0 (4.4)

Here, Constraints 4.3 and 4.4 provide incentive compatibility and individual rationality.

Our allocation mechanism must consider both cost and the degree expansion. Our

payment mechanism must ensure both incentive compatibility (IC) and individual ratio-

nality (IR). The best known payment mechanism for providing IC and IR is the well-known

Vickrey-Clarke-Groves (VCG) mechanism [71]. Unfortunately, VCG fails to provide IC and

IR when the allocation mechanism is not optimal. The problem of selecting a set of mobile

sensing devices that maximize the total weight is equivalent to set-cover problem which is

NP-hard. We use a Greedy algorithm to approximate the optimal solution. However, we

still need a truthful payment mechanism that employs an approximated Greedy algorithm

to select mobile sensing devices. Towards this goal, we rely on Myerson’s characterization

of truthful mechanisms [72].

Theorem 4.1. (Myerson 1981). A mechanism with allocation mechanism A and payment mech-

anism P is truthful if and only if the following holds:

• A is monotone: The allocation mechanism keeps selecting the mobile sensing device i as a

winner if it independently decreases its declared cost, ci.

• P pays winners the threshold amounts: Paying each winner the maximum declared cost.

First, we need to show the submodularity for mi
ci

which implies that:

m1

c1
≥ m2

c2
≥ . . . ≥ mS

cS
(4.5)
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We show the submodularity by contradiction. Suppose mobile sensing device i and mobile

sensing device l are selected by the central controller where i < l, i.e., the mobile sensing

device i selected before the mobile sensing device l. Let us assume that mi
ci

< ml
cl

. According

to the sampling mechanism, [i] = argmaxj∈V−Ai−1

mj
cj

. That means
m

i|Ai−1
ci
≥

ml|Ai−1
cl

. Given

that Ai−1 ⊂ Al−1, ml|Ai−1
≥ ml|Al−1

. Therefore, we have
mi|Ai−1

ci
≥

ml|Ai−1
cl
≥

ml|Al−1
cl

, which is

a contradiction with our assumption. As a result, Equation 4.5 is true. Next, we determine

the payment using the Myerson’s conditions. The key point is that we have to find the

maximum value for the cost that a mobile node can declare and still win. We can find this

threshold amount for each winner i by setting V ′ = V − {i} and run the Greedy algorithm

until i is no longer selected. Let k be the index of the last mobile sensing device where
mk
ck

< mi
ci

. Then, we obtain the payment to mobile sensing device i from the following

formula:

pi(ci) = max1≤j≤k
cjm

j
i

mj
(4.6)

where mj
i is the marginal contribution of mobile sensing device i on the degree expansion

in iteration j.

Lemma 4.1. The payment mechanism provides individual rationality.

Proof. If a mobile sensing device is selected by the sampling mechanism, then the

utility is equal to cjm
j
i

mj
− ci. Given that mj

i
ci
≥ mj

cj
, the utility of the winner is always positive.

Also, if the mobile sensing device is not selected by the sampling mechanism, the utility of

the device is zero.

Lemma 4.2. The payment mechanism provides incentive compatibility for the declared cost.

Proof. Let ci, c′i be the declared cost of mobile sensing device i when it is being truthful

and not truthful, respectively. We must consider four cases here. First, if mobile sensing

device i is the winner, by over-reporting, c′i > ci, or under-reporting, c′i < ci, the utility of

mobile sensing device decreases. Thus, the mobile sensing device has no incentive to lie.

Second, if the mobile sensing device i is a loser it is still not selected even if it over-reports

or under-reports its cost. Then, the utility is still zero and once again there is no incentive

to lie. Third, if mobile sensing device i is a winner, it is not selected by over-reporting its

cost. Then, the utility will be zero. Thus, the mobile sensing device has no incentive to
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lie. Fourth, if the mobile sensing device i is a loser and it is not selected by over-reporting

its cost. Otherwise, it contradicts the submodularity. However, the mobile sensing device

can be selected by under-reporting its cost. Let us assume that the mobile sensing device l

is selected by the Greedy algorithm when the mobile sensing device i acts truthfully. This

means ml
cl
≥ mi

ci
. Since the maximum threshold for the mobile sensing device i is at least ml

cl
,

the payment to player i is at least ml
i cl

ml
meaning that the utility is at most zero.

4.6.2 Budget-feasible Truthful Greedy Algorithm

We now consider a limit, B, on the total budget available to the controller. Given

this limit, we must select a set of mobile sensing devices that maximize the marginal

contribution on degree expansion. We formulate the following optimization problem. To

select the mobile sensing devices with the budget limit constraint, similar to [73], we check

the following condition at each iteration of the Greedy algorithm, and stop the algorithm

whenever the following condition no longer holds.

ci ≤ B
mj

i

∑j∈Aj
mj

(4.7)

Let {1, . . . , k} be the largest subset that respects condition 4.7. To find the amount of pay-

ment for mobile sensing device i ≤ k, we remove this player from the set of mobile sensing

devices, V ′ = V − {i}, and then run the Greedy algorithm. In each iteration of Greedy

algorithm, we check the budget limit constraint, Equation 4.7. Let k′ be the last iteration of

the Greedy algorithm for V ′ = V − {i} that Equation 4.7 holds and mobile sensing device

i is still a winner, mk′
ck′
≤ mk′

i
ci

. To simplify the notation, we write the proportional share of

mobile sensing device i in iteration j, ρi(j) = B mj
i

∑j∈Aj
mj

and ci(j) =
cjm

j
i

mj
. The payment for

user i in the budget feasible mechanism is:

pi = maxj≤k′(min(ρi(j), ci(j))) (4.8)

Lemma 4.3. The budget feasible mechanism provides individual rationality.

Proof. Since the payment has the maximum value, we need to show the following for

a j ≤ k′.

1. ci ≤ ρi(j)
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2. ci ≤ ci(j)

The first condition is the budget limit constraint, Equation 4.7, that holds. The second

condition is related to the threshold payment and shows that the mobile sensing device i

is still the winner. Otherwise, the mobile sensing device i is not selected

Lemma 4.4. The budget feasible mechanism provides incentive compatibility for the declared cost.

Proof. To prove incentive compatibility, we need to show that pi is the maximum cost

that mobile sensing device i can declare and still be selected by the allocation mechanism.

Let r be the index in j ≤ k′ such that min(ρi(j), ci(j)) is maximized. For the case where

ρi(r) < ci(r), declaring higher cost puts the mobile sensing device i after first k′ users.

Therefore, the mobile sensing device i will not be selected by the sampling mechanism.

Otherwise, if there is a j where j ≤ k′ such that ρi(j) > ρi(r), considering the maximality

of r, ci(j) < ρi(r) < ρi(j). This implies that mobile sensing device i by increasing its cost

gets placed after mobile sensing device j and thus, will not be selected. If ρi(r) ≥ ci(r),

a higher cost places the mobile sensing device i after r and since r is the maximum index

in k′, mobile sensing device i will not be selected. Otherwise, if there is a j, j < k′ where

ci(j) > ci(r), by maximality we have ci(j) > ρi(j). i will not be selected because of the

budget limit constraint, Equation 4.7.

4.6.3 Mobility Aware Budget-feasible Truthful Greedy Algorithm

In this section, we consider the mobility of sensing devices in our proposed truthful

sampling. We propose a truthful mobility aware sampling that prevents the selfish mobile

sensing devices from lying about their availability for the sensing task. In this setting,

when the central controller probes the nearby mobile sensing devices for sampling over

the time interval T, the mobile sensing devices reply by declaring their locations, costs,

and their availabilities. Based on this information, the central controller selects a set of

mobile sensing devices that maximize the marginal degree contribution under the budget

limit and also are available during the time interval T. By providing incentives for the

mobile sensing devices to declare the availability truthfully, the controller only selects

among those devices that are available over the time interval T.

The sampling approach in the mobility-aware truthful mechanism is the same as one in
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the previous subsection. However, in the mobility aware approach, the central controller

first selects the mobile sensing devices that are available during the time interval T and

then applies the Greedy budget limit on the available mobile sensing devices. The payment

mechanism in this case should provide incentive for mobile sensing devices to declare

their availability times truthfully. Therefore, in the mobility aware truthful mechanism,

the threshold payment depends on cost and the availability time of mobile sensing de-

vices. Let t be number of time intervals T that mobile sensing device i participates in

the sampling, then the payment to mobile sensing device i is the maximum of threshold

payment for each time slot T. Formally,

pi = maxt(pi(t)) (4.9)

The above payment ensures the truthfulness of mobile arrival and departure times by

removing the time dependency. Let ai, di denote the arrival and departure times of device

i, respectively. Let a′i, d′i be the declared arrival and departure time for the mobile sensing

device i. Considering the fact that the mobile sensing device cannot declare early arrival

and late departure, [a′i, d′i] ∈ [ai, di]. Thus, the mobile sensing device i can only decrease

the value of t. Since we take the maximum among all threshold payments, the payment

to mobile sensing device i when it lies about the availability time is no greater than that

when it reports truthfully.

4.6.4 Time Complexity

Now, we show that truthful sampling can be done in polynomial time. For the Greedy

algorithm, the time complexity is O(S log N). Recall that, S, N denote the cardinality con-

straints and the number of available mobile sensing devices, respectively. For the Greedy

truthful algorithm, the sampling time complexity is O(S log N). We also need to run the

sampling mechanism S more times for payment determination. Thus, the time complexity

isO(S2 log N). This time complexity is the same for the budget-feasible algorithm. Finally,

for the mobility-aware algorithm, the payment is the maximum threshold payment for

each time slot. Therefore, the overall time complexity isO(tS2 log N) where t is number of

time intervals T that mobile sensing devices are available.
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4.7 Evaluation
In this section, we evaluate the proposed sampling approaches. First, we study the

impact of the Greedy, the Metropolis sampling, and mobility aware sampling approaches

on the localization accuracy. Next, we compare our sampling approaches in terms of

coverage and efficiency of implementation with existing well known sensor sampling

approaches. Finally, we evaluate the impact of cost on the Greedy truthful sampling.

4.7.1 Impact of Sampling on Localization Accuracy

The number of available mobile sensing devices plays a key role in the accuracy of

localization. Selecting a large number of mobile sensing devices for measurement increases

the communication overhead between the mobile sensing devices and the localization

module. It also increases the time taken and the energy consumption. On the other hand,

selecting a very small number of mobile sensing devices decreases the accuracy of our

localization approach in terms of the localization error, the cardinality error, and the OSPA

error. In this section, we examine the impact of the number of mobile sensing devices on

efficiency of our localization approach and show how we can maintain the localization

accuracy by using a suitable sampling approach to select mobile sensing devices among

all available mobile sensing devices. We also evaluate the impact of the mobility aware

sampling approach on the localization. For evaluation, we use the data from the open

environment and the cluttered office that we described in Section 3.3.1.1 To create mo-

bility for both transmitters (offending sources) and receivers (or mobile sensing devices)

in the open environment and the cluttered office, we change the number and locations of

transmitters and receivers using a two state continuous time Markov chain and find the on

and off state of each transmitter and receiver for 1000 seconds. The results in this section

are obtained by taking average of 100 different trials of transmitters and receivers in on

and off states over 1000 seconds. The use of this Markov chain to activate or deactivate

transmitters and receivers is similar to its use in Chapter 3, as described in Section 3.3.1.

Table 4.1 shows the average localization error and the average cardinality error when

the maximum number of transmitters is 3 in the open environment with the number of

1We are not able to evaluate our sampling approaches using the implementation data (Section 3.4) because
of the small number of mobile sensing devices.
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mobile sensing devices reduced from 14 to 12, 9, and 6 for three sampling approaches for

selecting mobile sensing devices (random, Greedy, and Metropolis). We make the follow-

ing observations. First, the average localization error changes by about 0.25 meters when

reducing the number mobile sensing devices from 12 to 6 for all sampling approaches

and the average localization error is close to 1 meter even for 6 mobile sensing devices

(see Table 4.1). Table 4.1 also shows that the average localization error does not change too

much by selecting mobile sensing devices randomly. This table also shows that the average

cardinality error increases with reduction in the number of mobile sensing devices. This

is possibly because the number of selected mobile sensing devices is not enough to cover

the whole area and the localization approach is not able to detect the transmitters located

in the uncovered area. Moreover, the results of random sampling in Table 4.1 show that

the location of mobile sensing devices directly effects the cardinality error. In other words,

we need to have enough mobile sensing devices to cover the whole area to be able to

detect all available transmitters. Third, the results of average cardinality error for Greedy

sampling show that by reducing the number of mobile sensing devices and selecting a

good sampling approach, we can still have a small cardinality error. Finally, this table

also show that for the open environment where nodes are distributed nonuniformly, the

Greedy sampling performs better than the Metropolis sampling approach.

Next, we evaluate the impact of number of mobile sensing devices in the cluttered

office. The maximum number of transmitters is 2 and we vary the number of mobile

sensing devices between 5 to 40 with increments of 5. Table 4.2 shows average localization

and cardinality errors in the cluttered office. We make the following observations. First, the

average localization error varies from 1.42 to 2.24 meters. However, the average cardinality

error increases relatively substantially with reduction in the number of mobile sensing

devices. Second, for the cluttered office area where the mobile sensing devices are located

uniformly in the environment, Metropolis sampling performs slightly better than Greedy

sampling. Third, Table 4.2 shows that by reducing the number of mobile sensing devices

from 42 to 25 and using either of Metropolis or Greedy sampling approaches, we can keep

the localization error close to 2 meters and the cardinality error to about 0.06. Fourth,

the results of Table 4.2 show that 5 mobile sensing devices is not enough to cover the

whole area in the cluttered office environment. As this table shows, even by selecting
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the Metropolis sampling the average cardinality error is 0.43 if we only select 5 mobile

sensing devices. As we discussed earlier, the determination of the number of mobile

sensing devices required is done by the localization module. Generally, there is always

a trade off between the accuracy of of the localization algorithm and the communication

and processing overheads. Depending on the importance of each of these parameters and

the localization results, the localization module makes a decision about the number of

required mobile sensing devices.

Next, we evaluate the proposed mobility aware sampling approach. We use three

approaches for selecting receivers in this mobile environment. In the base approach, we

assume that the localization module probes the environment every second and therefore,

all selected receivers report their measurements to the localization module every second.

Probing the environment every second has high communication and processing overhead.

As more efficient alternatives, we consider probing the environment every 20 seconds and

use mobility aware sampling (mobility aware Greedy or mobility aware Metropolis) to

select the required receivers in each time slot (T = 20 seconds) with initial sample size

S = 20. However, in terms of localization accuracy, the base approach may perform

better than the two more efficient alternatives. In this section, we evaluate the localization

efficiency of the base approach and the two alternatives.

Figure 4.1 compares the localization accuracy of the base approach, and the mobil-

ity aware Greedy and the mobility aware Metropolis alternatives in the cluttered office

with maximum two transmitters. Figure 4.1 shows the CDF of average localization error

for three approaches. It is clear that the base approach performs better than the other

approaches. However, the difference between the base and other two approaches is not

very high. For instance, the 80th percentile average localization error of the other two

approaches is about 0.5 meters.

Figure 4.2 shows the CDFs of average cardinality error for the three approaches. Here

too, we can see a pattern similar to the CDFs of average localization error. Thus, by using

mobility aware sampling, we are able to keep the localization accuracy close to the base

approach and reduce the overhead2 of probing the environment every second. Table 4.3

2We do not evaluate the exact overhead.
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shows average value of localization error, ε̄l(m) and average cardinality error, ε̄c(m), for

different combinations of transmitters in the cluttered office. The results of this table are

consistent with Figure 4.1 and Figure 4.2. As Table 4.3 shows, by using mobility aware

sampling where we reduce the number of selected receivers and do the probing every

T = 20 seconds instead of every second, we can still keep the localization and cardinality

error small.

4.7.2 Efficiency of the Proposed Sampling

We compare our proposed Greedy sampling in terms of coverage and efficiency of

implementation with Greedy Distance and Greedy Coverage approaches [74]. In Greedy

Distance, we select a sensing device that is furthest away from the current locations of the

selected devices. However, in Greedy Area, we select a sensing device that covers the most

area not already covered by the selected devices. To find the overlapping areas in Greedy

Area, we divide the area into grids, a square of 0.2(m)× 2(m). The coverage area is equal

to the number of grids that are covered by the sensing range of selected devices.

For evaluation, we consider both uniform and nonuniform placements of sensing de-

vices in a square area. To create nonuniform placement of sensing devices, we use a simple

growth model that starts in an initial state, e.g., having one sensing device in three clusters.

Then, every step we add a new node to one of the clusters. The probability of selecting of

a cluster for a node is as follows.

pi =
Si

∑k Sk
(4.10)

where pi is the probability that cluster i is selected, Si is the size (number of nodes) of

cluster i and k is number of clusters. The above equation is called the preferential attachment

rule which means a node is more interested in bigger clusters. The way that nodes choose

their clusters results in power law distribution for cluster sizes. In other words, there will

be a few large-sized clusters. This, in fact, reflects the notion of hot spots that many people

visit in their daily movements.

We vary four parameters, the number of selected nodes, S, the number of available

nodes, the area size, and the number of clusters for nonuniform placement. The sensing

range of each node is selected randomly from a uniform distribution between 10 to 40

meters and the number of clusters for nonuniform distribution is set to 20. We use two
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metrics to evaluate our sampling approaches, the coverage ratio, and the running time.

The coverage ratio is equal to number of grids that are covered by the selected nodes

divided by the total number of grids. All results are obtained by taking average of 100

different runs.

Figure 4.3, Figure 4.5, Figure 4.7, and Figure 4.9 show the coverage ratios of three

sampling approaches (Greedy, Greedy Distance, and Greedy Area) for different values

of S, the number of available nodes, the area size, and the number of clusters using both

uniform and nonuniform distributions for sensing devices’ placement. We make the fol-

lowing observations. First, as the number of selected nodes (S) increases, the coverage

ratio increases in all sampling approaches. By increasing the number of available nodes

and the size of area, the coverage ratio decreases in all sampling approaches. Second,

Greedy Area has the maximum coverage. Our proposed Greedy sampling performs close

to Greedy Area and better than the Greedy distance approach.

Figure 4.4, Figure 4.6, Figure 4.8, and Figure 4.10 show the running times of three

sampling approaches (Greedy, Greedy Distance, and Greedy Area) for different values of

S, the number of available nodes, the area size, and the number of clusters. These figures

show that the running time of Greedy sampling is slightly less than Greedy Distance and it

is a lot less than the running time of Greedy Area. As we can see, the Greedy area approach

increases the coverage ratio at the cost of increasing the running time. Another weakness

of the Greedy area approach is its memory usage (we need to store the number of grids

that are covered by the selected nodes) and as we increase the area size this memory usage

increases. Note that we can decrease both the memory usage and the completion time of

the Greedy area approach by increasing the size of the grid at the cost of decreasing the

coverage ratio for this approach. However, our approach performs close to Greedy Area

in terms of coverage ratio without compromising the time complexity.

4.7.3 Evaluation of Truthful Sampling

In truthful sampling, we consider both cost and the coverage for selecting sensing

devices. In this section, we study the impact of cost on the coverage ratio. We use three

different distributions for the cost, the uniform distribution [0, 1], the normal distribution

with µ = 0 and σ = 1 and the exponential distribution with λ = 1. We consider 500
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sensing devices that are nonuniformly distributed in a 1000 by 1000 meters area and the

number of selected nodes (S) varies between 25 and 125. The sensing range of each node

is selected randomly between 10 to 40 meters. The number of clusters and the grid size are

set to 20 and 0.2 meter, respectively.

Figure 4.11 shows the coverage ratios of Greedy approach and the truthful Greedy

approach with three different distributions for the cost. This figure shows that there is

not much difference between the coverage ratio of the Greedy sampling and the truthful

Greedy sampling. The truthful Greedy sampling with uniform distribution for the cost

has the least coverage ratio. This is because the probability of selecting a higher value for

the cost in the uniform distribution is greater than that in the normal and the exponential

distributions. Therefore, in the Greedy truthful sampling with uniform distribution for the

cost, more likely, a node with a higher degree expansion will have a high value for the cost

and hence, not selected by the sampling.

4.8 Conclusion
In this chapter, we defined and used a new metric called degree expansion and pro-

posed two sampling approaches: 1) Greedy sampling , and 2) Metropolis sampling. We

also made our sampling efficient for handling mobility by using the information from the

previous sampling interval in the current sampling interval and providing an adaptive

approach to determine the number of required sensing devices in each sampling inter-

val. Next, we enhanced our sampling approach to incentivize mobile users such that

we selected nodes that maximize coverage but minimize the total payoff. Our incentive

mechanisms considered truthfulness, the budget limit, and mobility of mobile sensing

devices.

We evaluated the impact of our proposed sampling approaches on the localization

accuracy and showed how we can maintain the localization accuracy by using a suitable

sampling approach to select mobile sensing devices among all available mobile sensing

devices. We also compared our sampling approaches in terms of coverage and efficiency of

implementation with existing well known sensor sampling approaches. Our evaluations

demonstrated the efficiency of our approach.

The distributed sensing for localization in wireless networks also leads to an invasion
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of privacy. In the next chapter, we investigate an attack on location privacy and provide a

defense mechanism for that.
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Table 4.1. Average localization error (m), ε̄l(m), and average cardinality error, ε̄c, of
SPLOT with different numbers of mobile sensing devices and three transmitters in the
open environment.

Number of Random Greedy Metropolis
mobile sensing devices ε̄l(m) ε̄c ε̄l(m) ε̄c ε̄l(m) ε̄c

14 0.35 0.05 0.35 0.05 0.35 0.05
12 0.89 0.04 0.86 0.02 0.89 0.03
9 0.95 0.14 1.03 0.05 0.97 0.09
6 1.16 0.33 1.09 0.07 1.12 0.23

Table 4.2. Average localization error (m), ε̄l(m), and average cardinality error, ε̄c, with
different numbers of mobile sensing devices and two transmitters in the cluttered office.

Number of Greedy Metropolis
mobile sensing devices ε̄l(m) ε̄c ε̄l(m) ε̄c

42 0.35 0.05 0.35 0.05
40 0.86 0.02 0.89 0.03
35 1.03 0.05 0.97 0.09
30 0.35 0.05 0.35 0.05
25 0.86 0.02 0.89 0.03
20 1.03 0.05 0.97 0.09
15 1.09 0.07 1.12 0.23
10 1.03 0.05 0.97 0.09
5 1.09 0.07 1.12 0.23

Table 4.3. Evaluation of SPLOT with mobile transmitters and mobile sensing devices in
the cluttered office with time interval T = 20 seconds and initial sample size N = 20 and
maximum two transmitters.

Approach ε̄l(m) ε̄c
Base 1.66 0.03

Mobility aware Greedy 2.14 0.12
Mobility aware Metropolis 2.13 0.11



80

0 2 4 6
0

0.2

0.4

0.6

0.8

1

Average localization error(m)

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

 

 

Base approach
Dynamic Greedy(N=20)
Dynamic Meropolis(N=20)

Figure 4.1. CDF of average localization error (m), with mobile transmitters and mobile
sensing devices in the cluttered office and maximum two transmitters.
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Figure 4.2. CDF of average cardinality error, with mobile transmitters and mobile sensing
devices in the cluttered office and maximum two transmitters.
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Figure 4.3. The coverage ratio versus the number of selected nodes (S).
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Figure 4.4. The running time versus the number of selected nodes (S).
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Figure 4.5. The coverage ratio versus the number of available nodes.
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Figure 4.6. The running time versus the number of available nodes.
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Figure 4.7. The coverage ratio versus the area size.
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Figure 4.8. The running time versus the area size.
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Figure 4.9. The coverage ratio versus the number of clusters for nonuniform placement of
nodes.
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Figure 4.10. The running time versus the number of clusters for nonuniform placement of
nodes.
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CHAPTER 5

PRESERVING LOCATION PRIVACY IN RADIO

NETWORKS

5.1 Introduction
Location of a wireless device or a human represents an important piece of information

about the device or the human. This information can be used by adversaries for potentially

dangerous life threatening attacks. In this chapter, we develop the first solution to the

location privacy problem, where neither the attacker nodes nor the tracked moving object

transmit any RF signals, using a game theoretic framework.

Wireless devices in a wireless network create a radio wave field in and around the area

in which the network is deployed. Moving objects and people can disturb the field in

ways that can be measured at locations in and outside of the deployment area [25, 67, 75].

Essentially, the radio network information is leaked well beyond the perimeter in which

the radio network is deployed. In our research, we investigate defense mechanisms against

attacks where person location can be inferred using the radio characteristics of wireless

links (e.g., the received signal strength, RSS, of wireless links). In these attacks, a person or

a group has one or more wireless devices (wireless access points/sensor nodes) deployed

in an area in which they expect privacy, for example, their home. An attacker can deploy

a network of receivers which measure the received signal strength of the radio signals

transmitted by the legitimate wireless devices, allowing the attacker to learn the locations

of people moving in the vicinity of the devices, information that the attacker would not be

able to know if the wireless devices did not exist. Such an attack is possible even when the

network is otherwise secure against data eavesdropping.

Consider a scenario where military personnel setup a base in an area surrounded by

a tall concrete wall. Among the other facilities on the base, there are various wireless

networks used for voice, video, and data communications among the personnel, on and
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off the base. Security protocols, e.g., encryption, are used such that an adversary cannot

eavesdrop on the data communicated. However, an attacker sets up a network of receivers,

in locations outside of the wall of the base, which measure various characteristics of any

signals that these receive and can infer where the people inside the base are and choose

those areas to bomb for causing maximum damage.

In a different scenario, paparazzi might use the radio network leakage to learn where

in a celebrity’s house people are located, and be able to know beforehand from which

gate and when the celebrity may exit. Having a wireless network leaking the positions

and number of people in the area of the network is generally problematic in a variety

of different contexts where people rightfully expect such information to be private. The

potential for invasion of privacy is significant. Fundamentally, any transmitted radio

signal interacts with the radio propagation environment in a way that can be measured at

a receiver. By using multiple distributed receivers and observing the changes over time, an

eavesdropper can estimate where the changes in the environment are occurring, and infer

human or other moving object locations. Essentially, a wireless network leaks information

about the locations of people in the vicinity of that network to anyone who wishes to and

is capable of listening.

In order to motivate our research, we show a temporal plot of RSS measured by a

receiver outside of a building wall, in Figure 5.1. One can automatically identify periods

in which a person is crossing the line between transmitter and receiver by comparing the

short and long term variance. In general, environmental noise causes very little variation

in the RSS of a wireless link. However, human presence in the vicinity of the link causes a

high temporal variation. Thus, if we monitor the variance in the RSS of each link and ob-

serve a very high short term variance in some link, we can infer that a human is obstructing

the line of sight path of the link.

There is a growing amount of work ([76][77][78][12]) that shows how radio signals can

be used for obtaining location information of moving objects that are not transmitting any

radio signals themselves. Adib et al. [76] have developed WiVi to track moving humans

through walls. In a follow up work [77], the authors propose an approach to track the

3d location of the moving object through walls. In another work [78], the reflection of

wireless signals from a human body is used to identify human gestures. More recently,
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Banerjee et al. [12], have demonstrated how humans can be tracked through walls with-

out transmitting any signals from the attack nodes. One could possibly consider using

defensive jamming [79] to corrupt the transmitter signals and preserve location privacy.

However, in [12] the authors demonstrate that even by adding noise to the radio network,

the attacker is still able to locate persons within the building.

In this chapter, we develop the first solution to the location privacy problem above,

where neither the attacker nodes nor the tracked moving object transmit any RF signals,

using a game theoretic framework. In our game theoretic model, the defender (the gen-

uine wireless network) deploys multiple transmitters in different locations and changes

transmitters in some random or probabilistic fashion to minimize the chance of the attack

receivers locating the people inside certain parts of the building. Figure 1.2 shows an

overview of the attack due to radio network leakage. In this figure, an attacker is inter-

ested in monitoring an area of interest inside the building. The defender deploys four

transmitters. When transmitter Tx 1 transmits, it would make the most sense to place the

attacker receivers in a strategic area 1 to monitor the area of interest. When transmitter

Tx 2 transmits, it would make most sense to place the attacker receivers in the strategic

area 2 to monitor the area of interest. The attacker need not deploy attack receivers in all

strategic areas because of cost. More importantly, the higher number of attack receivers the

attacker deploys the higher the probability of it being detected (e.g., by security cameras or

guards etc.). Furthermore, the attacker cannot “quickly” move and deploy attack receivers

from one strategic area to another. Therefore, by appropriately changing the transmitter

location the defender can defend against the attacker.

Note that we only show the transmitters and attack receivers in Figure 1.2. Movement

can still be detected in the presence of other objects both inside and outside the monitored

area [12]. Furthermore, while we show only one kind of transmitter, a WiFi access point,

and only one kind of receiver, laptops, other wireless devices or nodes with wireless

capabilities can also contribute to or be used to create radio network leakage attacks.

Additionally, Figure 1.2 shows only one kind of building perimeter. Our research applies

to other building perimeters as well.

We model this attacker-defender scenario as a Stackleberg game, which is a sequential

game where the defender plays first, then the attacker selects its best strategy by observing
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the defender’s strategy. Our goal is to maximize the defender’s benefit, i.e., maximize

location privacy. The defender’s strategy is to probabilistically schedules transmitters.

The attacker deploys attack receivers in strategic areas outside the building perimeter.

The attacker has limited resources and incurs a cost in deploying attack receivers; the

higher number of attack receivers the attacker deploys the higher the probability of it being

detected (by security cameras or guards etc.). Therefore, the attacker tries to deploy attack

receivers only in a strategic area that maximizes its chance of violating location privacy.

Game theory provides us with a methodology to allocate limited security resources to

protect systems and infrastructure, taking into account the different weights of different

targets and an adversary’s response to any particular attack prevention strategy [80, 81].

Game theory allows for modeling situations of conflict and for predicting the behavior of

participants. In situations where one of the players has the ability to enforce its strategy

on the other, the game is called a Stackleberg game. In the Stackleberg game [81], the

player who announces its strategy first is called the leader and the other player who reacts

to the leader’s strategy is called the follower. In our problem context, the leader is the

defender trying to ensure that the attack receivers cannot accurately infer people’s location

in the area of interest, and the attacker is the follower trying to suitably place the attack

receivers to maximize its utility. Our goal in this chapter is to use the Stackelberg game

model to find a probabilistic scheduling for the defender while minimizing the possibility

of determination of people’s location by the attacker.

Our contributions in this chapter are as follows. First, we model the radio network

leakage attack using a Stackelberg game. Second, we define utility and cost functions

related to the defender and attacker actions. Third, using our utility and cost functions, we

find the optimal strategy for the defender by applying a Greedy method. We experimen-

tally evaluate our game theoretic model in two different settings: in an open environment

and a cluttered office. Our experimental results show that when using our approach, the

minimum localization error for the attacker increases by 36%− 240%. Higher localization

error corresponds to more privacy. We expect the localization error for the attacker to be

significantly higher for larger areas. We briefly discuss the practicality of deploying our

approach before concluding the chapter.

The rest of this chapter is organized as follows. Section 5.2 contains the relevant re-
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lated work. Section 5.3 provides some preliminary game theoretic concepts. Section 5.4

represents our adversary model. In Section 5.5, we formulate the problem and develop

our solution. Experimental results are reported in Section 5.6. Section 5.7 is devoted to

practical considerations. The concluding remarks and some directions for future work are

provided in Section 5.8.

5.2 Related Work
Location of a wireless device or a human represents an important piece of information

about the device or the human. This information when available to adversaries can be

used for privacy violation. More seriously, it can be used by adversaries for potentially

dangerous life threatening attacks. There is a growing amount of work (e.g., [25, 67, 75,

82–84]) that shows how devices or humans can be localized in both benign and malicious

settings. There are some interesting existing solutions for preserving location privacy as

well (e.g., [85, 86]). However, a vast majority of these are for preserving the privacy of

active transmitters’ locations. In these systems, the wireless device (e.g., a mobile phone,

RFID tag, low-power radio transceiver) that is being located is actively communicating

with the surrounding network infrastructure (e.g., WiFi APs, RFID readers, and other radio

transceivers).

In their recent work [12], the authors demonstrate that the presence, location, and

movements of people not carrying any wireless device can still be eavesdropped by mea-

suring the RSS of the links between the devices composing the legitimate network and

few receivers positioned outside the target area. This can be achieved without requiring

a complex network infrastructure or previous access to the target area for an initial cali-

bration. This paper [12] also proposes a defense mechanism to fool the attack receivers

by changing the power at the wireless transmitters. However, it is found in [12] that the

attacker can compensate for the changes in the transmit power and still determine the

human locations. The compensation mechanism is based on the intuition that an artificial

transmit power change at a transmitter will impact all the links between the transmitter

and the attack receivers, whereas genuine power changes due to human movement are

likely to impact only some of the links. Thus, there is a need to seek newer, novel solutions

that can effectively preserve human location privacy in spite of radio network leakage.
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We propose a novel method based on a game theoretic framework to tackle the location

privacy problem in spite of radio network leakage. Our game theoretic model is based on a

Stackelberg game that has been used in attacker-defender scenarios [87–89]. However, our

work is the first application of the Stackelberg game for the purpose of protecting location

privacy in radio networks.

5.3 Game Theory Preliminaries
Game theory is a study of strategic interactions among selfish agents that yields the

desired outcome by considering the preferences of agents. Stackelberg game is a type of

sequential game where one player, the leader, commits to a strategy first and the other

players, followers, selfishly choose their best response strategies considering the leader’s

strategy. This type of game is commonly used for modeling attacker defender scenarios in

the security domain where the defender commits to the strategy first. Table 5.1 shows a

simple example of the Stackelberg game between an attacker and a defender. The defender

is the row player and the attacker is the column player. Here, d1 and d2 are the defender

strategies, and a1 and a2 are the attacker strategies. In this game the best strategy for the

defender is d1. In this case, the attacker plays a1. So, the utility of defender is 3. However,

if the defender plays d2, then the attacker plays a2. As result, the utility of defender will be

1. As shown in this example, in the Stackelberg game, the goal is to maximize the utility

of the first player, defender. To do this, the defender chooses a strategy with maximum

utility by taking the attacker’s best strategy into account.

If the defender plays deterministically (e.g., in Table 5.1 it plays a pure strategy d1),

then the attacker knows the exact strategy of the defender and selects the pure strategy

a1. However, if the defender plays probabilistically (by assigning probabilities to pure

strategies d1, d2), then the attacker is not able to find the exact action of the defender in real

time.

5.4 Adversary Model
We make the following assumptions about the attacker:

• The attacker is able to deploy multiple attack receivers within the transmission range

of the legitimate transmitter(s) outside the area being monitored. The attacker is able
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to measure the physical layer information (e.g., the received signal strength) of the

links between the transmitter(s) and the attack receivers and localize humans moving

inside the monitored area that cross the transmitter-receiver links.

• The attacker does not have access to the content of the packets transmitted by the

legitimate network nodes. It does not depend on understanding the content of the

packets.

• The defender does not know where the attacker will place its receivers and the

attacker does not know the exact locations of transmitters.

5.5 Problem Formulation and Solution
We develop a game-theoretic framework for preserving location privacy in radio net-

works. Our framework is characterized by one defender and multiple target regions that

the defender wishes to protect from a location privacy attack. We use the attack scenario

shown in Figure 5.2 for our problem formulation. Figure 5.2 is a more generalized version

of the attack scenario shown in Figure 1.2. Figure 5.2 shows multiple target regions.

These target regions are comprised of predefined subsections of a building where peo-

ple move. In this setting, the defender cannot schedule transmitters deterministically;

otherwise the attacker will definitely succeed in violating the location privacy of a target

region by deploying attack receivers in the best strategic area outside the building and

measuring the variations in wireless signal strength. As a result, the defender should

adapt an unpredictable scheduling strategy, randomizing over the transmitters with the

goal of minimizing the possibility of determination of people’s location by the attacker. In

our work, we use the Stackelberg game to formulate the defender/attacker scenario. In

this game, the defender commits to a strategy first that is optimal (maximizes its expected

utility). Then, the attacker plays its best strategy considering the strategy the defender

plays. The goal is to maximize the utility of defender in a way that even if the attacker

selects its best strategy, the utility of attacker will be minimum. This goal essentially

corresponds to maximizing the localization errors for the attacker.

We describe the notation that we use in our problem formulation in Table 5.2.
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5.5.1 System Model

In our game, we have two players, a defender, d, and an attacker, a. We consider a set

of transmitters, T = {t1, t2, . . . , tK} deployed at different locations inside a building. We

also consider a set of target regions, R = {r1, r2, . . . , rN}, that the defender wants to protect

from a location privacy attack. In addition, we assume that set of strategic area locations

S = {s1, s2, . . . , sM} exists, where the attacker deploys its attack receivers.

The defender and the attacker strategies are dependent on the time of the day. This

happens because the probability of human movements in a target region changes depen-

dent on the time of the day. For example, in a campus environment, most students and

faculty members move towards a specific place for lunch at a specific time [90] and if the

attacker attacks at that time it can cause the maximum damage. To consider the variations

of the attacker and the defender strategies during the time, we divide time into T slots.

In a recent work on location detection [20] using radio tomographic imaging, the au-

thors showed that only those transmitters that have radio wave fields inside the moving

area are effective in location detection. We define effective transmitters for each target

region as the minimum number of transmitters that need to be turned off in order to

preserve the location privacy of a specific target region. When the effective transmitters

of a target region are turned off, an attacker cannot measure the change of the received

signal strength caused by people movements. However, the defender cannot turn off

all transmitters to protect all target regions or turn off a set of transmitters at all times

to protect one target region (depending on the actual application of the transmitters).

Therefore, the defender needs a strategy for turning off transmitters. The strategy should

be random instead of deterministic with the goal of reducing the chance of an attacker

determining the location of people inside target regions while considering the limits on

the number of transmitters that can be turned off.

The pure strategy for the defender, ~σd = (σ1
d , σ2

d , . . . , σT
d ), is a row vector determining

the effective transmitters of which target region are turned off in each time slot and the

pure strategy for the attacker, σa = (sa, ra), is selecting one strategic area and also the

number of active receivers in the strategic region.

To make it hard for attackers to find its exact actions, the defender uses a randomized,

mixed strategy, instead of a pure strategy. The defender mixed strategy, ~m = (m1, m2, . . . , m|σd|),
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essentially describes the probability of playing each pure strategy.

5.5.2 Utilities

The defender and attacker utilities depend on whether the attacker is able to attack or

not. Let PD(j, σa) denote the probability of detection of the target region j by the attacker,

if the attacker plays σa = (sa, ra). We formulate PD(j, σa) as the following:

PD(j, σa) = I(j, sa)D(ra, sa) (5.1)

I(j, sa) in (5.1) determines if sa, the strategic area that is selected by the attacker, is target

region j’s corresponding strategic area. For target region, j, sa is a corresponding strate-

gic area if the attacker can detect movements in target region j from that strategic area.

Depending on the location of target regions inside the building, there will be multiple

corresponding strategic areas for each target region.

Let CR(j) denote the corresponding strategic areas for target region j. Also, let Cov(j, sa)

represent the percentage of the whole area that is covered by sa in case of movements in

target region j. Then, in (5.1), I(j, sa) can be obtained by the following function:

I(j, sa) =

{
Cov(j, sa) sa ∈ CR(j)
0 otherwise (5.2)

D(ra, sa) in (5.1) represents the probability of detection if the attacker deploys ra re-

ceivers in sa. We obtain this probability by the following function.

D(ra, sa) =

{
( ra

rmax(sa)
)α 0 < ra ≤ rmax(sa)

1 ra ≥ rmax(sa)
(5.3)

Here, rmax(sa) in (5.3) is the saturation point. Based on our experimental evaluations, the

probability of detection increases by increasing the number of receivers. However, the

probability of movement detection does not increase by increasing the number of receivers

beyond this saturation point. In other words, the probability of movement detection is 1

beyond the saturation point, rmax.

The value of rmax depends on the location of strategic region, sa. For instance, if there

are some “radio” obstacles in some strategic region outside a building (e.g., a metal door),

then the attacker needs to deploy more attack receivers in those areas to detect changes in

the RSS. Figure 5.3 shows the value of D(ra, sa) with rmax(sa) = 5 and α equal to 1, 2, and

3. Based on our experiment, we set α = 2 in our evaluation.
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Besides the probability of attack, PD(j, σa), the utilities of the defender and the attacker

also depend on whether or not the defender turns off effective transmitters of the target

region. cj,t(~m) represents the probability that effective transmitters of target region j are

turned off in time slot t under mixed strategy ~m and is equal to cj,t(~m) = ∑mi∈~m mixj,t(mi).

mi is the probability of playing the pure strategy i. xj,t(mi) ∈ {0, 1} shows whether or

not the effective transmitters of target region j are turned off in time slot t for strategy i.

xj,t(mi) = 1, if the effective transmitters of target region j are turned off in time slot t.

Otherwise, xj,t(mi) = 0.

We obtain the utility of the defender, ud(~m, ~σa), and the utility of the attacker, ua(~m, ~σa),

when the defender plays the mixed strategy ~m and the attacker plays ~σa, from the following

formulas.

ud(~m, ~σa) =
N

∑
j=1

PD(j, σa)
T

∑
t=1

[
cj,t(~m)Red(j, t)− (1− cj,t(~m))Ped(j, t)

]
(5.4)

ua(~m, ~σa) =
N

∑
j=1

PD(j, σa)
T

∑
t=1

[
(1− cj,t(~m))Rea(j, t)− cj,t(~m)Pea(j, t)

]
(5.5)

We observe from equation (5.4) that in each time slot t and for each target region j,

the utility of the defender will increase by the amount of reward, Red(j, t), if the defender

turns off the effective transmitters of target region j when being attacked in time slot t.

Otherwise, this utility will decrease by the amount of penalty, Ped(j, t). Note that the

defender’s goal is to maximize ud(~m, ~σa) in an equilibrium. This means that ~σa should

be the best strategy for the attacker when the defender plays the mixed strategy ~m. In

addition, the defender should consider the limits on the number of transmitters that can

be turned off (Constraint 5.8). Otherwise, C = 1 is the optimal strategy for the defender.

As in the case of the defender, the utility of the attacker increases by amount of reward,

Rea(j, t), in case of a successful attack (effective transmitters of target region j are turned

on in time slot t) and decreases by amount of penalty, Pea(j, t), if the attacker is unable to

attack the target region j in time slot t.

The amount of reward and penalty for a successful attack on target region j in time slot

t, Rea(j, t) and Ped(j, t), depends on the probability of movement in target region j in time

slot t. The attacker can cause more damage to the target region with higher probability of
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movement. As a result, Rea and Ped are greater for a target region with a higher probability

of movement.

Let P be a N × T matrix where N, and T denote number of target regions and number

of time slots, respectively. In this matrix, each item, pj,t, represents the probability of

movement for target region j in time slot t. Then, Rea(j, t) and Ped(j, t) are obtained as

follows:

Rea(j, t) = Ped(j, t) =
pj,t

∑N
j=1 pj,t

λa (5.6)

Here, λa is a constant tunable parameter for both reward and penalty in case of a successful

attack.

Red(j, t) and Pea(j, t) depend on the number of receivers that are chosen by the attacker.

As the number of receivers increases, the attacker’s probability of detecting movements

also increases. However, increasing the number of active receivers also increases the

deployment cost of the attacker and the probability of being detected by security cameras

or guards. Let cost(σa) represent this cost that depends on the number of active receivers.

Then, Red(j, t) = Pea(j, t) = cost(σa). The dependence of this cost on σa is due to the

fact that the attacker can deploy different number of receivers. We express this cost as

cost(σa) = ra × λc, where, λc is the cost for adding one receiver.

5.5.3 Optimization Problem

Having determined the utilities of the attacker and the defender, characterized in (5.4)

and (5.5), we can now find the Stackelberg equilibrium. In the Stackelberg game, the

defender probabilistically turns off the effective transmitters in advance. Then the attacker

makes its own choice to attack a specific target region.

To find the Stackelberg equilibrium, the defender has to calculate the best reply of

attacker to each of its mixed strategies and selects the mixed strategy that maximizes the

defender utility. Formally, the Stackelberg equilibrium can be obtained by solving the

following optimization problem:
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argmax
~m,~σa

(ud(~m, ~σa))

s.t.

ua(~m, ~σa) ≥ ua(~m, ~̂σa)∀~̂σa (5.7)
T

∑
t=1

N

∑
j=1

cj,t(~m) ≤ mT (5.8)

The objective function in the above optimization problem maximizes the utility of the

defender. Also, in order to obtain an equilibrium, the output of the optimization problem,

(~m, ~σa), should be optimal for the attacker as well. Constraint (5.7) represents this attacker

optimality requirement. In other words, given the defender mixed strategy, ~m, the attacker

strategy, ~σa, should be its best strategy. This ensures that if the first player, defender,

plays ~m, then the second player, attacker, plays ~σa. Therefore, the solution of the above

optimization problem, (~m, ~σa), results in a Stackelberg equilibrium. Constraint (5.8) states

that the sum of probabilities of turning off the effective transmitters of all target regions in

T time slots must be equal to mT, where m < N is number of target regions that defender

is able to protect in each time slots.

In order to solve the optimization problem, we use a Greedy approach that is inspired

by the scheme presented in [91]. Our Greedy approach is described in Algorithm 4. In this

approach, instead of finding the optimal mixed strategy, ~m, for the defender, we find cj,t(~m)

for all target regions and all time slots. Let C be a N × T matrix where N and T denote

number of target regions and number of time slots, respectively. We know ∑N
j=1 c(j, t) ≤ m

and ∑N
j=1 ∑T

t=1 c(j, t) ≤ mT. We initialize C = 0 in the first iteration of algorithm, and

update the values of C for all time slots based on the Greedy strategy in each iteration.

At each iteration, we add ∆ to one of N target regions in the time slot that maximizes the

utility of the defender in the same time slot given the attacker best strategy for current C,

σ∗a (see lines 4-14 in Algorithm 4). ∆ is a small value between 0 and 1. The algorithm is

repeated until ∑n
i=1 ∑k

t=1 c(i, t) = mT.

Time complexity: In each iteration of the Greedy algorithm, we have one loop that

iterates over T, the number of time slots. Also, for each time slot, we must find the

target region that maximizes the utility of defender which takes O(N). Recall that N is

the number of target regions. Therefore, each iteration of the algorithm takes O(TN). The

number of iterations over the Greedy algorithm is 1
∆ . Then, the time complexity of the
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Algorithm 4: Greedy Approach
input : : CN×T = 0, ∆
output: : CN×T

1 while (1) do
2 C′N×T = CN×T;
3 foreach time slot t do

// Initialization

4 u∗d = −∞;
5 selected target region = 0;
6 foreach target region j do
7 c′j,t = c′j,t + ∆;
8 Find the attacker best strategy, σ∗a , σ∗a ∈ argmax

σa

(ua(C′, σa));

9 if ud(C′, σ∗a ) > u∗d then
10 u∗d = ud(C′, σ∗a );
11 selected target region = j;
12 end
13 end

// Update C

14 cselected target region,t = cselected target region,t + ∆;
15 end
16 if ∑j ∑t cj,t = mT then
17 exit;
18 end
19 end

Greedy Monte Carlo algorithm is O( 1
∆ TN). Note that the values of 1

∆ , N, and T are small.

5.6 Evaluation
In this section, we evaluate our game theoretic formulation and solution with the help

of experimental results. More specifically, we wish to determine the effectiveness of the

solution to our optimization problem, C, that determines the probability of turning off the

effective transmitters of each target region in each time slot. We determine the effectiveness

of our solution by showing that, given the optimal strategy for the defender, C, the attacker

is unable to determine people location with a high accuracy.

We conduct experiments in two different areas: an open environment, and a cluttered

office. In this section, we first describe an attack scenario in these two areas and then

present the evaluation of our game theoretic approach in terms of average localization

error in these two areas.
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5.6.1 Experiment Layout

• Open Environment: In the open environment, there are no objects or obstructions in

the monitoring area. Figure 5.4 shows the layout of this experiment. In this figure,

there are 8 transmitters, each an RF sensor node, that are deployed inside of a 70m2

area at the height of one meter from the floor. Also, there are 30 attack receivers that

are placed in four heterogeneous strategic areas (see ellipse in Figure 5.4) with rmax

of 7, 8, 7, and 8 (these numbers of attack receivers are typical for localizing human

inside perimeters [12]). The sensor nodes transmit on channels 11, 15, 18, 22 and 26

(multiple channels improve the accuracy of location determination [28]).

There are four target regions that represent bounded areas of movement during

a day. To take into account the heterogeneity of movements in time domain, we

consider 3 time slots with different probability of movements in each target region.

The dashed circles in Figure 5.4 determine the target regions. In our experiment,

a single person moves in the target regions with the following probability matrix,

P. Recall that pj,t represents the probability of movement for target region j in time

slot t. Thus, the first column of matrix P, (0.8, 0.2, 0, 0) represents a single person

spending 80 percent of time in target region 1 and 20 percent of the time in target

region 2 in time slot 1.

P =


0.8 0 0
0.2 0.4 0
0 0.6 0.3
0 0 0.7

 (5.9)

• Cluttered Office: This experiment is done in a cluttered area where there are several

metallic obstructions such as desks, chairs, and monitors. In this experiment too,

8 transmitters are deployed inside of a 52m2 area at the height of one meter from

the floor, as shown in Figure 5.5. The sensor nodes transmit on channels 11, 16, 21,

and 26. Also, there are 14 attack receivers that are placed in four heterogeneous

strategic areas with rmax of 4, 3, 4, and 3. In this experiment, one person moves in

three target regions (see dashed circles in Figure 5.5) and there are three time slots

with the following probability matrix.

P =

 0.8 0 0
0.2 0.2 0
0 0.8 1

 (5.10)
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As explained before, P represents the probability of movement.

In both experiments (open environment, and cluttered office), the sensor nodes com-

posing the network are TI CC2531 USB dongle nodes [53]. While we only consider one

person in our experiments, our framework can also work when multiple persons move in

the monitored area. In this case, the amount of reward and penalty for a successful attack,

Rea(j, t) and Ped(j, t), depend on both the probability of movement and the number of

moving people.

5.6.2 Experimental Results

To evaluate our framework, we first find the effective transmitters for each target re-

gion. As mentioned before, the effective transmitters for a target region are the minimum

number of transmitters so that when these are turned off, the attacker is unable to detect

movements in the target region. For example in Figure 5.4, transmitter 1 and 6 are the

effective transmitters of target region 1.

Table 5.3 shows the localization error in open environment when a person moves in

target region 1. In order to localize the moving person, we use the multichannel RTI

approach proposed in [28] (using multiple channels increases the accuracy of localization).

The first row shows the average localization error when all 8 transmitters are turned on and

attack receivers are deployed in different strategic areas. The average localization error in

this row shows that strategic areas corresponding to target region 1 are 1, 2, 4. Among

these strategic areas, strategic area 4 has the maximum coverage. The second row of Table

5.3 shows the average localization error when the effective transmitters of target region 1

are turned off. This row shows that the average localization error increases between 1-3.5

meters by turning off transmitter 1 and transmitter 6 that are effective transmitters of target

region 1. Note that strategic area 3 is not suitable for target region 1, and turning off the

effective transmitters of target region 1 does not change the average localization error for

this strategic area. The third row of Table 5.3 shows the average localization error when

we turn off any other pair of transmitters except transmitter 1 and transmitter 6. This

row shows that the average localization error does not change much in comparison to that

when we turn off the effective transmitters of target region 1.

We find the effective transmitters and corresponding strategic areas for each target



101

region in the open environment and the cluttered office setting using the same reasoning as

above. If we have more than one option for effective transmitters of a target region, then we

select the effective transmitters that have minimum overlap with the effective transmitters

of other target regions. After finding the effective transmitters and corresponding strategic

areas for each target region, we focus on an attack scenario where an attacker tries to

determine the location of a moving person within a target region.

First, we find the optimal strategy of the defender, C, for the two scenarios (open

environment and cluttered office). In both experiments, we set ∆ and m to 0.001 and

1, respectively. Recall that ∆ is the increment in the probability of turning off effective

transmitters; and m is the number of target regions that defender is able to protect. We

also set λa and λc to 1, 0.5, respectively. Recall λa is constant parameter for a successful

attack and λc is the cost of adding one receiver. Our methods work for a wide range of

values of the above parameters. Here, we show results only for some specific values.

After finding the optimal strategy for the defender, C, which determines the probability

of turning off the effective transmitters of each target region in each time slot, we randomly

sample C to find a specific schedule for turning off the effective transmitters of each target

region in each time slot. Given the optimal strategy for the defender, we evaluate the

average localization error when the attack receivers are deployed in each strategic area.

Table 5.4 shows the average localization error for each strategic area in the cluttered

office scenario. The first row of the table shows the average localization error when all

transmitters are turned on. The values in this row show that the attacker can detect

the movement with minimum localization error of 2.5 meters from strategic location 4

when all transmitters are active in all time slots. The second row of this table shows the

average localization error due to the optimal scheduling determined by our game theory

framework for each strategic area. The values in the second row of Table 5.4 show that

the minimum localization error for the attacker is 3.4 meters if the attacker deploys attack

receivers in strategic area 4. Thus, the attacker’s best strategy is to deploy attack receivers

in strategic area 4. Table 5.4 shows that when the optimal scheduling policy determined

by our game theoretic framework is used, even if the attacker plays its best strategy,

the localization error increases by 36% in a 52m2 area. Very importantly, we expect the

difference in localization errors to increase with the increase in the size of the monitored
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area.

Table 5.5 shows the average localization error in the open environment that is bigger

in size than the cluttered office. This table shows that the minimum localization error

when all transmitters are turned on is 1.2 meter and it occurs in strategic location 3. Since

there is no obstruction or object in the open environment and because of using more attack

receivers in each strategic area, the localization error here is less than that in the cluttered

office. However, when using the optimal strategy determined by our game theoretic

framework, the minimum localization error increases by 240% (from 1.2 to 4.1 in strategic

area 3). As we expect, the difference in localization errors is increased by increasing the

size of the monitored area.

So far, we have compared the localization error due to the optimal scheduling deter-

mined by our game theory framework with that when all transmitters are active in all

time slots. Essentially, by turning off the effective transmitters according to our optimal

schedule, we reduce the number of transmitters and consequently, increase the localization

error.

To demonstrate the effectiveness of our game theory framework, we measure the local-

ization error when the defender uses a simple random strategy for turning off the effective

transmitters of each target region in each time slot. Table 5.6 shows the average localization

error for each strategic area using a random strategy for the defender. As shown in this

table, the minimum localization error for the attacker in the cluttered office is 2.6 meters if

the attacker deploys attack receivers in strategic area 4. This implies that the percentage of

increase in the localization error decreases from 36% when using our optimal strategy to

4% when using the random strategy. For the open environment, the minimum localization

error decreases from 4.1 when using the optimal strategy to 2.6 when using the random

strategy, i.e., the percentage of increase in the localization error decreases from 240% to

116%. Table 5.7 shows the minimum percentage of increase in localization error using

the optimal strategy and the random strategy in the open environment and the cluttered

office. This table shows that the optimal strategy performs better than the random strategy

in both experiments. We believe that the random strategy will perform even worse than

the optimal strategy with the increase in the number of target regions, strategic areas, and

transmitters.
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5.7 Practical Considerations
In this section, we briefly discuss the practicality of our game theoretic approach and

solution.

First, while we have designed and evaluated our methods with specific utility and cost

functions, our approach allows the defender to determine its strategy for other utility and

cost functions considering the capabilities of the defender as well as the attacker. Thus,

our formulation can be used for a variety of adversarial prowess and behavior. Second,

the functionality to change wireless transmitters can be deployed in existing enterprise

networks by implementing the transmitter schedule on a controller node that control wire-

less access points [92]. Third, a controller, having complete knowledge of the schedule,

can also transfer the state of active “associations” on the current access point to the next

one being scheduled over a wired high speed network (e.g., Ethernet). This state also

includes any keys associated with the secure transmission between the clients inside the

monitored area and the current access point. Thus, the choice of the actual value of

the time slot between transmitter changes would depend on the overhead of this state

transfer. If we choose a high value for the time slot, we minimize this overhead. However,

we also disregard the heterogeneity in human movements during the time. Based on

our experiences, we recommend a value of tens of minutes for the time slot. The state

transfer across access points every tens of minutes over a wired network will not result in

any significant overhead. The transmitters of the defender must use the same service set

identifier (SSID) so that the change of transmitters is transparent to the nodes associated

with them. Even with the centrality of the controller node, there is a small chance of packet

loss during the state transfer across access points. However, we expect this loss to be not

significant in comparison to other wireless loss.

Note that we considered the connectivity constraint in our game theoretic model by

limiting the number of target regions that the defender can protect in each time slot, i.e.,

we limited the number of transmitters that can be turned off in each time slot. We can also

add more connectivity constraints to our model. For example, if some transmitters can

not be turned off for the consecutive time slots, we can add this constraint to our model

by pruning the defender strategy space, i.e., all pure strategies of the defender that are

contradicted by this constraint will be removed from the defender strategy space.
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5.8 Conclusion
We investigated an attack on location privacy where the location of people moving

inside a private area can be inferred using the radio characteristics of wireless links that

are leaked by legitimate transmitters deployed inside the private area. We modeled the

radio network leakage attack using a Stackelberg game and used a Greedy method to

obtain the optimal strategy for the defender. Our experimental results showed that our

game theoretic solution significantly reduces the chance of an attacker finding the location

of people inside a perimeter. In the future, we will implement our framework in a WiFi

network testbed inside our department to further study and demonstrate the practicality of

our approach. We will also measure any performance degradation experienced by genuine

receivers inside the building as a result of scheduling transmissions through different

access points.

Beside distributed sensing, the proliferation and rapid growth of wireless devices and

their capabilities also have created a huge opportunity to harness the computing power of

nearby wireless devices for computation offloading. In the next chapter, we harness the

computing power of nearby wireless devices for efficient computation offloading.
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Table 5.1. An example of Stackelberg game payoff table
a1 a2

d1 (3, 1) (1, 0)
d2 (4, 1) (1, 3)

Table 5.2. Notation
Parameter Definition

d Defender
a Attacker
~σd Defender pure strategy
~σa Attacker pure strategy
~m Defender mixed strategy
ra Number of active attack receivers
sa Strategic location
N Number of target regions
T Number of time slots

PD(j, σa) Probability of detection of the target
region j by the attacker

cj,t(~m) Probability that effective transmitters
in target region j are

turned off in time slot t
Red(j, t), Ped(j, t) Reward and penalty for defender
Rea(j, t), Pea(j, t) Reward and penalty for attacker

ud(~m, ~σa) Utility of defender
ua(~m, ~σa) Utility of attacker

m Number of target regions that defender
is able to protect in each time slot

pj,t Probability of movement in target
region j in time slot t

∆ Increment in the probability of turning off
effective transmitters of a target region

in each iteration of Algorithm 4

Table 5.3. Average localization error in open environment when a person moves in target
region 1

Approach Average localization error(m)
Strategic area 1 Strategic area 2 Strategic area 3 Strategic area 4

All transmitters are turned on 1.7 1.9 5.8 0.6
Effective transmitters are turned off 3 5.3 6.4 1.6
Any pair of transmitters other than 2 1.7 4.8 0.61
effective transmitters are turned off
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Table 5.4. Average localization error when all transmitters are turned on and when using
optimal scheduling in cluttered office

Approach Average localization error(m)
Strategic area 1 Strategic area 2 Strategic area 3 Strategic area 4

All transmitters are turned on 3.4 4.1 2.8 2.5
Optimal scheduling 4.4 5.8 3.7 3.4

Table 5.5. Average localization error when all transmitters are turned on and when using
optimal scheduling in open environment

Approach Average localization error(m)
Strategic area 1 Strategic area 2 Strategic area 3 Strategic area 4

All transmitters are turned on 2.8 1.9 1.2 2.1
Optimal scheduling 4.3 4.7 4.1 5.7

Table 5.6. Average localization error using random strategy in open environment and
cluttered office

Average localization error(m)
Open Office

Strategic area 1 3 3.6
Strategic area 2 3.5 4.5
Strategic area 3 2.6 2.9
Strategic area 4 4 2.6

Table 5.7. The minimum percentage of increase in the localization error in open environ-
ment and cluttered office using random and optimal strategies.

The minimum percentage of increase
in the localization error

Open Office
Random 116% 4%
Optimal 240% 36%
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Figure 5.1. Detection of line of sight crossing.

Figure 5.2. Radio network leakage attack scenario with multiple target regions.
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CHAPTER 6

COMPUTATION OFFLOADING IN MOBILE

CLOUD COMPUTING

6.1 Introduction
Personal mobile devices such as smartphones and tablets are increasingly being used

for in our daily lives. Many more smartphones are being sold worldwide than the total

sales of PCs [93] and this growth in sales of smartphones is expected to continue in the

future. Furthermore, various advances in technology are making these devices powerful

tools capable of performing complex tasks, including speech to text conversion, audio

identification, and image recognition. However, despite these advances, resources on

mobile devices are constrained by weight and size requirements of the device that must be

met for the devices to be easily carried around. Therefore, mobile devices still have limited

battery, storage, heat dissipation ability, etc; which impede complex and resource intensive

task execution. A possible remedy for tackling resource limitations of mobile devices is to

offload the computational tasks to the cloud.

Mobile Cloud Computing (MCC) generally refers to a client-server communication

model where a mobile device (client) offloads computing tasks to the remote cloud through

a wireless network (mainly cellular or WiFi networks) [94, 95]. However, this model of mo-

bile cloud computing is facing some important challenges. First, the performance of MCC

is highly depend on wireless communication networks. With the tremendous growth of

mobile data users, the wide-area mobile data access links (e.g., backhaul links in a cellular

network) are becoming a bottleneck. This trend is expected to continue at even higher

scales in the future because service providers, specifically cellular service providers, are

unable to upgrade their backhaul networks due to shrinking profits. Thus, the MCC model

can suffer from high latency and slow data transfer which may not be acceptable for the

users of mobile applications. Second, although the cloud provides shared resources and
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amortizes costs, its operation requires establishment and maintenance of highly expensive

hardware to run the high computational tasks.

A possible remedy for tackling resource limitations of mobile devices when performing

complex tasks, while not requiring the use of a server cloud and also minimizing latencies,

is to offload computing tasks to nearby mobile devices. For example, in the speech to

text conversion application, a mobile device can divide the audio file into smaller pieces,

then assign each piece to a nearby device, and finally, combine the results obtained from

nearby devices. Offloading compute tasks to nearby mobile devices rather than using a

remote cloud through the mobile data cellular network lowers the latency and the bur-

den on network backhaul. The nearby mobile devices, collectively and opportunistically,

essentially provide the power of a cloud. Thus, we have another notion of mobile cloud

computing that corresponds to offloading of compute tasks to a group of nearby mobile

devices connected by various types of links including D2D, WiFi Direct, Bluetooth, etc. In

this chapter, we use this second notion of mobile cloud computing.

There is a growing amount of work to utilize mobile device computing power for cloud

computing. Hyrax [13] uses the computational power of a network of Android smart-

phones in MapReduce. Mobile Device Clouds [14, 15] and Serendipity [16] are platforms

for opportunistic computing where a mobile device offloads computing tasks to nearby

mobile devices. NativeBOINC for Android [17] is another example of utilizing mobile

devices’ computing power. Recently, Habak et al. [18] proposed FemtoCloud where a con-

troller executes a variety of tasks arriving at controller by using the computational power

of nearby mobile devices. SymbIoT [19] is another platform that uses the computational

capability of all mobile devices within the same network to perform different tasks.

In this chapter, we examine a scenario where a mobile device or a central controller,

which we call a distributor node, has a computational job or a set of different computational

jobs and wants to utilize resources of nearby mobile nodes to reduce the job completion

time. Due to mobility, the distributor (mobile device or a central controller) has frequent

contacts with other mobile devices that can provide the required computational resources.

The problem faced by the distributor is how to select the nearby nodes and divide the job

among them in a manner that is beneficial to all the parties involved.

While the problem of using other nodes for executing the tasks of a job has been widely
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used in distributed computing [96, 97], cyber foraging [98], and crowdsourcing [99], the ex-

isting work on task allocation cannot be simply adopted for mobile cloud computing. First,

the task allocation method must take into account the selfish behavior of mobile nodes

by providing incentives for them. This because in mobile cloud computing, a rational

mobile node would not be willing to lend its resources (and thereby deplete its battery)

unless it receives some payoff as compensation. Second, mobile devices can have different

hardware/software and thus have different capabilities. For this reason, the execution

time of a specific task can be different across mobile devices. Therefore, the task allocation

mechanism must consider the heterogeneity of mobile devices to reduce the overall job

completion time. Third, the task allocation needs to take into account the mobility of

nodes. In a mobile environment, the distributor may observe disconnection of nodes with

assigned tasks, and new arrivals that might provide high computational capabilities. Thus,

decisions should be made according to the dynamics of the environment. Fourth, and very

importantly, the distributor node should see a clear benefit in terms of job completion time.

We propose a game theoretic framework for task allocation that provides incentive for

all mobile nodes. In our framework, the distributor node holds a multidimensional auction

for allocating the tasks of a job among nearby mobile nodes based on their computational

capabilities and also the cost of computation at these nodes, with the goal of reducing

the overall job completion time. To the best of our knowledge, this is the first work that

presents a multidimensional auction for task allocation in mobile cloud computing. Our

proposed auction also has desired economic properties (that we formally prove later in the

chapter) including incentive compatibility which ensures that players truthfully reveal their

capabilities and costs, and that mobile nodes act cooperatively in the proposed auction

for the benefit of all the parties involved. We also consider the mobility of mobile nodes

in our game theoretic framework. In such a mobile environment, the topology of the

network may change over time. Thus, some nearby nodes may get disconnected from the

distributor before completing the assigned task, resulting in an increased job completion

time. To deal with mobility, we perform multiple auctions over adaptive time intervals. We

develop a heuristic approach to dynamically find the best time intervals between auctions

to minimize unnecessary auctions and the accompanying overheads. We briefly explore

the privacy of the distributor and the nearby mobile devices and show a tradeoff between
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providing privacy, and the profits for the parties involved. Finally, we apply the incentive

model for the application of mobile live video streaming [100].

We evaluate our framework and methods using both real world and synthetic mobility

traces. We use two models of compute jobs: a simple single job model, and a multiple

job model that uses a Directed Acyclic graph to represent causal dependencies in a set of

jobs. Our evaluation results show that our game theoretic framework improves the job

completion time by a factor of 2-5 in comparison to the local execution of the job, in both

the job models, while minimizing the number of auctions. Thus, our approach is beneficial

for the distributor in terms of enhancing its performance. We also show that the nearby

nodes that execute the distributor’s tasks receive a compensation higher than their actual

costs.

The rest of this chapter is organized as follows. Section 6.2 contains the relevant related

work. Section 6.3 explains the proposed method in detail. In Section 6.4, we extend the

proposed game theoretic framework by considering the mobility of nodes and present the

heuristic approach for finding the time interval between auctions. Section 6.5 explores

the privacy of distributor and the nearby mobile devices. In Section 6.6, we describe

experiments we conduct and our evaluation results. Section 6.7 explains the incentive

model for the application of mobile live video upstreaming. Finally, we provide our

concluding remarks in Section 6.8.

6.2 Related Work
Many existing works in distributed computing (e.g., SETI@ Home [96], BOINC [97],

and cyber foraging [98]) have proposed using other nodes for executing the tasks of a job.

However, all of these existing works primarily assume altruistic behavior in the distributed

computing environment and do not carefully incentivize resource sharing. Like our work,

Serendipity [16] enables remote computing among a set of intermittently connected mobile

devices. However, our work differs from Serendipity in the following significant ways.

First and foremost, Serendipity does not incentivize resource sharing. Second, it does not

consider heterogeneity among mobile devices in task allocation. Moreover, all assigned

tasks are assumed to have equal workload. Third, Serendipity does not use any adaptive

methods for reassigning tasks.
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Our game theoretic framework is inspired by the multidimensional mechanism pro-

posed for the second score auction [101], where the authors use a linear function to map

the multidimensional bid into a single dimension. However, we use a fractional function

for the mapping which is more suitable to our setting (see equation 6.1). We also extend

the existing multidimensional mechanism by allowing selection of k items while consid-

ering a budget limit instead of selection of only one item. The use of multidimensional

auction allows us to consider the heterogeneity of nearby resources in task allocation. We

also minimize the number of auctions and the accompanying overhead by developing a

heuristic approach for finding the best time intervals between auctions.

Existing incentive mechanisms that have been used for task allocation [102, 103] do not

consider multidimensional auction where both cost and the service quotient are important.

The authors in [104] proposed a multidimensional optimal auction to provide incentive

in mobile ad hoc network routing, considering both cost and the path duration in route

selection. However, their proposed approach only works for time related bids such as path

duration where the players cannot over-report the time related bid. In our task allocation

problem, players can over-report and under-report both cost and the committed service

quotient.

6.3 Problem Formulation and Solution
We consider mobile cloud computing in the presence of selfish smart phones. We as-

sume that all smart phones act rationally and selfishly, and their main goal is to maximize

their own profits, not to harm others. There is a distributor node that wants to offload a

computational job, with a total work load of D units, to its nearby nodes with the goal of

reducing the overall job completion time. Since a smart phone incurs a cost (in the form

of resource and battery usage) while performing a task on behalf of the distributor, it may

not be willing to participate unless the distributor provides the right incentives.

We propose a multidimensional auction to model the job/ task allocation in mobile

cloud computing. In our auction, the distributor holds the auction among n nearby smart

phones called players. Each player i has an individual private value ti called its type which

consists of the following two parameters:

• si: the committed service quotient that player i can provide. In distributed comput-
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ing applications such as speech to text conversion, the service quotient is related to

the amount of data that the smart phone can process in a given time (the smart phone

finds this information by estimating its maximum execution time running synthetic

benchmark and its energy consumption using techniques like PowerBooter [105]).

In our system, si denotes the amount of data that player i can process per second. It

should be noted that the distributor is not aware of the actual sis until the tasks are

completed and the results are received from nearby players who have been assigned

the tasks.

• ci: the cost of player i for performing the task with the committed service quotient.

ci is a function of the committed service quotient, si, and the player’s private cost of

performing the task, θi. We bound θi such that 0 < θmin ≤ θmax < ∞. θi is affected

by various parameters such as processor speed, available storage, remaining battery

level, communication cost, etc. ci is an increasing function of both si and θi, and is

private information of the player i. Hence, no one else can determine the exact value

of ci.

Our mechanism works as follows. First, the distributor sends a probe message to

find the nearby nodes. Then, each nearby node i, interested in participating, replies by

announcing its bid (ci, si). Note that (ci, si) announced by the node i need not be the actual

private value of its type, ti. Based on the received bids, the distributor selects a set of

players and assigns the tasks to them in proportion to their committed service quotient.

To provide incentive to the players for their resources, the distributor compensates them

by paying the players. The distributor also has incentive to offload tasks to nearby mobile

devices because the overall job completion time is less than the time taken for executing the

job locally. Therefore, our game theoretical framework is beneficial to all parties involved.

Our mechanism implements truthfulness in dominant equilibrium implying that each

player’s best strategy, regardless of other players’ strategies, is to bid truthfully (i.e. to

report actual values of si and ci). Table 6.1 summarizes the notation we use in this and the

subsequent sections.
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6.3.1 Allocation Mechanism

In this section, we specify how the distributor selects the nearby mobile devices by

considering both the cost and the service quotient. The distributor wants players with

minimum cost and maximum service quotient. For this reason, the distributor defines a

weights function for player i with type (ci, si) as follows:

wi =
si

ci
(6.1)

The distributor must also determine how many players it should select. Intuitively, the

number of players affects the job completion time and the sum of premiums paid by the

distributor to the players over the players’ actual costs (overpayments). As the number of

selected players is increased, the job completion time decreases due to more tasks being

executed in parallel. However, the increase in number of selected players also increases

the overpayments.

To limit its cost, the distributor defines a budget limit B as the maximum amount that it

can pay for the processing of one unit of data per second. B is a function of the distributor

utility, ud. An increase in the distributor utility, ud, makes the distributor willing to increase

its budget limit. Formally,

B(ud) =


f+(umax

d ) ud > umax
d

f+(ud) umin
d ≤ ud ≤ umax

d
0 ud < umin

d

(6.2)

Here, umin
d and umax

d are the minimum and the maximum utilities that the distributor

expects when using our task allocation framework. When the obtained utility, ud, is less

than umin
d , the distributor prefers to execute the job locally. By increasing the value of ud

between umin
d and umax

d , the distributor is willing to use the task allocation framework. In

this case, the budget limit is a nondecreasing function of ud ( f+(ud) represents the nonde-

creasing function of ud). umax
d is the saturation point. Increasing the value of ud beyond

this saturation point does not increase the budget limit, B. The distributor determines

umin
d , umax

d , and f+(ud) depending on the application. For example, the distributor may

prefer to choose a constant function for f+(ud), if the distributor utility, ud, be above umin
d

or the distributor may select an increasing exponential function for f+(ud) in real time

applications where time is critical.
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Let tO represent the job completion time when the distributor uses our task allocation

framework, and let tL represent the job completion time when the distributor executes the

job locally. Also, let eO and eL be the energy consumption when the distributor using our

task allocation framework and when the distributor executing the job locally. Then, the

distributor utility, ud, will be:

ud = α(tL − tO) + β(eL − eO) (6.3)

The values of α and β determine the importance of job completion time and energy con-

sumption in the distributor utility. In our evaluation, the distributor only wants to reduce

the job completion time and ignores the energy consumption (we set α = 1 and β = 0).

We ignore the energy consumption for the following reasons. First, our task allocation is

designed for high computational tasks such as audio identification and image recognition.

In this case, the energy consumption for executing task, eL, is much greater than the energy

consumption for communication and transferring data among nearby mobile nodes, eO.

Second, in our task allocation framework, a computing cloud refers to a group of nearby

mobile devices that connect by WiFi and Bluetooth. Thus, the energy consumption for

communication and data transferring is less than the common client-server cloud.

Also, note that the distributor computes tO by considering the preprocessing time,

the overhead of dividing job into tasks, the postprocessing overhead of assembling the

results, and the maximum job completion time among the selected nearby mobile nodes

(the distributor can estimate the job completion time in each nearby mobile user by using

their declared service quotients).

Now the goal is to select a subset of players that maximize the total weight under the

budget limit constraint. We use a simple and efficient Greedy approach for allocation.

First, the distributor orders the players based on their decreasing weights. Next, it selects

the largest number of players {1, 2, 3, . . . , k} that satisfy the budget limit constraint (i.e.,

constraint 6.9). By considering the budget limit constraint, the distributor obtains at least

the minimum utility, umin
d . Therefore, participating in the task allocation is beneficial for

the distributor. In the next section, we explain the payment function that the distributor

pays to the nearby mobile users to provide incentives for them to participate in the task

allocation.
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6.3.2 Payment Mechanism

In this section, we determine the payment Mechanism. The payment Mechanism must

provide the following desirable economic properties to ensure that players act coopera-

tively and bid truthfully.

• Individual Rationality: The utility of all players should always be nonnegative. Other-

wise, players may choose to not participate.

• Incentive Compatibility: In an incentive compatible mechanism, no selfish node has

incentive to lie (also called truthfulness).

Let aci ,si ∈ {0, 1} denote the allocation to player i with type (ci, si) where if the distributor

offloads a task to the player, aci ,si = 1, otherwise, aci ,si = 0. Also, let pi(aci ,si) be the payment

that the distributor pays to the player i under allocation rule aci ,si . Then, the utility of player

i with type (ci, si) is obtained from the following formula:

ui(ci, si) = pi(aci ,si)− ci (6.4)

Having determined the utility of players, the payment Mechanism must satisfy the follow-

ing constraints.

∀i, c′i, pi(aci ,si)− ci ≥ pi(ac′i ,si
)− ci (6.5)

∀i, s′i, pi(aci ,si)− ci ≥ pi(aci ,s′i
)− ci (6.6)

∀i, c′i, s′i, pi(aci ,si)− ci ≥ pi(ac′i ,s
′
i
)− ci (6.7)

∀i, pi(aci ,si)− ci ≥ 0 (6.8)
n

∑
i=1

pi(aci ,si)

si
≤ B(ud) (6.9)

Constraints 6.5, 6.6, and 6.7 provide incentive compatibility for both cost and the commit-

ted service quotient. Constraint 6.8 is for individual rationality, and constraint 6.9 captures

the budget limit of the distributor.

The payment to player i consists of two parts:

pi(aci ,si) =

{
p1

i (aci ,si) + p2
i (aci ,si) i ≤ k

0 i > k (6.10)

where p1
i (aci ,si) is paid to provide incentive compatibility for ci and p2

i (aci ,si) is paid to pro-

vide incentive compatibility for both ci and si. p1
i is obtained from the following formula:

p1
i (aci ,si) =

sick+1

sk+1
(6.11)
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Here, k + 1 is the index of the player with largest weight after the selected k players.

Let si be the actual service quotient (e.g., the amount of data that player i can process

per second) that the distributor finds after the task completion by player i, and also let s′i

be the announced service quotient by the same player. Then, the second payment, p2
i , is of

the following form.

p2
i (aci ,si) = d(si, s′i)(si − s′i) (6.12)

Here, d(si, s′i) is a positive and nondecreasing function of (si − s′i) < 0, that determines the

impact of misreporting the service quotient. A suitable choice for the function d(si, s′i) must

satisfy the following three properties. First, if the player i over-reports its committed ser-

vice quotient (si < s′i), then p2
i (aci ,si) must be negative, i.e., the player must give back some

money to the distributor. Second, a player must not pay a penalty for under-reporting its

committed service quotient, i.e., when si > s′i, d(si, s′i) = 0. Third, the choice of d(si, s′i)

should lend itself to satisfying the incentive compatibility property. In this chapter, we

define d(si, s′i) as follows:

d(si, s′i) =
{

0 si ≥ s′i
(s′i − si)

2 + ck+1
sk+1

si < s′i
(6.13)

This definition of d(si, s′i) satisfies the first two required properties described above.

We show that this choice of d(si, s′i) helps satisfy the incentive compatibility property in

Lemma 6.2. Figure 6.1 shows an instantiation of d(si, s′i). In this figure, the actual value

of the service quotient is 0.9 Mbytes/sec. As shown in the figure, the value of d(si, s′i)

increases if the player declares its committed service quotient (s′i) to be greater than its

actual service quotient. Also, the value of d(si, s′i) is zero if the player under-reports its

committed service quotient.

Note that other choices of d(si, s′i) are also possible. Depending on the application, we

can choose different functions for d(si, s′i). For example, in some applications the value of

si might vary with changes in the environment that are not within the of control of the

player. To provide incentive compatibility and to also prevent nonessential punishment,

we can also define d(si, s′i) as follows:

d(si, s′i) =
{

0 si ≥ s′ick+1
sk+1

si < s′i
(6.14)
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In this case, if the player over-reports its committed service quotient (si < s′i), then the

payment is:

pi(aci ,s′i
) =

s′ick+1

sk+1
+ (si − s′i)

ck+1

sk+1
=

ck+1

sk+1
si = pi(aci ,si)

This payment is the same as the payment if the player wants to act truthfully. Therefore, the

player has no incentive to lie. On the other hand, if the committed service quotient reduces

after the player declares it, the player is paid only for the service quotient it accomplishes.

We can also add a small reward if the player under-reports its committed service quotient

(si > s′i). The amount of reward should be less than the amount of payment when the

player acts truthfully (si = s′i). The player has no incentive to under-report its committed

service quotient. However, if the committed service quotient increases after the player

declares it, the player has an added incentive to provide a better service quotient.

Having determined the allocation rule and the payment policy, we must now prove the

economic properties of our multidimensional auction, namely individual rationality and

incentive compatibility using the definition of d(si, s′i) in equation 6.13. The same reasoning

can be applied to other definitions of d(si, s′i), e.g., in equation 6.14.

6.3.3 Proofs

Players may cheat about their types, (c, s), to gain extra profit. Incentive compatibility

(IC) ensures that players truthfully reveal their actual types. In a multidimensional mech-

anism, proving IC is challenging. This is because several cheating scenarios, formed from

combinations of cheating in each dimension, must be considered. We must prove IC in the

following conditions.

1. The truthful revelation of a player’s cost (c) is a dominant equilibrium, given that the

player reveals its committed service quotient (s) truthfully (constraint 6.5).

2. The truthful revelation of a player’s committed service quotient (s) is a dominant

equilibrium, given that the player reveals its cost (c) truthfully (constraint 6.6).

3. The truthful revelation of a player’s cost and committed service quotient (c, s) is a

dominant equilibrium (constraint 6.7).

Lemma 6.1. Given the committed service quotient (s), truthfully revealing the cost (c) results in a

dominant equilibrium.
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Proof. There are two possible cases:

• Player is one of the winners. If by over-reporting or under-reporting, the player still

remains a winner, the utility of the player does not change. If the player becomes

a loser by over-reporting, then the utility of the player becomes zero which is less

than that it can obtain by acting truthfully. Therefore, in this case, the player has no

incentive to lie.

• Player is one of the losers. If by over-reporting or under-reporting the player remains a

loser, the utility of the player dose not change (it is still zero). On the other hand, if a

player, (without loss of generality) k + 1, under-reports the value of ck+1 to become a

winner (i.e., sk+1
c′k+1

> sk
ck

), its utility becomes:

uk+1(c′k+1, sk+1) =
sk+1ck

sk
− ck+1 (6.15)

However, we know that sk
ck
> sk+1

ck+1
. This means that ck+1 > sk+1ck

sk
. Therefore, the utility

is negative and the player has no incentive to lie.

Lemma 6.2. Given the cost (c), truthfully revealing the committed service quotient (s) results in a

dominant equilibrium.

Proof. We show that the utility of the player has its maximum value at s′i = si. Thus, the

player has no interest to misreport s.

By substituting p1 and p2 in equation 6.4 and taking derivative with respect to s′i,

∂ui

∂s′i
=

ck+1

sk+1
+

∂d(si, s′i)
∂s′i

(si − s′i)− d(si, s′i)

For s′i = si,
∂ui
∂s′i

= 0. For s′i ∈ (si,+∞], given that ∂d(si ,s′i)
∂s′i

is positive, ∂ui
∂s′i

is negative. Also,

for s′i ∈ (0, si],
∂ui
∂s′i

is positive. As a result, s′i = si is the maximum point. Figure 6.2 shows

the utility of a player for different values of s′i. This figure also shows that the utility is

maximum at point s′i = si.

Lemma 6.3. Truthfully revealing both cost and the committed service quotient (c, s) results in a

dominant equilibrium.

Proof. Let c′ and s′ be the declared cost and the committed service quotient of a

player. Also, let c, and s be the actual cost and performed service quotient. Then, to prove

incentive compatibility, we should consider the following four cases.
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1. c′ < c and s′ < s. If the player is already a winner and also wins by misreporting,

then the utility of the winner will be less than that when acting truthfully.

ui(c′i, s′i) =
s′ick+1

sk+1
− ci

Given that s′i < si, ui(ci, si) > ui(c′i, s′i) and the player has no incentive to lie. If the

player is not a winner, but wins the game by misreporting, then the utility of the

player becomes negative (proof is similar to the second case of Lemma 6.1).

2. c′ > c and s′ < s. If the player is already a winner and still wins the game by

misreporting, the utility of the player will decrease. On the other hand, if the player

is not a winner, then it cannot win by misreporting. Thus, its utility does not change.

3. c′ < c and s′ > s. If the player is already a winner and remains a winner by

misreporting, then the utility of the player is as follows.

ui(c′i, s′i) =
s′ick+1

sk+1
− ci + (si − s′i)(

ck+1

sk+1
+ (s′i − si)

2) (6.16)

By substituting s′i with si + (s′i − si), we have

ui(c′i, s′i) =
sick+1

sk+1
− ci + (si − s′i)(s

′
i − si)

2

which is less than the case where the player acts truthfully. If the player is not a

winner, but wins the game by misreporting, its utility becomes

uk+1(c′k+1, s′k+1) =
sk+1ck

sk
− ck+1 +

(
(s′k+1 − sk+1)

2)
(sk+1 − s′k+1)

The first term sk+1ck
sk
− ck+1 is negative, because sk

ck
> sk+1

ck+1
. The second term is also

negative, sk+1 < s′k+1. Thus the utility is negative in this case.

4. c′ > c and s′ > s. If the player is already a winner and still wins by misreporting,

then the utility of player decreases. Also, if the player is not a winner, but wins the

game by misreporting, then its utility becomes negative.

We must now prove that the proposed multidimensional auction is individually rational.

This property ensures that players participate in the task allocation game.

Lemma 6.4. The proposed multidimensional auction satisfies the individual rationality constraint

(constraint 6.8).
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Proof. We need to show that when players act truthfully, their utilities are greater than

or equal to zero. If the player is not a winner, then its utility is zero. If the player is a

winner then its utility is determined as follows.

ui(ci, si) =
sick+1

sk+1
− ci

Given that si
ci
> sk+1

ck+1
, the utility of the winner is positive.

6.3.4 Task Allocation

We now propose the task allocation policy among the k selected players to reduce the

job completion time using different models of compute jobs.

Single job: In some applications such as audio to text conversion, we only have one

job. In such a single job scenario, the workload assigned to each player is proportional

to its committed service quotient (in the mobility aware approach in the next section, we

also consider the auction time interval in the task allocation towards ensuring that the

selected nodes are able to complete the assigned task before the distributor performs the

next auction). For example, for player i the amount of workload is equal to D si

∑k
i=1 si

, where

D is the total workload. In this case, all selected players execute the assigned tasks in

parallel which reduces the job completion time. Any other task allocation reduces the

number of tasks executing in parallel and consequently increases the job completion time.

DAG jobs: There are some applications that contain a set of jobs where the execution

of jobs has causal ordering. We use a Directed Acyclic Graph (DAG) to represent causal

dependencies in a set of jobs. In our DAG, nodes correspond to jobs and directed links

represent the causal dependencies. Figure 6.3 shows an example of a DAG representing a

set of jobs.

We can use the same task allocation as the single job for DAG jobs. For dependent jobs,

we execute jobs sequentially and assign workloads to the selected k players in proportion

to their committed service quotients. For independent jobs, we can run them in parallel.

For example, job B and C in Figure 6.3 are independent and can be run in parallel. Let D1,

and D2 be the total workloads of jobs B, and C, respectively. Then the assigned workload

to player i is D1
si

∑k
i=1 si

+ D2
si

∑k
i=1 si

.

Indivisible jobs: In some applications, jobs are indivisible. Even for indivisible jobs,

the proposed game theoretic framework can be used to provide incentives, utilize nearby
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resources, and reduce the job completion time.

For a single indivisible job, the distributor selects only one nearby device and assigns

the whole job if the job execution time is less than the time taken in executing the job

locally. For indivisible DAG jobs, the distributor acts in the same manner as it would for

the single indivisible job scenario, for all dependent jobs and executes them sequentially.

For all independent jobs, the distributor executes them in parallel. First, it selects k nearby

smart phones where k is equal to the number of independent jobs, by considering the

budget limit constraint. For task allocation, the distributor ranks the independent jobs

in the following manner. For each independent job, the distributor computes the total

remaining job load from the node corresponding to the independent job to the leaf of the

DAG. Then, it assigns ranks to the independent jobs in decreasing order of the remaining

load. Next, the highest rank job is assigned to the selected player with the highest value

of committed service quotient. Let 50, 100, 100, 50 be the workload of jobs B, C, D, and E,

respectively, in Figure 6.3. Then the total remaining job loads from B, and C are 200, and

150, respectively. Therefore, in allocating tasks, the distributor assigns C to selected player

with the highest committed service quotient.

Although our game theoretic framework can be used for task allocation where jobs

are indivisible, it is likely to have lower efficiency compared to local execution, in terms

of job completion time. Specially, when we have computationally intensive indivisible

jobs in an environment with high mobility (i.e., nearby mobile nodes are disconnected

before completing the assigned task). Note that for divisible jobs, we deal with mobility

by performing multiple auctions with dynamic time intervals (see section 6.4).

6.4 Mobility Aware Approach
So far, we have implicitly assumed that the mobile devices are available for the entire

duration of the task computations. However, because of mobility of the distributor or the

players, the topology of network may change and consequently some mobile smart phones

may get disconnected before completing the assigned tasks. Furthermore, some other

smart phones might arrive in the vicinity of the distributor with higher computational

power and less cost. To deal with such device mobility, instead of holding the auction

only once, we hold the auction multiple times. The key challenge in holding the auction
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multiple times is the determination of the time interval between auctions.

When we perform the auction very frequently, we are able to find newly arriving smart

phones. Note that the duration of the task allocated to the smart phones is limited by the

time between auctions. Therefore, when the time between auctions is short, the chance

that a smart phone gets disconnected before completing its assigned task will decrease.

However, the number of auctions and the accompanying overheads will increase, since

each time the distributor needs to probe to find the neighboring smart phones and their

type values. On the other hand, if we hold the auction less frequently, then there is a higher

chance that smart phones get disconnected before performing the assigned tasks. Also, we

may lose potential computational power of newly arriving smart phones. As a result, we

may see higher job completion times. Therefore, there is a trade-off between the overhead

due to the number of times that we perform the auction and the job completion time.

Figure 6.4 shows the average percentage of disconnected nodes versus the time interval

between two auctions (or distributor probes) for three different real world contact traces.

The three real contact traces were collected as a part of the Haggle Project [106] at the

Intel research lab, at the University of Cambridge Computer Laboratory, and during the

Infocom05 conference, respectively. This figure shows that in all three experiments, as we

increase the time interval from 20 to 500 seconds, the average percentage of disconnected

nodes increases, consequently increasing the job completion time in our task allocation

mechanism.

Instead of using a fixed time interval between auctions, we propose an adaptive ap-

proach that modifies the time interval dynamically based on the mobility of the nodes

in the environment. Our goal is to reduce the number of times we perform the auction

without significantly increasing the job completion time.

We use AIMD (Additive Increase and Multiplicative Decrease) approach to adaptively

set the time interval between two auctions. We use AIMD for two reasons. First, in

real world scenarios, the change in the number of contacts has been shown to follow a

power law distribution with a bursty traffic pattern [107], i.e., a large number of contacts

arrive or leave a specific place over a short period of time. This implies that the time

interval between two auctions, T, should decrease rapidly when a change is observed in

the number of connections. Second, AIMD is a stable adaptive approach that is widely
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used in networking protocols such as TCP.

We describe our adaptive approach as follows. We start with a fixed time interval, T.

Then, we update the value of T by comparing the results from the previous auction. If

no change in the number of connections is observed, we conservatively increase the value

of T linearly (by a constant value of b seconds). Otherwise, we decrease the value of T

multiplicatively by a factor of 2. Therefore, the value of T increases slowly when there is

no change, and it decreases rapidly in the case of change in the number of connections from

one auction to the next. More specifically, the value of T is obtained from the following

formula.

T(i + 1) =

{
max( T(i)

2 , Tmin) Nci 6= Nci+1
min(T(i) + b, Tmax) otherwise

(6.17)

where, Tmin and Tmax are the minimum and the maximum values of T, respectively. Nci

denotes the contact set at the beginning of time interval i.

6.5 Privacy
Another important issue in MCC is the privacy of data. In our game theoretic frame-

work the distributor violates the privacy of data by offloading a computational job to the

nearby mobile devices. Let j = {1, . . . , m} denote a set of computational jobs that the

distributor wants to execute. We formulate the privacy risk for distributor, PR(d), as the

following:

PR(d) =
m

∑
j=1

ρjvj (6.18)

ρj ∈ [0, 1] in equation 6.18 determines the sensitivity of the computational job j. vj rep-

resents the visibility of job j and is equal to the number of selected mobile devices by the

distributor for executing tasks of job j.

As the above formulation shows, the privacy risk for the distributor, PR(d), increases

by increasing the number of selected mobile devices. However, the job completion time

decreases as the number of selected mobile devices is increased. Figure 6.5 shows the

tradeoff between PR(d) and the job completion time. Note that the distributor can provide

privacy by adding another constraint for privacy risk in both allocation and payment

mechanism at the cost of increasing the job completion time.

Besides distributor, the nearby mobile devices also violate their privacy by revealing

their computational capabilities and the cost of computation. To examine the impact of
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privacy on the nearby mobile users’ utilities, we define the privacy parameter x ∈ [0, 1]

where the mobile device conceals the actual value of cost, c, and the actual value of service

quotient, s, by a factor x. I.e, c′ = xc and s′ = 1
x s (we only consider the case where the

mobile device decreases the actual value of cost and increases the actual value of service

quotient. For all the other cases, it is obvious that the utility of mobile device decreases

by concealing the actual values of cost and service quotient). Figure 6.6 shows the CDF of

nearby mobile devices’ utilities for different values of x. This figure shows that the mobile

devices can provide privacy at the cost of decreasing their utilities and the highest utility

is obtained if the mobile devices act truthfully, x = 1, and reveal their actual costs and

computational capabilities as we proved in Section 6.3.3.

6.6 Evaluation
6.6.1 Experimental Setup

To evaluate our task allocation method and its overhead, we use a custom simulator

that we develop using Matlab to simulate the speech to text conversion application under

different mobility conditions. Instead of performing the conversion at the distributor, the

audio file of the speech is divided into smaller files and nearby smart phones are used to

convert the small audio files to text files and send back the results to the distributor who

finally combines them.

In our simulation, each player chooses its cost of processing the audio file (c) from a

uniform distribution in interval [1, 5]. The size of of audio file that a player can process

per second (s) is selected randomly from a uniform distribution [50KB, 125KB]. The dis-

tributor’s budget limit function (B(ud)) is a constant function 50 per megabyte of data

for the distributor utility ud to be positive (note that other functions are also possible).

Also, Tmin, Tmax, that represent the maximum and minimum values for the time interval

between auctions, are set to 20s, and 500s respectively. Finally, the linear increase factor in

the heuristic approach (b) is set to 20s in all experiments. All the results are obtained by

averaging over 1000 randomly selected samples.

We evaluate our task allocation method for two scenarios. In our first scenario, we

assume that the neighboring nodes are available during the whole computation. In our

second scenario, we consider the mobility of nodes and the possibility of disconnection
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during computations. To evaluate the mobility aware approach in the second scenario, we

use three real contact traces with different contact properties. These traces were collected

as a part of the Haggle Project [106]. The first data set was collected at Intel research

lab, the second set was collected at the University of Cambridge Computer Laboratory,

and the third set was collected during the Infocom05 conference. We select 9 nodes from

the first set and 12 nodes from the second and third sets. We also use two synthetic

mobility models namely the Slaw mobility model [107] and the Random Walk mobility

model(RW) [90]. The Slaw model captures many of the statistical properties of human

mobility, while the Random Walk model provides high mobility and abrupt changes in

movement patterns [90].

6.6.2 Results

We evaluate our task allocation method in terms of both the job completion time and

the overhead. To quantify the overhead, we measure the number of times that the auction

is performed before task completion. We also use the speedup ratio metric to evaluate the

speedup in the job completion time as a result of offloading tasks to other smart phones.

The speedup ratio is obtained by dividing the job completion time in locally executing

the job by the job completion time in our distributed approach. The speedup ratio shows

the performance benefits where we provide the required incentives for the nearby mobile

devices to lend their resources with the case where there is no incentive model and selfish

nearby mobile devices would not be willing to lend their resources. In other words, the

speedup ratio demonstrates the performance benefits of the distributor from using the

game theoretic framework.

Figure 6.7 shows the speedup ratio for the first case where selected neighboring nodes

are available during the whole computation. We use three audio files with sizes of 100MB,

300MB, and 600MB. The number of neighboring nodes are randomly selected from a

power law distribution. Figure 6.7 shows how our method significantly improves the job

completion time in comparison to the time taken in locally executing the job. This figure

shows that for all of our chosen file sizes, our method can improve the job completion time

by about a factor of 5.

Table 6.2, Table 6.3, and Table 6.4 show the job completion time, number of performed
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auctions, and the percentage of disconnected nodes in case of mobility for the three real

contact traces. In this table, we compare the results of fixed time intervals with our heuris-

tic approach for adaptively selecting the time intervals between auctions. In this exper-

iment, the file size is set to 600MB. We make the following observations. First, as the

time interval between two auctions (T) increases or the number of performed auctions

decreases, the job completion time and the percentage of disconnected nodes increase.

By increasing the time interval, the percentage of disconnected nodes increases and the

distributor also misses some of the newly arriving nodes. This reduces the number of tasks

that are being executed in parallel, and consequently the job completion time increases.

Second, the fixed time interval approach performs well in terms of job completion time

for small values of T. For large values of T, this approach performs well in terms of

overhead, i.e., the number of performed auctions. Thus, finding the right value for T

where it performs well in terms of both the job completion time and the overhead depends

on the mobility patterns of mobile nodes. Third, the heuristic approach performs well

in terms of both the job completion time and the overhead without requiring any prior

knowledge of the mobility patterns of mobile nodes.

Figure 6.11 compares the performance of our heuristic approach for finding time inter-

vals between auctions with the fixed time intervals approach, when nodes are mobile. In

this figure, the x-axis represents the normalized job completion time, and the y-axis repre-

sents the normalized number of performed auctions. Our goal is to reach to the left bottom

corner of the figure where minimum job completion time and minimum overhead exist.

Figure 6.11 shows that the heuristic approach outperforms the fixed intervals method and

gets close to the left bottom corner.

Next, we compare the job completion time of the mobility aware approach with that of

local execution using the three real world contact traces for different file sizes. Figure 6.8,

Figure 6.9, and Figure 6.10 show the speedup ratio of the mobility aware approach using

our heuristic approach. These figures show that the speedup ratio is close to 3. However,

the amount of improvement in the Infocom05 contact trace is a less than the other contact

traces. This is because the average percentage of disconnected nodes in the Infocom05

trace is larger than the other traces (see Figure 6.4).

To further analyze the effect of contact traces, we use two synthetic mobility models to
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generate the contact traces. Specifically, we use the Slaw [107] and Random Walk mobility

models. In our setting, we assume that 20 mobile nodes move in an area of 1000m× 1000m

for one hour and each mobile node has a circular transmission range of 150m. Also, the

audio file size is set to 600MB.

Figure 6.12 shows the speedup ratio of mobility aware approach with fixed and heuris-

tic approaches for selecting the time interval between auctions in the Slaw and Random

Walk models. This figure shows that our proposed model can improve the job completion

time by a factor of 5 to 7 in the Slaw model (which mimics the human walk patterns). How-

ever, the speedup ratio of the mobility aware approach is at most 3 in the Random Walk

model. This is because, in the Random Walk model, mobile nodes continuously move from

one location to the another in a random fashion. According to our measurements in the

Random Walk model, more than half of the selected neighboring nodes get disconnected

before completing their tasks, consequently increasing the job completion time. However,

we can still improve the job completion time by a factor of 3 for small fixed time interval

(T = 20s) at the cost of increased auction overhead. Furthermore, we can improve the job

completion time by factor 2 using our heuristic approach without significantly increasing

the communication overhead. According to our experiments, the number of performed

auctions using the heuristic method and using a small fixed time interval (T = 20s), are

59 and 110, respectively. It should be noted that for a high mobility contact trace (such as

Random Walk), there is a higher change of contact among mobile nodes. Therefore, we

can still improve the job completion time. Also, it is worth mentioning that by reducing

the time interval between auctions or equivalently reducing the workloads of the assigned

tasks, we can further improve the speedup ratio, but at the cost of increased overhead.

To understand the impact of the number of nearby nodes, we vary the number of

mobile nodes between 10 and 50 with increments of 10, in the Slaw model. Figure 6.13

shows the job completion time of the proposed approach using the Slaw mobility model as

a contact trace. This figure shows that as the number of nodes increases, the job completion

time decreases by more than 40%, when fixed time intervals (T) are used. Job completion

time reduces from 1486 to 833 seconds for T = 20 seconds, from 1888 to 1055 seconds for

T = 200 seconds, and from 2238 to 1324 for T = 500s. In addition, this figure shows that

our heuristic approach performs well in terms of job completion time.
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Figure 6.14 shows both the job completion time and the overhead (number of per-

formed auctions) using the Slaw mobility model with different number of nodes. This

figure shows that for different number of nodes in the Slaw mobility model, the heuristic

approach performs significantly better than the fixed time intervals method, in terms of

both the job completion time and the overhead.

Finally, we evaluate our methods for DAG jobs. The structure of jobs is the same as

Figure 6.3 and the workloads of jobs A, B, C, D, and E are 100, 50, 100, 100, 50, respectively.

Figure 6.15 shows the speedup ratio of the mobility aware approach for DAG jobs, using

the heuristic method to select the time intervals. This figure shows that our proposed

approach improves the job completion time by factor 2.5 to 3 for DAG jobs. DAG jobs

have the same behavior as the single job by varying the number of nodes or using different

mobility models.

6.7 Incentive Model for Mobile Live Video Upstreaming
mobiLivUp is a mobile live video upstreaming system that utilizes nearby smartphones,

forwarders, and cellular bandwidth to improve live wide-area video upstreaming [100]. In

mobiLivUp there is a splitter that distributes the data between forwarding nodes and there

is a gatherer that combines the data together.

We propose a pricing based method that provides incentives for the forwarding nodes

to cooperate. We assume that all nodes are rational and selfish. A forwarding node’s main

goal is to maximize its profits but not to harm others. We use a simple auction to model

cooperative bandwidth sharing. In our auction, the splitter holds the auction among n

nearby forwarding nodes called players. Each player i has an individual private value ci

which is the cost of sending one unit of data to the gatherer using the cellular connection. ci

depends on various parameters including available cellular bandwidth, cellular data rate,

and battery level on the phone. Our auction works as follows.

The splitter sends a request to the forwarding nodes and the forwarding nodes reply

by sending their bids, ci, to the splitter. The splitter determines the allocation rule and

the payment mechanism based on the received bids and the received feedback from the

gatherer about the actual data rates of the forwarders.

Due to the changes in the actual data rates, the splitter holds an auction every time
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it receives feedback from the gatherer. The forwarding nodes can also change their bids

in each auction and it is possible that the number of forwarding nodes varies in different

auctions because of the mobility of mobile phones.

Our auction provides incentive for forwarding nodes to cooperate by implementing a

dominant equilibrium. In this setting, each forwarding node’s best strategy is to report its

actual cost ci, regardless of other players’ strategies. Each player’s utility is defined as its

total received payment minus its cost of participation.

6.7.1 Problem Formulation and Solution

In our auction, the splitter must consider both the cost and the actual data rate in select-

ing forwarding nodes. Let wi ∈ [0, 1] be the weight that is assigned to the player i based on

the gatherer feedback. We define a score si for forwarding node i, as si(ci, wi) =
wi
ci

. Note

that in this equation, si depends on both the cost ci and the actual data rate wi. The splitter

uses these scores to select a set of forwarding nodes. We obtain the utility of player i with

score si from the following formula: ui(si) = pi(asi)− ci.

The number of players that are selected by the splitters depends on a budget limit B,

the maximum amount that the splitter can pay per second. Depending on the type of the

service, the splitter may choose different values for B.1

The splitter determines the allocation and the payment based on the scores of forward-

ing nodes under the following conditions:

• Optimal. The mechanism should maximize the total score, i.e., total actual data rates

divided by total costs.

• Incentive Compatibility. There is no selfish forwarding node that has an incentive to

lie about the cost, ci.

• Individual Rationality. The utility of all forwarding nodes should be nonnegative to

provide incentive for them to participate in the game.

Our problem description is as follows:

1The budget limit, B can be increasing function of the total data rate, ∑k
i=1 wi, where k is the number of

selected players.
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max
a

n

∑
i=1

asi si

s.t.

∀i, c′i ∈ C, pi(asi)− ci ≥ pi(as′i
)− ci (6.19)

∀i, pi(asi)− ci ≥ 0 (6.20)
n

∑
i=1

pi(asi) ≤ B (6.21)

Here, asi ∈ {0, 1} represents the allocation to player i with score si, when the splitter

assigns data to the player, asi = 1, otherwise, asi = 0. Also, pi(asi) represents the amount

that the splitter pays to the player i under allocation rule asi . Equation 6.19 provides incen-

tive compatibility for cost.2 Equation 6.20 is for individual rationality, and Equation 6.21

captures the budget limit of the splitter. The splitter orders the forwarding nodes based on

their scores decreasing scores (si). Then, it selects the largest number of forwarding nodes

{1, 2, . . . , k} such that ∀i ∈ {1, 2, . . . , k}, ci <
Bwi

∑k
i=1 wi

.

The payment, pi(asi), is obtained from the following formula:

pi(asi) = min(
wick+1

wk+1
,

Bwi

∑k
i=1 wi

) (6.22)

Here, k + 1 is the index of the player with the largest score after the selected k players. In

equation 6.22, the payment increases linearly with the forwarding node’s actual data rate,

wi.

6.7.2 Proofs

Lemma 6.5. Truthfully revealing the cost c results in a dominant equilibrium.

Proof. There are two possible cases: if the player is one of the selected forwarding

nodes, then over-reporting or under-reporting does not increase the utility of the player.

One the other hand, if a player is one of the losers, (without loss of generality) k + 1, and

by under-reporting the value of ck+1 the player k + 1 becomes a winner, then the utility of

this player is:

uk+1(s′k+1) = min(
wk+1ck

wk
− ck+1,

Bwk+1

∑k+1
i=1,i 6=k wi

− ck+1) (6.23)

2Since the data rate of each forwarding node is obtained from the gatherer feedback, we do not need to
provide incentive compatibility for the data rate.
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However, we know that wk
ck

> wk+1
ck+1

. Therefore, the utility is negative which is less than the

time if the player acts truthfully.

Lemma 6.6. The proposed auction satisfies the individual rationality constraint (constraint 6.20).

Proof. According to equation 6.4 the utility of player i is determined as follows.

ui(si) = min(
wick+1

wk+1
− ci,

Bwi

∑k
i=1 wi

− ci)

Given that wi
ci
> wk+1

ck+1
and Bwi

∑k
i=1 wi

> ci, the utility is positive.

6.8 Conclusion
In this chapter, we presented and evaluated a game theoretic framework for task alloca-

tion in mobile cloud computing environments comprising of selfish mobile devices. Specif-

ically, we proposed a multidimensional auction for allocating the tasks of a job among

nearby mobile nodes based on their computational capabilities and also the cost of com-

putation at these nodes with the goal of reducing the overall job completion time and be

beneficial to all the parties involved. We considered node and task heterogeneity as well as

node mobility in developing our methods. Our evaluations demonstrated the benefits of

our methods. We also proposed an incentive model to provide cooperation among nearby

mobile devices for the application of mobile live video upstreaming.



135

Table 6.1. Notation
Parameter Definition
(ci, si) The cost and committed service quotient for player i
aci ,si Allocation rule for player i with type (ci, si)

ui(ci, si) Utility of player i with type (ci, si)
p(aci ,si) Payment to player i under allocation rule aci ,si

B The distributor budget limit
D The total workload of job
T Time interval between auctions
b Linear increase factor in heuristic approach

Table 6.2. Completion time (second) of the mobility aware approach with fixed and
adaptive time intervals between auctions.

Approaches Completion time (second)
Intel research lab Computer lab Infocom

T = 20s 2109 2100 2632
T = 200s 2646 3021 3776
T = 500s 3288 3718 4725

Heuristic approach 2337 2294 2997

Table 6.3. Number of performed auctions in the mobility aware approach with fixed and
adaptive time intervals between auctions.

Approaches Number of performed auctions
Intel research lab Computer lab Infocom

T = 20s 119 119 153
T = 200s 15 18 23
T = 500s 7 10 12

Heuristic approach 19 33 43

Table 6.4. Percentage of disconnected nodes in the mobility aware approach with fixed
and adaptive time intervals between auctions.

Approaches Percentage of disconnected nodes
Intel research lab Computer lab Infocom

T = 20s 0.04 0.054 0.066
T = 200s 0.247 0.4 0.43
T = 500s 0.267 0.5 0.57

Heuristic approach 0.16 0.16 0.2
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Figure 6.8. Speedup ratio of mobility aware approach using our heuristic to adaptively
select the time interval between auctions for file size 100MB.
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Figure 6.9. Speedup ratio of mobility aware approach using our heuristic to adaptively
select the time interval between auctions for file size 300MB.



139

Intel research lab Computer lab Infocom
0

0.5

1

1.5

2

2.5

3

3.5

S
p
e

e
d

u
p

 r
a

ti
o

Figure 6.10. Speedup ratio of mobility aware approach using our heuristic to adaptively
select the time interval between auctions for file size 600MB.
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Figure 6.11. Comparison of approaches with fixed and heuristic-based time intervals
between auctions, in the presence of mobility.
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Figure 6.12. Speedup ratio of mobility aware approach using fixed and heuristic-based
time intervals between auctions in Slaw and Random Walk models.
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Figure 6.13. The job completion times for different values of T and the heuristic approach
versus the number of nodes in the Slaw mobility model.
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Figure 6.14. Comparison of approaches with fixed and heuristic-based time intervals
between auctions in the presence of mobility based on the Slaw mobility traces.
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Figure 6.15. Speedup ratio of mobility aware approach using our heuristic for selecting
the time interval between auctions in DAG jobs for three real contact traces.



CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Summary
We have exploited distributed sensing and computing in wireless networks to create

novel, efficient approaches for localization and computation offloading. We have proposed

efficient localization approaches for target tracking and spectrum monitoring that leverage

the sensing power of a distributed set of wireless devices. Additionally, we have also

shown how we can exploit the computing power of a set of nearby mobile devices to

create a profitable task allocation. We also addressed the problems of incentives and

privacy that arise in these applications and develop solutions for them. Our research work

has demonstrated how we can exploit the sensing and the computing capabilities of the

pervasive wireless devices to create efficient applications.

First, we proposed two effective energy efficient RTI approaches, ellipse-based and

radius-based, for localization using RF sensor networks. In both energy efficient approaches,

our aim was to save energy by reducing the number of links that we must measure to form

an image of attenuation. In the ellipse-based approach, we only considered links in an

ellipse around the velocity vector of the current position of the moving object and in the

radius-based approach, we used links in a circle around the current position of the moving

object. In addition, we proposed an algorithm to tune the radius of circle adaptively over

time. We performed extensive evaluations using real experimental data from three dif-

ferent settings. Our experimental results showed that our energy efficient approaches can

save 50% to 80% of energy without seriously degrading localization accuracy. Interestingly,

our radius-based approach even increased the accuracy of localization in comparison to

the basic RTI approach.

Second, we presented and evaluated a framework to locate multiple transmitters using

crowdsourced measurements of received power. We addressed two main challenges in

this framework. First, we presented a simple yet efficient and accurate method, SPLOT,
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for simultaneous localization of multiple transmitters using the received power measured

by the selected mobile sensing devices. SPLOT considered the temporal availability and

mobility of both receivers and transmitters and made no assumptions about the number

of transmitters. Second, we presented efficient sampling approaches that determined the

number and locations of required mobile sensing devices for measurement. Our sampling

approaches selected a set of wireless devices with maximum coverage considering mobil-

ity of both the sensing and the offending devices in a timely manner. Next, we enhanced

our sampling to provide incentives for mobile sensing devices. We experimentally evalu-

ated our framework and methods, and our results demonstrated that using SPLOT we are

able to localize multiple transmitters with high accuracy and in a timely manner.

Third, we investigated an attack on location privacy where the location of people mov-

ing inside a private area can be inferred using the radio characteristics of wireless links

that are leaked by legitimate transmitters deployed inside the private area. We modeled

the radio network leakage attack using a Stackelberg game and used a Greedy method to

obtain the optimal strategy for the defender. Our experimental results showed that our

game theoretic solution significantly reduces the chance of an attacker finding the location

of people inside a perimeter.

Finally, we presented and evaluated a game theoretic framework for task allocation in

mobile cloud computing environments comprising of selfish mobile devices. Specifically,

we proposed a multidimensional auction for allocating the tasks of a job among nearby

mobile nodes based on their computational capabilities and also the cost of computation

at these nodes with the goal of reducing the overall job completion time and be beneficial

to all the parties involved. We considered node and task heterogeneity as well as node mo-

bility in developing our methods. Our evaluations demonstrated showed that our game

theoretic framework improves the job completion time by a factor of 2-5 in comparison

to the time taken for executing the job locally, while minimizing the number of auctions

and the accompanying overheads. Our approach is also profitable for the nearby nodes

that execute the distributor’s tasks with these nodes receiving a compensation higher

than their actual costs. We also applied our game theoretic approach to mobile live video

upstreaming application.
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7.2 Future Research Directions
In this section, we describe several new directions that can progress the research in this

dissertation.

7.2.1 Energy Efficient Target Tracking in RF Sensor Networks

Several future research directions exist for energy efficient target tracking using RF

sensor networks. First, in our work, we proposed energy efficient approaches for tracking

a single target only. However, in many real-world environments and settings, multiple

people or objects are expected to move and be tracked in the monitored areas. While there

is growing work on multiple target tracking [35, 38], energy efficiency in these scenarios

has not received much attention. Future work must extend our energy efficient approaches

for multiple target tracking. Second, it will be interesting to improve our energy efficient

approach in terms of both the energy consumption and the error of localization. Currently,

we reduce the energy consumption to half in the worst case. One way to reduce both the

energy consumption and the localization error is by reducing the number of measured

links even within the ellipse or the circle. Our idea is to assign weights to individual links

and select a subset of them based on their weights. For example, we can weigh links

based on their lengths. Short length links provide more information about the attenuation

compared to the long ones. Figure 7.1 shows the difference in the localization error when

we use all links that are crossing the monitored area versus the cases when we use k links

in the monitored area. The k links are selected using shortest links first. In Figure 7.1,

the total number of links is 870. This figure shows that increasing the number of links

from 570 to 870 does not change the estimated position. However, not all short links are

informative (e.g., the short links that cross metallic obstructions can actually negatively

impact the accuracy). Thus, the location of the link or its fade level is very important.

Therefore, we can weigh links based on multiple metrics, use the most effective links, and

thereby save more in terms of energy without sacrificing accuracy. Compressed sensing

(CS) which estimates tomographic images using fewer link measurements is another way

of saving energy. Future work must also combine the benefits of both CS and our energy

efficient approaches. Third, besides reducing the total energy consumption, future work

must distribute this energy benefit uniformly across the sensor nodes. In our current



144

energy efficient approaches, the maximum energy consumption among the sensor nodes

is half of that in the basic approach. However, this energy is not uniformly distributed

among the sensor nodes especially in the cases where the person moves only in the small

part of the experiment area and where sensor nodes are deployed nonuniformly around

the perimeter, e.g., the bookstore. To tackle this problem, we can consider the energy

consumption of nodes in selecting the links within the circle or the ellipse.

7.2.2 Fingerprinting-based Localization for Crowdsourced Spectrum
Monitoring

In Chapter 3, we have presented a method for simultaneous power-based localiza-

tion of transmitters (SPLOT) for crowdsourced spectrum monitoring. In SPLOT, we have

reduced the problem of locating multiple, unknown numbers of transmitters to that of

localizing a set of single transmitters by finding local maxima of RSSs observed by re-

ceivers. Another interesting approach to locate multiple unknown transmitters is to use

RSS fingerprints. Fingerprinting-based methods have been widely explored for indoor

localization of people and objects. The main idea is to create a fingerprint database of every

location in the area of interest and then locate people or objects by mapping the online mea-

sured fingerprint against the fingerprint database. If we want to use fingerprinting-based

methods for multiple transmitters localization, we need to create fingerprints considering

all combinations of transmitters and receivers. For example for four transmitters, we need

to create fingerprints for all 16 possible numbers of active transmitters for a given receivers.

We also must create fingerprints for different locations of both transmitters and receivers.

This increase the size of fingerprint database and the challenge is how to reduce the size

of database by finding correlation. One way to reduce the size of database is to hold

only single active transmitters and use the sum of linear received powers measured from

each transmitter when transmitting sequentially to approximate the RSS for all possible

multiple active transmitters. A future fingerprinting-based method must also explore

different machine learning techniques to reduce the database size and locate multiple

transmitters in a timely manner.
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7.2.3 Scalable Localization for Crowdsourced Spectrum Monitoring

Our simultaneous multisource localization research for crowdsourced spectrum mon-

itoring will not scale when covering large areas with hundreds of devices with only one

central controller. Future work must extend our approach to hierarchical controllers. The

large areas must be divided into a set of small areas based on the distribution and mobility

patterns of mobile devices (there might be a small area with a large number of connected

mobile devices or a large area with a small number of mobile devices). The best way to

divide the area is to construct the connectivity graph and find communities in the graph.

Then, the large area can be divided into a set of small areas covered by communities. Next,

a controller can be placed in each small area. The controller in each area can receive the

RSSs measurements from the local receivers, compress the received information, send it

to an upper-level controller, and so on until the topmost layer of the hierarchy is reached.

Alternatively, the central controller can perform localization based on received information

and report the localization results to the topmost layer of the hierarchy.

7.2.4 Improving Sampling for Crowdsourced Spectrum Monitoring

Our proposed sampling approaches in Chapter 4 select a set of sensing devices that

maximize the coverage in a timely manner considering the mobility and the selfish be-

havior of sensing devices. One interesting avenue for further exploration will be how to

select a set of sensing devices to increase the accuracy of localization. In Chapter 4, we also

proposed truthful sampling approaches to provide the required incentives for the selfish

devices to participate in crowdsourced sensing. Beside the selfish behavior of sensing

devices, it may be possible that some sensing devices act maliciously. For example, some

sensing devices may change the received RSSs and report incorrect values. This makes

both the sampling and the localization unreliable. Future work must explore different

approaches including majority voting, and correlation in measurements performed by

nearby nodes, to detect and handle malicious users/devices.

7.2.5 Improving Profitable Task Allocation

In Chapter 6, we have presented a profitable task allocation in mobile cloud computing

that reduces the overall job completion time. Mobile devices such as smartphones have

limited available energy and there are some scenarios when energy consumption is as
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important as the overall job completion time. Therefore, future work must consider the

energy consumption as well. In our profitable task allocation, we also developed a heuris-

tic approach to dynamically find the best time intervals between auctions. Although the

heuristic approach reduces the percentage of disconnected nodes, it is still possible that

some mobile smartphones get disconnected before completing the assigned tasks or some

other smartphones arrive with higher computational power and less cost. One way to

tackle this problem is to improve the profitable task allocation to prevent the selfish mobile

devices from lying about their availability for the computing task. In this setting, when

the distributor probes nearby mobile devices for task allocation over the time interval

T, the mobile devices reply by declaring their costs, computational capabilities and also

their availability. Based on this information, the distributor selects a set of mobile devices

with minimum costs that reduce the job completion time and also are available during the

time interval T. By providing incentives for the mobile devices to declare the availability

truthfully, the distributor only selects among those devices that are available over the time

interval T. Another way to tackle this problem is to offload the computing task to the

nearby mobile devices and whenever a new mobile device arrives with less cost and high

computational capability, the distributor decides on preemption of the computing task.

The distributor can efficiently preempt the computing task on one of the current selected

mobile devices and reallocate the computing task to the newly arrived mobile device.

Future work must explore the efficiency of these approaches in terms of the overall job

completion time and the accompanying overheads.
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Figure 7.1. The difference between the localization results when we use all links versus
when we use the k shortest links.
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