6,010 research outputs found

    An ontology enhanced parallel SVM for scalable spam filter training

    Get PDF
    This is the post-print version of the final paper published in Neurocomputing. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Spam, under a variety of shapes and forms, continues to inflict increased damage. Varying approaches including Support Vector Machine (SVM) techniques have been proposed for spam filter training and classification. However, SVM training is a computationally intensive process. This paper presents a MapReduce based parallel SVM algorithm for scalable spam filter training. By distributing, processing and optimizing the subsets of the training data across multiple participating computer nodes, the parallel SVM reduces the training time significantly. Ontology semantics are employed to minimize the impact of accuracy degradation when distributing the training data among a number of SVM classifiers. Experimental results show that ontology based augmentation improves the accuracy level of the parallel SVM beyond the original sequential counterpart

    Meta Heuristics based Machine Learning and Neural Mass Modelling Allied to Brain Machine Interface

    Get PDF
    New understanding of the brain function and increasing availability of low-cost-non-invasive electroencephalograms (EEGs) recording devices have made brain-computer-interface (BCI) as an alternative option to augmentation of human capabilities by providing a new non-muscular channel for sending commands, which could be used to activate electronic or mechanical devices based on modulation of thoughts. In this project, our emphasis will be on how to develop such a BCI using fuzzy rule-based systems (FRBSs), metaheuristics and Neural Mass Models (NMMs). In particular, we treat the BCI system as an integrated problem consisting of mathematical modelling, machine learning and classification. Four main steps are involved in designing a BCI system: 1) data acquisition, 2) feature extraction, 3) classification and 4) transferring the classification outcome into control commands for extended peripheral capability. Our focus has been placed on the first three steps. This research project aims to investigate and develop a novel BCI framework encompassing classification based on machine learning, optimisation and neural mass modelling. The primary aim in this project is to bridge the gap of these three different areas in a bid to design a more reliable and accurate communication path between the brain and external world. To achieve this goal, the following objectives have been investigated: 1) Steady-State Visual Evoked Potential (SSVEP) EEG data are collected from human subjects and pre-processed; 2) Feature extraction procedure is implemented to detect and quantify the characteristics of brain activities which indicates the intention of the subject.; 3) a classification mechanism called an Immune Inspired Multi-Objective Fuzzy Modelling Classification algorithm (IMOFM-C), is adapted as a binary classification approach for classifying binary EEG data. Then, the DDAG-Distance aggregation approach is proposed to aggregate the outcomes of IMOFM-C based binary classifiers for multi-class classification; 4) building on IMOFM-C, a preference-based ensemble classification framework known as IMOFM-CP is proposed to enhance the convergence performance and diversity of each individual component classifier, leading to an improved overall classification accuracy of multi-class EEG data; and 5) finally a robust parameterising approach which combines a single-objective GA and a clustering algorithm with a set of newly devised objective and penalty functions is proposed to obtain robust sets of synaptic connectivity parameters of a thalamic neural mass model (NMM). The parametrisation approach aims to cope with nonlinearity nature normally involved in describing multifarious features of brain signals

    Unmasking Clever Hans Predictors and Assessing What Machines Really Learn

    Full text link
    Current learning machines have successfully solved hard application problems, reaching high accuracy and displaying seemingly "intelligent" behavior. Here we apply recent techniques for explaining decisions of state-of-the-art learning machines and analyze various tasks from computer vision and arcade games. This showcases a spectrum of problem-solving behaviors ranging from naive and short-sighted, to well-informed and strategic. We observe that standard performance evaluation metrics can be oblivious to distinguishing these diverse problem solving behaviors. Furthermore, we propose our semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines. This helps to assess whether a learned model indeed delivers reliably for the problem that it was conceived for. Furthermore, our work intends to add a voice of caution to the ongoing excitement about machine intelligence and pledges to evaluate and judge some of these recent successes in a more nuanced manner.Comment: Accepted for publication in Nature Communication

    Online Multi-Stage Deep Architectures for Feature Extraction and Object Recognition

    Get PDF
    Multi-stage visual architectures have recently found success in achieving high classification accuracies over image datasets with large variations in pose, lighting, and scale. Inspired by techniques currently at the forefront of deep learning, such architectures are typically composed of one or more layers of preprocessing, feature encoding, and pooling to extract features from raw images. Training these components traditionally relies on large sets of patches that are extracted from a potentially large image dataset. In this context, high-dimensional feature space representations are often helpful for obtaining the best classification performances and providing a higher degree of invariance to object transformations. Large datasets with high-dimensional features complicate the implementation of visual architectures in memory constrained environments. This dissertation constructs online learning replacements for the components within a multi-stage architecture and demonstrates that the proposed replacements (namely fuzzy competitive clustering, an incremental covariance estimator, and multi-layer neural network) can offer performance competitive with their offline batch counterparts while providing a reduced memory footprint. The online nature of this solution allows for the development of a method for adjusting parameters within the architecture via stochastic gradient descent. Testing over multiple datasets shows the potential benefits of this methodology when appropriate priors on the initial parameters are unknown. Alternatives to batch based decompositions for a whitening preprocessing stage which take advantage of natural image statistics and allow simple dictionary learners to work well in the problem domain are also explored. Expansions of the architecture using additional pooling statistics and multiple layers are presented and indicate that larger codebook sizes are not the only step forward to higher classification accuracies. Experimental results from these expansions further indicate the important role of sparsity and appropriate encodings within multi-stage visual feature extraction architectures

    The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis

    Get PDF
    Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field
    corecore