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Abstract: Multi-class and multi-attribute are two important features of classification problems and have different effects on the 

requirements and performance of the classifier. Decomposition strategy and overlap function are two effective ways to enhance 

the performance of classifiers, because the former decomposes a complex multi-class problem into multiple simple sub-problems; 

the latter uses various functions to specify the conjunctive relationship of input variables in a multi-attribute problem. Extended 

belief rule-based system (EBRBS) is an advanced rule-based system that has been widely used in classification problems. In order 

to apply decomposition strategies and overlap functions to enhance the performance of EBRBSs, the present work focuses on the 

investigative research and comparative evaluation of the commonly used one-versus-one (OVO) decomposition strategy and five 

common overlap functions to improve the performance of EBRBSs on multi-class and multi-attribute problems. More specifically, 

three typical kinds of EBRBSs, namely original EBRBS (O-EBRBS), EBRBS with dynamic rule activation (DRA-EBRBS), and a 

latest EBRBS for big data (Micro-EBRBS), are selected to conduct extensive experimental studies on twenty classification 

problems. To best of our knowledge, this present work is the first time to provide a meaningful and useful study in revealing the 

potential capability of the EBRBSs with decomposition strategy and overlap function for multi-class and multi-attribute problems. 

Experimental results demonstrate that the square product overlap function and the OVO strategy can enhance the performance of 

EBRBSs over others for twenty classification problems. 
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1. Introduction 

Classification is a fundamental and critical problem to be addressed in various theoretical and practical applications, e.g., 

image processing [1][2], pattern recognition [3][4], and intelligent transportation [5][6]. Within these real-world problems, two 

types of problems can be differentiated according to the number of classes in output variables and the number of attributes in input 

variables: multi-class and multi-attribute problems. In general, a classifier is more difficult to obtain a desired performance for 

multi-class problems because of the increased complexity in each class boundary, caused by the higher intersection among the data 

of different classes. Meanwhile, multi-attribute problems are a difficult task for a classifier due to the low variation between data, 

produced by the conjunctive relationship between various variables existed in multi-attribute problems. Even so, it is inevitable 

that multi-class and multi-attribute problems have to be considered when a classifier is applied to address classification problems. 

To overcome the difficulties caused by multi-class and multi-attribute in a classification problem, decomposition strategy and 

overlap function were introduced to enhance the performance of classifiers in many previous studies [7][8] (See further detailed 

literature reviews in Section 2). Throughout these attempts there is a feasible solution for other up-rising classifiers when addressing 

classification problems with multiple classes and multiple attributes, even the classifiers have the inherent multi-class and multi- 
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attribute supports. It is worth noting that decomposition strategy can be described as the process of dividing a complex multi-class 

classification problem into multiple easier-to-solve ones, i.e., the original classification problem is related with three classes {D1, 

D2, D3} and it can be divided into multiple two-class problems, like {D1, D2}, {D1, D3} and {D2, D3}; and overlap function can be 

described as a linear or nonlinear function which allows classifiers to obtain the aggregated values with a higher variation for the 

conjunctive relationship among input variables found in multi-attribute problems, i.e., for a multi-attribute problem with three 

input variables {x1, x2, x3}, the conjunctive relationship of these input variables can be wrote as f(x1, x2, x3) = x1  x2  x3 when 

using product function as an overlap function. 

Among various kinds of decomposition strategies, one-versus-one (OVO) decomposition strategy is one of the most common 

strategies used in multi-class problems to divide an N-class problem into N  (N - 1) / 2 binary sub-problems (each two from N 

classes). Based upon this viewpoint, when the OVO strategy is applied to enhance a classifier, each binary sub-problem should be 

used to model an independent binary sub-classifier and the output of all binary sub-classifiers needs to be aggregated to make a 

final decision for replying any given input data, where some common aggregation methods include voting strategy, weighted voting, 

WinWV, non-dominance criteria, and learning valued preference for classification. Owing to the OVO decomposition strategy, 

classifiers usually obtain a better result than addressing multi-class classification problems directly, even so the classifiers have the 

inherent multi-class support. Furthermore, the OVO decomposition strategy also provides an available framework to enhance 

classifiers by using ensemble learning [9][10] and parallelization techniques [11][12]. 

Among various kinds of overlap functions, square product, product, minimum, geometric mean, and sine functions are the 

widely used overlap functions for classifiers when addressing multi-attribute classification problems in the previous studies [13] 

[14], and all these overlap functions have been proven to be able to effectively model the conjunctive relationship between the 

input variables of a multi-attribute problem, which are used as the inputs of classifiers, and the classifiers therefore produce 

different kinds of the aggregated values with different variations made by different numbers of attributes, i.e., the outcomes of 

square product, product, minimum, geometric mean, and sine functions are sorted in ascending order when all these functions are 

assumed to have the same input variables within range [0, 1]. As a result, it is evident to offer a panoramic view of the performance 

of a certain classifier for dealing with multi-attribute classification problems and provide a solution to enhance the classifier. 

In recent years, many effective and efficient classifiers [11][15]-[17] were developed for classification problems on the basis 

of the extended belief rule-based system (EBRBS), which was proposed by Liu et al. [18] by embedding belief structures into the 

rule antecedent of belief rules so that both rule antecedent and consequent can represent uncertain information, e.g., fuzzy 

uncertainty, random uncertainty, and incomplete uncertainty. Thus, the classifiers based on the EBRBS have important advances in 

uncertainty information processing and modeling. However, similar to other methodologies used in developing an advanced 

classifier [19]-[22], the EBRBS has to encounter the difficulties caused by multi-class and multi-attribute in a classification 

problem as well. Providing feasible solutions to improve the performance of EBRBS-based classifiers is a critical problem that 

needed to be solved when addressing multi-class and multi-attribute classification problems. 

However, the previous studies of enhancing EBRBS mainly focused on the determination of consistent activation rules [15] 

[23][24] and the reduction of ineffective rules [11][25][26], because the original EBRBS (O-EBRBS for short) lacks of necessary 

mechanisms to avoid two undesired situations: 1) the set of activated rules is based on the conflicting information to reply input 

data; 2) the size of an extended belief rule rule (EBRB) would increase unlimitedly. For this purpose, two representative EBRBSs 

extended from O-EBRBS were proposed by considering dynamic rule adjustment (DRA) method and domain division-based rule 

reduction method, respectively, and they are therefore called DRA-EBRBS [15] and Micro-EBRBS [11]. On the background of 
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these three EBRBSs, it can be found that they were only based on product function to model the conjunctive relationship in multi- 

attribute problems and have not been investigated yet for multi-class problems by using decomposition strategies. Hence, four 

motivations of the present work can be summarized as follows: 

(1) O-EBRBS, DRA-EBRBS and Micro-EBRBS are introduced to perform an investigative study and comparative analysis 

for the intention of distinguishing the performance differences existed in these three representative EBRBSs. 

(2) The influence of the OVO decomposition strategy with five aggregation methods on the three EBRBSs is investigated to 

provide potential solutions when it is required to enhancing EBRBSs for addressing multi-class problems. 

(3) The influence of the square product, product, minimum, geometric mean, and sine overlap functions on the three EBRBSs 

is investigated to provide potential solutions in the case of enhancing EBRBSs for addressing multi-attribute problems. 

(4) The last motivation of the proposed work is to place important basis and framework for EBRBSs to be further enhanced 

through ensemble learning and parallelization techniques in terms of both accuracy and efficiency. 

Based on the above-mentioned four motivations, an experimental study considering twenty classification datasets obtained 

from the KEEL dataset repository [27] is carried out to achieve well-founded conclusions. As suggested in the specialized literature 

[28], a non-parametric statistical test, namely Aligned Friedman and Holm test, is utilized to further confirm the influence of the 

OVO decomposition strategy and the five overlap functions on the three EBRBSs for multi-class and multi-attribute classification 

problems. Correspondingly, the main contributions of this work can be summarized as follows: 

(1) A comparison of O-EBRBS, DRA-EBRBS, and Micro-EBRBS is carried out to summarize their differences in terms of 

accuracy and efficiency when the three EBRBSs are used to address multi-class and multi-attribute classification problems. A 

useful guidance is obtained to distinguish the inherent features of the three EBRBSs. 

(2) The procedure of applying the OVO decomposition strategy with five aggregation methods to enhance the three EBRBSs 

is showed for the first time. The corresponding investigation is further studied to analyze the influence of the OVO decomposition 

strategy on the three EBRBSs and their classification performance on multi-class problems. 

(3) The procedure of applying square product, product, minimum, geometric mean, and sine overlap functions to enhance the 

three EBRBSs is showed for the first time. Meanwhile, another investigation is further studied to detail the influence of the five 

overlap functions on the three EBRBSs and their classification performance on multi-attribute problems. 

The remainder of this paper is organized as follows: Section 2 reviews the related work on classifiers with decomposition 

strategy and overlap function. Section 3 provides an introduction of O-EBRBS, DRA-EBRBS, and Micro-EBRBS. Section 4 

develops an integration framework to illustrate how decomposition strategy and overlap function enhance an EBRBS. Section 5 

carries out an experimental study to analyze the performance on the enhanced EBRBSs. Finally, Section 6 concludes this work. 

2. Related Works: Classifiers with Decomposition Strategy and Overlap Function 

Throughout the past development of classical classifiers, decomposition strategies and overlap functions are useful to improve 

the classification performance of classifiers in terms of multi-class and multi-attribute problems. Many success attempts have been 

made to enhance conventional classifiers in the past decades for classification problems. These attempts can be divided into the 

following two aspects: 

For the previous studies of classifiers with decomposition strategies, Fernández et al. [29] applied a pairwise learning 

methodology to construct a linguistic fuzzy multi-classifier systems, where the main idea of the pairwise learning methodology 

was based on the OVO strategy. They claimed that the proposed systems can obtain a better decision boundary in multi-class 
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problems. Galar et al. [7] provided a survey of two commonly used binary decomposition strategies, including the OVO and one- 

versus-all (OVA) strategies, and also paid special attention to the combination of the outputs of binary classifiers. They suggested 

that the OVO strategy was able to improve the performance of some classifiers, such as support vector machine (SVM), decision 

tree (DT), Ripper, and k-nearest neighbor (KNN). Elkano et al. [30] combined the fuzzy association rule-based classification 

model for high-dimensional problems (FARC-HD) with the OVO and OVA strategies to improve classifier performance in multi- 

class problems. They concluded that the proposed model obtained competitive results in the comparison with three state-of-the-art 

fuzzy classifiers. Garcia et al. [31] utilized the OVO strategy to improve the performance of class noise filters so that the data 

quality in classification tasks could be enhanced because of detecting and removing error or noise data. Liu et al. [8] applied SVM 

with the OVO strategy for multi-class sentiment classification problems. The results showed the OVO strategy improved the 

performance of SVM better than other sentiment classification methods. Zhang et al., [32] empowered OVO decomposition 

strategy with ensemble learning for imbalanced multi-class datasets by using UnderBaging, SMOTEBagging, RUSBoost, 

SMOTEBoost, SMOTE+AdaBoost, and EasyEnsemble. The results indicated that the OVO strategy could significantly increase 

the effectiveness of ensemble learning for imbalanced multi-class problems. Recently, Liu and Jia [33] combined the OVO 

strategy and the instance-based learning for multi-class classification problems. The comparative studies obtained from seventeen 

benchmark multi-class datasets demonstrated that the proposed method had a better performance to predict the class of unseen 

instances against six well-established multi-class approaches. 

For the previous studies of classifiers with overlap functions, Elkano et al. [30] addressed the problem caused by the low- 

confidence value involved in fuzzy reasoning methods, where the overlap functions were used in fuzzy rule-based classification 

system (FRBCS) to obtain more reasonable outputs of binary classifiers. Gomez et al. [13] justified the axiomatization used in the 

definition of overlap functions. The experimental results showed that overlap functions were able to obtain a better result than the 

commonly used product t-norm. Meanwhile, Elkano et al. [31] carried out an exhaustive study to investigate the influence of 

overlap functions on the FRBCS proposed by Chi et al. (Chi-FRBCS), structural learning algorithm in a vague environment 

(SLAVE), fuzzy unordered rule induction algorithm (FURIA), and FARC-HD. They concluded that the performance of overlap 

functions strongly depended on the learning process and rule structure of each FRBCS. De Miguel et al. [14] introduced the 

concept of a general overlap function and applied the general overlap function to define a new matching degree in FRBCS. They 

suggested that the general overlap function could improve the performance of a FRBCS in classification problems. Recently, 

Asmus et al. [34] studied the concept of n-dimensional interval-valued overlap functions with their representability and the 

definition of general interval-valued overlap functions with characterization.  

The above literature reviews clearly show that decomposition strategies and overlap functions have positive influences on 

many conventional classifiers, even so the classifiers have the inherent capable of addressing multi-class and multi-attribute 

problems, in which FRBCS is one of commonly used classifiers in the existing studies to validate the improvements and influences 

made by decomposition strategies and overlap functions. Owing to the vigorous development in fuzzy fields, e.g., fuzzy fractional 

derivative [35]-[38], FRBCS has been regarded as an outstanding representative rule-based system with superior performance 

over other machine learning methods [39]-[42]. Considering that EBRBS is a new developing rule-based system, it is worth 

studying the influence of decomposition strategies and overlap functions on the performance of EBRBSs. Hence, the present work 

aims to integrate the commonly used decomposition strategies and overlap functions into EBRBS and then study their influences 

on EBRBSs for multi-class and multi-attribute classification problems. 
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3. Three Representative EBRBSs for Classification Problems 

In this section, the preliminary knowledge is introduced in Section 3.1 to show the components and differences of three kinds 

of representative EBRBSs, namely O-EBRBS, DRA-EBRBS, and Micro-EBRBS. Next, a brief description of the three EBRBSs 

is considered in Sections 3.2 to 3.4, respectively. 

3.1. Preliminaries about Generic EBRBS 

EBRBS is an advanced rule-based system extended from the belief rule-based system (BRBS) [44] by embedding belief 

structures into the rule antecedent of the belief rule that has already contained belief structures in rule consequent. Owing to belief 

structures, the rule in EBRB, which is so called extended belief rule, has a powerful representation scheme to simultaneously 

express fuzzy, random, and incomplete uncertainties caused by input and output data. Taking user knowledge modeling problem 

[45] for an example, the knowledge levels of users are categorized into Very Low, Low, Middle, and High, and one kind of belief 

structures for a user can be wrote as {(Very Low, 0.3), (Low, 0.6), (Middle, 0), (High, 0)}. Specifically, the knowledge level of the 

user is assessed to be Very Low with belief degree 0.3 or 30% possibility, Low with belief degree 0.6 or 60% possibility, and both 

Middle and High with belief degree 0 or 0% possibility. More importantly, due to 0.3 + 0.6 = 0.9 < 1.0, the remaining belief 

degree 1.0 - 0.9 = 0.1 or 10% possibility should be regarded as incomplete information to express uncertainty. 

Based on the belief structure, when an EBRB is assumed to have M antecedent attributes and one consequent attribute, in 

which each antecedent attribute Ui (i=1,…, M) has Ji reference values Ai,j (j=1,…, Ji) and consequent attribute D has N classes Dn 

(n=1,…, N), an extended belie rule in the EBRB can be written as: 
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the weight of antecedent attribute Ui, which represents the importance of Ui over other attributes. 

On the basis of EBRB, an EBRBS consists of two main components: 1) EBRB generation scheme, which is a mechanism 

used to generate an EBRB based on expert knowledge and historical data; 2) EBRB Inference scheme, which is a mechanism used 

to classify input data using the extended belief rules stored in the EBRB. The basic framework of EBRBS is shown in Fig. 1. 

To generate rules using EBRB Generation Scheme

To produce output class using EBRB inference scheme

EBRB

Data base Knowledge base

Input Output

historical dataset Expert knowledge

 

Fig. 1. Basic framework of EBRBS 

From Fig. 1, the characteristics of EBRBS can be summarized as follows: 

(1) A rule in EBRBS has a generic information representation, because it can express probabilistic, incomplete, and fuzzy 

uncertainties in both antecedent and consequent attributes. 
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(2) EBRBS is knowledge-driven, data-driven, or their combination system, because it can be automatically generated from 

data base and knowledge base, without requiring any time-consuming optimization process. 

Additionally, since O-EBRBS, DRA-EBRBS, and Micro-EBRBS are considered in this study, the differences among these 

three EBRBSs in terms of EBRB generation scheme and EBRB inference scheme are illustrated in Fig. 2. The detailed steps of 

these components can be found in Section 3.2 to Section 3.4. 

To generate belief distributions

To calculate rule weights

To reduce extended belief rules

To calculate activation weights

To integrate activation rules

To apply dynamic rule activation

①②③

③

③①②

①②③

①③

②

②

EBRB

EBRB Generation Scheme

EBRB Inference Scheme

Data base Knowledge base

Input Output

① O-EBRBS

② DRA-EBRBS

③ Micro-EBRBShistorical dataset Expert knowledge

 

Fig. 2. Differences of three representative EBRBSs 

Here, it is worth noting that data base and knowledge base are two prerequisites for constructing an EBRBS and they 

represent the collection of historical data and expert knowledge from a particular domain or certain problem, respectively. For 

example, in the case of user knowledge modeling problem, data base is constructed by using users’ data collected by the user 

modeling server [45] and knowledge base is constructed by using the knowledge levels of users provided by domain professors, 

e.g., the use of Very Low, Low, Middle, and High to describe the knowledge levels of users. Furthermore, all these expert 

knowledge can form the basic representation scheme of extended belief rules, e.g., the use of the belief distribution {(Very Low, 

0.3), (Low, 0.6), (Middle, 0), (High, 0)} to specify {(Dn, 
k

n
 ); n=1,…, N} in Eq. (1) for constructing an EBRBS. 

3.2. Introduction of O-EBRBS 

O-EBRBS is the first EBRBS proposed in [18], which can be regarded as an extension of FRBCS and also an improvement 

of BRBS in terms of the flexibility of knowledge representation, i.e., none of belief structures is used in fuzzy rules and belief 

structures are only used in the rule consequent of belief rules. Owing to this advantage, O-EBRBS has done a lot of effective and 

fruitful works on the domain of applications related with uncertainty information processing and modeling [23][25][46][47]. 

In order to construct an EBRB, the EBRB generation scheme of O-EBRBS should be performed based on the following two 

steps when the EBRB is assumed to have M antecedent attributes Ui (i=1,…, M) with Ji reference values Ai,j (j=1,…, Ji) and one 

consequent attribute D with N classes Dn (n=1,…, N). 

Step 1: To generate belief distributions. Suppose xk,i is the kth (k=1,…, L) historical input data of the ith antecedent attribute 

Ui. A corresponding belief distribution of Ui can be generated using the utility-based equivalence transformation technique [44]. 
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where u(Ai,j) denotes the utility value used for reference value Ai,j in the ith antecedent attribute Ui; 
k

ji ,
  denotes the belief degree 

of reference value Ai,j in the kth rule generated from input data xk,i. 

Afterwards, when the kth historical output data yk is assumed to be the jth class Dj (j=1,…, N), the belief distribution of 

consequent attribute D is expressed as follows: 
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Step 2: To calculate rule weights. After transforming L historical input-output data pairs into L groups of belief distributions 

for M antecedent attributes and one consequent attribute, in which these belief distributions can form L extended belief rules, the 

similarity of rule antecedent (SRA) and the similarity of rule consequent (SRC) for these L extended belief rule can be calculated 

based on the following definitions: 

Definition 1 (Distance of two belief distributions): Suppose there are two belief distributions S(Rk, Ui)={
k

ji , ; j=1,…, Ji} and 

S(Rl, Ui)={
l

ji , ; j=1,…, Ji} obtained from attribute Ui in rule Rk and Rl, thus the distance of S(Rk, Ui) and S(Rl, Ui) is as follows: 
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Definition 2 (Similarity of two belief distributions): On the basis of Definition 1, the similarity of two belief distributions 

S(Rk, Ui) and S(Rl, Ui) is as follows: 
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Thus, based on Definition 1 and Definition 2, the SRA and SRC of Rk and Rl (k, l=1,…, L) can be calculated by: 
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Then, the inconsistency degree of the kth extended belief rule is calculated as follows: 
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Finally, the rule weight of the kth extended belief rule is calculated as follows: 
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In order to classify any given input data, the EBRB inference scheme of O-EBRBS should be done using the following steps:  

Step 1: To calculate activation weights. Suppose an input data x=(x1,…, xM) is provided for O-EBRBS, each input xi (i=1,…, 
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M) needs to be transformed into a belief distribution using Eqs. (3) to (4). 
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Next, the individual matching degree between the kth rule Rk and input data x regarding the ith antecedent attribute Ui, 

denoted as Sk(xi, Ui), is calculated based on Definition 1 as follows: 
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Finally, the activation weight of the kth extended belief rule, denoted as wk, is calculated by 
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where k
  is the weight of the kth rule; i

  is the weight of the ith antecedent attribute; Here, it worth noting that if wk is greater 

than 0, the kth rule should be regarded as an activated rule to produce an output class. 

Step 2: To integrate activated rules. Suppose that L extended belief rules are all activated for the input data x. Hence, all these 

L activated rules should be integrated using the following analytical ER algorithm [48]: 
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where n
  is the integrated belief degree, which represents the possibility of the input data x to be the nth class Dn. 

Next, the output class of O-EBRBS is obtained by seeking the one with the greatest belief degree. 
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3.3. Introduction of DRA-EBRBS 

DRA-EBRBS is an improved EBRBS in term of activation rules determination [15]. As shown in Fig. 2, the main difference 

between O-EBRBS and DRA-EBRBS is that the dynamic rule activation is considered to determine activation rules in the EBRB 

inference scheme. The detailed steps of the dynamic rule activation are introduced as follows: 

Firstly, by introducing a parameter   and according to Eq. (14), new individual matching degree is calculated by 
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where the parameter   may affect the individual matching degree in two different ways: 1) higher   values penalize activated 

rules with low activation weights and even zero activation weight; 2) lower   values reward activated rules with high activation 

weights. More specifically, when  =0, the activation weights is equal to rule weights because of ),(
ii

k UxS =1. 

Secondly, based on the new individual matching degree shown in Eq. (18), new activation weight of rule Rk, denoted as wk, is 

calculated as well. When wk is greater than 0, rule Rk should be put into the set λ
Δ , namely k

R=
λλ

ΔΔ . 

Thirdly, a function, denoted as )(Δ
λ

C , is utilized to measure the performance of   in term of consistency in the set λ
Δ , 

in which the function )(Δ
λ

C  is defined as follows: 

|Δ|

}{max
)(Δ

λ

,...,1

λ

nNn
C

C
=

=                                  (19) 
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where )(Δ
λ

C  represents the maximum number of rules with the maximum belief degree in the same class divided by the total 

number of rules; Cn represents the number of rules with the maximum belief degree in the nth class Dn and its value is given by: 

|};{maxarg;|
,...,1  ==

= k

k

iNinn
RnDC                           (20) 

Finally, by searching for the range of   to obtain the maximum value of )(Δ
λ

C , the relevant set λ
Δ  is regarded as the 

final set of activation rules and all these activation rules are used to generate final output class using Eqs. (16) and (17). 

3.4. Introduction of Micro-EBRBS 

Micro-EBRBS is another improved EBRBS in term of ineffective rules reduction [11]. As observed in Fig. 2, the difference 

between O-EBRBS and Micro-EBRBS is that rule reduction is considered to downsize EBRB in the EBRB generation scheme. 

The detailed steps of rule reduction are introduced as follows: 

Firstly, suppose an EBRB has L extended belief rules, M antecedent attributes Ui (i=1,…, M) with Ji reference values Ai,j 

(j=1,…,Ji), and one consequent attribute D with N classes Dn (n= 1,…, N). Hence,  =

M

i i
J

1
 division domains { ),...,(

,,1 1 MjMj
AAD ; 

ji=1,…, Ji; i=1,…, M} can be generated by dividing global input space into multiple local input spaces based on the combination 

of all reference values for each antecedent attribute. 

Secondly, all extended belief rules are mapped into division domains according to the following map function: 

MiLkjAADR k

jiJjijMjk iM
,...,1;,...,1};{maxarg);,...,( ,,...,1,,1 1

===→ =                   (21) 

where the map function in Eq. (21) means the collection of the rules with the maximum belief degree in the same reference values. 

Thirdly, for the division domain which has one rule at least, all rules in the same division domain are used to generate a new 

extended belief rule, in which the belief degrees of antecedent and consequent attributes in the new rule are calculated as follows: 

NnJlJjMi
LL

M

i ii

L

k

k

nl

n

l

L

k

k

jil

ji

ll

,...,1;,...,1;,...,1;,...,1;,
1

11 ,

,
====== 


=

==





             (22) 

where Ll denotes the number of rules in the lth division domain; 
k

ji ,
 and 

k

n
  denote the belief degrees used in the kth extended 

belief rule; 
l

ji ,
 denotes the belief degree of the jth reference value of the ith antecedent attribute at the lth new extended belief 

rule. 
l

n
  denotes the belief degree of the nth class at the lth new extended belief rule. 

Finally, the rule weight of all new extended belief rules is calculated using Eqs. (9) to (12) to construct a downsized EBRB 

for Micro-EBRBS. Note that this makes sense that the EBRB in Micro-EBRB is a micro version comparing to O-EBRBS. 

4. Enhancing EBRBSs based on Decomposition Strategy and Overlap Function 

In this section, the procedures for enhancing EBRBSs are developed to illustrate how decomposition strategies and overlap 

functions work, in which the basic framework of the enhanced EBRBSs is shown in Section 4.1 and its two procedures, namely 

modeling binary EBRBS and modeling conjunctive relationship, are detailed in Sections 4.2 and 4.3, respectively. 

4.1. Basic Framework of the EBRBS with Decomposition Strategy and Overlap Function 

To clearly illustrate how decomposition strategies and overlap functions work, an enhanced EBRBS is proposed on the basis 

of using a decomposition strategy and an overlap function to enhance the original EBRB generation scheme and EBRB inference 

scheme, where Fig. 3 shows the main framework of the enhanced EBRBS. 
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Fig. 3. Basic framework of enhanced EBRBSs 

According to Fig. 3, the basic framework of enhanced EBRBSs can be described as follows:  

(1) Enhanced EBRB generation scheme. This is an enhanced scheme to generate EBRB based on knowledge base and data 

base. Comparing to the original EBRB generation scheme, historical dataset should be divided into multiple sub-datasets and all 

these sub-datasets are further utilized to generate multiple sub-EBRBs. Hence, this scheme mainly includes two steps: 1) to split 

historical dataset using a decomposition strategy; 2) to generate rules using the original EBRB generation scheme. Noting that the 

details of the first step can be found in Section 4.2 and the second step is shown in Section 3. 

(2) Enhanced EBRB inference scheme. This is another enhanced scheme used to produce an output class based on multiple 

sub-EBRBs. Comparing to the original EBRB inference scheme, overlap functions are used to model the conjunctive relationship 

among antecedent attributes in each sub-EBRB and the output class derived from each sub-EBRB should be integrated to produce 

a final output class. Thus, this scheme mainly includes three steps: 1) to model conjunctive relationship using an overlap function; 

2) to produce an output class using the original EBRB inference scheme; 3) to integrate the output class based on decomposition 

strategy. Noting that the details of the first step can be found in Section 4.3, the second step is shown in Section 3 and the details 

of the third step are in Section 4.2. 

Here, it is worth noting that the use of decomposition strategies and overlap functions can improve the classification accuracy 

of EBRBSs, but they have to come with the price of additional computing complexity, i.e., the OVO decomposition strategy can 

divide one complex problem into multiple simple sub-problems, but this also means that the EBRB generation scheme and EBRB 

inference scheme should be performed for multiple times when handling these simple sub-problems. 

4.2. Modeling Binary EBRBSs Using OVO Strategy 

The kernel of decomposition strategies is to divide a complex multi-class classification problem into multiple simper ones so 

that it can be independently handled by multiple classifiers. Hence, decomposition strategies are not only useful to enhance the 

performance of the classifiers which are just able to address simple classification problems, but also have an inherent multi-class 

support. Based upon this viewpoint, the OVO strategy is used to construct binary EBRBSs for multi-class classification problems. 

The illustration is shown in Fig. 4. 
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Fig. 4. Illustration of EBRBS with decomposition strategy 

It is clear from Fig. 4 that the OVO strategy divides a historical dataset (with N classes) into N * (N - 1) / 2 binary sub- 

datasets (with two classes). Each binary sub-dataset should be used to construct an EBRB according to the EBRB generation 

scheme shown in Section 3, namely binary EBRBS. For convenient discussion, the integrated belief degrees produced by the 

binary EBRBS, which is responsible for the classes Di and Dj, are denoted by ji , ( 10
,


ji
 ) and ij , ( 10

,


ij
 ). 

As a result, for a given input data x, the integrated belief degrees obtained from all binary EBRBSs can be as follows: 





















−

−

−

=









2,1,

,21,2

,12,1

)(

NN

N

N







xβ                                  (23) 

where ji ,  and ij ,  (i, j=1,…, N) are the outputs of the binary EBRBS constructed by using the sub-dataset which only includes 

two classes Di and Dj and therefore they represent the belief degree of the ith class and the jth class, respectively. 

Since each binary EBRBS is independent for classifying input data x, the integrated belief degrees shown in Eq. (23) needs to 

be normalized in order to have all confidence degrees within the same range of values. The normalization of the integrated belief 

degrees },...,1,;ˆ{)(ˆ
,

Nji
ji

== xβ  is performed as follows: 









+

==

=
otherwise

if

ijji

ji

ijji

ji ,

0,5.0

ˆ

,,

,

,,

,







                                (24) 

Therefore, the final output class of all binary EBRBSs can be obtained using the following aggregation functions: 

(1) Voting strategy (VS) function [49]. Each binary EBRBS gives a vote for the predicted class by using value 1. The class 

having the maximum value is regarded as the final output class: 

}{maxarg,)(
;1 ,,...,1  ==

==
N

ijj jiNin
snDf x                          (25) 

where 
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



 

=
Otherwise

If
s ijji

ji

;0

ˆˆ;1
,,

,


                                   (26) 

(2) Weighted Voting (WV) function [50]. Each binary EBRBS gives a vote for each class by using belief degrees. The class 

having the maximum belief degree is regarded as the final output class: 

}ˆ{maxarg,)(
;1 ,,...,1  ==

==
N

ijj jiNin
nDf x                          (27) 

(3) WinWV (WWV) function [43]. Each binary EBRBS gives a vote for the predicted class by using belief degrees. The class 

having the maximum belief degree is regarded as the final output class: 

}{maxarg,)(
;1 ,,...,1  ==

==
N

ijj jiNin
snDf x                          (28) 

where 





 

=
Otherwise

If
s ijjiji

ji

;0

ˆˆ;ˆ
,,,

,


                                   (29) 

(4) Non-dominance criteria (NC) function [51]. Each binary EBRBS gives a vote for the predicted class by using non- 

dominance degree. The class having the maximum degree is regarded as the final output class: 

}}{max1{maxarg,)(
,,...,1,...,1 ijNjNin

tnDf
==

−==x                          (30) 

where 





 −

=
Otherwise

If
t ijjiijji

ji

;0

ˆˆ;ˆˆ
,,,,

,


                                (31) 

(5) Learning valued preference for classification (LC) function [29]. Each binary EBRBS gives a vote for each class by using 

strict preference, conflict degree, and ignorance degree. The class having the maximum value is regarded as the final output class: 





























+
++==  ==

N

ijj ji

ji

iji

jiNin I
NN

NC
PnDf

;1 ,

,

,,...,1

2
maxarg,)(x              (32) 

where Ni is the number of sample data related to the class Ci and this parameter is used as the unbiased estimate of the class 

probability; Ci,j denotes the conflict degree, namely the degree to which the ith and the jth classes are supported, and Ci,j= 

min{ ji ,
̂ , ij ,

̂ }; Pi,j denotes the strict preference for the ith and the jth classes, and Pi,j= ji ,
̂ - Ci,j, Ii,j denotes ignorance degree, 

namely the degree to which none of the ith and the jth classes is supported, and Ii,j=1 - max{ ji ,
̂ , ij ,

̂ }. It is worth noting that at 

least one of these two degrees is zero and Pi,j + Pj ,i + Ci,j + Ii,j = 1. 

4.3. Modeling Conjunctive Relationship Using Overlap Function 

The earliest overlap functions were used for image processing in an n-dimensional space to classify the pixels of object and 

background. Considering that these overlap functions satisfy the similar properties of the functions widely used to model the 

conjunction relationship in rule-based systems, several commonly used overlap functions are considered for EBRBS. For the sake 

of convenience, both i

ii

k UxS


)),((  in Eq. (14) and i

ii

k UxS


 )),(( in Eq. (18) are denoted by 
k

iS ( 10  k

i
S ). As a result, the 

enhanced activation weight calculation using overlap functions can be illustrated as Fig. 5. 
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Fig. 5. Illustration of activation weight calculation with overlap functions 

According to Fig. 5, the activation weight calculation with an overlap function can be expressed as follows: 

(1) Product (PR) function: the produced value is based on the product of 
k

iS , namely, 

 =

=
L

l

l

M

l

l

k

M

k

k

k

SSO

SSO
w

1 1

1

),...,(

),...,(




                                  (33)

 

where k
  is the weight of the kth extended belief rule and its calculation is shown in Eq. (12); ),...,(

1

k

M

k SSO  is the function of 

aggregating 
k

iS  (i=1,…, M) and its detailed formula is shown as follows: 

 =
=

M

i

k

i

k

M

k SSSO
11

),...,(                                     (34) 

In addition, the following overlap functions are also applied to calculate the activation weights for EBRBS: 

(2) Minimum (MI) function: the produced value is based on the minimum of 
k

iS , namely,  

 k

iMi

k

M

k SSSO
,...,11

min),...,(
=

=                                 (35) 

(3) Square product (SP) function: the produced value is based on the square product of 
k

iS , namely, 

( )2
11

),...,(  =
=

M

i

k

i

k

M

k SSSO                                 (36) 

(4) Geometric mean (GM) function: the produced value is based on the geometric mean of 
k

iS , namely, 

M
M

i

k

i

k

M

k SSSO  =
=

11
),...,(                                 (37) 

(5) Sine (SI) function: this function is to produce the value higher than means, namely, 









=  =

M
M

i

k

i

k

M

k SSSO 2

11

2
sin),...,(


                             (38) 

In order to show the difference of the five overlap functions, suppose that there are two antecedent attributes (i.e., M =2) and 

the range of 
kS1  and 

kS 2  is within interval [0, 1]. The value of ),(
21

kk SSO  produced by the five overlap functions in the 

2-dimensional space are therefore shown in Fig. 6.  
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(d) GM function                          (e) SI function 

Fig. 6. Values produced by five kinds of 2-dimensional overlap functions 

As we can observe from Fig. 6, three features are summarized as follows:  

(1) The range of ),(
21

kk SSO  regarding five overlap functions in 2-dimensional space is within interval [0, 1].  

(2) The ranking order of five overlap functions to produce smaller value is SP   PR   MI   GM   SI. 

For example, when the value of 
kS1

 and 
kS 2

 is 0.2 and 0.3, the values of ),(
21

kk SSO  are therefore 0.0036, 0.06, 0.2, 0.245, 

and 0.777 for the SP, PR, MI, GM, and SI functions, respectively. It is evident that all these produced values coincide with the 

above two features, such as 0 < 0.0036 < 0.06 < 0.2 < 0.245 < 0.777 < 1. 

5. Experimental Study 

In this section, an experimental study is carried out according to the following aspects: Section 5.1 introduces datasets and 

experiment conditions; Section 5.2 provides a real scenario to test O-EBRBS, DRA-EBRBS, and Micro-EBRBS; Sections 5.2 

compares the experimental results obtained from the EBRBSs; Sections 5.3 and 5.4 analyze the influence of OVO decomposition 

strategy and overlap functions on EBRBSs; Section 5.5 discusses the reasons of influence for EBRBSs. 

5.1. Datasets and Experiment Conditions 

This subsection aims at introducing the classification datasets and experiment conditions used in the experimental study of 

investigating the influence of decomposition strategies and overlap functions on EBRBSs. Firstly, twenty datasets obtained from 

the KEEL dataset repository [27] and their detailed descriptions are shown in Table 1, in which these descriptions mainly include 

number of data (#Data), number of attributes (#Attrs) , number of nominal attributes (#Nomi), and number of classes (#Classes). 
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Table 1. Statistics on twenty classification datasets 

No. Datasets #Data #Attrs #Nomi #Classes  No. Datasets #Data #Attrs #Nomi #Classes 

1 Autos 159 25 10 6  11 Penbased 1100 16 0 10 

2 Car 1728 6 0 4  12 Seeds 210 7 0 3 

3 Contraceptive 1473 9 6 3  13 Segment 2310 19 60 7 

4 Ecoli 336 7 0 8  14 Tae 151 5 2 3 

5 Flare 1066 11 3 6  15 Thyroid 720 21 0 3 

6 Glass 214 9 0 7  16 Vehicle 846 18 0 4 

7 Iris 150 4 11 3  17 Vowel 990 13 0 11 

8 Knowledge 403 5 0 4  18 Wine 178 13 0 3 

9 Lymphography 148 18 15 4  19 Yeast 1484 8 0 11 

10 Nursery 1296 8 8 5  20 Zoo 101 16 16 7 

In order to obtain the expected performance of enhanced EBRBSs over an entire dataset and correct dataset shift, the 5-fold 

distribution optimally balanced cross validation [52] is considered in the experimental study, where each dataset is divided into 5 

blocks, with 4 blocks as training data, namely historical input-output data pairs, and the remaining block as testing data, namely 

the input data needed to be classified using a classifier.  

The most visualized metrics, including average accuracy and number of rules and activated rules, are used to quantify the 

expected performance of enhanced EBRBSs. Considering sometime it is not easy to extract justified conclusions based on those 

visualized metrics, the Aligned Friedman and Holm tests [28] are applied to provide statistical supports in the experimental study. 

Specifically,  = 0.1 is used as the level of significance in all cases to show statistical differences. 

5.2. Real scenario to test O-EBRBS, DRA-EBRBS, and Micro-EBRBS 

This subsection aims to test O-EBRBS, DRA-EBRBS, and Micro-EBRBS by using a real classification dataset collected from 

user knowledge modeling problem [45], which is also called Knowledge shown in Table 1 and its subject is about the students’ 

knowledge status and the subject of Electrical DC Machines. More specifically, the dataset of user knowledge modeling problem 

include four antecedent attributes, namely the degree of study time for goal object materials (U1), the degree of repetition number 

of user for goal object materials (U2), the degree of study time of under for related objects with goal object (U3), the exam 

performance of user for related objects with goal object (U4), and the exam performance of user for goal objects, as well as one 

consequent attribute named the knowledge level of user (D), which has four levels, namely Very Low (D1), Low (D2), Middle (D3), 

and High (D4). On the basis of the above antecedent and consequent attributes, 403 data were collected from the undergraduate 

students of department of Electrical Education of Gazi University in the 2009 semester, and the value range of the four antecedent 

attributes is within interval [0, 0.99], [0, 0.9], [0, 0.95], [0, 0.99], and [0, 0.99], respectively. 

(1) The use of the EBRB generation scheme to construct O-EBRBS, DRA-EBRBS, and Micro-EBRBS. 

Firstly, the number of reference values and their utility values should be given according to expert knowledge. Hence, it is 

assumed that there are three reference values (Ai,j, i=1,…, 5; j=1,…, 3) for each attribute and their utility values u(Ai,j) are evenly 

distributed within the definition interval of each attribute, as shown in Table 2. 
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Table 2. Utility values of three reference values for five attributes in user knowledge modeling 

u(Ai,j) U1 U2 U3 U4 U5 

u(Ai,1) 0.000 0.000 0.000 0.000 0.000 

u(Ai,2) 0.495 0.450 0.475 0.495 0.495 

u(Ai,3) 0.990 0.900 0.950 0.990 0.990 

(1.1) To generate belief distributions for O-EBRBS, DRA-EBRBS, and Micro-EBRBS. 

Based on the utility values shown in Table 2, 322 training data can be used to generate belief distributions according to Step 1 

of the EBRB generation scheme shown in Section 3.2. For example, when one input-output data pair is <xk,1=0.10, xk,2=0.27, 

xk,3=0.31, xk,4=0.29, xk,5=0.65, yk=D3>, the belief distribution regarding xk,1=0.10 is calculated using Eqs. (3) and (4) as follows: 

798.0
0495.0

1.0495.0

)()(

)(

1,12,1

1,2,1

1,1
=

−

−
=

−

−
=

AuAu

xAu kk                           (39) 

202.0798.011
1,12,1

=−=−= kk                               (40) 

03,1 =k                                       (41) 

From Eqs. (39) to (41), the belief distribution regarding xk,1=0.10 is expressed as S(xk,1)={(A1,1, 0.798), (A1,2, 0.202), (A1,3, 0)}. 

Similarly, the belief distribution of xk,2=0.27, xk,3=0.31, xk,4=0.29, xk,5=0.65, and yk=D2 can be obtained using Eqs. (2) to (6) and 

they are S(xk,2)={(A2,1, 0.4), (A2,2, 0.6), (A2,3, 0)}, S(xk,3)={(A3,1, 0.347), (A3,2, 0.653), (A3,3, 0)}, S(xk,4)={(A4,1, 0.414), (A4,2, 0.586), 

(A4,3, 0)}, S(xk,5)={(A5,1, 0), (A5,2, 0.687), (A5,3, 0.313)}, and S(yk)={(D1, 0), (D2, 0), (D3, 1), (D4, 0)}, respectively. As a 

consequence, a total of 322 belief distributions can be transformed from 322 training data for each attribute. 

(1.2) To calculate rule weights for O-EBRBS and DRA-EBRBS. 

According to Step 2 of the EBRB generation scheme shown in Section 3.2, 322 belief distributions can form 322 extended 

belief rules and all these belief distributions are further used to calculate SRA and SRC for each rule by using Eqs. (9) and (10). 

Finally, the weight of 322 rules can be calculated using Eqs. (11) to (12) and they are shown in Fig. 7.  
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Fig. 7. Range of rule weight for 322 extended belief rules 

From Fig. 7, it can be found that all rule weights are within interval [0.9963, 0.9974], which means that all extended belief 

rules are important rules for user knowledge modeling. More detailedly, the top two maximum numbers of extended belief rules 

are 57 and 49, and they are within interval [0.9971, 0.9972) and [0.9972, 0.9973), respectively; the two two minimum numbers of 

extended belief rules are 7 and 10, and they are within interval [0.9963, 0.9964) and [0.9973, 0.9974], respectively. 

(1.3) To reduce extended belief rules for Micro-EBRBS. 

Continuing with the dataset of user knowledge modeling to construct Micro-EBRBS, according to Eqs. (21) to (22) shown in 

Section 3.4, it needs to combine extended belief rules which fall in the same division domain. For example, there are two belief 
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distributions {(A1,1, 0.798), (A1,2, 0.202), (A1,3, 0)} and {(A1,1, 0.636), (A1,2, 0.364), (A1,3, 0)} for two rules R1 and R2 which only 

have one antecedent attribute, it needs to therefore generate a new belief distribution {(A1,1, 0.722), (A1,2, 0.278), (A1,3, 0)} because 

of R1, R2 →D(A1,1). Based upon this viewpoint, parts of extended belief rules in O-EBRBS can be reduced to finally generate 110 

new extended belief rules for Micro-EBRBS. 

(2) The use of the EBRB inference scheme of O-EBRBS, DRA-EBRBS, and Micro-EBRBS to classify input data. 

For the sake of convenience, suppose that O-EBRBS, DRA-EBRBS, and Micro-EBRBS have the same extended belief rules 

and they are shown in Table 3. One input data needed to be classified is x=<x1=0.19, x2=0.38, x3=0.38, x4=0.49, x5=0.45>. 

Table 3. Three extended belief rules in O-EBRBS, DRA-EBRBS, and Micro-EBRBS 

Rk k 
U1 (δ1=1)  U2(δ2=1)  U3(δ3=1)  U4(δ4=1)  U5(δ5=1)  D 

(
k

1,1 ,
k

2,1
 ,

k

3,1 )  (
k

1,2
 ,

k

2,2
 ,

k

3,2
 )  (

k

1,3 ,
k

2,3
 ,

k

3,3
 )  (

k

1,4
 ,

k

2,4
 ,

k

3,4
 )  (

k

1,5 ,
k

2,5
 ,

k

3,5
 )  (

k

1
 ,

k

2
 ,

k

3
 ,

k

4
 ) 

R1 0.987 (0.636, 0.364, 0)  (0.311, 0.689, 0)  (0.326, 0.674, 0)  (0.152, 0.848, 0)  (0.434, 0.566, 0)  (0, 0, 1, 0) 

R2 0.789 (0.782, 0.202, 0)  (0.400, 0.600, 0)  (0.347, 0.653, 0)  (0.414, 0.586, 0)  (0, 0.687, 0.313)  (0, 0, 1, 0) 

R3 0.234 (0.879, 0.121, 0)  (0.356, 0.644, 0)  (0.263, 0.737, 0)  (0, 0.465, 0.535)  (0.495, 0.505, 0)  (0, 1, 0, 0) 

(2.1) To calculate activation weights and integrate activated rules for O-EBRBS and Micro-EBRBS. 

According to Step 1 of the EBRB inference scheme shown in Section 3.2, the belief distributions of x should be calculated 

and they are S(x1)={(A1,1, 0.616), (A1,2, 0.384), (A1,3, 0)}, S(x2)={(A2,1, 0.156), (A2,2, 0.844), (A2,3, 0)}, S(x3)={(A3,1, 0.200), (A3,2, 

0.800), (A3,3, 0)}, S(x4)={(A4,1, 0.010), (A4,2, 0.990), (A4,3, 0)}, and S(x5)={(A5,1, 0.091), (A5,2, 0.909), (A5,3, 0)}. Owing to the fact 

that O-EBRBS and Micro-EBRBS have the same processes of calculating activation weights, Table 4 provides the individual 

matching degrees of five antecedent attributes Sk(xi, Ui) (i=1,…, 5) and the activation weights of three extended belief rules wk (k= 

1,…, 3). From Table 4, it is clear that all three extended belief rules should be activated to classify input data x, but R1 is the most 

important activated rules comparing to R2 and R3. 

Table 4. Individual matching degrees , and activation weights in O-EBRBS and Micro-EBRBS 

 Sk(x1, U1) Sk(x2, U2) Sk(x3, U3) Sk(x4, U4) Sk(x5, U5) wk 

R1 0.972 0.780 0.822 0.799 0.515 0.737 

R2 0.754 0.654 0.792 0.429 0.606 0.233 

R3 0.628 0.717 0.911 0.250 0.429 0.030 

According to Step 2 of the EBRB inference scheme shown in Section 3.2, the belief distribution of consequent attribute in R1, 

R2 and R3 should be integrated using the analytical ER algorithm. Finally, the integrated belief distribution is therefore {(D1, 0), 

(D2, 0.008), (D3, 0.992), (D4, 0)} and the output class is D3 or Middle. 

(2.2) To calculate activation weights and integrate activated rules for DRA-EBRBS. 

Based on the dynamic rule activation method for DRA-EBRBS shown in Section 3.3, it needs to consider the parameter   

to calculate individual matching degrees and select consistent activated rules using Eqs. (18) to (20), i.e., when  =1, individual 

matching degrees ),(
ii

k UxS  and activation weights wk of DRA-EBRBS are the same as the values shown in Table 4. As a result, 

the rule set is λ
Δ ={R1, R2, R3} and the function is )(Δ

λ
C =0.667; when  =4, individual matching degrees ),(

ii

k UxS  and 

activation weights wk of DRA-EBRBS are shown in Table 5. Consequently, the rule set is λ
Δ ={R1, R2} and the function is 

)(Δ
λ

C =1. Because the upper bound of )(Δ
λ

C  is 1.0, R1 and R2 are selected as activated rules for DRA-EBRBS. 
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Table 5. Individual matching degrees , and activation weights in DRA-EBRBS 

 Sk(x1, U1) Sk(x2, U2) Sk(x3, U3) Sk(x4, U4) Sk(x5, U5) wk 

R1 0.893 0.371 0.456 0.408 0.070 0.981 

R2 0.323 0.183 0.394 0.034 0.135 0.019 

R3 0.156 0.264 0.689 0.004 0.034 0.000 

According to Step 2 of the EBRB inference scheme shown in Section 3.2, the belief distribution of consequent attribute in R1 

and R2 should be integrated using the analytical ER algorithm. Finally, the integrated belief distribution is therefore {(D1, 0), (D2, 

0), (D3, 1), (D4, 0)} and the output class is D3 or Middle. 

Continuing with the real scenario that the dataset of user knowledge modeling with 5-fold distribution optimally balanced 

cross validation are used to test O-EBRBS, DRA-EBRBS, and Micro-EBRBS, the accuracy of the three EBRBSs can be calculated 

though the above EBRB inference scheme and they are shown in Fig. 8. From Fig. 8, it is clear that the accuracy of DRA-EBRBS 

is higher than O-EBRBS and Micro-EBRBS which handing classification problem of user knowledge modeling. 
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Fig. 8. Accuracy of O-EBRBS, DRA-EBRBS, and Micro-EBRBS 

In conclusion, according to the real scenario of the EBRB generation process on user knowledge modeling, the number of 

extended belief rules in O-EBRBS and DRA-EBRBS is 322, which is equal to the number of training data. Owing to rule 

reduction, Micro-EBRBS only has 110 extended belief rules, which is far less than O-EBRBS and DRA-EBRBS. Correspondingly, 

according to the real scenario of the EBRB inference process on user knowledge modeling, the priority order of accuracies for the 

three EBRBSs is DRA-EBRBS > O-EBRBS > Micro-EBRBS. 

5.3. Comparison of O-EBRBS, DRA-EBRBS, and Micro-EBRBS on the Performance 

This subsection aims at describing the different performances among O-EBRBS, DRA-EBRBS, and Micro-EBRBS based on 

twenty classification datasets shown in Table 1. According to the EBRB generation scheme and the EBRB inference scheme, the 

results of O-EBRBS, DRA-EBRBS, and Micro-EBRBS can be obtained. Table 6 shows the mean and standard deviation in the 

terms of average accuracy, number of rules, rule generation time, inference time, and total time for the three EBRBSs. 

Table 6. Comparison of O-EBRBS, DRA-EBRBS, and Micro-EBRBS in terms of mean and standard deviation 

Classifier Accuracy (%) Number of rules EBRB generation time (ms) EBRB Inference time (ms) Number of failed 

O-EBRBS 79.79+15.76 602.25+521.90 1357.35+2397.16 500.90+950.81 2.50+6.45 

DRA-EBRBS 81.65+14.71 602.25+521.90 1469.75+2595.11 6258.10+11970.73 0.00+0.00 

Micro-EBRBS 77.02+15.39 275.91+358.17 287.20+517.68 180.10+244.29 2.60+6.49 
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From Table 6, three main differences of the three EBRBSs can be summarized as follows:  

(1) Comparing to O-EBRBS and Micro-EBRBS, a remarkable advantage of DRA-EBRBS is that it has a higher accuracy for 

classifying twenty classification datasets. This is because no matter what input data are provided for DRA-EBRBS, the consistent 

activated rules can be determined by using the dynamic rule activation method in the EBRB inference scheme, which does not 

involve in O-EBRBS and Micro-EBRBS. 

(2) Comparing to O-EBRBS and DRA-EBRBS, a notable merit of Micro-EBRBS is that it has a smaller number of rules, 

EBRB generation time, EBRB inference time, and total time obtained from twenty classification datasets. This is because Micro- 

EBRBS can combine multiple extended belief rules into a new rule so that the extended belief rules which make no sense should 

not be imposed on the EBRB generation scheme and EBRB inference scheme. 

(3) Comparing to DRA-EBRBS and Micro-EBRBS, O-EBRBS is a “neutral” classifier in terms of accuracy, i.e., accuracy 

rank is 81.65% (DRA-EBRBS) > 79.79% (O-EBRBS) > 77.02% (Micro-EBRBS), and computing time, i.e., total time rank is 

467.30ms (Micro-EBRBS) < 1858.25ms (O-EBRBS) < 7727.85ms (DRA-EBRBS). This is mainly attributed to lack of dynamic 

rule activation and rule reduction in the EBRB generation scheme and EBRB inference scheme. 

In order to further compare O-EBRBS, DRA-EBRBS, and Micro-EBRBS, the Aligned Friedman test is applied to determine 

whether significant differences can be found in the results of the three EBRBSs. Table 7 shows the Aligned Friedman statistic for 

accuracy and total time and their corresponding critical values based on a level of significance of =0.1. It is clear from Table 7 

that two Aligned Friedman statistics are greater than their critical values, thus there are significant differences with =0.1 for 

accuracy and total time. For example, the statistic value of accuracy 16.8307 is greater than the critical value 4.6052, leading to 

rejecting hypothesis, which means that the accuracy of the three EBRBSs has significant differences. 

Table 7. Aligned Friedman tests to compare three EBRBSs (=0.1) 

Indicator Statistic value Critical value Hypothesis 

Accuracy 16.8307 4.6052 Rejected 

Total time 30.2918 4.6052 Rejected 

In order to further compare three EBRBSs with standard machine learning algorithms [53]-[56], KNN, Naïve Bayes (NB), 

DT, SVM, Artificial Neural Network (ANN), and Chi-FRBCS are introduced to perform a comparative analysis. It is worth noting 

that all these machine learning algorithms are basic algorithms without using ensemble learning to improve their performance. 

Table 8 shows the accuracy and rank of twenty classification datasets. 

From Table 8, it can be found that the O-EBRBS obtains the best accuracy in Autos and Penbased, respectively, and they are 

79.25% and 96.73%. Although the dynamic rule activation method fails to improve the accuracy of the O-EBRBS in Autos and 

Penbased, the DRA-EBRBS obtains the best accuracy in Glass, Tae, Vowel, and Wine, respectively, and they are 75.23%, 64.24%, 

99.09%, and 98.31%. This means that the dynamic rule activation method can be regarded as a useful method to improve the 

general accuracy of EBRBSs. Comparatively, the Micro-EBRBS always obtain lower accuracies than the O-EBRBS and 

DRA-EBRBS. In the comparison of six machine learning algorithms, the rank is ANN (2.825) > DRA-EBRBS (3.900) > DT 

(4.525) = O-EBRBS (4.525) > NB (4.950) > KNN (5.075) > Micro-EBRBS (6.000) SVM (6.125) > > Chi-FRBCS (7.050), 

indicating that the EBRBSs can produce satisfactory results comparing to standard machine learning algorithms. 
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Table 8. Accuracy and rank of six machine learning algorithms and three EBRBSs 

Classifier KNN NB DT SVM ANN Chi-FRBCS O-EBRBS DRA-EBRBS Micro-EBRBS 

Autos 60.38(7) 59.75(8) 76.73(4.5) 30.19(9) 76.73(4.5)  72.96 (6) 79.25 (1) 78.62 (2) 77.36 (3) 

Car 86.40(5) 92.36(3) 91.84(4) 96.59(2) 98.73(1) 70.02(7.5) 70.02(7.5) 70.02(7.5) 70.02(7.5) 

Contraceptive 49.49(5) 49.08(6.5) 52.95(3) 56.75(1) 54.24(2) 47.93(8) 52.14(4) 45.62(9) 49.08(6.5) 

Ecoli 80.95(2) 80.36(3) 81.25(1) 42.56(9) 79.17(4.5) 76.49(6.5) 76.49(6.5) 79.17(4.5) 73.81(8) 

Flare 75.14(2) 72.23(6) 73.26(4.5) 75.98(1) 73.26(4.5) 61.07(9) 66.89(7) 73.36(3) 66.79(8) 

Glass 49.53(9) 67.76(5) 68.22(4) 65.89(6.5) 69.63(2) 50.00(8) 69.16(3) 75.23(1) 65.89(6.5) 

Iris 96.00(4) 96.67(2) 94.67(6) 98.00(1) 96.00(4) 80.00(9) 96.00(4) 94.67(6.5) 90.00(8) 

Knowledge 89.08(3) 85.61(4) 93.80(2) 81.14(6.5) 94.79(1) 26.30(9) 81.14(6.5) 82.38(5) 72.95(8) 

Lymphography 82.43(2.5) 81.76(5) 75.00(9) 79.73(7.5) 83.78(1) 83.11(4) 79.73(7.5) 82.43(2.5) 80.41(6) 

Nursery 88.66(7) 90.20(5) 89.51(6) 87.58(8) 95.68(1) 90.66(3.5) 90.66(3.5) 87.19(9) 90.74(2) 

Penbased 84.73(8) 95.00(5) 88.91(7) 11.36(9) 93.45(6) 95.55(4) 96.73(1) 96.64(2) 96.36(3) 

Seeds 90.48(5) 92.86(2) 91.90(3) 89.52(7) 94.76(1) 85.24(8.5) 90.95(4) 90.00(6) 85.24(8.5) 

Segment 80.48(8) 94.85(4) 96.45(1.5) 65.19(9) 96.45(1.5) 81.82(7) 92.03(5) 96.28(3) 87.36(6) 

Tae 54.30(3) 53.64(6) 49.67(8) 54.30(3) 53.64(6) 45.70(9) 54.30(3) 64.24(1) 53.64(6) 

Thyroid 95.00(2) 92.50(4.5) 98.61(1) 92.50(4.5) 93.61(3) 88.06(9) 88.19(7.5) 92.36(6) 88.19(7.5) 

Vehicle 45.27(8) 69.03(5) 73.88(2) 30.85(9) 82.39(1) 65.49(7) 70.33(4) 70.92(3) 68.79(6) 

Vowel 70.71(8) 78.59(7) 80.71(6) 89.90(3) 86.97(4) 63.23(9) 97.68(2) 99.09(1) 82.83(5) 

Wine 97.75(2.5) 96.07(6) 92.70(7) 44.38(9) 97.75(2.5) 93.26(8) 97.19(4.5) 98.31(1) 97.19(4.5) 

Yeast 58.36(3.5) 58.36(3.5) 56.27(5) 42.18(9) 59.70(1) 43.94(8) 49.87(6) 59.43(2) 46.70(7) 

Zoo 93.07(7) 90.10(8.5) 94.06(6) 90.10(8.5) 95.05(5) 98.02(1) 97.03(3) 97.03(3) 97.03(3) 

Rank 5.075 4.950  4.525 6.125  2.825  7.050 4.525  3.900  6.000  

In summary, we can observe that DRA-EBRBS is proven to be an “accuracy first” classifier, Micro-EBRBS is an “efficiency 

first” classifier, and O-EBRBS is a “neutral” classifier. All of them can comprehensively represent different stands of EBRBSs and 

ensure an extensive investigation of the influence of decomposition strategies and overlap functions on EBRBSs. 

5.4. Influence of Decomposition Strategy and Overlap Function on the Performance of EBRBSs 

This subsection aims at analyzing the influence of decomposition strategies and overlap functions on the performance of 

O-EBRBS, DRA-EBRBS, and Micro-EBRBS. In order to introduce the process of using the three EBRBSs with OVO strategy 

and five overlap functions to handle classification datasets, the details of using the OVO strategy shown in Section 4.2 and the 

five overlap functions shown in Section 4.3 are provided when handling classification problem Knowledge as follows: 

(1) EBRBSs with OVO strategy to classify input data. 

Firstly, the classification problem Knowledge, which includes four classes namely Very Low (D1), Low (D2), Middle (D3), and 

High (D4), should be divided into six sub-datasets with two-class, namely{D1, D2}, {D1, D3}, {D1, D4}, {D2, D3}, {D2, D4}, and 

{D3, D4}. Accordingly, six binary EBRBSs can be constructed on the basis of six sub-datasets using the EBRB generation scheme 

shown in Section 3. Furthermore, suppose that the output belief distribution of the six binary EBRBSs to classify input data x is 

{(D1, 0.6), (D2, 0.4)}, {D1, 0.8), (D3, 0.2)}, {D1, 0.7), (D4, 0.3)}, {(D2, 0.7), (D3, 0.3)}, {(D2, 0.8), (D4, 0.2)}, and {(D3, 0.6), (D4, 

0.4)}, respectively. Hence, the matrix )(ˆ xβ  is expressed as follows: 
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)(ˆ xβ                                  (42) 

For the VS function, si,j (i, j=1,…, 4) should be calculated based on Eq. (26) shown in Section 4.2 and they are s1,2 = s1,3 = s1,4 

= s2,3 = s2,4 = s3,4 = 1 and s2,1 = s3,1 = s4,1 = s3,2 = s4,2 = s4,3 = 0. Hence, the final output class is D1 because of n = arg max {s1,2 + s1,3 + 

s1,4 = 3, s2,1 + s2,3 + s2,4 = 2, s3,1 + s3,2 + s3,4 = 1, s4,1 + s4,2 + s4,3 = 0} = 1 according to Eq. (25) shown in Section 4.2. 

For the WV function, the final output class is D1 because of n=arg max { 4,13,12,1
ˆˆˆ  ++ = 2.1, 4,23,21,2

ˆˆˆ  ++ = 1.9, 

4,32,31,3
ˆˆˆ  ++  = 1.1, 3,42,41,4

ˆˆˆ  ++ = 0.9} = 1 according to Eq. (27) shown in Section 4.2. 

For the WWV function, si,j (i, j=1,…, 4) should be calculated based on Eq. (28) shown in Section 4.2 and they are s1,2 = 0.6, 

s1,3 = 0.8, s1,4 = 0.7, s2,3 = 0.7, s2,4 = 0.8, s3,4 = 0.6, and s2,1 = s3,1 = s4,1 = s3,2 = s4,2 = s4,3 = 0. Hence, the final output class is D1 

because of n = arg max {s1,2 + s1,3 + s1,4 = 2.1, s2,1 + s2,3 + s2,4 = 1.5, s3,1 + s3,2 + s3,4 = 0.6, s4,1 + s4,2 + s4,3 = 0} = 1 according to Eq. (29) 

shown in Section 4.2. 

For the NC function, ti,j (i, j=1,…, 4) should be calculated based on Eq. (30) shown in Section 4.2 and they are t1,2 = 0.2, t1,3 = 

0.6, t1,4 = 0.4, t2,3 = 0.4, t2,4 = 0.6, t3,4 = 0.2,and t2,1 = t3,1 = t4,1 = t3,2 = t4,2 = t4,3 = 0. Hence, the final output class is D1 because of n = 

arg max{1 - max{t2,1, t3,1, t4,1} = 1 - max{0, 0, 0} = 1, 1 - max{t1,2, t3,2, t4,2} = 1 - max{0.2, 0, 0} = 0.8, 1 - max{t1,3, t2,3, t4,3} = 1 - 

max{0.6, 0.4, 0} = 0.4, 1 - max{t1,4, t2,4, t3,4} = 1 - max{0.4, 0.6, 0.2} = 0.4} = 1 according to Eq. (31) shown in Section 4.2. 

For the LC function, suppose that the number of input-output data pairs related to D1, D2, D3, and D4, is N1 = 3, N2 = 3, N3 = 3, 

and N4 = 3, respectively. The conflict degrees Ci,j (i, j=1,…, 4) should be calculated and they are C2,1 = C1,2 = min{ 2,1̂ =0.6, 1,2̂  

= 0.4} = 0.4, C3,1 = C1,3 = min{ 3,1
̂ = 0.8, 1,3

̂ = 0.2} = 0.2, C4,1 = C1,4 = min{ 4,1̂ = 0.7, 1,4̂ = 0.3} = 0.3, C3,2 = C2,3 = min{ 3,2̂  

= 0.7, 2,3̂ = 0.3} = 0.3, C4,2 = C2,4 = min{ 4,2
̂ = 0.8, 2,4

̂ = 0.2} = 0.2, and , C4,3 = C3,4 = min{ 4,3̂ = 0.6, 3,4̂ = 0.4} = 0.4. The 

strict preferences Pi,j (i, j=1,…, 4) should be calculated and they are P1,2 = 2,1̂ - C1,2 = 0.2, P1,3 = 3,1
̂ - C1,3 = 0.6, P1,4 = 4,1̂ - C1,4 = 

0.4, P2,1 = 1,2̂ - C2,1 = 0, P2,3 = 3,2̂ - C2,3 = 0.4, P2,4 = 4,2
̂ - C2,4 = 0.6, P3,1= 1,3

̂ - C3,1 = 0, P3,2= 2,3̂ - C3,2 = 0, P3,4= 4,3̂ - C3,4 = 0.2, 

P4,1 = 1,4̂ - C4,1 = 0, P4,2= 2,4
̂ - C4,2 = 0, P4,3= 3,4̂ - C4,3 = 0. The ignorance degrees Ii,j (i, j=1,…, 4) should be calculated and they 

are I1,2 = I2,1 = 1 - max{ 2,1̂ = 0.6, 1,2̂ = 0.4} = 0.4, I1,3 = I3,1 = 1 - max{ 3,1
̂ = 0.8, 1,3

̂ = 0.2} = 0.2, I1,4 = I4,1 = 1 - max{ 4,1̂ = 0.7, 

1,4̂ = 0.3} = 0.3, I2,3 = I3,2 = 1 - max{ 3,2̂ =0.7, 2,3̂ =0.3} =0.3, I2,4 = I4,2 = 1 - max{ 4,2
̂ =0.8, 2,4

̂ =0.2} =0.2, and I3,4 = I4,3 = 1 - 

max{ 4,3̂ =0.6, 3,4̂ =0.4} =0.4. Hence, the final output class is D1 because of n = arg max{P1,2 + P1,3 + P1,4 + (C1,2 + C1,3+ C1,4) / 2 

+ (N1 / (N1 + N2)  I1,2+ N1 / (N1 + N3)  I1,3+ N1 / (N1 + N4)  I1,4) = 2.1, P2,1 + P2,3 + P2,4 + (C2,1 + C2,3 + C2,4) / 2 + (N2 / (N2 + N1)  

I2,1 + N2 / (N2 + N3)  I2,3 + N2 / (N2 + N4)  I2,4) = 1.9, P3,1 + P3,2 + P3,4 + (C3,1 + C3,2 + C3,4) / 2 + (N3 / (N3 + N1)  I3,1 + N3 / (N3 + N2) 

 I3,2+ N3 / (N3 + N4)  I3,4) = 1.1, P4,1 + P4,2 + P4,3 + (C4,1 + C4,2 + C4,3) / 2 + (N4 / (N4 + N1)  I4,1 + N4 / (N4 + N2)  I4,2 + N4 / (N4 + N3) 

 I4,3) = 0.9} = 1 according to Eq. (32) shown in Section 4.2. 

(2) The EBRBSs with five overlap functions to classify input data. 

Continuing with the individual matching degrees shown in Table 4 as an example, the five overlap functions, including PR, 

MI, SP, GM, and SI functions, are used to calculate the activation weight of each extended belief rule. Table 9 shows the 

activation weight of Rk, Rt, and Rl obtained from Eqs. (33) to (38). It is clear from Table 9 that Rk and Rt should be activated with 

different activation weights when using the SP, PR, MI, GM, SI functions, respectively, where the maximum difference between 

the activation weights of Rk and Rt can be found in the SP function and the minimum one in the SI function, which reflect the same 

relationship as shown in Fig. 6 at Section 4.3. 
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Table 9. Activation weight of three rules when using PR, MI, SP, GM, and SI functions 

Rk Sk(x1, U1) Sk(x2, U2) Sk(x3, U3) Sk(x4, U4) Sk(x5, U5) k 
wk 

SP PR MI GM SI 

R1 0.972 0.780 0.822 0.799 0.515 0.987 0.8832 0.7368 0.5615 0.5462 0.5013 

R2 0.754 0.654 0.792 0.429 0.606 0.789 0.1107 0.2332 0.3739 0.3628 0.3880 

R3 0.628 0.717 0.911 0.250 0.429 0.234 0.0062 0.0300 0.0646 0.0910 0.1107 

According to the above process of using OVO strategy and five overlap functions to enhance three EBRBSs, the results of 

O-EBRBS, DRA-EBRBS, and Micro-EBRBS for the twenty classification datasets shown in Table 1 can be obtained. Tables 10, 

13, and 15 show the average accuracy of EBRBSs, where these results are obtained from each baseline EBRBSs along with the 

OVO strategy with five aggregation functions, denoted as OVOVS, OVOWV, OVOWWV, OVONC, and OVOLC, by using five overlap 

functions to model the conjunctive relationship among antecedent attributes in enhanced EBRBSs. As shown in Tables 10, 13, and 

15, the best average accuracy obtained from OVO strategy is highlighted in underline and the best one obtained from five overlap 

functions is highlighted in boldface. Additionally, in order to investigate significant differences among the results of each OVO- 

related strategy or overlap function in a given EBRBS, the Aligned Friedman and Holm tests are carried out to obtain the average 

rank of accuracies and the adjusted p value, and the corresponding results can be found in Tables 11-12, 14-15, and 17-18, in 

which the best rank of average accuracies is highlighted in boldface and the significant difference based on the adjusted p value is 

highlighted in underline. 

Table 10. Average accuracy and standard deviation of O-EBRBS 

 PR SP MI GM SI 

Baseline 79.79+15.76 81.67+14.88 64.38+20.95 63.33+20.08 56.67+21.93 

OVOVS 79.82+15.76 81.71+14.89 64.42+20.97 63.36+20.07 56.73+21.98 

OVOWV 79.88+15.76 81.82+14.77 64.46+20.97 63.36+20.07 56.73+21.98 

OVOWWV 79.82+15.76 81.71+14.89 64.45+20.96 63.36+20.07 56.73+21.98 

OVONC 79.82+15.76 81.71+14.89 64.42+20.97 63.36+20.07 56.73+21.98 

OVOLC 79.23+16.53 81.86+15.04 64.42+21.56 63.10+20.61 56.92+22.24 

 

Table 11. Aligned Friedman and Holm tests to compare overlap functions on O-EBRBS 

 Average rank of accuracy  Adjusted p value ( = 0.1) 

 PR SP MI GM SI  SP MI GM SI 

Baseline 24.525  23.675  60.050  65.825  78.425   0.9262  0.0001 0.0000 0.0000 

OVOVS 24.575  23.675  60.050  65.925  78.275   0.9219  0.0001 0.0000 0.0000 

OVOWV 24.575  23.525  60.000  66.025  78.375   0.9089  0.0001 0.0000 0.0000 

OVOWWV 24.575  23.675  60.000  65.975  78.275   0.9219  0.0001 0.0000 0.0000 

OVONC 24.575  23.675  60.050  65.925  78.275   0.9219  0.0001 0.0000 0.0000 

OVOLC 25.675  24.100  59.475  65.500  77.750   0.8637  0.0002 0.0000 0.0000 
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Table 12. Aligned Friedman and Holm tests to compare decomposition strategies on O-EBRBS 

 Average rank of accuracy  Adjusted p value ( = 0.1) 

 Baseline OVOVS OVOWV OVOWWV OVONC OVOLC  OVOVS OVOWV OVOWWV OVONC OVOLC 

PR 64.725  58.975  50.425  58.975  58.975  70.925   0.6012  0.1936  0.6012  0.6012  0.5730  

SP 68.875  64.150  50.375  64.150  64.150  51.300   0.6675  0.0926  0.6675  0.6675  0.1101  

MI 70.500  60.950  53.275  56.600  60.950  60.725   0.3853  0.1174  0.2064  0.3853  0.3742  

GM 68.325  56.375  56.375  56.375  56.375  69.175   0.2773  0.2773  0.2773  0.2773  0.9384  

SI 65.325  56.625  56.625  56.625  56.625  71.175   0.4290  0.4290  0.4290  0.4290  0.5949  

Tables 10, 11, and 12 show the performance influences of OVOVS, OVOWV, OVOWWV, OVONC, and OVOLC strategies and 

PR, SP, MI, GM, and SI functions on O-EBRBS and these influences can be summarized as follows: 

(1) As we can observe in Table 10, OVOWV strategy has a better improvement in O-EBRBS than other OVO-related strategies. 

For the overlap functions, SP function has the best accuracy in comparison with other overlap functions. More importantly, from 

Tables 11 and 12, the average rank of the accuracies obtained from twenty datasets also shows that OVOWV strategy and SP 

function can achieve the best classification performance from other OVO-related strategies or overlap functions. 

(2) Table 10 shows that the accuracies obtained from SP function are significantly better than other overlap functions in O- 

EBRBS. This situation is confirmed by the Aligned Friedman and Holm tests in Table 11, in which the significant differences are 

only found in MI, GM, and SI functions. The reason for these influences is that, as we can observe in Fig. 6, SP function can 

produce a smaller ),...,(
1

k

M

k SSO  so that it is more powerful to distinguish consistent activated rules.  

(3) From Table 10, the accuracies obtained from OVOVS, OVOWV, OVOWWV, and OVONC strategies are obviously greater 

than those of the baselines of O-EBRBS. Meanwhile, it is clear from Table 12 that OVOWV strategy has much better rank of 

average accuracy and there are significant differences in comparison with the baselines of O-EBRBS. The reason for this influence 

is that OVO-related strategies make full use of binary EBRBSs to produce final output class. 

Table 13. Average accuracy and standard deviation of DRA-EBRBS 

 PR SP MI GM SI 

Baseline 81.65+14.71 81.50+14.78 71.47+21.71 62.47+22.29 56.33+22.62 

OVOVS 79.84+16.28 82.06+15.41 68.27+21.97 57.52+21.80 54.31+22.67 

OVOWV 80.36+15.67 82.05+15.40 69.00+22.33 59.23+20.72 55.18+21.89 

OVOWWV 79.93+16.14 82.06+15.44 68.61+21.99 57.82+21.56 54.33+22.66 

OVONC 79.96+16.14 82.08+15.42 68.76+22.22 58.18+21.17 54.33+22.64 

OVOLC 79.92+15.93 81.96+15.36 68.79+22.35 58.99+20.81 55.13+21.93 

Table 14. Aligned Friedman and Holm tests to compare overlap functions on DRA-EBRBS 

 Average rank of accuracy   Adjusted p value ( = 0.1) 

 PR SP MI GM SI  SP MI GM SI 

Baseline 26.700  28.025  47.900  69.825  80.050   0.8852  0.0208 0.0000 0.0000 

OVOVS 28.350  29.950  48.500  70.700  75.000   0.8616  0.0281 0.0000 0.0000 

OVOWV 27.850  30.550  48.950  69.750  75.400   0.7685  0.0215 0.0000 0.0000 

OVOWWV 28.500  30.250  48.050  70.400  75.300   0.8487  0.0331 0.0000 0.0000 

OVONC 28.475  30.300  48.075  70.400  75.250   0.8423  0.0326 0.0000 0.0000 

OVOLC 28.300  30.375  48.625  69.950  75.250   0.8211  0.0267 0.0000 0.0000 
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Table 15. Aligned Friedman and Holm tests to compare decomposition strategies on DRA-EBRBS 

 Average rank of accuracy   Adjusted p value ( = 0.1) 

 Baseline OVOVS OVOWV OVOWWV OVONC OVOLC  OVOVS OVOWV OVOWWV OVONC OVOLC 

PR 32.525  69.375  54.325  68.600  65.825  72.350   0.0008 0.0475 0.0010 0.0025 0.0003 

SP 61.000  60.200  60.650  60.125  59.600  61.425   0.9420 0.9746 0.9366 0.8987 0.9692 

MI 34.200  72.275  57.675  68.175  68.300  62.375   0.0005 0.0328 0.0020 0.0019 0.0104 

GM 27.725  73.850  55.375  71.075  71.100  63.875   0.0001 0.0119 0.0003 0.0003 0.0020 

SI 37.775  70.100  56.325  69.950  69.950  58.900   0.0033 0.0917 0.0034 0.0034 0.0548 

Tables 13, 14, and 15 show the performance influences of OVOVS, OVOWV, OVOWWV, OVONC, and OVOLC strategies and 

PR, SP, MI, GM, and SI functions on DRA-EBRBS and these influences can be summarized as follows: 

(1) Looking at the accuracy shown in Table 13, we can observe that both of SP and PR functions are able to obtain the best 

accuracy for DRA-EBRBS. For example, SP function outperforms RP function in five kinds of OVO strategies. For the influence 

of decomposition strategy on DRA-EBRBS, OVO strategy fails to get the better accuracy on all kinds of overlap functions.  

(2) As shown in Table 14, the average rank of accuracy obtained from SP or PR function is is better than other functions on 

DRA-EBRBS. The reason for this difference is that, as described in Section 3.3, the dynamic rule activation method is able to re- 

adjust individual matching degrees to activate consistent rules. For example, when the value of   is 2 and the value of 
kS1  and 

kS 2
 is 0.2 and 0.3, the produced value of MI function is ),(
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kk SSO =0.04, which is even smaller than that of PR function. 

(3) Taking a look at Table 13, the five OVO-related strategies have negative influence on DRA-EBRBS. From Table 15, the 

results of Aligned Friedman and Holm tests show that there are significant differences for PR, SP, GM, and SI functions when 

using the five OVO-related strategies to enhance DRA-EBRBS. The reason is that the dynamic rule activation method should 

depend on the belief distribution related to all classes in determining consist activated rules, but OVO strategy makes the belief 

distributions only to consider two classes. 

Table 16. Average accuracy and standard deviation of Micro-EBRBS 

 PR SP MI GM SI 

Baseline 77.02+15.39 78.90+14.21 62.62+20.57 61.17+20.73 55.77+22.48 

OVOVS 77.19+15.33 79.18+14.31 62.76+20.73 61.89+20.26 55.85+22.40 

OVOWV 77.87+15.61 79.52+14.37 63.41+20.72 61.97+20.40 56.37+21.80 

OVOWWV 77.35+15.39 79.23+14.33 62.82+20.72 61.90+20.23 55.94+22.30 

OVONC 77.25+15.32 79.25+14.35 62.74+20.73 61.89+20.25 55.87+22.40 

OVOLC 77.11+16.60 79.57+15.03 63.19+21.45 62.21+20.50 56.09+21.96 

Table 17. Aligned Friedman and Holm tests to compare overlap functions on Micro-EBRBS 

 Average rank of accuracy  Adjusted p value ( = 0.1) 

 PR SP MI GM SI  SP MI GM SI 

Baseline 25.200  24.575  59.400  67.025  76.300   0.9457  0.0002  0.0000  0.0000  

OVOVS 25.475  24.100  60.400  65.950  76.575   0.8809  0.0001  0.0000  0.0000  

OVOWV 25.550  24.525  59.325  66.025  77.075   0.9110  0.0002  0.0000  0.0000  

OVOWWV 25.375  24.150  60.450  66.000  76.525   0.8938  0.0001  0.0000  0.0000  

OVONC 25.375  24.100  60.550  66.000  76.475   0.8895  0.0001  0.0000  0.0000  

OVOLC 26.400  24.550  59.600  65.025  76.925   0.8402  0.0003  0.0000  0.0000  
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Table 18. Aligned Friedman and Holm tests to compare decomposition strategies on Micro-EBRBS 

 Average rank of accuracy    Adjusted p value ( = 0.1) 

 Baseline OVOVS OVOWV OVOWWV OVONC OVOLC  OVOVS OVOWV OVOWWV OVONC OVOLC 

PR 69.775  65.575  49.000  56.750  64.050  57.850   0.7026  0.0589  0.2364  0.6028  0.2783  

SP 76.125  65.125  53.525  60.750  59.375  48.100   0.3173  0.0399  0.1622  0.1278  0.0108  

MI 71.450  64.050  45.950  66.775  67.500  47.275   0.5011  0.0204  0.6708  0.7195  0.0280  

GM 72.750  61.375  53.525  61.425  60.275  53.650   0.3011  0.0805  0.3032  0.2568  0.0825  

SI 63.475  62.625  54.875  59.875  57.050  65.100   0.9384  0.4343  0.7435  0.5592  0.8826  

Tables 16, 17, and 18 show the performance influences of OVOVS, OVOWV, OVOWWV, OVONC, and OVOLC strategies and 

PR, SP, MI, GM, and SI functions on Micro-EBRBS and these influences can be summarized as follows: 

(1) Table 16 shows that the influence of OVOVS, OVOWV, OVOWWV, OVONC, and OVOLC strategies and PR, SP, MI, GM, 

and SI functions is similar to that of O-EBRBS. In other words, Micro-EBRBS is also able to obtain the best average accuracy 

obtained from the twenty datasets when using SP function and OVOWV strategy to improve the classification performance of 

Micro-EBRBS. All these situations can be confirmed in the average ranks of accuracies shown in Tables 11 and 12. 

(2) From Table 17, the significant differences can be found in MI, GM, and SI functions with OVOVS, OVOWV, OVOWWV, 

OVONC, and OVOLC strategies. The reason for this influence is the same to O-EBRBS because, as shown in Fig. 5, Micro-EBRBS 

has the same inference scheme in the comparison with O-EBRBS, so that SP function can be a powerful function better than PR, 

MI, GM, and SI functions in Micro-EBRBS to distinguish consistent activated rules. 

(3) Taking a look at Table 18, the accuracies obtained from OVOVS, OVOWV, OVOWWV, OVONC, and OVOLC strategies are 

difference from the baselines of Micro-EBRBS. The reason is that, for Micro-EBRBS, the rules mapped into division domains 

only include two kinds of classes because of the binary EBRBSs constructed by the five OVO-related strategies. Thus, each binary 

Micro-EBRBS has completely different rules comparing to the baselines and finally leads to different accuracies.  

In summary, we can observe that the influences of overlap functions on O-EBRBS, DRA-EBRBS, and Micro-EBRBS are 

dependent on the capability of distinguishing consistent activated rules. Therefore, the best overlap function, which is able to 

improve the classification performance of EBRBSs, may be those can extract consistent activated rules for each test input data. 

Regarding decomposition strategies, the obtained accuracies and statistical analyses show that OVOVS, OVOWV, OVOWWV, 

OVONC, and OVOLC strategies are all able to improve the classification performance of O-EBRBS and Micro-EBRBS because 

these strategies make full use of each binary EBRBS to determine final output classes, especially for OVOWV strategy . 

5.5. Influence of Decomposition Strategy and Overlap Function on the Rule Base of EBRBSs 

To further investigate the influences of OVO-related strategies and five overlap functions on O-EBRBS, DRA-EBRBS, and 

Micro-EBRBS, this subsection aims at showing these influences on the rule base of these EBRBSs. Table 19 presents the average 

number of rules, activated rules, and failed data for the three EBRBSs, respectively, in which the failed data means the number of 

tests where the EBRBS could not activate any rule to produce the final output class. 

As shown in Table 19, in terms of PR, SP, MI, GM, and SI functions, O-EBRBS, DRA-EBRBS, and Micro-EBRBS have the 

same number of rules, such as 602.25 rules for the baseline of O-EBRBS and 275.81 rules for the baseline of Micro-EBRRS. 

Under the same condition, the OVO strategy has to raise the number of rules for three ERBBSs because binary EBRBSs are 

constructed by using sub datasets. For example, the training input-output data, which belongs to the nth (n=1,…, N) class, should 

be used to construct N-1 binary EBRBSs which are all related with the nth class. 
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Table 19. Average number of rules, activated rules, and failed data of EBRBSs in terms of mean and standard deviation 

Function Indicator 
O-EBRBS  DRA-EBRBS  Micro-EBRBS 

Baseline OVO  Baseline OVO  Baseline OVO 

PR Rule 602.25+521.90 2807.96+3219.27  602.25+521.90 3106.89+3550.31  275.81+358.17 1220.69+1343.02 

 Activated rule 338.36+411.79 1635.71+2391.74  106.63+166.30 1033.60+1540.14  175.99+362.34 745.04+1231.32 

 Failed data 2.50+5.45 0.00+0.00  0.00+0.00 0.00+0.00  2.60+6.49 0.00+0.00 

SP Rule 602.26+521.90 2706.65+3107.40  602.25+521.90 3106.89+3550.31  275.81+358.17 1170.58+1307.13 

 Activated rule 313.15+413.46 1519.24+2378.39  55.13+108.80 888.28+1390.25  165.98+362.15 698.76+1245.50 

 Failed data 3.45+7.10 0.00+0.00  0.00+0.00 0.00+0.00  3.60+7.08 0.00 

MI Rule 602.25+521.90 2812.71+3225.03  602.25+521.90 3106.89+3550.31  275.81+358.17 1223.28+1345.15 

 Activated rule 341.37+412.17 1649.50+2395.84  313.12+407.54 1821.82+2395.09  177.35+362.11 751.05+1229.95 

 Failed data 2.45+6.44 0.00+0.00  0.00+0.00 0.00+0.00  2.55+6.48 0.00+0.00 

GM Rule 602.25+521.90 2812.71+3225.03  602.25+521.90 3106.89+3550.31  275.81+358.17 1223.28+1345.15 

 Activated rule 341.37+412.17 1649.50+2395.84  377.25+418.83 2095.65+2531.98  177.35+362.11 751.05+1229.95 

 Failed data 2.45+6.44 0.00+0.00  0.00+0.00 0.00+0.00  2.55+6.48 0.00+0.00 

SI Rule 602.25+521.90 2812.71+3225.03  602.25+521.90 3106.89+3550.31  275.81+358.17 1223.28+1345.15 

 Activated rule 341.37+412.17 1649.50+2395.84  377.84+418.47 2097.50+2530.80  177.35+362.11 751.05+1229.95 

 Failed data 2.45+6.44 0.00+0.00  0.00+0.00 0.00+0.00  2.55+6.48 0.00+0.00 

For the number of activated rules, the OVO strategy is required to activate the same number of extended belief rules for 

O-EBRBS, DRA-EBRBS, and Micro-EBRBS, but is much more than that of the baseline of these three EBRBSs due to the fact 

that each binary EBRBS has to activate rules independently while classifying input data. Comparing to O-EBRBS, DRA-EBRBS 

and Micro-EBRBS usually activate fewer number of rules, in which DRA-EBRBS is attributed to the dynamic rule activation 

method which is able to activate consistent rules, and Micro-EBRBS is due to fewer number of rules in the rule base. 

For the number of failed data, the baseline of O-EBRBS and Micro-EBRBS fails to activate rules in some of input data and 

their number of failed data is therefore greater than 0, but the OVO strategy can enhance the capability of these two EBRBSs to 

produce a final output class so that the enhanced EBRBSs are able to classify any given input data. Correspondingly, the baseline 

of DRA-EBRBS is able to avoid the situation of producing failed data. This is because the dynamic rule activation method not 

only is able to determine consistent activated rules by increasing the value the parameter  , but also can activate all rules for any 

given input data by setting  =0. 

5.6. Discussions 

After analyzing the performance of decomposition strategy and overlap function together with their impact on rule base, the 

OVO strategy and SP function have shown their advantages on enhanced O-EBRBS, DRA-EBRBS, and Micro-EBRBS. However, 

it still needs to discuss the reason why the improvement of the three EBRBS can be made. For this reason, this section is going to 

further investigate all the previously mentioned influences. 

(1) Discussion of the influence of decomposition strategies on EBRBSs 

The usage of OVO strategy affects not only the classification performance of EBRBSs, but also rule base. Fig. 9 provides the 

quantitative influences of OVO strategy on O-EBRBS, DRA-EBRBS, and Micro-EBRBS, in which Fig. 9(a) shows the percentage 

of the twenty datasets that the classification accuracy would be decreased after using the OVO strategy with five aggregation 

functions to enhance O-EBRBS, DRA-EBRBS, and Micro-EBRBS. In the case of O-EBRBS, the accuracies of twenty datasets do 

not decrease when using OVOVS, OVOWV, OVOWWV, and OVONC strategies, respectively, to enhance O-EBRBS. Meanwhile, Figs. 
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9(b)-9(d) show the changes in the number of rules, activated rules, and failed data for O-EBRBS, DRA-EBRBS, and Micro- 

EBRBS. Continuing with the case of O-EBRBS, the number of rules and activated rules is increased from 602.25 to 2807.96 and 

338.36 to 1635.71, respectively, and the number of failed data is decreased from 2.50 to 0. On the basis of these improvement 

results, we can observe that the OVO strategy is able to not only enhance the capability of constructing a rule base, but also 

activate much more rules to produce a final output class. Additionally, the aggregation of the output of all binary EBRBSs is 

another notable merit of the OVO strategy, which contributes to avoid the situation of producing the failed data in the EBRB 

inference scheme, i.e., for the classification problem with N classes, N * (N - 1) / 2 outputs can be produced because of N * (N - 1) 

/ 2 binary EBRBSs and any one of these outputs is just one of basis to produce final output classes. Relatively, the EBRBS 

without the OVO strategy has to produce final output classes based on the only one output. 
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     (c) Change in number of activated rules for three EBRBSs    (b) Change in number of failed data for three EBRBSs 

Fig. 9. Influence of OVO strategy on O-EBRBS, DRA-EBRBS, and Micro-EBRBS 

(2) Discussion of the influence of overlap functions on ERBBSs 

The influence made by overlap functions is usually negative correction in the accuracy of the three EBRBSs. However, the 

implicit information can be found in the comparison and relationship among PR, SP, MI, GM, and SI functions. Taking O-EBRBS 

for example, Table 10 shows that the ranking order of the five overlap functions is 81.67% (SP) > 79.79% (PR) > 64.38% (MI) > 

63.33% (GM) > 56.67% (SI). Obviously, this ranking order is the same to that of the five overlap functions to produce smaller 

),...,(
1

k

M

k SSO , namely SP   PR   MI   GM   SI. Hence, we can observe that the overlap function, which is able to 

produce smaller ),...,(
1

k

M

k SSO , is more beneficial to improve the accuracy of EBRBSs. Based upon this viewpoint, the exponent 

of ),...,(
1

k

M

k SSO  is set as a = 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 to compare with the accuracy and its standard deviation of 

O-EBRBS, DRA-EBRBS, and Micro-EBRBS equipped by the PR function, as shown in Fig. 10, and the accuracy of O-EBRBS, 

DRA-EBRBS, and Micro-EBRBS equipped by PR, SP, MI, GM, and SI functions, as shown in Fig. 11. 
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Fig. 10. Different exponents of PR function for the three EBRBSs 

Fig. 10 shows that the accuracy of O-EBRBS and Micro-EBRBS initially increases and then decreases with the increase in 

the exponent of PR function. Meanwhile, the standard deviation of O-EBRBS and Micro-EBRBS decreases with the increase in 

the exponent of PR function. Thus, it can be concluded that there is a bound in the ability of overlap function to produce smaller 

),...,(
1

k

M

k SSO and this bound is related with the best overlap function for improving the accuracy of O-EBRBS and Micro- 

EBRBS. The reason of having the bound is that activation weights tend to be zero with the increase of exponent, which means that 

O-EBRBS and Micro-EBRBS would fail to activate any rules for any given input data when there is a large exponent used for an 

overlap function. For DRA-EBRBS, whose accuracy and standard deviation decrease with the increase in the exponent of PR 

function, because the main idea of the dynamic rule activation method is to determine a best exponent of ),...,(
1

k

M

k SSO  for 

consistent activated rules. 

50

55

60

65

70

75

80

85

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

A
cc

u
ra

cy
 (

%
)

Exponent of  overlap function (a)

PR SP MI GM SI

 

50

55

60

65

70

75

80

85

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

A
cc

u
ra

cy
 (

%
)

Exponent of  overlap function (a)

PR SP MI GM SI

 

      (a) Change in accuracies for O-EBRBS                  (b) Change in accuracies for DRA-EBRBS 



29 

 

50

55

60

65

70

75

80

85

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

A
cc

u
ra

cy
 (

%
)

Exponent of  overlap function (a)

PR SP MI GM SI

 

(c) Change in accuracies for Micro-EBRBS 

Fig. 11. Different exponents of five overlap function for three EBRBSs 

From Fig. 11, it can be found that the accuracy of O-EBRBS, DRA-EBRBS, and Micro-EBRBS with MI, GM, and SI 

functions increase with the increase of exponent. This is because MI, GM, and SI functions tend to produce a relatively large 

),...,(
1

k

M

k SSO comparing with SP and PR functions, which usually means that the former three functions are hard to determine 

consistent activated rules. In the same situation, the exponent of overlap functions can contribute to decrease the value of 

),...,(
1

k

M

k SSO and finally ensure that the activation weight of inconsistent rules would be zero. Comparatively, ),...,(
1

k

M

k SSO of 

PR and SP functions is smaller than that of MI, GM, and SI functions, namely, their activation weights tend to be zeros with the 

increase of exponents. As a result, PR and SP functions usually fail to activate rules when having a large exponent. This is the 

reason why the accuracy of O-EBRBS, DRA-EBRBS, and Micro-EBRBS equipped by PR and SP functions initially increases and 

then decreases with the increase of exponent. 

6. Conclusions 

This work was motivated by the improvements found in some conventional classifiers when they worked with decomposition 

strategies and overlap functions for multi-attribute and multi-class classification problems. In this paper, the EBRBS, which has 

been proven to have a great potential in uncertainty information processing and modeling, was enhanced by using OVO strategy 

and five overlap functions. The work presented within this paper is meaningful and useful as a heuristic study to investigate the 

solution of improving the EBRBSs when handling multi-attribute and multi-class classification problems. The main conclusions 

can be summarized below: 

(1) Three representative EBRBSs, namely O-EBRBS, DRA-EBRBS, and Micro-EBRBS, were investigated to establish their 

differences in term of accuracy and efficiency. The experimental study showed that DRA-EBRBS is an “accuracy first” classifier, 

Micro-EBRBS is an “efficiency first” classifier, and O-EBRBS is a “neutral” classifier.  

(2) Five overlap functions, namely SP, PR, MI, GM, and SI functions, were investigated to determine which one is the most 

suitable for O-EBRBS, DRA-EBRBS, and Micro-EBRBS. The experimental study showed that SP function has a clear advantage 

in enhancing the classification performance of the three EBRBSs. 

(3) Five OVO-related strategies, namely OVOVS, OVOWV, OVOWWV, OVONC, and OVOLC strategies, were investigated to 

determine which one is the most suitable for the three ERBBSs. The experimental study showed that OVOWV strategy has a clear 

advantage in enhancing the performance of O-EBRBS and Micro-EBRBS. 
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There are several aspects that remain to be studied in future works, e.g., the computing efficiency of decomposition strategies. 

Furthermore, an in-depth study of the effect of overlap functions on the interpretability of classifiers should be carried out. 
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