36,574 research outputs found

    The emotional contents of the ‘space’ in spatial music

    Get PDF
    Human spatial perception is how we understand places. Beyond understanding what is where (William James’ formulation of the psychological approach to perception); there are holistic qualities to places. We perceive places as busy, crowded, exciting, threatening or peaceful, calm, comfortable and so on. Designers of places spend a great deal of time and effort on these qualities; scientists rarely do. In the scientific world-view physical qualities and our emotive responses to them are neatly divided in the objective-subjective dichotomy. In this context, music has traditionally constituted an item in a place. Over the last two decades, development of “spatial music” has been within the prevailing engineering paradigm, informed by psychophysical data; here, space is an abstract, Euclidean 3-dimensional ‘container’ for events. The emotional consequence of spatial arrangements is not the main focus in this approach. This paper argues that a paradigm shift is appropriate, from ‘music-in-a-place’ to ‘music-as-a-place’ requiring a fundamental philosophical realignment of ‘meaning’ away from subjective response to include consequences-in-the-environment. Hence the hegemony of the subjective-objective dichotomy is questioned. There are precedents for this, for example in the ecological approach to perception (Gibson). An ecological approach to music-as-environment intrinsically treats the emotional consequences of spatio-musical arrangement holistically. A simplified taxonomy of the attributes of artificial spatial sound in this context will be discussed

    Towards transparent telepresence

    Get PDF
    It is proposed that the concept of transparent telepresence can be closely approached through high fidelity technological mediation. It is argued that the matching of the system capabilities to those of the human user will yield a strong sense of immersion and presence at a remote site. Some applications of such a system are noted. The concept is explained and critical system elements are described together with an overview of some of the necessary system specifications

    Sound Source Separation

    Get PDF
    This is the author's accepted pre-print of the article, first published as G. Evangelista, S. Marchand, M. D. Plumbley and E. Vincent. Sound source separation. In U. Zölzer (ed.), DAFX: Digital Audio Effects, 2nd edition, Chapter 14, pp. 551-588. John Wiley & Sons, March 2011. ISBN 9781119991298. DOI: 10.1002/9781119991298.ch14file: Proof:e\EvangelistaMarchandPlumbleyV11-sound.pdf:PDF owner: markp timestamp: 2011.04.26file: Proof:e\EvangelistaMarchandPlumbleyV11-sound.pdf:PDF owner: markp timestamp: 2011.04.2

    Are Electrons Oscillating Photons, Oscillating “Vacuum," or Something Else? The 2015 Panel Discussion: An Unprecedented Engineering Opportunity: A Dynamical Linear Theory of Energy as Light and Matter

    Get PDF
    Platform: What physical attributes separate EM waves, of the enormous band of radio to visible to x-ray, from the high energy narrow band of gamma-ray? From radio to visible to x-ray, telescopes are designed based upon the optical imaging theory; which is an extension of the Huygens-Fresnel diffraction integral. Do we understand the physical properties of gamma rays that defy us to manipulate them similarly? One demonstrated unique property of gamma rays is that they can be converted to elementary particles (electron and positron pair); or a particle-antiparticle pair can be converted into gamma rays. Thus, EM waves and elementary particles, being inter-convertible; we cannot expect to understand the deeper nature of light without succeeding to find structural inter-relationship between photons and particles. This topic is directly relevant to develop a deeper understanding of the nature of light; which will, in turn, help our engineers to invent better optical instruments
    • 

    corecore