1,950 research outputs found

    On the class SI of J-contractive functions intertwining solutions of linear differential equations

    Get PDF
    In the PhD thesis of the second author under the supervision of the third author was defined the class SI of J-contractive functions, depending on a parameter and arising as transfer functions of overdetermined conservative 2D systems invariant in one direction. In this paper we extend and solve in the class SI, a number of problems originally set for the class SC of functions contractive in the open right-half plane, and unitary on the imaginary line with respect to some preassigned signature matrix J. The problems we consider include the Schur algorithm, the partial realization problem and the Nevanlinna-Pick interpolation problem. The arguments rely on a correspondence between elements in a given subclass of SI and elements in SC. Another important tool in the arguments is a new result pertaining to the classical tangential Schur algorithm.Comment: 46 page

    New Challenges Arising in Engineering Problems with Fractional and Integer Order

    Get PDF
    Mathematical models have been frequently studied in recent decades, in order to obtain the deeper properties of real-world problems. In particular, if these problems, such as finance, soliton theory and health problems, as well as problems arising in applied science and so on, affect humans from all over the world, studying such problems is inevitable. In this sense, the first step in understanding such problems is the mathematical forms. This comes from modeling events observed in various fields of science, such as physics, chemistry, mechanics, electricity, biology, economy, mathematical applications, and control theory. Moreover, research done involving fractional ordinary or partial differential equations and other relevant topics relating to integer order have attracted the attention of experts from all over the world. Various methods have been presented and developed to solve such models numerically and analytically. Extracted results are generally in the form of numerical solutions, analytical solutions, approximate solutions and periodic properties. With the help of newly developed computational systems, experts have investigated and modeled such problems. Moreover, their graphical simulations have also been presented in the literature. Their graphical simulations, such as 2D, 3D and contour figures, have also been investigated to obtain more and deeper properties of the real world problem

    An attractive numerical algorithm for solving nonlinear Caputo-Fabrizio fractional Abel differential equation in a Hilbert space

    Get PDF
    Our aim in this paper is presenting an attractive numerical approach giving an accurate solution to the nonlinear fractional Abel differential equation based on a reproducing kernel algorithm with model endowed with a Caputo-Fabrizio fractional derivative. By means of such an approach, we utilize the Gram-Schmidt orthogonalization process to create an orthonormal set of bases that leads to an appropriate solution in the Hilbert space H-2[a, b]. We investigate and discuss stability and convergence of the proposed method. The n-term series solution converges uniformly to the analytic solution. We present several numerical examples of potential interests to illustrate the reliability, efficacy, and performance of the method under the influence of the Caputo-Fabrizio derivative. The gained results have shown superiority of the reproducing kernel algorithm and its infinite accuracy with a least time and efforts in solving the fractional Abel-type model. Therefore, in this direction, the proposed algorithm is an alternative and systematic tool for analyzing the behavior of many nonlinear temporal fractional differential equations emerging in the fields of engineering, physics, and sciences

    A pseudo-spectral method based on reproducing kernel for solving the time-fractional diffusion-wave equation

    Get PDF
    In this paper, we focus on the development and study of the finite difference/pseudo-spectral method to obtain an approximate solution for the time-fractional diffusion-wave equation in a reproducing kernel Hilbert space. Moreover, we make use of the theory of reproducing kernels to establish certain reproducing kernel functions in the aforementioned reproducing kernel Hilbert space. Furthermore, we give an approximation to the time-fractional derivative term by applying the finite difference scheme by our proposed method. Over and above, we present an appropriate technique to derive the numerical solution of the given equation by utilizing a pseudo-spectral method based on the reproducing kernel. Then, we provide two numerical examples to support the accuracy and efficiency of our proposed method. Finally, we apply numerical experiments to calculate the quality of our approximation by employing discrete error norms. © 2022, The Author(s)
    corecore