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Abstract
In this paper, we focus on the development and study of the finite
difference/pseudo-spectral method to obtain an approximate solution for the
time-fractional diffusion-wave equation in a reproducing kernel Hilbert space.
Moreover, we make use of the theory of reproducing kernels to establish certain
reproducing kernel functions in the aforementioned reproducing kernel Hilbert
space. Furthermore, we give an approximation to the time-fractional derivative term
by applying the finite difference scheme by our proposed method. Over and above,
we present an appropriate technique to derive the numerical solution of the given
equation by utilizing a pseudo-spectral method based on the reproducing kernel.
Then, we provide two numerical examples to support the accuracy and efficiency of
our proposed method. Finally, we apply numerical experiments to calculate the
quality of our approximation by employing discrete error norms.
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1 Introduction
The use of the fractional-order derivative has become popular due to its nonlocality prop-
erty, which is an intrinsic property of many complex systems. The fractional-order deriva-
tive has recently been applied in modeling different phenomena including viscoelasticity,
financial modeling, nanotechnology, control theory of dynamical systems, random walk,
anomalous transport, biological modeling, and anomalous diffusion as well. For further
applications of the fractional order derivative in the fields of engineering, physical sci-
ences, we may refer to [1–11] and [12–16] and the references cited therein.

The fractional partial differential equations (FPDEs) have been deployed in recent years
as a powerful tool in nonlocality and spatial heterogeneity modelling. Many applications
of the fractional models can be found in [17–21]. The fractional diffusion equation as-
sumed in this paper covers not only the classic state of the heat equation but also the ker-
nel of many other FPDEs. This equation describes the anomalous diffusion of particles.
For applications of this equation, we refer to the one presented in [22], which describes
the transfer processes with a long memory and the water transport in the soil model [23].
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Many mathematical models are usually based on the diffusion model such as the diffusion
equation on fractals [24], Fischer information theory [25], and so on. Moreover, the im-
plication of the fractional in time (sub-diffusion) and fractional in space (super-diffusion)
has been observed in the solution profiles in many fractional models [26, 27]. The su-
perior capabilities of fractional differential equations to accurately model such processes
have raised significant interest in assaying numerical methods for obtaining the solutions
to such problems [28–30]. The analysis we present in this paper depends on the following
time-fractional diffusion-wave problem:

∂α
t u(x, t) = �u(x, t) – u(x, t) + f (x, t), (x, t) ∈ � × J , (1.1)

u(0, t) = 0, u(b, t) = 0, t ∈ J , (1.2)

u(x, 0) = φ1(x), ∂tu(x, 0) = φ2(x), x ∈ �, (1.3)

where � = [0, b] is a bounded domain in R; J = (0, T] is the time interval satisfying 0 <
T < +∞; u : � × J → R is a sufficiently differentiable function, and 1 < α < 2 is the order
of the fractional derivative, and the time-fractional derivative ∂α

t is the Caputo fractional
derivative of order 1 < α < 2 defined by

∂α
t u(x, t) =

1
�(2 – α)

∫ t

0

∂2u(x, s)
∂s2

ds
(t – s)α–1 .

The reproducing theory was investigated by Mercer in 1909 [31]. He named functions
satisfying the reproducing property as “positive definite kernels”. Around 1948, Aronszajn
[32] systematized the concept of reproducing kernels. From 1980, Cui and co-workers
[33, 34] have been pioneers and beginners in the numerical analysis of linear and non-
linear problems using the “reproducing kernel Hilbert space method”. Recently, a lot of
research has been done to solve several linear and nonlinear problems using the theory of
reproducing kernel [35–46].

The aim of this paper is to introduce a finite difference/pseudo-spectral method based
on reproducing kernel (RK) for solving the time-fractional diffusion-wave equation
(1.1)–(1.3). This paper spreads over four sections, including the introduction. In Sect. 2, we
present a finite difference/pseudo-spectral method based on a reproducing kernel (RK)
for solving the time-fractional diffusion-wave equation. In Sect. 2, we solve some test
problems and derive several results. In Sect. 4, we present some concluding remarks.

2 Implementation of the method
2.1 Discretization of Caputo derivative and semi-discrete scheme
First, we obtain the semi-discrete scheme for (1.1)–(1.3). The discretization of J is per-
formed with a constant time step τ = T

N , where N ∈ N ∗. Denote tn = nτ for N = 0 : N .
Let un = u(x, tn). For a discrete function {un}N+1

n=0 , we provide some preliminaries concern-
ing the approximation of the time fractional derivative ∂α

t u(x, t) with 1 < α < 2. A Caputo
derivative approximation formula (CDAF) for ∂α

t u(x, tn+1) with 1 < α < 2 can be defined as
a linear combination of the discrete second time derivatives {∂2uj}n+1

j=1 [47]

∂α
t un+1 =

τ 2–α

�(3 – α)

n∑
j=0

bj∂
2un+1–j + Rn+1

1 (u), (2.1)
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where

bj = (j + 1)2–α – j2–α ,

and Rn+1
1 (u) is the local truncation error such that

∣∣Rn+1
1 (u)

∣∣≤ Cuτ
3–αorRn+1

1 (u) = O
(
τ 3–α

)
.

The following lemma summarizes some properties of the coefficients bj which will be used
in this paper.

Lemma 2.1 (See [47]. Properties of the coefficients bn+1
j ) For any 1 < α < 2, the coefficients

of bn+1
j satisfy the following properties:

• bj > 0, j = 0, 1, . . . , n,
• 1 = b0 > b1 > · · · > bn and bn → 0 as n → ∞,
•
∑n

j=0(bj – bj+1) = 1.

Substituting (2.1) into (1.1) gives

a(α, τ )
(
un+1 – 2un + un–1) + a(α, τ )

n∑
j=1

bj
(
un+1–j – 2un–j + un–1–j)

= �un+1(x) – un+1(x) + f n+1(x) + Rn+1(u), (2.2)

where a(α, τ ) = 1
τα�(3–α) and f n+1(x) = f (x, tn+1).

Replacing un+1 by the approximate solution Un+1, we can obtain the following semi-
discrete problem.

Scheme I Given U0 = φ1(x), U–1 = U1 – 2τφ2(x) and find Un+1 (n = 0, 1, 2, . . . , N – 1) such
that

⎧⎪⎪⎨
⎪⎪⎩

a(α, τ )(Un+1 – 2Un + Un–1) + a(α, τ )
∑n

j=1 bj(Un+1–j – 2Un–j + Un–1–j)

= �Un+1(x) – Un+1(x) + f n+1(x),

Un+1|x∈∂� = 0, –1 ≤ n ≤ N – 1.

For the convenience of discussion, define the linear operator L as follows:

L(∗) =

⎧⎨
⎩

((2a(α, τ ) + 1) – �)(∗), n = 0,

((a(α, τ ) + 1) – �)(∗), 1 ≤ n ≤ N – 2.

Therefore, a semi-discrete problem can be converted into the following equivalent:

LUn+1(x) = Fn+1(x), 0 ≤ n ≤ N – 1, (2.3)
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where

Fn+1(x) =

⎧⎪⎪⎨
⎪⎪⎩

–a(α, τ )(–2φ1(x) – 2τφ2(x)) + f 1(x), n = 0,

–a(α, τ )(–2Un + Un–1) – a(α, τ )
∑n

j=1 bj(Un+1–j

– 2Un–j + Un–1–j) + f n+1(x), 1 ≤ n ≤ N – 2.

2.2 A pseudo-spectral kernel-based method
Now, we employ a pseudo-spectral method based on RK to discrete the space direction
and obtain a full-discrete scheme of (2.3). To obtain this, we need some notations and
preliminaries.

We now give background material and preliminaries, which are used in the following
sections. Recall that a real reproducing kernel Hilbert space (RKHS) on a nonempty ab-
stract set � is a particular type of a real Hilbert space H of functions that satisfies the
following additional property (called reproducing kernel property): for each x ∈ �, there
exists K(x, ·) ∈ H (R : � × � −→ R) such that, for every u ∈ H, one has

u(x) =
(
u(·), K(x, ·))H, ∀u ∈ H,∀x ∈ �. (2.4)

Definition 2.2 (See [40]) A Hilbert space H of real functions on a set � is called an RKHS
if there exists an RK K(x, ·) of H.

Theorem 2.3 (See [40]) Suppose that H is an RKHS with RK K : � × � −→ R. Then
K(x, ·) is positive definite. Moreover, K(x, ·) is strictly positive definite if and only if the point
evaluation functionals

{ Ix : H −→ R,
Ix(u) = u(x) are linearly independent in H∗, where H∗ is the space of

bounded linear functionals on H.

Definition 2.4 (See [40]. One-dimensional RKHS) The inner product space Hp[0, b] for
a function u is defined as

Hp[0, b] =
{

u|u(x), u′(x), u′′(x) ∈ AC[0, b], u′′′(x) ∈ L2[0, b], u(0) = u(b) = 0, x ∈ [0, b]
}

.

The inner product in Hp[0, b] is in the form

〈u, v〉Hp = u(0)v(0) + u(b)v(b) + u′(0)v′(0) +
∫ b

a
u′′′(x)v′′′(x) dx, (2.5)

and the norm ‖u‖H is defined by

‖u‖Hp =
√〈u, u〉H, (2.6)

where u, v ∈ Hp[0, b].

The space Hp[0, b] is an RKHS and the RK Ky(x) can be denoted by [40]

Ky(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
120b2 (b – x)y(120bx + x(6b2x – 120 – 4bx2 + x3)y

– 5bxy3 + (b + x)y4), y < x,
1

120b2 (b – y)x(120by + y(6b2y – 120 – 4by2 + y3)x

– 5byx3 + (b + y)x4), y ≥ x.

(2.7)
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With the help of pseudo-spectral method based on RK, we will illustrate how to derive
the numerical solution. Now, we will give the representation of a numerical solution to
the semi-discrete problem (2.3) in the RKHS Hp[0, b]. Let BM = {xj}M

j=1 be a distinct subset
of �. We consider the finite-dimensional space

UM = span
{
ψj(x) = Ky(x)|y=xj , xj ∈ BM

}⊂ Hp[0, b],

where Ky(x) is the RK constructed in Hp[0, b].
The semi-discrete problem can be written into following equivalent form Hp[0, b] to

C[0, b]:

LUn+1(x) = Fn+1(x), 0 ≤ n ≤ N – 1,

where

Fn+1(x) =

⎧⎪⎪⎨
⎪⎪⎩

–a(α, τ )(–2φ1(x) – 2τφ2(x)) + f 1(x), n = 0,

–a(α, τ )(–2Un + Un–1) – a(α, τ )
∑n

j=1 bj(Un+1–j

– 2Un–j + Un–1–j) + f n+1(x), 1 ≤ n ≤ N – 2,

and Fn+1 ∈ C[0, b] as uk ∈ Hp[0, b].
An approximant Un+1

M to Un+1 can be obtained by calculating a truncated series based
on trial functions as follows:

Un+1(x) ≈ Un+1
M (x) :=

M∑
j=1

αn+1
j ψj(x)

=
[
ψ1(x),ψ2(x), . . . ,ψM(x)

]
⎛
⎜⎜⎜⎜⎝

αn+1
1

αn+1
2
...

αn+1
M

⎞
⎟⎟⎟⎟⎠ . (2.8)

To determine the interpolation coefficients {αn+1
j }M

j=1, the set of collocation conditions is
used by applying (2.3) to BM . Thus

λi
[
Un+1

M
]

:= LUn+1
M (xi) =

M∑
j=1

αn+1
j Lψj(xi) = Fn+1(xi), i = 1, 2, . . . , M, (2.9)

where the functional λi, (1 ≤ i ≤ M) is defined by applying the differential operator fol-
lowed by a point evaluation at xi ∈ Bn. In general, a single set �M := {λi}M

i=1 of functionals
contains several types of differential operators.

The arising collocation matrix K is unsymmetric and has the ij-entries:

Kij := λi[ψj] = λx
i Ky(x)|y=xj , 1 ≤ i, j ≤ M, (2.10)

where the subscript x in λx
j indicates that λx

j applies to the function of x.
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Therefore the unknown coefficients αn+1
j , j = 1, 2, . . . , M, can be obtained by solving the

following system:

K[α]n+1 = Fn+1,

where

[α]n+1 =
[
αn+1

1 ,αn+1
2 , . . . ,αn+1

M
]T ,

Fn+1 =
[
Fn+1(x1), Fn+1(x2), . . . , Fn+1(xM)

]T ,

and

K =

⎛
⎜⎜⎜⎜⎝

λx
1Ky(x)|y=x1 λx

2Ky(x)|y=x1 · · · λx
MKy(x)|y=x1

λx
1Ky(x)|y=x2 λx

2Ky(x)|y=x2 · · · λx
MKy(x)|y=x2

...
...

. . .
...

λx
1Ky(x)|y=xM λx

2Ky(x)|y=xM · · · λx
MKy(x)|y=xM

⎞
⎟⎟⎟⎟⎠ . (2.11)

We know that

Un+1 = A[α]n+1, (2.12)

where

A = [Aij]M×M, Aij = ψj(xi)

and

Un+1 =
[
Un+1(x1), Un+1(x2), . . . , Un+1(xM)

]T .

The following matrix vector form is achieved by differentiating (2.12) with respect to x
and evaluating it at the point girds xi ∈ BM :

�Un+1 = Axx[α]n+1,

where

�Un+1 =
[
�Un+1(x1),�Un+1(x2), . . . ,�Un+1(xM)

]T

and

Axx = [Axx,ij]M×M, Axx,ij =
∂2ψj

∂x2 |x=xi .

Now, from Un+1 = A[α]n+1 we have

[α]n+1 = A–1Un+1,
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and therefore

�Un+1 = AxxA–1Un+1. (2.13)

Now, by using (2.13), we can write

KUn+1 = Fn+1, 0 ≤ n ≤ N – 2,

where

K =

⎧⎨
⎩

((2a(α, τ ) + 1)I – AxxA–1), n = 0,

((a(α, τ ) + 1)I – AxxA–1), 1 ≤ n ≤ N – 2,
(2.14)

and

Fn+1 =

⎧⎪⎪⎨
⎪⎪⎩

a(α, τ )(2�1 + 2τ�2) + f1, n = 0,

–a(α, τ )(–2Un + Un–1) – a(α, τ )
∑n

j=1 bj(Un+1–j

– 2Un–j + Un–1–j) + fn+1, 1 ≤ n ≤ N – 2,

in which

fn+1 =
[
f n+1(x1), f n+1(x2), . . . , f n+1(xM)

]T

and

�j =
[
φj(x1),φj(x2), . . . ,φj(xM)

]T , j = 1, 2.

2.3 Nonsingularity of the collocation matrix
Lemma 2.5 (See [40]) Let Ky(x) be the reproducing kernel of the space Hp[0, b], then

∂ i+jKy(x)
∂xi∂yj , 0 ≤ i + j ≤ 2, (2.15)

is absolutely continuous with respect to x and y.

Lemma 2.6 Let {xj}∞j=1 be dense in the domain [0, b] and the set of functions {λx
j K(x, ·)}M

j=1
be linearly independent on the reproducing kernel space Hp[0, b]. Then the set of vectors
{(λx

j Ky(x)|y=x1 ,λx
j Ky(x)|y=x2 , . . .)T }M

j=1 is linearly independent.

Proof If {cj}M
j=1 satisfies

∑M
j=1 cj(λx

j Ky(x)|y=x1 ,λx
j Ky(x)|y=x2 , . . .)T = 0, one can deduce that

M∑
j=1

cjλ
x
j Ky(x)|y=xi = 0, i ≥ 1. (2.16)

From Lemma 2.5 it is clear that the functions λx
j K(x, ·) for λj ∈ �M are continuous. Fur-

thermore, note that {xi}i≥1 is a dense set. Therefore
∑M

j=1 cjλ
x
j K(x, ·) = 0, which implies that

cj = 0 (j = 1, 2, . . . , M). This completes the proof. �
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From Lemma 2.6 we can extract the following theorem.

Theorem 2.7 Let the set of functions {λx
j K(x, ·)}M

j=1 be linearly independent on Hp[0, b].
Then there exist m points Bn = {xj}M

j=1 such that the collocation matrix K is nonsingular.

Lemma 2.8 Let the set of functionals {λj}M
j=1 be linearly independent on Hp[0, b]. Then the

set of functions {λx
j K(x, ·)}M

j=1 is linearly independent.

Proof If {cj}M
j=1 satisfies

∑M
j=1 cjλ

x
j K(x, ·) = 0, then we get

0 =

〈
U(·),

M∑
j=1

cjλ
x
j K(x, ·)

〉

Hp

=
M∑
j=1

cjλ
x
j
〈
U(·), K(x, ·)〉Hp

=
M∑
j=1

cjλj[U], ∀U ∈ Hp[0, b], (2.17)

which implies that cj = 0 (j = 1, 2, . . . , M), and this completes the proof. �

From Lemma 2.8 and Theorem 2.7, we can derive the following theorem.

Theorem 2.9 Let the set of functionals {λj}M
j=1 be linearly independent on Hp[0, b]. Then

there exist n points Bn = {xj}n
j=1 such that the collocation matrix K is nonsingular.

2.4 Error analysis
Suppose that BM = {xi}M

i=1 and UM = Span{ψ1,ψ2, . . . ,ψM}. Applying the Gram–Schmidt
orthogonalization process to {ψ1,ψ2, . . . ,ψM}, we can obtain

ψ i(x) =
i∑

k=1

βikψk(x), (βii > 0, i = 1, 2, . . . , M). (2.18)

Therefore {ψ1,ψ2, . . . ,ψn} is an orthonormal basis for UM .
Therefore, we can write the interpolant Un+1

M (x) to Un+1 at Bn in the following form:

Un+1(x) ≈ Un+1
M (x) =

m∑
i=1

Un+1(xi)ψ i(x). (2.19)

Theorem 2.10 Suppose that Un+1
M (x) ∈ Hp[0, b] and Un+1(x) are the approximate solution

and exact solution for (2.3), respectively. Then, for any Un+1(x) ∈ Hp[0, b], we have

∣∣Un+1(x) – Un+1
M (x)

∣∣≤ ∥∥Un+1∥∥
Hp

∥∥∥∥∥K(x, ·) –
M∑
i=1

ψ i(x)ψi

∥∥∥∥∥
Hp

. (2.20)
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Proof Using the reproducing property, we have

Un+1
M (x) =

M∑
i=1

Un+1(xi)ψ i(x)

=
M∑
i=1

〈
Un+1,ψi

〉
Hp

ψ i(x)

=

〈
Un+1,

M∑
i=1

ψ i(x)ψi

〉

Hp

. (2.21)

Thus

∣∣Un+1(x) – Un+1
M (x)

∣∣ =

∣∣∣∣∣
〈

Un+1, K(x, ·) –
M∑
i=1

ψ i(x)ψi

〉

Hp

∣∣∣∣∣

≤ ∥∥Un+1∥∥
Hp

∥∥∥∥∥K(x, ·) –
M∑
i=1

ψ i(x)ψi

∥∥∥∥∥
Hp

. (2.22)

Thus, the proof is completed. �

Lemma 2.11 (See [48]) Suppose that u ∈ C3[0, b] and BM = {xi}M
i=1 ⊂ [0, b] is a distinct

subset of [0, b], then

‖U‖L2[0,b] ≤ d max
xj∈Bn

∣∣U(xj)
∣∣ + ch3

∥∥∥∥d3U
dx3

∥∥∥∥
L2[0,b]

, h = sup
x∈[0,b]

min
xj∈BM

‖x – xj‖, (2.23)

where c and d are real constants.

Theorem 2.12 If Un+1
M is the approximate solution of (2.3) in the space Hp. Then the fol-

lowing relation holds:

∥∥Un+1 – Un+1
M
∥∥

L2[0,b] ≤ ch3∥∥Un+1∥∥
Hp

, (2.24)

where c is a real constant.

Proof According to Lemma 2.11, we have

∥∥Un+1 – Un+1
M
∥∥

L2[0,b]

≤ d max
xj∈Bn

∣∣Un+1(xj) – Un+1
M (xj)

∣∣

+ ch3
∥∥∥∥d3Un+1

dx3 –
d3Un+1

M
dx3

∥∥∥∥
L2[0,b]

≤ ch3∥∥Un+1 – Un+1
M
∥∥

Hp
, (2.25)

where d and c are constants.
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We know that

∥∥Un+1∥∥2
Hp

=
∥∥Un+1 – Un+1

M
∥∥2

Hp
+
∥∥Un+1

M
∥∥2

Hp
+ 2〈U – UM, UM〉Hp .

Since

〈U – UM, UM〉Hp =

〈
U – UM,

M∑
j=1

αn+1
j ψj

〉

Hp

=
M∑
j=1

αn+1
j
〈
U – UM, K(·, xj)

〉
Hp

=
M∑
j=1

αn+1
j (U – UM)(xj) = 0,

then

∥∥Un+1∥∥2
Hp

=
∥∥Un+1 – Un+1

M
∥∥2

Hp
+
∥∥Un+1

M
∥∥2

Hp
.

Therefore, we have

∥∥Un+1 – Un+1
M
∥∥

Hp
≤ ∥∥Un+1∥∥

Hp
. (2.26)

Now, from (2.25) and (2.26), we can obtain

∥∥Un+1 – Un+1
M
∥∥

L2[0,b] ≤ ch3∥∥Un+1∥∥
Hp

. (2.27)

Thus, the proof is completed. �

3 Illustrative test problems
We have studied some example tests to illustrate the performance of the proposed meth-
ods. We show the stability and accuracy of the proposed method for different values of M
and N .

As the exact solution is known, the root mean square error Lrms and the maximum ab-
solute error L∞ are measured with the following formulas:

Lrms =

√√√√ 1
M

M∑
i=1

∣∣uN (xi) – UN
M(xi)

∣∣2

and

L∞ = max
1≤i≤M

∣∣uN (xi) – UN
M(xi)

∣∣.

Example 3.1 In this example, we deal with the following problem:

∂α
t u(x, t) = �u(x, t) – u(x, t) + f (x, t), (x, t) ∈ (0, 1) × (0, 1], (3.1)
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u(0, t) = 0, u(1, t) = 0, t ∈ [0, 1], (3.2)

u(x, 0) = 0, ∂tu(x, 0) = 0, x ∈ [0, 1], (3.3)

where

f (x, t) = sin(πx)
(

2t–α+2

�(–α + 3)
+ t2π2 + t2

)
.

The exact solution u is given by u(x, t) = t2 sin(πx). The proposed method in the previous
section is tested on this problem with {tn = n

N }N
n=0, N = 100, {xi = i

M+1 }M
i=1, M = 5, 10, 20, 40.

We consider the RKHS Hp[0, 1] with the following RK:

Kx(y) =

⎧⎨
⎩

1
120 (1 – x)y(120x + x(6x – 120 – 4x2 + x3)y – 5xy3 + (1 + x)y4), y < x,

1
120 (1 – y)x(120y + y(6y – 120 – 4y2 + y3)x – 5yx3 + (1 + y)1x4), y ≥ x.

In Tables 1 and 2, we present, the root mean square error Lrms, the maximum absolute
error L∞, and the convergence ratio in the computed solutions for Example 3.1 with α =
1.2, 1.4, 1.8, 1.9. In a considerable number of cases, an exciting agreement between the
results is observed, which confirms the excellent validity of the proposed method.

Example 3.2 In this example, we deal with the following problem:

∂α
t u(x, t) = �u(x, t) – u(x, t) + f (x, t), (x, t) ∈ (0, 2) × (0, 1], (3.4)

u(0, t) = 0, u(2, t) = 0, t ∈ [0, 1], (3.5)

u(x, 0) = 0, ∂tu(x, 0) = 0, x ∈ [0, 1], (3.6)

where

f (x, t) =
e–x(8t2–α sin( π

2 x) + 4t2 cos( π
2 x)π�(3 – α) + t2 sin( π

2 x)π2�(3 – α))
4�(3 – α)

.

Table 1 The maximum absolute error L∞ for different values of α with N = 100 (Example 3.1).

α M = 5 M = 10 M = 20 M = 40

1.2 L∞ 8.632e–3 1.524e–3 2.302e–4 3.173e–5
Ratio – 2.5018 2.7269 2.8590

1.4 L∞ 8.514e–3 1.513e–3 2.294e–4 3.168e–5
Ratio – 2.4924 2.7214 2.8480

1.8 L∞ 8.092e–3 1.475e–3 2.266e–4 3.149e–5
Ratio – 2.4557 2.7282 2.8472

1.9 L∞ 7.883e–3 1.456e–3 2.252e–4 3.140e–5
Ratio – 2.4367 2.6927 2.8424

Table 2 The root mean square error Lrms for different values of α with N = 100 (Example 3.1).

α M = 5 M = 10 M = 20 M = 40

1.2 Lrms 7.335e–3 1.202e–3 1.735e–4 2.290e–5
1.4 Lrms 7.176e–3 1.179e–3 1.703e–4 2.250e–5
1.8 Lrms 6.589e–3 1.093e–3 1.585e–4 2.100e–5
1.9 Lrms 6.321e–3 1.053e–3 1.531e–4 2.029e–5
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Table 3 The maximum absolute error L∞ for different values of α with N = 100 (Example 3.2).

α M = 5 M = 10 M = 20 M = 40

1.3 L∞ 3.268e–3 5.051e–4 5.568e–5 8.072e–6
Ratio – 2.6928 3.1813 2.7862

1.5 L∞ 3.152e–3 4.969e–4 6.515e–5 8.042e–6
Ratio – 2.6652 2.9311 3.0181

1.7 L∞ 3.021e–3 4.884e–4 6.463e–5 8.005e–6
Ratio – 2.6289 2.9178 3.0132

1.95 L∞ 2.824e–3 4.775e–4 6.403e–5 7.971e–6
Ratio – 2.5642 2.8987 3.0059

Table 4 The root mean square error Lrms for different values of α with N = 100 (Example 3.2).

α M = 5 M = 10 M = 20 M = 40

1.3 Lrms 1.559e–3 2.002e–4 2.348e–5 2.751e–6
1.5 Lrms 1.477e–3 1.917e–4 2.256e–5 2.646e–6
1.7 Lrms 1.392e–3 1.830e–4 2.161e–5 2.516e–6
1.95 Lrms 1.275e–3 1.723e–4 2.052e–5 2.398e–6

The exact solution u is given by u(x, t) = t2e–x sin( π
2 x). The proposed method in the pre-

vious section is tested on this problem with {tn = n
N }N

n=0, N = 120, {xi = 2i
M+1 }M

i=1, M =
5, 10, 20, 40.

We consider the RKHS Hp[0, 2] with the following RK:

Kx(y) =

⎧⎨
⎩

1
480 (2 – x)y(240x + x(24x – 120 – 8x2 + x3)y – 10xy3 + (2 + x)y4), y < x,

1
120 (2 – y)x(240y + y(24y – 120 – 8y2 + y3)x – 10yx3 + (2 + y)x4), y ≥ x.

In Tables 3 and 4, we present the root mean square error Lrms, the maximum absolute
error L∞, and the convergence ratio in the computed solutions for Example 3.2 with α =
1.3, 1.5, 1.7, 1.95. In a considerable number of cases, an exciting agreement between the
results is observed, which confirms the excellent validity of the proposed method.

4 Conclusion
In this paper, a finite difference/pseudo-spectral method is presented to solve time-
fractional diffusion-wave equation. The method is based on a finite difference method in
a temporal direction to obtain a semi-discrete configuration, whereas a pseudo-spectral
method based on RK introduces spatial discretization. The implementation of the pro-
posed method is very simple and has reasonable accuracy. It can be seen from the er-
ror norms and numerical results that the proposed method for solving time-fractional
diffusion-wave equation is an excellent method.
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