53 research outputs found

    Interactive isosurface ray tracing of time-varying tetrahedral volumes

    Get PDF
    Journal ArticleAbstract- We describe a system for interactively rendering isosurfaces of tetrahedral finite-element scalar fields using coherent ray tracing techniques on the CPU. By employing state-of-the art methods in polygonal ray tracing, namely aggressive packet/frustum traversal of a bounding volume hierarchy, we can accomodate large and time-varying unstructured data. In conjunction with this efficiency structure, we introduce a novel technique for intersecting ray packets with tetrahedral primitives. Ray tracing is flexible, allowing for dynamic changes in isovalue and time step, visualization of multiple isosurfaces, shadows, and depth-peeling transparency effects. The resulting system offers the intuitive simplicity of isosurfacing, guaranteed-correct visual results, and ultimately a scalable, dynamic and consistently interactive solution for visualizing unstructured volumes

    Doctor of Philosophy

    Get PDF
    dissertationIn this dissertation, we advance the theory and practice of verifying visualization algorithms. We present techniques to assess visualization correctness through testing of important mathematical properties. Where applicable, these techniques allow us to distinguish whether anomalies in visualization features can be attributed to the underlying physical process or to artifacts from the implementation under verification. Such scientific scrutiny is at the heart of verifiable visualization - subjecting visualization algorithms to the same verification process that is used in other components of the scientific pipeline. The contributions of this dissertation are manifold. We derive the mathematical framework for the expected behavior of several visualization algorithms, and compare them to experimentally observed results in the selected codes. In the Computational Science & Engineering community CS&E, this technique is know as the Method of Manufactured Solution (MMS). We apply MMS to the verification of geometrical and topological properties of isosurface extraction algorithms, and direct volume rendering. We derive the convergence of geometrical properties of isosurface extraction techniques, such as function value and normals. For the verification of topological properties, we use stratified Morse theory and digital topology to design algorithms that verify topological invariants. In the case of volume rendering algorithms, we provide the expected discretization errors for three different error sources. The results of applying the MMS is another important contribution of this dissertation. We report unexpected behavior for almost all implementations tested. In some cases, we were able to find and fix bugs that prevented the correctness of the visualization algorithm. In particular, we address an almost 2 0 -year-old bug with the core disambiguation procedure of Marching Cubes 33, one of the first algorithms intended to preserve the topology of the trilinear interpolant. Finally, an important by-product of this work is a range of responses practitioners can expect to encounter with the visualization technique under verification

    Topology verification for isosurface extraction

    Get PDF
    Journal ArticleThe broad goals of verifiable visualization rely on correct algorithmic implementations. We extend a framework for verification of isosurfacing implementations to check topological properties. Specifically, we use stratified Morse theory and digital topology to design algorithms which verify topological invariants. Our extended framework reveals unexpected behavior and coding mistakes in popular publicly available isosurface codes

    Interactive isosurface ray tracing of large octree volumes

    Get PDF
    Journal ArticleWe present a technique for ray tracing isosurfaces of large compressed structured volumes. Data is first converted into a losslesscompression octree representation that occupies a fraction of the original memory footprint. An isosurface is then dynamically rendered by tracing rays through a min/max hierarchy inside interior octree nodes. By embedding the acceleration tree and scalar data in a single structure and employing optimized octree hash schemes, we achieve competitive frame rates on common multicore architectures, and render large time-variant data that could not otherwise be accomodated

    Parallel marching blocks: a practical isosurfacing algorithm for large data on many-core architectures

    Get PDF
    Interactive isosurface visualisation has been made possible by mapping algorithms to GPU architectures. However, current state-of-the-art isosurfacing algorithms usually consume large amounts of GPU memory owing to the additional acceleration structures they require. As a result, the continued limitations on available GPU memory mean that they are unable to deal with the larger datasets that are now increasingly becoming prevalent. This paper proposes a new parallel isosurface-extraction algorithm that exploits the blocked organisation of the parallel threads found in modern many-core platforms to achieve fast isosurface extraction and reduce the associated memory requirements. This is achieved by optimising thread co-operation within thread-blocks and reducing redundant computation; ultimately, an indexed triangular mesh could be produced. Experiments have shown that the proposed algorithm is much faster (up to 10×) than state-of-the-art GPU algorithms and has a much smaller memory footprint, enabling it to handle much larger datasets (up to 64×) on the same GPU.

    Interactive Isosurface Ray Tracing of Time-Varying Tetrahedral Volumes

    Full text link

    Micro-Computed Tomography Semi-Empirical Beam Hardening Correction: Method And Application To Meteorites

    Get PDF
    X-ray micro-computed tomography (μCT) is able to non-destructively provide high- resolution 3D images of the internal structures of dense materials such as meteorites. The widespread availability of instruments capable of biomedical micro-computed tomography means there is ample access to scanners for the investigation of geomaterials, but the scan data can be susceptible to artifacts such as beam hardening, a consequence of high X-ray attenuation in these dense materials. A semi-empirical correction method for beam hardening and scatter that can be straightforwardly applied to available biomedical scanners is proposed and evaluated. This method uses aluminum as a single calibration material to significantly reduce or remove signal intensity errors (i.e. cupping) that occur as a result of beam hardening artifacts. X-ray transmission data are linearized using custom software. Results show that it is possible through careful analysis to determine an effective method of artifact correction for specified protocols using this implementation. Following correction and validation, this technique is applied to imaging of meteorite samples. Four meteorites are examined using μCT in combination with this processing technique: Three ordinary chondrites (Grimsby, Gao-Guenie, and Ozona) and an olivine diogenite (NWA 5480). Information from μCT is compared to that of traditional methods of analysis of meteoritic samples, and the advantages and disadvantages are discussed

    Lattice cleaving: a multimaterial tetrahedral meshing algorithm with guarantees

    Get PDF
    pre-printWe introduce a new algorithm for generating tetrahedral meshes that conform to physical boundaries in volumetric domains consisting of multiple materials. The proposed method allows for an arbitrary number of materials, produces high-quality tetrahedral meshes with upper and lower bounds on dihedral angles, and guarantees geometric fidelity. Moreover, the method is combinatoric so its implementation enables rapid mesh construction. These meshes are structured in a way that also allows grading, to reduce element counts in regions of homogeneity. Additionally, we provide proofs showing that both element quality and geometric fidelity are bounded using this approach

    A fast voxelization algorithm for trilinearly interpolated isosurfaces

    Get PDF
    International audienceIn this work we propose a new method for a fast incremental voxelization of isosurfaces obtained by the trilinear interpolation of 3D data. Our objective consists in the fast generation of subvoxelized iso-surfaces extracted by a point-based technique similar to the Dividing Cubes algorithm. Our technique involves neither an exhaustive scan search process nor a graph-based search approach when generating iso-surface points. Instead an optimized incremental approach is adopted here for a rapid isosurface extraction. With a sufficient sampling subdivision criteria around critical points, the extracted isosurface is both correct and topologically consistent with respect to the piece-wise trilinear interpolant. Furthermore, the discretiza-tion scheme used in our method ensures obtaining thin-one voxel width-isosurfaces as compared to the given by the Dividing Cubes algorithm. The resultant sub-voxelized isosurfaces are efficiently tested against all possible configurations of the trilinear interpolant and real-world datasets
    corecore