
TO W A R D S TH E TH EO R Y A N D PR A C T IC E OF

V E R IF Y IN G V ISU A LIZA TIO N S

by

Tiago Etiene Queiroz

A dissertation subm itted to the faculty of
The University of U tah

in partial fulfillment of the requirem ents for the degree of

D octor of Philosophy

in

Com puting

School of Com puting

The University of U tah

August 2013

Copyright © Tiago Etiene Queiroz 2013

All Rights Reserved

The U n i v e r s i t y of Ut ah G r a d u a t e S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Tiago Etiene Queiroz

has been approved by the following supervisory committee members:

Claudio T. Silva Chair 03/28/2013
Date A pproved

Robert M. Kirby Member 03/28/2013
Date A pproved

Christopher R. Johnson Member 03/28/2013
Date A pproved

Luis Gustavo Nonato Member 04/04/2013
Date A pproved

Juliana Freire Member 03/28/2013
Date A pproved

and by Alan Davis Chair of

the Department of _____________________School of Computing

and by Donna M. White, Interim Dean of The Graduate School.

A B ST R A C T

In this dissertation, we advance the theory and practice of verifying visualization algori

thm s. We present techniques to assess visualization correctness through testing of im por

tan t m athem atical properties. W here applicable, these techniques allow us to distinguish

whether anomalies in visualization features can be a ttribu ted to the underlying physical

process or to artifacts from the im plem entation under verification. Such scientific scrutiny is

a t the heart of verifiable visualization - subjecting visualization algorithm s to the same veri

fication process th a t is used in o ther components of the scientific pipeline. The contributions

of this dissertation are manifold. We derive the m athem atical framework for the expected

behavior of several visualization algorithms, and compare them to experim entally observed

results in the selected codes. In the Com putational Science & Engineering community

CS&E, this technique is know as the M ethod of M anufactured Solution (MMS). We apply

MMS to the verification of geometrical and topological properties of isosurface extraction

algorithms, and direct volume rendering. We derive the convergence of geometrical prop

erties of isosurface extraction techniques, such as function value and normals. For the

verification of topological properties, we use stratified Morse theory and digital topology

to design algorithm s th a t verify topological invariants. In the case of volume rendering

algorithms, we provide the expected discretization errors for three different error sources.

The results of applying the MMS is another im portant contribution of this dissertation. We

report unexpected behavior for almost all im plem entations tested. In some cases, we were

able to find and fix bugs th a t prevented the correctness of the visualization algorithm . In

particular, we address an almost 2 0 -year-old bug with the core disam biguation procedure

of M arching Cubes 33, one of the first algorithm s intended to preserve the topology of the

trilinear interpolant. Finally, an im portant by-product of this work is a range of responses

practitioners can expect to encounter w ith the visualization technique under verification.

To my beloved parents.

“No am ount of experim entation can ever prove me right; a single experiment
can prove me wrong.”

- A lbert Einstein

C O N T E N T S

A B S T R A C T ... iii

L IS T O F T A B L E S ... v iii

A C K N O W L E D G M E N T S .. ix

C H A P T E R S

1......I N T R O D U C T I O N ... 1

1.1 Verification of Scientific T h e o r ie s .. 2
1.2 V erif ica tio n ... 3
1.3 Contributions .. 5

2. V E R IF Y IN G G E O M E T R Y O F IS O S U R F A C E E X T R A C T IO N
A L G O R IT H M S .. 7

2.1 Related Work .. 7
2.2 Verifying Isosurface Extraction A lgorithm s... 8

2.3 Experim ental Results .. 15
2.4 D iscu ss io n .. 23
2.5 C onclusion.. 26

3. V E R IF Y IN G T O P O L O G Y O F IS O S U R F A C E E X T R A C T IO N
A L G O R IT H M S .. 27

3.1 Related Work .. 28
3.2 Verifying Isosurface T o p o lo g y ... 30
3.3 M athem atical Tools ... 32
3.4 M anufactured Solution Pipeline .. 42
3.5 Experim ental Results .. 45
3.6 Discussion and Lim itations .. 52
3.7 Conclusion .. 56

4. P R A C T IC A L C O N S ID E R A T IO N S O N T H E T O P O L O G IC A L
C O R R E C T N E S S O F M A R C H IN G C U B E S 3 3 58

4.1 Related Work .. 59
4.2 Preliminaries ... 61
4.3 Experim ents Setup ... 65
4.4 Issues with the M C 3 3 .. 6 6

4.5 Solutions .. 73
4.6 Experim ents with Real-world D a ta se ts .. 76
4.7 Conclusion.. 79

5. V E R IF Y IN G D IR E C T V O L U M E R E N D E R IN G A L G O R I T H M 80

5.1 Related Work .. 81
5.2 V erif ica tio n ... 83
5.3 D iscretization E r ro r s .. 8 6

5.4 Convergence Com putation .. 93
5.5 Application E x a m p le s .. 96
5.6 Discussion .. 104

5.7 L im ita t io n s ... 108
5.8 Conclusion .. 109

6 . F L O W V I S U A L I Z A T I O N ...110

6.1 Review of Flow Visualization Techniques111
6.2 Perception and Evaluation117
6.3 U ncertainty and Verification ..122
6.4 O pportunities124
6.5 Conclusion ..125

7. C O N C L U S I O N ...126

7.1 The M ethod of M anufactured S o lu tio n s ..126
7.2 Order of A ccu racy ... 127
7.3 E v a lu a tio n ..127
7.4 Broad Im pact .. 128

A P P E N D IC E S

A . T H E C O U N T E R E X A M P L E IN N U M B E R S 129

B . A U X IL IA R Y E X P A N S I O N S ..131

R E F E R E N C E S .. 132

vii

LIST OF TABLES

2.1 Comparison between formal order of accuracy and observed order of accuracy
using f (x, y, z) = x 2 + y2 + z 2 — 1 as a m anufactured solution and for different
algorithms. 1 indicates the original source code and 2 our fixed version. *
indicates th a t a high-order spline was used instead of a linear interpolation. . . 18

2.2 Table of results for M acet. Triangle quality versus convergence. We were not
able to find a solution th a t provides both triangle quality and convergence. . . 23

3.1 R ate of invariant mismatches using the PL manifold property, digital surfaces,
and stratified Morse theory for 1000 random ly generated scalar fields (the
lower the rate the better). The invariants p 1 and fi2 are com puted only if the
ou tpu t mesh is a 2-manifold w ithout boundary. We run correctness tests in
all algorithms fo r completeness and to test tightness o f the theory: algorithms
that are not topology-preserving should fail these tests. The high num ber of
D e lI s o , S napM C , and M a t l a b mismatches are explained in Section 3.5.1.
1 indicates zero snap param eter and 2 indicates snap value of 0.3......................... 48

5.1 Effects of the different integration m ethods.. 91

5.2 This table shows the sensitivity of convergence verification for different sce
narios in a volume renderer. We applied our step size verification using a
m anufactured solution with a scalar field given by S (x , y, z) = xyz + xy + xz +
yz + x + y + z + 1 and transfer function t (s) varying linearly from zero to one
for s £ [0, m ax(S(x ,y , z))]. On the right, we show what part of the volume
rendering algorithm was affected by the issue. On the bottom , the first row
shows the rendered images for each of the issues. The second row shows the
error difference between the exact and rendered solutions. See Section 5.6.1

for an explanation of the undetected issues...106

6.1 Advances in flow visualization. This table is not meant to be comprehensive. . 113

6 .2 Color maps in the AIAA jo u rn a l ...119

A C K N O W L E D G M E N T S

M any thanks are due for m aking this PhD dissertation possible. F irst, I would like

to thank my advisor, Claudio Silva, for giving me the opportunity to work on a very

stim ulating subject and his guidance throughout the entire PhD program. The last five

years have changed my life, and for th a t I am very grateful. I would also like to thank Luis

Gustavo Nonato. Gustavo has helped me since my first year as a undergraduate student at

the University of Sao Paulo. Throughout the years, I learned a lot from him and we had

fun in the process as well. I wish to thank Mike Kirby for our inspiring conversations; they

often led me to th ink about interesting problems, not only in sciences but in o ther areas

as well. Claudio, Gustavo and Mike taught me how to conduct research and to be critical

of my own work. My appreciation extends to Chris Johnson and Juliana Freire for being

members of my com m ittee and provide valuable comments.

I would also like to acknowledge my co-authors. In particular, Joao Comba, Valerio

Pascucci, Julien Tierny, Lis Custodio, Sinesio Pesco, Daniel Jonson, Timo Ropinski, and

Carlos Scheiddeger. A special thanks to Carlos, w ith whom I had the opportunity to work

w ith in most of the research presented in this dissertation. Carlos’ passion for research

is contagious and often made me challenge myself to learn more. I am very grateful to

the wonderful people a t the Scientific Com puting and Imaging Institu te (SCI), including

faculty, students and staff, for providing a great learning environm ent a t the University of

U tah. At SCI, I had the opportunity to meet brilliant people, from all around the world.

A special thanks to Lauro Lins, Luciano Barbosa, Brian Summa, Carlos Dietrich, Josh

Levine, M att Berger, A ttila Gyulassy, Em anuele Santos, Blake Nelson, and Joel Daniels for

the stim ulating and insightful conversations during the past five years. Lastly, I would like

to thank my parents for encouraging me throughout these years; and my wife and friends

for being loving and supportive of my work and professional goals.

C H A P T E R 1

IN T R O D U C T IO N

Today’s technology provides unprecedented opportunities to scientists for deriving, ex

panding, or correcting scientific theories. In the past few decades, we have seen a sharp

increase in one’s ability to acquire, store, and process data . Simultaneously, the scientific

visualization emerged as a discipline and became the centerpiece in the pipeline of many

scientists. In fact, visualization techniques became the means through which scientists

explore, evaluate, and present results. Propelled by a v ibrant community, visualization

techniques have become more widespread, and have successfully been applied to a variety

of fields including medical diagnosis, com putational fluid dynamics, weather simulation,

among others. The wide range of applications, and the uniqueness of each field have further

m otivated the development of complex visualization techniques, some of which include

isosurface extraction, direct volume rendering, flow visualization, to name a few. The

am ount of work published in these (and other) areas in the past 2 0 years is remarkable.

W ith the increasing complexity and im portance of visualization techniques in the scien

tific pipeline, questions related to the reliability of visualizations began to a ttrac t attention.

In the past few years, there has been a growing num ber of published articles related to the

way hum ans perceive images, the accuracy of visualizations, ways to extract and depict

uncertainty, and how visualizations compare to each other. More generally, the goal is to

determ ine how reliable visualizations are. In this context, “reliable” is used in a broad sense

so as to include many of the topics of current interest of the visualization comm unity th a t

contributes to increase one’s confidence in visualizations: uncertainty visualization; uncer

tain ty quantification; evaluation; user perception; and verification. In this dissertation, we

focus on the verification o f visualization algorithms and implementation. Many techniques

can be used for verification purposes, bu t at the heart of the m ethodology for verifying

visualization, one will find good-old science practices.

1.1 V erification o f Scientific Theories

2

New theories are put forward and evaluated through the scientific m ethod: observations;

hypothesis formulation; predictions and testing; and analysis of the results. Details on

how to perform each of these steps vary according to the phenomena being studied. A

particularly im portant step in the process of deriving a valid scientific theory is the process

of falsification : the process by which the theory predictions are tested. As Karl Popper

argued in “The Logic of Scientific Discovery” [140, p. 9]:

W ith the help of other statem ents, previously accepted, certain singular sta te
ments - which we may call “predictions” - are deduced from the theory; es
pecially predictions th a t are easily testable or applicable. From among these
statem ents, those are selected which are not derivable from the current theory,
and more especially those which the current theory contradicts. Next we seek a
decision as regards these (and other) derived statem ents by comparing them with
the results of practical applications and experiments. If this decision is positive,
th a t is, if the singular conclusions tu rn out to be acceptable, or verified, then
the theory has, for the tim e being, passed its test: we have found no reason to
discard it. B ut if the decision is negative, or in o ther words, if the conclusions
have been falsified, then their falsification also falsifies the theory from which
they were logically deduced.

An example of testing risky prediction is the classic Eddington’s experiment of E instein’s

theory of relativity [27]. Eddington conducted an experiment to measure the light deflection

caused by the massive size of the Sun. During the eclipse of May 29th 1919, Eddington

photographed the Hyades sta r cluster and m easured the light deflected. At the time,

N ew ton’s law of gravity was the accepted theory; it predicted some shift in the position

of the stars, as observed from E arth , whereas E instein’s theory of gravity predicted twice

as much shift. Because E instein’s prediction contradicted current theory, it was a risky

prediction. The eclipse was photographed, and the deviations were measured. At th a t

time, two outcomes were possible: either the expected (predicted) deflection would not

m atch the observed one - because no deflection is observed, or New ton’s prediction was

correct, or some other value is obtained - in which case the theory would be refuted; or,

the predicted deflection would m atch the observations, in which case, nothing could be said

about the correctness of the theory, aside from th a t it has not been proved wrong and has

stood up to risky tests. The more a theory is tested, the more trustw orthy it becomes.

The same idea of falsification can be applied to test the trustw orthiness of an algorithm

and its im plem entation. During the course of a scientific inquiry, scientists carefully perform

each step in the scientific m ethod to m itigate and control errors. For each step of the

scientific m ethod, there are multiple ways to account for these errors: by using sophis

ticated statistical m ethods; advanced m athem atical models; high-precision equipments;

redundancy; etc. The reason behind it is th a t the reliability of the conclusions depends

on how each of the steps are performed. In the example of Eddington’s experiment, a series

of precautions had to be made and several error sources were taken into account to show

th a t E instein’s predictions were correct 1. Since the scientific m ethodology is used to increase

one’s confidence in a particular statem ent, it can also be applied to the substeps involved in

the form ulation of a scientific theory, which, in tu rn , builds up one’s confidence in the theory

itself. There is a need for reliability of scientific software. The lack of such guarantees led

the discipline of Com putational Fluid Dynamics (CFD) to once be referred to as “Colorful

Fluid Dynam ics” [112]. Of course, the Com putational Science & Engineering and Com puter

Science communities have already developed standard m ethodology for software verification.

1.2 Verification
The meaning of the word “verification” may vary according to the context in which it

is used. W hen applied loosely, it refers to good coding practices (e.g., use of versioning

system), software testing (e.g., unit/regression tests), and even the process of debugging a

code. These practices are obviously valuable to help build a trustw orthy software, but they

are often ad hoc and have limited scope. In this dissertation, the word “verification” is

used as in Com puter Science (CS) and Com putation Simulation (CS&E). In CS according

to IEEE standards, verification is the “process of evaluating a system or component to

determ ine whether the products of a given development phase satisfy the conditions imposed

at the s ta rt of th a t phase” [67]. In this context, the program specification is the condition

imposed at the s ta rt phase and the verification process ideally should guarantee th a t the

resulting implem entation (i.e., final com puter software) meets the specification exactly. In

3

1They started by sending off two expeditions. The first to Sobral, northern Brazil, and another to the
island of Principe, northern of Sao Tome and Principe. Aside from equipment related to the telescope,
backup lenses were packed along w ith all necessary equipment to account for the ro tation of the Earth. The
expedition at Principe, among other problems, had to deal w ith clouds and rain, thus they were able to
retrieve only two usable photos. The expedition at Sobral, on the other hand, encountered b e tte r weather
bu t had problems due to the rise of the tem perature between the tim e the telescope was assembled and
the tim e of the eclipse. P arts of the telescope expanded and as a result, the images were blurred. Another
problem was related to the very small expected light deflection. Since photograph plates could expand
and shrink w ith the tem perature, deflection could be due to other factors other th an light deflection, such
as shrinkage. O ther source of errors are involved. According to Coles [27], a t the tim e the results were
published, they were m et w ith some skepticism. For more details, see Coles [27].

4

the past few decades, several techniques have been developed to a tta in software verification,

which include theorem provers [12], model checking [25], fuzzing [7, 56], and others. This

variety of techniques is due to the difficult task of testing a program (either a model or

an im plem entation) which may contain millions of lines of code and an exponentially large

state-space where a bug might be hidden. Because of this large num ber of paths, verification

can be considered a process where one accum ulates evidence th a t a code is correct [143],

ra ther th an deriving a proof th a t the code is actually correct. These techniques have

been successfully applied not only for verification of user-level com puter code [5], but also

hardware [157] and operating system kernel [79].

Verification techniques developed in the CS&E comm unity are focused in general on

the numerical solution of partial differential equations (PDEs) th a t models a physical

phenomena of interest. In this context, verification is defined as the process of determ ining

if a computational model, and its corresponding numerical solution, can be used to represent

the m athem atical model of the event with sufficient accuracy [3]. This definition is closely

related to the errors involved during discretization and im plem entation. They are of great

im portance to scientists because they can be used to assess which of the models, m athe

m atical or com putational, should be refined. A successful approach for code verification,

known to be sensitive to code mistakes [143], is the order of accuracy test — an evaluation

of the im plem entation behavior when subm itted to successive grid refinements [143].

The verification tools proposed by the CS and CS&E communities cover only part of the

scientific pipeline. Given the im portance of visualizations, not only numerical softwares have

to be verified, bu t also visualization algorithm s and im plem entations. Nevertheless, visual

ization has not fallen under the same rigorous scrutiny as other components of the pipeline

like m athem atical modeling and numerical simulation. Unlike traditional com putational

science and engineering areas, there is no commonly accepted framework for verifying the

accuracy, reliability, and robustness of visualization tools. Furtherm ore, very few studies

have focused on how the error originating from other components of the com putational

pipeline im pacts visualization algorithms.

W hile the lack of a well-established framework for verifying visualization tools has led to

the development of a variety of analysis techniques [195, 174], we believe visualization has

achieved sufficient im portance to w arrant investigation of stricter verification methodologies.

Several authors have already asserted its need [54, 55, 76]. This work presents a concrete

step towards reducing the gap between best practices in sim ulation science and visualization.

1.3 C ontributions
We advocate th a t all visualization algorithm s and im plem entation should be verified.

Hence, the main contribution to this dissertation is to advance the theory and practice of

verifying visualizations. We do so by extracting im portant m athem atical properties of the

algorithm s under verification. Then, we verify whether the im plem entation honors th a t

property by stress testing it. As in the case of falsification of scientific theories, a m ism atch

reveals a problem; in the case of visualization, the problem will lie in the im plem entation,

algorithm , or verification process. On the other hand, if the im plem entation honors the

property of interest for all performed tests, then nothing can be said about the correctness

of the im plem entation and algorithm , except th a t it has stood severe stress tests. More

specifically, our contribution can be summarized as follows:

1. C hapter 2: Verifying Geom etry of Isosurface Extraction Algorithms [46].

(a) We introduce a framework for the verification of visualization tools based on the

M ethod of M anufactured Solutions, and show how to apply it for the verification

of geometrical properties of isosurface extraction algorithm s and im plem enta

tions;

(b) We provide the required m athem atical analysis for the im plem entation of the

verification procedure. The im portant properties th a t should be honored are

derived from this m athem atical analysis;

(c) We show concrete results, and show how this verification procedure helped us

to find and fix problems in both algorithm and implem entation. Moreover, we

show th a t it is not trivial to find solutions th a t are both geometrically accurate

and honors additional properties (such as triangle quality);

(d) As a by-product of the verification, we detail the behavior of several freely

available implem entations;

2. C hapter 3: Verifying Topology of Isosurface Extraction Algorithms [45].

(a) We introduce a framework for verification of topological properties of isosurface

extraction algorithms;

(b) We derive a framework based on Digital Topology for the extraction of im por

tan t invariants (topological properties) th a t should be honored by topologically

correct implmentations;

(c) In addition, we derive a framework based on Stratified Morse Theory for the

extraction of im portant invariants;

5

(d) We detail the behavior of several freely and commercially available im plem enta

tions of isosurface extraction; We show th a t all bu t one im plem entation failed

our tests;

3. C hapter 4: Practical Considerations on the Topological Correctness of M arching

Cubes 33 [29].

(a) We show th a t bo th the M arching Cubes 33 algorithm and im plem entation have

problems th a t prevent its topological correctness. Moreover, one of the problems

is traced back to its original publication;

(b) We propose a new and alternative ways to deal w ith the issues raised;

(c) Building on recent efforts on executable papers, we provide new ways to interact

w ith our work so as to improve understanding and reproducibility of the results

shown;

4. C hapter 5: Verifying Direct Volume Rendering Algorithm [43].

(a) We introduce a framework for verification of volume rendering algorithm s and

implementations;

(b) We provide the error analysis of the standard volume rendering integral th a t is

crucial for the verification procedure;

(c) We show how we used this inform ation to find and fix problems in widely used

volume rendering im plem entations. Moreover, we provide a first a ttem p t to

detect the sensitivity of the verification procedure;

5. C hapter 6 : Flow Visualization [44].

(a) We provide an overview of the some of the topics involved in reliable visualization.

We focus on flow visualization and supporting tools.

The goal of this dissertation is to provide another step towards creating a culture of

verification inside the visualization and related communities.

6

C H A P T E R 2

V E R IF Y IN G G EO M ETR Y OF

ISO SU R FA C E E X T R A C T IO N

A LG O R ITH M S

In this chapter, we are concerned with im portant properties of isosurface extraction

algorithms. In particular, we will focus on geometrical properties; thus, the verification

procedure developed in the forthcoming sections will be focused on the correctness of

the geometry of the extracted surfaces. This is in contrast to topological properties of

isosurfaces, which will be discussed in Chapter 3 .

2.1 R elated W ork
Isosurface extraction is a popular visualization technique, being a tool currently used

in science, engineering, and applications. This popularity makes it a natural target for

this first application of verification mechanisms in the context of visualization. This same

popularity has also driven a large body of work comparing different isosurface extraction

algorithms.

Previous researchers have examined topological issues [127, 94], mesh quality [33, 153],

accuracy [131, 195], and performance [165]. The influence of different reconstruction schemes

and filters in scalar visualization has also been examined [16, 139]. In this chapter, we focus

on techniques to verify the correctness of algorithm s and their corresponding im plem enta

tions. In particular, we provide m athem atical tools th a t other researchers and developers

can use to increase their confidence in the correctness of their own isosurface extraction

codes. A trad itional way to test im plem entations in scientific visualization is to perform

a visual inspection of the results of the M arschner-Lobb dataset [102]. In the context of

isosurface extraction, researchers routinely use tools such as M etro [24] to quantitatively

m easure the distance between a single pair of surfaces. We argue th a t the methodology

presented here is more effective and more explicit a t elucidating a technique’s lim itations.

8

In particular, our proposal pays closer a tten tion to the interplay between a theoretical

convergence analysis and the experim ental result of a sequence of approxim ations.

Globus and Uselton [55] and more recently, Kirby and Silva [76] have pointed out

the need for verifying both visualization techniques and the corresponding software im

plem entations. In this chapter, we provide concrete tools for the specific case of isosurface

extraction. Although this is only one particular technique in visualization, we expect the

general technique to generalize.

It is im portant to again stress th a t verification is a process: even when successfully

applied to an algorithm and its im plem entation, one can only concretely claim th a t the

im plem entation behaves correctly (in the sense of analyzed predicted behavior) for all test

cases to which it has been applied. Because the test set, both in term s of model problems

and analyzed properties, is open-ended and ever increasing, the verification process must

continually be applied to previous and new algorithm s as new test sets become available.

This does not, however, preclude us from form ulating a basic set of metrics against which

isosurface extraction m ethods should be tested, as this is the starting point of the process.

This is w hat we tu rn to in the next section.

2.2 V erifying Isosurface E xtraction A lgorithm s
In this section, we describe the technique we use for verifying isosurface extraction

algorithms, namely the method o f manufactured solutions (MMS). We illustrate a possible

im plem entation of MMS in Algorithm 1 and Figure 2.1. This technique requires us to write

down the expected behavior of particular features of interest of the object (or model prob

lem) being generated. In our case, we are generating triangular approxim ations of smooth

isosurfaces, and the features of interest are geometric surface convergence, convergence of

normals, area, and curvature.

To use MMS, we first accomplish a m athem atical analysis of the expected convergence

rate of the features (or characteristics) of interest, known in the numerical literature as

the form al order o f accuracy of the characteristic. This analysis is done for solutions of

the problem th a t can be conveniently described and analyzed (these are the m anufactured

solutions). Then, the code is executed w ith progressively refined versions of the d a ta th a t

are used in the generation or sampling of the m anufactured solution. Finally, the empirical

convergence rate is compared to the one predicted by the analysis. W hen the convergence

rates are comparable, we increase our confidence in the algorithm . If the realizable behavior

9

A lg o r ith m 1 Overview of the m ethod of m anufactured solutions (MMS).

M M S (f, u, h i)
1 [> Let f be a scalar field containing the solution surface S
2 > Let u be a given property (f , normals, area, etc.)
3 > Let h 1 be the initial grid size
4 fo r i ^ 1 to n
5 do Ghi ^ an approxim ation of f a t grid size hi
6 Shi ^ an approxim ation of S com puted from Ghi
7 Ehi ^ \ \ u (S hi) - u (S)||„ i
8 Xi ^ log h i , yi ^ log Ehi
9 hi+i ^ h i / 2

1 0 q ^ slope of best-fit linear regression of (xi ,y i)
11 Compare q and q

F ig u re 2.1. Workflow for the m ethod of m anufactured solution (Algorithm 1), clockwise
from the top left.

disagrees w ith the analysis, either (1) the analysis does not correspond to the correct behav

ior of the algorithm , (2) the assum ptions upon which the analysis was build were violated

by the input d a ta and hence, the predicted behavior is not valid for the circumstances

under investigation, or (3) there are issues with the algorithm or w ith the im plem entation

of the algorithm (depending on access to source code and algorithmic details, one may not

be able to distinguish between these two - algorithm ic or im plem entation - and hence, we

in this work always consider them together. Given sufficient information, the verification

process can help further delineate between these two issues). Notice, however, th a t all three

situations w arrant further investigation. In the following sections, we will discuss these

issues in more detail. Let us first clarify how we will arrive a t theoretical and empirical

convergence rates.

For a fixed grid size, we will strive to write the approxim ation error between the desired

isosurface property and its approxim ation by:

E = \uapprox uex:act\u = 0 (hP') = ClhP (2.1)

where uapprox,u exact are the approxim ated and exact values of a property u, \ ■ \ u is the norm

used to compare the approxim ate and exact property, p is the order of accuracy and a is

a constant. Practically speaking, the polynomial expression (2.1) is not very convenient

for numerical experim entation, as it is hard to find the value of p from the direct plot of

h against E . The standard technique to estim ate p is to linearize by working on a log-log

scale:

log E = log(ahp) = log a + p log h. (2.2)

Using this linearized version, we estim ate p from the slope of the line th a t best fits the

points (log h, log E) in a least-squares sense. We use this technique in Section 2.3 when

testing the isosurface codes.

MMS critically depends on an analysis of the order of accuracy of expected solutions.

A lthough this seems quite simple, the order of accuracy under a sensitive norm like | | • \ u

has shown in practice to be very effective in bringing out im plem entation errors in numerical

approxim ation schemes [146, 3]. In this dissertation, we show th a t this analysis is ju st as

effective for isosurface extraction. In addition, we believe the convergence analysis required

by MMS is interesting in its own right. As we will discuss in Section 2.4, it helps to shed

light on the consequences of im plem entation choices.

In the context of isosurface m ethods, m anufactured solutions can be built by specifying

a “solution surface” to be the exact solution and deriving a scalar field th a t contains such a

solution surface as a level set. The verification m ethodology then proceeds as following: (1)

use the m anufactured scalar field as input for the isosurfacing m ethods, (2) run the methods,

and (3) check the ou tpu t surface against the solution surface (sometimes called the ansatz

solution w ithin the m athem atical verification literature). In many cases, the m anufactured

10

11

scalar field can be derived analytically, m aking the observed order of accuracy tractab le (we

give examples in next section).

In w hat follows, we will derive expected orders of accuracy for several features of

surfaces produced by isosurface extraction codes. We keep our assum ptions about the

actual algorithm s to a minimum to maximize the applicability of the argum ents given. We

essentially only assume th a t the maximum triangle size can be bounded above at any time,

and use Taylor series argum ents (under assum ptions of smoothness) to derive convergence

rates. It is im portant to point out th a t order of accuracy analysis of polyhedral surfaces

has been studied by many researchers [110, 190, 191, 62]. In fact, the results presented

below are in agreement with the ones reported in the literature. However, because we

are considering isosurface extraction, some of our argum ents benefit by being able to be

condensed to simpler statem ents.

2.2.1 C onvergence o f V ertex P osition

We sta rt our analysis of isosurface extraction by studying the convergence of vertex

positions. We analyze this convergence indirectly by relating the values of the scalar field

a t the vertex points and the distance between the vertices and the correct isosurface. Given

a value A such th a t the exact isosurface S is defined by f (x , y , z) = f (v) = A, the algebraic

distance of v to S is defined as | f (v) — A| [167]. Notice th a t algebraic distances only makes

sense for implicit surfaces: it requires a scalar field. In addition, we restrict ourselves to

regular isosurfaces, ones where for every point x in S, |V f (x)| exists and is nonzero. Then,

the geometric distance between v and S is approxim ated by |f(v) — A |/ |V f(v) | [167]. We

illustrate this relation in Figure 2 .2 . Since, by assum ption, |V f(x) | > k for some k > 0,

and all x in S, convergence in algebraic distance implies convergence in geometric distance.

Convergence in algebraic distance, however, is much more tractab le m athematically, and

this is the item to which we tu rn our focus.

M any isosurface m ethods estim ate vertex positions through linear interpolation along

edges of a grid. Let f : U C R 3 ^ R be the a sm ooth real function defined in a subset

U = [ax ,bx] x [ay,by] x [az ,bz], where [a,i,bi],i £ x , y , z are real intervals. We assume the

intervals [aj, b] have the same length and let ax = x 0, . . . , x n = bx, ay = y0, . . . , yn = by, and

az = z0, . . . , z n = bz be subdivisions for the intervals such th a t x i = xo + ih, yi = y0 + ih,

Zi = z0 + ih, i = 0 , . . . , n, where h is the grid size and cij k = [xi , x i+ 1] x [yj, yj+ 1] x [zk, zk+1]

is a grid cell. Through a Taylor series expansion of f , one can evaluate f a t a point p £ Cjk

12

F ig u re 2.2. The distance between a point v and the isosurface S w ith isovalue A can be
approxim ated by the algebraic distance divided by the gradient m agnitude of the scalar
field a t v, \ f (v) — A |/ |V /(v) |. In the figure, the thick circle represents the isosurface S and
the fainter isolines illustrate changes in gradient m agnitude: in regions of small gradient
m agnitude, the algebraic distance is small bu t geometric distance is large, and vice-versa
for large gradient m agnitude.

as:

f (P) = fijk + Vf i j k ■ S + 1 8?H (£)S (2.3)

where fi jk = f (x i , y j , Zk), Vf i j k is the gradient of f in (x i , y j , z k), H (p) is the Hessian of f

a t a point £ connecting (xi , y j , zk) and p, and 5 = (u, v, w) T is such th a t p = (xi + uh, yj +

vh, zk + w h)T.

Let the linear approxim ation of f in p be defined by

f (p) = fijk + V fijk ■ p (2.4)

and consider a point xP\ such th a t f(oc\) = A, th a t is, x \ is a point on the isosurface A of f .

The algebraic distance between the exact isosurface f (x ,y ,z) = A and the linearly

approxim ated isosurface can be m easured by \f (x^) — A\. From Equations (2.3) and (2.4),

one can see that:

\f (x a) — A\ = \f ijk + V f ijk ■ p ^ pTH(p)p — A\ = (2 5)

\ / (x a) + O (h2) — A\ = O (h 2) .

thus, the linearly approxim ated isosurface is of second-order accuracy.

2.2.2 C onvergence o f N orm als

Assume, generally, th a t the scalar field f (x , y, z) = A can be locally w ritten as a graph

of a function in two-variables g(x(u, v), y(u, v)) = A — f (x(u, v), y(u, v), zk), as illustrated

13

in Figure 2.3, where x(u, v) = x i + uh and y(u, v) = yj + vh. This is acceptable because we

have already assumed the isosurface to be regular. Still w ithout losing generality, we write

g(x(0, 0), y(0, 0)) = 0, th a t is, the isosurface contains the point (x i , y j , z k). Let $ (u, v) =

(x (u , v) , y (u , v) , g (x (u , v) , y (u , v))) be a param etrization for the isosurface f (x , y , z) = A in

cijk and
d® d® „ / dg dg \ T

(2 .6)
d® d® 2 (dg 9 a \ 2 ^

x = h (, — 7T", ̂) = h n ° du dv \ d x dy)

be the normal vector in ®(0 , 0) = (xi , y j , g (x i , y j)) (the partial derivatives of g are evaluated

at (x(0 , 0), y (0 , 0)) = (xj, y j)).

Consider now the triangle defined by the points p i ,p 2 , and p 3 approxim ating the isosur

face f (x , y , z) = A in the grid cell cijk (see Figure 2.3). Let pi be the grid point (xi , y j , z k),

so p i = ®(0,0), p2 = ®(u2 ,v 2), and p3 = ®(u3, v 3). Using the cross product in R 3, the

normal of the triangle p ip2p3 can be com puted by:

n P1P2P3= (p 2 - p i) x (p3 - p i)=
f (v2g(x(u3,v3), y(u3,v3)) - v3 g(x(u2,v2) , y(u2,v2)) \

(u3g(x(u2,v2), y(u2,v2)) - u2g(x(u3,v3),y(u3,v3)))\
h2(u2v3 - u3v2))

(2.7)

Expanding g(x(u i , v i) , y (u i , v i)), i £ {2,3} in a Taylor series, some term s cancel and the

normal npip2P3 becomes:

nPiP2P3 = rh2 (- d x + O(h), - ~g~ + O(h), 1

T
(2 .8)

where r = u 2v3 - u 3v2. Com paring the exact normal vector n 0 in Equation (2.6) with

nP1P2P3 above, we recover first-order of accuracy for normals. In addition, notice th a t the

usual scheme of estim ating vertex normals by the arithm etic mean of triangle normals does

not decrease the order of accuracy; th a t is, vertex normals (com puted by arithm etic mean)

are a t least first-order accurate.

F ig u re 2.3. Isosurface local param etrization and approxim ation.

2.2 .3 C onvergence o f A rea

Currently, much less is known about convergence in area, compared to convergence of

vertices or normals. To illustrate the difficulty involved in approxim ating lengths and areas,

consider the sequence of approxim ations to a straight line shown in Figure 2.4. Even though

the function sequence converges uniformly to the line, the length of the approxim ation stays

constant.

To the best of our knowledge, the only relevant results establish convergence in area

given convergence in vertex positions and convergence in normals, such as in H ildebrandt

et al. [62]. However, the authors only establish asym ptotic convergence, w ith no order of

accuracy associated with it. The argum ent is more m athem atically involved th an space

allows here, so we refer the reader to th a t paper. Currently, th is means th a t the only

information the observed order of accuracy provides to us is th a t if we expect convergence

in normals, we should also expect convergence in area, and vice-versa.

2.2 .4 C onvergence o f C urvature

The following formula gives an estim ate of the curvature a t a vertex p:

K (p) = 2n - £ $i'+1 (2.9)
3 A i i+ 1

where 0ii+1 and A ii+1 are the angle Z.pippi+1 and area of the triangle pippi+1, respectively

(sum m ation is over all triangles comprising the star of p) [110]. Meek and W alton [110]

showed th a t the curvature com puted via Equation (2.9) does not converge in general;

th a t is, if the vertices of the star of p are arb itrarily distributed around p, one cannot

expect curvature convergence. In fact, they described a more general result stating th a t

O(h) accuracy can only be obtained if the normals are known to have accuracy O (h2).

14

F ig u re 2.4. Uniform convergence does not imply convergence in area. The sequence of
curves converges uniformly to a straight line, bu t the length of the curves does not change.

15

Subsequently, Xu [190] presented a very particular d istribution of vertices around p under

which the curvature estim ated by Equation (2.9) has accuracy O(h2).

Curvature discretization schemes other than the one given in Equation (2.9) such as

the quadratic-fit and spherical-image m ethod (see Meek and W alton [110] for details) also

dem and particular vertex distributions to ensure convergence. In our context of keeping

the analysis applicable for many isosurfacing algorithms, this means we cannot use the

lack of observed curvature convergence as an indication of problem atic behavior. Based

on the results mentioned above, one should actually expect curvature not to converge for

most isosurface extraction algorithms. More generally, this indicates a weakness of MMS,

namely th a t some features of interest (such as curvature) will not have sufficient theoretical

order of accuracy to be used in numerical measurements. Notice, in addition, th a t if we had

not w ritten down the theoretical model for curvature convergence, we might have expected

some sort of curvature approxim ation. Even a negative result such as the one presented in

this section can increase the confidence in the results generated by an im plem entation.

2.3 E xperim ental R esu lts
In this section, we present the results of applying the afore-described methodology. We

use the framework to verify six different isosurface extraction codes, namely: VTK M arching

Cubes [100], SnapMC [141], M acet [33], Dual Contouring [73], Afront [153], and Dellso [32].

All these im plem entations are open source an d /o r publicly available. Before presenting the

actual results of subjecting these im plem entations to the verification process, we briefly

review their salient features.

2.3.1 V T K M arching C ubes

M arching Cubes [100] (MC) is arguably the most popular isosurface extraction algo

rithm . It reduces the problem of generating an isosurface triangulation to a finite set

of cases by considering the signs of how the isosurface intersects each cell of a regular

background grid. As there are only 256 different types of intersections between the isosurface

and a regular Cartesian 3D cell, a tem plate of triangles is set to each case, making the

im plem entation quite simple through a look-up table. The vertices of the triangles lie on

the edges of the cubic cells, and they are com puted by linearly interpolating the implicit

function values stored at the corners of the grid cell.

16

2.3.2 SnapM C

SnapMC [141] is a recently proposed algorithm th a t extends the original M arching Cubes

look-up table to cases where the isosurface goes exactly through the corners of the back

ground grid. The new look-up table is autom atically built by an adaptation of the convex

hull scheme proposed by Bhaniram ka et al. [6]. Even though the traditional M arching Cubes

algorithm can easily handle these cases by some kind of symbolic perturbation , SnapMC

perturbs the scalar field to avoid edge intersections close to grid corners. In particular, it

changes the values on the grid so th a t the surface is “snapped” to the grid corners.

2.3 .3 M acet

M acet [33] is another variant of M arching Cubes th a t tries to improve the shape of the

triangles in a mesh. Unlike SnapMC, it perturbs the active edges of M arching Cubes cases

by moving the vertices before the triangulation step. The m otivation behind M acet is th a t

poorly-shaped triangles tend to be generated when the intersection between the isosurface

and a grid cell is approxim ately parallel to an edge of the grid cell. Therefore, some corners

of the background grid are displaced so as to avoid the parallel-like intersections.

2.3 .4 D ual C ontouring

Dual Contouring [73] is a feature-preserving isosurfacing m ethod to ex tract crack-free

surfaces from both uniform and adaptive octree grids. This technique can be seen as a

combination of Extended M arching Cubes [81] and SurfaceNets [53] as it makes use of

Hermite d a ta and quadratic error function m inimization to position the vertices of the

surface mesh (as Extended M arching Cubes) and the dual topology to connect such vertices

(as SurfaceNets). Dual Contouring tends to generate be tte r quality triangles th an M arching

Cubes while still being very effective in representing sharp features, rendering this implicit

polygonalization m ethod a good alternative to the popular M arching Cubes.

2.3.5 A front

Afront [153] is an advancing-front m ethod for surface extraction. Although we focus on

applying Afront to isosurface extraction, it can also be used for remeshing and triangulating

point-set surfaces. The outstanding feature of Afront is th a t it generates triangles adapted to

the local details of a surface, namely its maximum absolute curvature. In this sense, Afront

is fundam entally different from the other algorithm s we analyze. In lieu of grid refinement,

17

we will use its p param eter to control triangulation size. Because the m anufactured solution

we use is a sphere, reducing p by half is roughly equivalent to reducing the maximum triangle

size by half. A full analysis of Afront (and, in particular, the influence of the other main

param eter n) w arrants further investigation, bu t is beyond the scope of this dissertation.

2.3 .6 D elIso

DelIso [32] is a Delaunay-based approach for isosurfacing. It computes the restricted

Delaunay triangulation from a 3D Voronoi Diagram. We run our tests on a customized

version of DelIso 16 bit, and our examples use the default set of param eter.

In w hat follows, we present the results of applying the verification process to these

algorithms. We will describe the m anufactured solutions we use and their observed conver

gence rate on the isosurface extraction algorithm.

2.3 .7 O bserved Order o f A ccuracy

We sta rt by investigating the behavior of the algorithm s under the m anufactured solution

given by the scalar field f (x , y , z) = x 2 + y2 + z2 — 1 and isosurface f (x , y, z) = 0 in the

dom ain D = [—4, 4]3. Let Sk be a simplicial complex th a t approxim ates S for a given

discretization param eter k (cell size h for m arching cubes-based m ethods, accuracy p for

Afront, and maximum edge size i for DelIso).

The order of accuracy for VTK M arching Cubes, SnapMC, M acet, and Dual Contouring

depends on the cell size h. We run our tests w ith grid refinement h i + 1 = hi/2 and initial

condition h 1. For Afront, the order of accuracy depends on param eter p, thus the refinement

is given by pi + 1 = pi/2 w ith initial condition p1. Our customized version of DelIso has an

additional param eter i th a t controls the largest edge on the ou tpu t mesh. In this case,

the refinement formula is ii+ i = ii/2 . In the particular case of SnapMC, we set the snap

param eter 7 to its maximum value (7 = 1/2). Even though the m anufactured solution we

selected is about as simple as can be imagined, comparing the formal order of accuracy with

the observed one was enough to suggest bugs in two im plem entations. The observed order

of accuracy of the examined properties is presented on Table 2.1.

2.3 .7 .1 A lgebraic d istan ce

Section 2.2.1 shows th a t one expects second-order convergence for function value on

vertices if linear interpolation is used. We define the following approxim ation error on L ^

18

T a b le 2.1. Comparison between formal order of accuracy and observed order of accuracy
using f (x, y, z) = x 2 + y2 + z 2 — 1 as a m anufactured solution and for different algorithms.
1 indicates the original source code and 2 our fixed version. * indicates th a t a high-order
spline was used instead of a linear interpolation._____________________

Vertex Normal Area Curvature
O(h2) O(h) - O(1)

VTK MC 1.94 0.93 2 .0 0 —3.35
SnapMC 1.93 0.82 2.14 —0.29
Afront* —0.06 0.80 1.93 —0.27
M acet1’* 0.98 —0 .1 2 0.29 —2.41
M acet2’* 0.03 0.75 2 .0 2 —0.61
D C 1 1 .0 2 —0 .1 1 0.69 —2.08
DC 2 1.96 0.96 1.89 —0.15
DellIso 1.49 1.07 2.04 0.07

norm:

E k = max |A — f (vj)| (2.10)
j= 1—n

where A is the isovalue of interest, vj is a vertex of S, and n the number of vertices.

Figure 2.5(a) shows the vertex observed order of accuracy. VTK Marching Cubes, SnapMC

have nearly quadratic convergence rates, as shown in Figure 2.5(a). Afront shows a zero-

order of accuracy though it presents very low error (in fact, the lowest in Figure 2.5(a)).

This is due to the Catmull-Rom spline th a t is being used for surface approxim ation on

the voxelized grid. Since it has cubic-order of accuracy, even for large values of p it can

approxim ate with high precision the m anufactured solution f . The next section shows

th a t this is due to a poor choice for a m anufactured solution. DelIso implem entation has

nonzero order of accuracy due to an outlier. Large values of i causes bad approximations

of the m anufactured solution.

The Macet and Dual Contouring curves suggest th a t the algorithms converge to a fixed

value. In fact, there was indeed a problem in the implem entation th a t was affecting the

convergence of Macet and Dual Contouring (specifically, we found a hard-coded limit in the

num ber of steps in a root-finding procedure th a t was being triggered by the high resolution

of the volume). Once fixed, we obtain the results shown in Figure 2.6(a). Macet and Afront

now have similar behavior in the observed order of accuracy of vertex position (Figure

2 .6(a)). This is because both methods use high-order interpolation with splines, not linear

interpolation as assumed before (see Section 2.4.2).

(LUJOU
°°7p0\

(UJJOU
°°7)3oI

-1

-2

-4

-5

2nd o rd e r s lope
v tk MC (p=1.94)
M acet (p=0.98)
Dual C o n to u rin g (p = l.0 2)

Snap MC (p = 1.93)
A fro n t (p = —0.06)
De llso (p = 1.49)

-l

-2

-3

(b) Normal

------- 1s t o rd e r s lope
• - • v tk MC (p =0.93)

■ ■ M acet [p=-0 .1 2)
a - a Dual C o n to u rin g (p =
v — v Snap MC (p =0.82)

0 - 0 A fro n t (p=0.80)
-O De llso (p = i.07)

-i

log(/l) log (h)

F ig u re 2.5. Observed order of accuracy. The im plem entations of M acet and Dual Contouring have a bug th a t causes the deviation
on errors. The black continuous line represents the expected behavior, p is the slope of the linear regression for each curve.

oc

bjO
o

-1

-2

-3

-4

-5

-6

0

oc

M

-2

(b) Normal

------- 1st order slope

• ■■■• v tk MC (p=0.93)

■■ Macet (p = 0.75)
a - * Dual Contouring (p=0.96)

v — v Snap MC (p=0.82)

O - o A fron t (p =0.80)

♦ Dellso (p=l.07)

-1

(d) Curvature • - • v tk MC (p = —3.35)

■■ M a c e t (p = —0.61)

A-- A D u a l C o n to u r in g (p = 0.15)

v — v S nap MC (p = —0.30)

0 - 0 A fro n t (p = —0.27)
♦ - ♦ D e llso (p = 0.07)

log (h) log (h)

F ig u re 2.6. Observed order of accuracy after fixing M acet and Dual Contouring code (other curves rem ain the same). The black
continuous line represents the expected behavior, p is the slope of the linear regression for each curve.

boo

------- 2nd o rd e r s lope
• v tk MC (p=1.94)
■ ■ M ace t (p=0.03)
a - a Dual C o n to u rin g {p=l.£
v— v Snap MC (p = 1.93)

0 - 0 A fro n t (p = -0 .0 6)
♦ - ♦ D e llso (p = 1.49)

— ,— , . , i----------------------------- .-------------------------------— .— .— ■ ■ ■ ,----------------------------- .— —

(a) Algebraic distance

2.3 .7 .2 N orm als

Section 2.2.2 shows th a t one expects first-order of accuracy for normal com putations.

We define the following approxim ation error using L ^ norm:

Ek = m ax \da . \ (2 .1 1)
j= 1—n

where daj is the angle between the normal of the triangle j j and the normal of the point in

S closest to the centroid of j j . As shown in Figure 2 .5(b), VTK M arching Cubes, Afront,

SnapMC, and DelIso have good observed order of accuracy above 0.8. However, only VTK

M arching Cubes and DelIso present close proximity to linear. Macet and Dual Contouring

once again do not present a consistent order. Figure 2.6(b) shows the results after fixing

both codes.

2 .3 .7 .3 A rea

Although there is no formal order of accuracy for area, one expects some convergence

for it (Section 2.2.3). We define the following approxim ation error:

Ek = \A(S) — A(Sk)\ (2 .1 2)

where A is the area function of a continuous or piecewise-linear surface. The results are

shown in Figure 2.5(c). VTK M arching Cubes, Afront, and DelIso present second-order of

accuracy, as shown in Figure 2.5(c). SnapMC accuracy is slightly be tte r th an quadratic due

to poor approxim ation for large h. The error dropped faster than quadratic when the grid

was refined for the first time. Macet and Dual Contouring exhibit once again unexpected

behavior. Unlike the previous time, the curves now seem to diverge when h is too small.

Once the bug is fixed, the convergence curves changes, and they become quadratic (Figure

2 .6 (c)).

2 .3 .7 .4 C urvature

Section 2.2.4 shows th a t one expects zero-th order of accuracy for curvature com putation.

We define the approxim ation error using L^, norm:

E k = max \ K(v j) — K (v j)\ (2.13)
j= 1—n

where K (v) is the Gaussian curvature at v e S and K (v) is the Gaussian curvature at

v e S. In this particular case where S is a sphere, K (v) = 1 for every v e S. The results

21

22

are shown in Figure 2.5(d). DelIso, Afront, and SnapMC are close to zeroth-order accuracy.

The curvature order of accuracy for VTK M arching Cubes, on the other hand, diverges

significantly. This unexpected behavior might deserve further investigation which we leave

for future work. Although the curves shown in Figure 2.5(d) for M acet and Dual Contouring

diverge, they change after fixing the code (Figure 2 .6(d)).

2.3 .8 D etec ted B ugs

We were able to find and fix bugs in two of the im plem entations under verification,

namely, M acet and Dual Contouring, using as m anufactured solution a sphere centered

at origin with radius 1. The new result curves are shown in Figure 2.6. The observed

order of accuracy for Dual Contouring is quite satisfactory for all m anufactured solution.

In particular, the normal order of accuracy has the best rate among the m ethods. Macet

improved for its results for area. On the other hand, it still has some issues related to

normals, which perhaps indicates a need for more tests and verification. The new order of

accuracy for algebraic distance (Figure 2.6(a)) does not tell us much about the correctness

of the code because of the zero-th order of accuracy (same for Afront).

The zero-th order of accuracy might happen if the formal order of accuracy is zero-th

order, in which case the observed order m atches the formal order. It might also happen due

to a poor choice for m anufactured solution. If it is not complex enough, the im plem entation

being tested may approxim ate exactly the solution and therefore there is no error w ithin

the approxim ation although another error source (truncation error, for instance) may show

up. The next section presents a detailed discussion concerning MMS.

Although we m anaged to fix the M acet convergence problem, we were not able to do

so in a way th a t preserves triangle quality. Two were the problems we found in the source

code, and we proposed two solutions for one of them . Table 2.2 shows th a t we could not

find any com bination th a t both fixed the convergence problem and preserved the triangle

quality simultaneously. This sort of behavior raises the question if there is a theoretical

problem th a t prevents both from being satisfied simultaneously, or it is ju st a m atte r of

finding a be tter algorithm ic fix. In both cases, further study and subsequent tests m ust be

accomplished.

23

T a b le 2.2. Table of results for Macet. Triangle quality versus convergence. We were not
able to find a solution th a t provides both triangle quality and convergence.

Bug # 1 Bug # 2 Quality Observed accuracy
No Fix No Fix Good Bad
Fix 1 No Fix Good Bad
Fix 1 Fixed Bad Good
Fix 2 No Fix Good Bad
Fix 2 Fixed Bad Good

2.4 D iscussion
As we have shown, MMS is an effective means of diagnosing problems within the

algorithm s and im plem entations of isosurface extraction algorithms. In this work, we have

considered the two - algorithm and im plem entation - as one unit as one cannot always

distinguish between the two if only limited information (source code and algorithm ic details)

is available. In this section, we present a more thorough discussion of the use of MMS,

particularly for isosurface extraction.

2.4.1 On th e Im p lem en tation and U se o f M M S

One of the prim ary advantages of verifying simulation codes using MMS is th a t it is a

nonintrusive m ethod. MMS trea ts the code being verified as a blackbox, and so can be easily

integrated into an existing test suite w ith little to no impact. However, MMS does not “see”

the im plem entation, and so provides little direct information about where a particular bug

might be when there is a discrepancy between the formal and observed orders of accuracy.

In our experience, there are three main places where mistakes can happen: (1) in the

design and construction of the m anufactured solution, (2) in the coding of the algorithm

being tested, and (3) in the evaluation and in terpretation of the results. Mistakes on the

evaluation of results have two flavors: m isinterpretation or poor formal order of accuracy.

The first heavily depends on testers’ and experts’ experience and ability to judge w hat a

good result is. For example, should the normal observed order of accuracy for Afront and

M acet on Figure 2.5(b) be considered linear (p = 0.80 and p = 0.75, respectively)? The

la tte r depends on a rigorous formal order of accuracy analysis of the algorithm considering

all sorts of errors; even round-off errors may be significant. In fact, we spent more tim e

on writing out rigorously the analysis of the formal order of accuracy and on searching

for possible sources of error than on the tests themselves. This again highlights the fact

th a t verification using MMS is a process: it is typical to go back to the white board and

refine formal analyses before arriving at conclusive answers. A lthough the formal order

of accuracy analysis might be a painful process, the literature has many results th a t can

be prom ptly used. As a consequence, if one wishes to writes his own MC technique, for

instance, his only concern is to write a test which exploits the results available w ithin the

literature.

2.4.2 On th e C om p lex ity o f th e M anufactured Solu tion

The complexity of the m anufactured solution can have a large influence on the effec

tiveness of verification. Suppose one chooses the m anufactured solution to be f (x, y, z) =

x + y + k , k constant, instead of a sphere. Since M C-based techniques use linear interpolation,

one expects the approxim ation to be exact regardless of any discretization param eter h, i.e.,

p = 0 (notice th a t the evaluated error might be nonzero, implying there is some other error

source th a t does not depend on h). Since such a function f is extremely simple, it m ight not

trigger bugs th a t would otherwise reduce the observed order of accuracy. In our experiments,

the (problematic) im plem entation of Dual Contouring achieved the formal order of accuracy

for this particularly simple function (p = 0).

Another example on the influence of m anufactured solution arose w ith in our exami

nation of Afront. Because Afront uses Catm ull-Rom splines, some simple isosurfaces will

converge to w ithin numerical error for very rough volumes, and the numerically observed

order of accuracy will be much lower th an expected. W ith an implicit function whose

isosurfaces are spheres, we observed zero-th order of accuracy for Afront for algebraic

distance. W ith a modified implicit function th a t included transcendental functions, MMS

reveals th a t Afront does not have the expected convergence rate on the full interval, as

shown in Figure 2.7. Notice th a t Macet has similar behavior. Additional tests are needed

to determ ine the source of this behavior w ithin both codes.

2.4 .3 On th e Order o f A ccuracy

In this chapter, we have chosen to make our formal analysis as generic as possible to

accom modate as many im plem entations under verification as possible. A lthough we are

able to evaluate many codes using the same m anufactured solution, when using MMS for a

particular code, it is best to exploit as much detail about the algorithm as necessary. If the

goal is to design a m anufactured solution for verifying M arching Cubes-based techniques,

24

25

-2 -1 0
log(fc)

F ig u re 2.7. Order of accuracy for a transcendental function
f (x , y , z) = x 2 + y2 + z2 + cos(Ax) 2 + cos(Ay) 2 + cos(A z)2, A is a constant. The
observed orders of accuracy for all im plem entations are relative to the voxel size h. We
expect th ird-order accuracy for Afront and M acet due to their use of high-order spline
approxim ations. Both have the expected convergence rate for all but the last two values.

the m anufactured solution should exercise all possible cases. Additionally, particular aspects

of the m anufactured solutions can be incorporated into the formal analysis. For example,

the analysis for Afront becomes much more complicated if curvatures are not constant over

the surface (in th a t case, its additional param eter n comes into play [153], and accurately

bounding the triangle size is not practical).

The errors in Section 2.3.7 were measured at different locations on the mesh. Vertex

convergence and G aussian curvature were m easured on triangle vertices, while normals were

m easured on the triangle centroid. More im portantly, m easurem ents performed at different

locations may have different orders of accuracy. For example, M acet has cubic formal

order of accuracy on vertices due to the spline approxim ation but quadratic formal order

of accuracy on centroids.

In Section 2.2, we define the error using a pessimistic L ^ norm. This makes MMS

a very sensitive technique. In fact, it can detect subtle off-by-one mistakes in grid sizes

and interactions between node-centric and cell-centric reconstructions, even for simple

m anufactured solutions. In these cases, it is im portant not to infer incorrect conclusions.

The numerical estim ates for MMS should be performed on as wide a range of param eter

values as possible. In our tests, we used h e (0.001,1.0) and observed th a t both faulty

im plem entations performed appropriately for large values of h. Ju s t as the im plem entations

26

might only enter the asym ptotic regime and achieve the formal convergences for small values

of h, it might be th a t (as we have experienced) bugs only manifest themselves on sufficiently

small values of h .

2.4 .4 On th e L im itations o f th e Test

MMS does not cover every aspect of verification for isosurface extraction. For example,

an im portant aspect we do not know how to test w ith MMS is the topological correctness of

an extracted mesh. This is challenging because there does not seem to be a good measure

of convergence for topological properties such as the Euler characteristic or B etti numbers.

A proper study of these issues is a natural avenue for future work.

2.5 C onclusion
Using a simple m anufactured solution, we were able to reveal bugs th a t prevented

the convergence of some mesh properties of two publicly available isosurfacing codes. In

particular, the by-products of the verification process, namely a continuous refinement of

m athem atical analysis of the algorithm ’s behavior and a numerical comparison of the results

of the im plem entation against a known solution are valuable in their own right, and should

be published together with new algorithms. In the next chapter, we present a natural

extension of the verification of geometrical properties of isosurfaces, namely, the verification

of topological properties of isosurfaces.

C H A P T E R 3

V E R IF Y IN G T O PO LO G Y OF

ISO SU R FA C E E X T R A C T IO N

A LG O R ITH M S

Visualization is an im portant aspect of current large-scale da ta analysis. As the users

of scientific software are not typically visualization experts, they might not be aware of

lim itations and properties of the underlying algorithm s and visualization techniques. As

visualization researchers and practitioners, it is our responsibility to ensure th a t these

lim itations and properties are clearly stated and studied. Moreover, we should provide

mechanisms which a ttest to the correctness of visualization systems. Unfortunately, the

accuracy, reliability, and robustness of visualization algorithm s and their im plem entations

have not in general fallen under such scrutiny as have other components of the scientific

com puting pipeline.

We strive for verification tools which are both simple and effective. Simple verification

m ethods are less likely to have bugs themselves, and effective m ethods make it difficult for

bugs to hide. Alas, the m athem atical properties of an algorithm and its im plem entation

are both constructs of fallible hum an beings, and so perfection is an unattainable goal;

there will always be the next bug. Verification is, fundamentally, a process, and when it

finds problems with an algorithm or its im plem entation, we can only claim th a t the new

im plem entation behaves more correctly th an the old one. Nevertheless, the verification

process clarifies how the im plem entations fail or succeed.

In this chapter, we investigate isosurfacing algorithm s and im plem entations and focus

on their topological properties. For brevity, we will use the general phrase “isosurfacing”

when we refer to both isosurfacing algorithm s and their im plem entations. As a simple

example, the topology of the outpu t of isosurface codes should m atch th a t of the level set

of the scalar field (as discussed in Section 3.2). Broadly speaking, we use the m ethod of

m anufactured solutions (MMS) to check these properties. By m anufacturing a model whose

known behavior should be reproduced by the techniques under analysis, MMS can check

whether they meet expectations.

An im portant contribution of this work is the selection of significant topological char

acteristics th a t can be verified by software m ethods. We use results from two fields in

com putational topology, namely, digital topology and stratified Morse theory.

In summary, the main contributions of this work can be stated as follows:

1. In the spirit of verifiable visualization, we introduce a methodology for checking

topological properties of publicly and commercially available isosurfacing software.

2. We show how to adapt techniques from digital topology to yield simple and effective

verification tools for isosurfaces w ithout boundaries.

3. We introduce a simple technique to com pute the Euler characteristic of a level set of

a trilinearly interpolated scalar field. The technique relies on stratified Morse theory

and allows us to verify topological properties of isosurfaces w ith boundaries.

4. We propose a mechanism to m anufacture isosurfaces w ith nontrivial topological prop

erties, showing th a t this simple mechanism effectively stresses isosurfacing programs.

As input, we also assume a piecewise trilinear scalar field defined on a regular grid.

The verification process produces a comprehensive record of the desired properties of the

im plem entations, along with an objective assessment of whether these properties are sat

isfied. This record improves the applicability of the technique and increases the value of

visualization. We present a set of results obtained using our m ethod, and we report errors

in two publicly-available isosurface extraction codes.

3.1 R elated W ork
The literature th a t evaluates isosurface extraction techniques is enormous, with works

ranging from mesh quality [33, 153, 141], to performance [165] and accuracy analysis [131,

195]. In this section, we focus on m ethods th a t deal w ith topological issues th a t naturally

appear in isosurfacing.

3.1.1 T opology-aw are Isosurfacing

Arguably the most popular isosurface extraction technique, M arching Cubes [100] (MC)

processes one grid cell at a tim e and uses the signs of each grid node (whether the scalar

field at the node is above or below the isovalue) to fit a triangular mesh th a t approxim ates

the isosurface w ithin the cell. As no information besides the signs is taken into account,

28

29

M arching Cubes cannot guarantee any topological equivalence between the triangulated

mesh and the original isosurface. In fact, the original M arching Cubes algorithm would

produce surfaces with “cracks,” caused by alternating vertex signs along a face bound

ary, which lead to contradicting triangulations in neighboring cells [126]. D isambiguation

mechanisms can ensure crack-free surfaces, and many schemes have been proposed, such

as the one by M ontani et al. [117], dom ain tetrahedralization [16], preferred polarity [8],

gradient-based m ethod [180], and feature-based schemes [64]. The survey of Newman and

Yi has a comprehensive account [124]. A lthough disam biguation prevents cracks in the

ou tput, it does not guarantee topological equivalence.

Topological equivalence between the resulting triangle mesh and the isosurface can

only be achieved with additional information about the underlying scalar field. Since

function values on grid nodes are typically the only information provided, a reconstruc

tion kernel is assumed, of which trilinear reconstruction on regular hexahedral grids is

most popular [125]. Nielson and Ham ann, for example, use saddle points of the bilinear

interpolant on grid cell faces [126]. Their m ethod cannot always reproduce the topology

of trilinear interpolation because there rem ain ambiguities internal to a grid cell: pairs

of nonhomeomorphic isosurfaces could be homeomorphic when restricted to the grid cell

faces. This problem has been recognized by N atara jan [122] and Chernyaev [21], leading

to new classification and triangulation schemes. This line of work has inspired many other

“topology-aware” triangulation m ethods, such as the reconstruction technique of Cignoni

et al. [22]. Subsequent work by Lopes and Brodlie [98] and Lewiner et al. [94] has finally

provided triangulation patterns covering all possible topological configurations of trilinear

functions, implicitly promising a crack-free surface. The topology of the level sets generated

by trilinear interpolation has been recently studied by C arr and Snoeyink [17], and Carr

and M ax [15]. A discussion about these can be found in Section 3.3.2.

3.1.2 V erifiable V isualization

M any of the false steps in the route from the original MC algorithm to the recent

homeomorphic solutions could have been avoided w ith a system atic procedure to verify

the algorithm s and the corresponding im plem entations. A lthough the lack of verification

of visualization techniques and the corresponding software im plem entations has been a

long-term concern of the visualization comm unity [55, 76], concrete proposals on verification

are relatively recent. Etiene et al. [46] were among the first in scientific visualization to

30

propose a practical verification framework for geometrical properties of isosurfacing. Their

work is based on the m ethod of m anufactured solutions (MMS), a popular approach for

assessing numerical software [3]. We are interested in topological properties of isosurfacing,

and we also use MMS as a verification mechanism. As we will show in Section 3.5, our

proposed technique discovered problems in popular software, supporting our assertion about

the value of a broader culture of verification in scientific visualization.

There have been significant theoretical investigations in com putational topology dealing

with, for example, isosurface invariants, persistence, and stability [26, 36]. This body of

work is concerned w ith how to define and com pute topological properties of com putational

objects. We instead develop m ethods th a t stress topological properties of isosurfacing.

These goals are complementary. Com putational topology tools for d a ta analysis might offer

new properties which can be used for verification purposes, and verification tools can assess

the correctness of the com putational topology im plem entations. A lthough the mechanism

we propose to com pute topological invariants for piecewise sm ooth scalar fields is, to the

best of our knowledge, novel (see Section 3.3.2), our prim ary goal is to present a m ethod

th a t developers can adapt to assess their own software.

3.2 V erifying Isosurface Topology
We now discuss strategies for verifying topological properties of isosurfacing techniques.

We s ta rt by observing th a t simply stating the desired properties of the im plem entation is

valuable. Consider a typical im plem entation of M arching Cubes. How would you debug it?

W ithout a small set of desired properties, we are mostly lim ited to inspecting the ou tpu t by

explicitly exercising every case in the case table. The fifteen cases might not seem daunting,

bu t what if we suspect a bug in sym m etry reduction? We now have 256 cases to check. Even

worse, w hat if the bug is in a com bination of separate cases along neighboring cells? The

verification would grow to be a t least as complicated as the original algorithm , and we would

ju st as likely make a mistake during the verification as we would in the im plem entation.

Therefore, we need properties th a t are simple to state , easy to check, and good at catching

bugs.

3.2.1 S im ple E xam ple

Although the previously mentioned problem with M arching Cubes [100] is well-known,

it is not imm ediately clear w hat topological properties fail to hold. For example, “the

31

outpu t of M arching Cubes cannot contain boundary curves” is not one such property, for

two reasons. F irst, some valid surfaces generated by M arching Cubes - such as with the

simple 2 3 case - do contain boundaries. Second, many incorrect ou tputs might not contain

any boundaries a t all. The following might appear to be a good candidate property: “given

a positive vertex vo and a negative vertex vi, any path through the scalar field should

intersect the isosurface an odd num ber of tim es.” This property does capture the fact

th a t the triangle mesh should separate interior vertices from exterior vertices and seems

to isolate the problem with the cracks. Checking this property, on the o ther hand, and

even stating it precisely, is problem atic. Geometrical algorithm s for intersection tests are

notoriously brittle; for example, some paths might intersect the isosurface in degenerate

ways. A more promising approach comes from noticing th a t any such separating isosurface

has to be a piecewise-linear manifold, whose boundary must be a subset of the boundary of

the grid. This directly suggests th a t “the ou tpu t of M arching Cubes m ust be a piecewise-

linear (PL) manifold whose boundaries are contained in the boundary of the grid.” This

property is simple to sta te and easy to test: the link of every interior vertex in a PL

manifold is topologically a circle, and the link of every boundary vertex is a line. The term

“consistency” has been used to describe problems with some algorithm s [124]. In this work,

we say th a t the ou tpu t of an algorithm is consistent if it obeys the PL manifold property

above. By generating arb itrary grids and extracting isosurfaces with arb itrary isovalues,

the inconsistency of the original case table becomes mechanically checkable and instantly

apparent. Some modifications to the basic M arching Cubes table, such as using Nielson and

H am ann’s asym ptotic decider [126], result in consistent im plem entations, and the outputs

pass the PL manifold checks (as we will show in Section 3.5).

The example we have presented above is a complete instance of the m ethod of manufac

tured solutions. We identify a property th a t the results should obey, run the im plem enta

tions on inputs, and test whether the resulting ou tputs respect the properties. In the next

sections, we develop a verification m ethod for algorithm s to reproduce the topology of the

level sets of trilinear interpolation [21, 98, 125], thus completely elim inating any ambiguity.

In this work, we say the ou tpu t is correct if it is homeomorphic to the corresponding

level set of the scalar field. This correctness property is simple to state, but developing

effective verification schemes th a t are powerful and simple to implement is more involved.

We will tu rn to invariants of topological spaces, in particular to B etti numbers and the

Euler characteristic, their relative strengths and weaknesses, and discuss how to robustly

check their values. Figure 3.1 shows our pipeline to assess topological correctness and also

the chapter organization.

32

3.3 M athem atical Tools
This section describes the m athem atical machinery used to derive the topology verifi

cation tools. More specifically, we provide a sum m ary of the results we need from digital

topology and stratified Morse theory. A detailed discussion on digital topology can be found

in the work by Stelldinger et al. [164], and Goresky and M acPherson give a comprehensive

presentation of stratified Morse theory [57].

In Section 3.3.1, we describe a m ethod, based on digital topology, th a t operates on

manifold surfaces w ithout boundaries and determ ines the Euler characteristic and B etti

Random trilinear field

Topology
Evaluation wk Isosurface

Extraction

Digital Surfaces
&

Stratified Morse Theory
Tools

Compute expected
Topological Invariants Compute mesh

Topological Invariants

(A) , /? i , /?2, x) f rid
Compare invariants (Po,(h,p2,x)imesh

F ig u re 3.1. Overview of our topology verification pipeline. F irst step, we generate a
random trilinear field and extract a random isosurface using the im plem entation under
verification. We then com pute the expected topological invariants from the trilinear field
and compare them against the invariants obtained from the mesh.

numbers of the level sets. A more general setting of surfaces w ith boundaries is handled

w ith tools derived from stratified Morse theory, detailed in Section 3.3.2. The la tte r m ethod

can only determ ine the Euler characteristic of the level set.

Let us s ta rt by recalling the definition and some properties of the Euler characteristic,

which we denote by %. For a compact 2-manifold M , x (M) = V — E + F , where V , E , and

F are the num ber of vertices, edges, and faces of any finite cell decomposition of M . If M

is a connected orientable 2 -manifold w ithout boundary, x (M) = 2 — 2g(M), where g (M)

is the genus of M . The Euler characteristic may also be w ritten as x (M) = ^ n = o (—1)*A,

where fa are the B etti numbers: the rank of the i-th homology group of M . Intuitively, for

2 -manifolds, fa0, fa , and fa correspond to the num ber of connected components, holes, and

voids (regions of the space enclosed by the surface), respectively. If M has many distinct

connected components, th a t is, M = (J™= 1 M i and M* f | M j = 0 for i = j , then x (M) =

x(M *). More details about B etti numbers, the Euler characteristic, and homology

groups can be found in Edelsbrunner and H arer’s tex t [36]. The Euler characteristic and

the B etti numbers are topological invariants: two homeomorphic topological spaces will

have the same Euler characteristic and B etti numbers whenever these are well-defined.

3.3.1 D ig ita l T opology

Let G be an n x n x n cubic regular grid w ith a scalar e(s) assigned to each vertex s of G

and t : R 3 ^ R be the piecewise trilinear interpolation function in G, th a t is, t (x) = t*(x),

where t* is the trilinear interpolant in the cubic cell c* containing x. Given a scalar value a,

the set of points satisfying t(x) = a is called the isosurface a of t. In w hat follows, t(x) = a

will be considered a compact, orientable 2-manifold w ithout boundary. We say th a t a cubic

cell c* of G is unambiguous if the following two conditions hold simultaneously:

1 . any two vertices sa and sb in c* for which e(sa) < a and e(sb) < a are connected

by negative edges, i. e., a sequence of edges sas 1 , s 1s 2 , . . . , s ksb in c* whose vertices

satisfy e(s*) < a for i = 1 , . . . , k and

2 . any two vertices sc and sd in c* for which e(sc) > a and e(sd) > a are connected by

positive edges, i. e., a sequence of edges scs 1, s 1s2, . . . , sisd in c* whose vertices satisfy

e(s*) > a for i = 1 , . . . , l.

In o ther words, a cell is unambiguous if all positive vertices form a single connected com

ponent via the positive edges and, conversely, all negative vertices form a single connected

component by negative edges [180]. If either property fails to hold, c* is called ambiguous.

33

The top row in Figure 3.2 shows all possible unambiguous cases.

The geometric dual of G is called the voxel grid associated w ith G, denoted by Vg. More

specifically, each vertex s of G has a corresponding voxel vs in Vg, each edge of G corresponds

to a face in Vg (and vice versa), and each cubic cell in G corresponds to a vertex in Vg, as

illustrated in Figure 3.3. Each voxel vs can also be seen as the Voronoi cell associated with

s. Scalars defined in the vertices of G can naturally be extended to voxels, thus ensuring a

single scalar value e(vs) to each voxel vs in Vg defined as e(s) = e(vs). As we shall show,

the voxel grid structure plays an im portant role when using digital topology to compute

topological invariants of a given isosurface. Before showing th a t relation, though, we need

a few more definitions.

Denote by G' the (2n — 1) x (2n — 1) x (2n — 1) regular grid obtained from a refinement

of G. Vertices of G' can be grouped in four distinct sets, denoted by O, F , E , C . The set O

contains the vertices of G' th a t are also vertices of G. The sets F and E contain the vertices

of G' lying on the center of faces and edges of the voxel grid Vg , respectively. Finally, C

34

F ig u re 3.2. An illustration of the relation between unambiguous isosurfaces of trilinear
interpolants and the corresponding digital surfaces. The top row shows all possible configu
rations of the intersection of t = a w ith a cube Cj for unambiguous configurations [98]. Each
red dot s,i denotes a vertex w ith e(si) < a . Each image on the top right is the complement
ci of cases 1 to 4 on the left (cases 5 to 7 were om itted because the complement is identical
to the original cube up to sym m etry). The middle row shows the volume reconstructed
by M ajority Interpolation (MI) for configurations 1 to 7 (left) and the complements (right)
depicted in the top row. B ottom row shows the boundary of the volume reconstructed by the
MI algorithm (The role of faces th a t intersect ci is explained in the proof of Theorem 3.3.1).
Notice th a t all surfaces in the top and bottom rows are topological disks. For each cube
configuration, the boundary of each digital reconstruction (bottom row) has the same set
of positive/negative connected components as the unambiguous configurations (top row).

35

F ig u re 3.3. The four distinct groups of vertices O, F, E , C , are depicted as black, blue,
green, and red points. They are the “Old” , “Face” , “Edge,” and “Corner” points of a voxel
region Vg (sem itransparent cube), respectively. For the sake of clarity, we only show a few
points.

contains all vertices of Vg. Figure 3.3 illustrates these sets.

Consider now the voxel grid Vg/ dual to the refined grid G'. Given a scalar value a , the

digital object Oa is the subset of voxels v in Vg/ such th a t v e Oa if a t least one of the

criteria below are satisfied:

• v e O and e(v) < a

• v e F and bo th neighbors of v in O have scalars less th an (or equal to) a

• v e E and at least 4 of the 8 neighbors of v in O U F have scalars less th an (or equal)

a

• v e C and at least 12 of the 26 neighbors of v in O U F U E have scalars less than (or

equal) a

The description above is called M ajority Interpolation (MI) (Algorithm 2), and it allows us

to compute the voxels th a t belong to a digital object Oa . The middle row of Figure 3.2

shows all possible cases for voxels picked by the MI algorithm (notice the correspondence

w ith the top row of the same figure).

The im portance of Oa is two-fold. First, the boundary surface of the union of the

voxels in Oa , denoted by dO a and called a digital surface, is a 2 -manifold (see the proof

by Stelldinger et al. [164]). Second, the genus of dO a can be com puted directly from Oa

using the algorithm proposed by Chen and Rong [2 0]. As the connected components of Oa

can also be easily com puted and isolated, one can calculate the Euler characteristic of each

connected component of Oa from the formula x = 2 — 2g and thus ^ 0, ^ 1, and .

36

A lg o r ith m 2 Voxel selection using M ajority Interpolation (MI).

M a jo r it y In t e r p o l a t io n (Q , a)

1 [> Let O, F , E and C be the subset of vertices
in Q' as described in subsection 3.3.1.

2 > Let N (s, *) be the set of neighbors of s e Q' in the
set *, where * = {O, F, E , C }, w ith associate scalar
less than a

3 fo r s e Q'
4 do if s e O o r
5 s e F and |N (s, O)| = 2 o r
6 s e E and |N (s, O) + N (s , F)| ^ 4 o r
7 s e C and |N (s, O) + N (s , F) + N (s, E)| ^ 12

8 t h e n Select voxel vs
9 r e t u r n Oa

The voxel grid VQ/ described above allows us to com pute topological invariants for any

digital surface dO a . However, we so far do not have any result relating dO a to the isosurface

t(x) = a . The next theorem provides the connection.

T h e o re m 3 .3 .1 . Let Q be an n x n x n rectilinear grid with scalars associated with each

vertex o f Q and t be the piecewise trilinear function defined on Q, such that the isosurface

t(x) = a is a 2-manifold without boundary. I f no cubic cell o f Q is ambiguous with respect

to t(x) = a , then dO a is homeomorphic to the isosurface t(x) = a .

P ro o f: Given a cube cj C Q and an isosurface t = {x | t(x) = a} , let tj = t n ĉ .

Similarly, denote

dOj = c1R3 ((dOa n Cj) - d c j) ,

where c1R3 denotes the closure operator. We note th a t d O j is a 2-manifold for all i [147, 164].

There are two main parts to the proof presented here. For each i,

1 . the 2 -manifolds t j and d O j are homeomorphic; and

2 . both t j and d O j cut the same edges and faces of cj .

Since t is trilinear, no level-set of t can intersect an edge more than once. Hence, if Ci is

not ambiguous, t j is exactly one of the cases 1 to 7 in the top row of Figure 3.2 [98], either a

topological disk or the em pty set. Each case in the top row of Figure 3.2 is the unambiguous

input for the MI algorithm to produce the voxel reconstruction shown in the middle row,

where the boundaries of each of these voxel reconstructions are shown in the bottom row.

By inspection, we can verify th a t the boundary of the digital reconstruction d O * (bottom

row of Figure 3.2) is also a disk for all possible unambiguous cases and complement cases.

Hence, for each i, the 2-manifolds d O* and t* are homeomorphic. Then, for each i, both d O*

and t* cut the same set of edges and faces of c*. Again, we can verify this for all possible

i by inspecting the top and bottom rows in Figure 3.2, respectively. Finally, we apply the

Pasting Lemma [120] across neighboring surfaces d O* and dOj in order to establish the

homeomorphism between d O a and t. □

This proof provides a main ingredient for the verification m ethod in Section 3.4. C ru

cially, we will show how to m anufacture a complex solution th a t unambiguously crosses

every cubic cell of the grid. Since we have shown the conditions for which the digital

surfaces and the level sets are homeomorphic, any topological invariant will have to be the

same for both surfaces.

3.3.2 Stratified M orse T heory

The m athem atical developments presented above allow us to com pute the B etti numbers

of any isosurface of the piecewise trilinear interpolant. However, they require isosurfaces

w ithout boundaries. In this section, we provide a mechanism to com pute the Euler charac

teristic of any regular isosurface of the piecewise trilinear interpolant through an analysis

based on critical points, which can be used to verify properties of isosurfaces with boundary

components. We will use some basic machinery from stratified Morse theory (SMT),

following the presentation of Goresky and M acPherson’s m onograph [57].

Let f for now be a sm ooth function with isolated critical points p, where V f(p) = 0.

From classical Morse theory, the topology of two isosurfaces f (x) = a and f (x) = a + e differs

only if the interval [a, a + e] contains a critical value (f (p) is a critical value iff p is a critical

point). Moreover, if ep is a small neighborhood around p and L - (p) and L+ (p) are the subset

of points on the boundary of ep satisfying f (x) < f (p) and f (x) > f (p), respectively, then

the topological change from the isosurface f (x) = f (p) — e to f (x) = f (p) + e is characterized

by removing L - (p) and attaching L+(p). Thus, changes in the Euler characteristic, denoted

by A x(p), are given by:

A x(p) = X(L+ (p)) — x (L - (p)). (3.1)

For a sm ooth function f , the num ber of negative eigenvalues of the Hessian m atrix de

term ines the index of a critical point p, and the four cases give the following values for

37

x (L - (p)) and x (L + (p)):

38

min saddle-1 saddle-2 max
x (L - (p)) 0 2 0 2

x (L+(p)) 2 0 2 0

The above form ulation is straightforw ard but unfortunately cannot be directly applied to

functions appearing in either piecewise trilinear interpolations or isosurfaces with boundary,

both of which appear in some of the isosurfacing algorithm s with guaranteed topology.

Trilinear interpolants are not sm ooth across the faces of grid cells, so the gradient is not well-

defined there. Identifying the critical points using sm ooth Morse theory is then problematic.

A lthough argum ents based on sm ooth Morse theory have appeared in the literature [183],

there are complications. For example, the scalar field in a node of the regular grid might

not have any partial derivatives. A lthough one can still argue about the intuitive concepts

of m inima and m axima around a nondifferentiable point, configurations such as saddles are

more problem atic, since their topological behavior is different depending on whether they

are on the boundary of the domain. It is im portant, then, to have a m athem atical tool

which makes predictions regardless of the types of configurations, and SMT is one such

theory.

Intuitively, a stratification is a partition of a piecewise-smooth manifold such th a t each

subset, called a stratum , is either a set of discrete points or has a sm ooth structure. In a

regular grid w ith cubic cells, the stratification we propose will be formed by four sets (the

stra ta), each one a (possibly disconnected) manifold. The vertex set contains all vertices

of the grid. The edge set contains all edge interiors, the face set contains all face interiors,

and the cell set contains all cube interiors. We illustrate the concept for the 2D case in

Figure 3.4. The im portant property of the s tra ta is th a t the level sets of f restricted to

each s tra tum are sm ooth (or lack any differential structure, as in the vertex-set). In SMT,

one applies standard Morse theory on each stratum , and then combines the partial results

appropriately.

The set of points with zero gradient (computed on each stratum), which SMT assumes

to be isolated, are called the critical points of the stratified Morse function. In addition,

every point in the vertex set is considered critical as well. One m ajor difference between

SMT and the sm ooth theory is th a t some critical points do not actually change the topology

of the level sets. This is why considering all grid vertices as critical does not introduce any

practical problems: most grid vertices of typical scalar fields will be virtual critical points ,

39

Manifold 0-stratum 1-stratum 2-stratum

F ig u re 3.4. An illustration of a piecewise-smooth immersed 2-manifold. The colormap
illustrates the value of each point of the scalar field. Notice th a t although the manifold itself
is not everywhere differentiable, each s tra tum is itself an open manifold th a t is differentiable.

i.e., points which do not change the Euler characteristic of the surface. Carr and Snoeyink

use a related concept (which they call “potential critical points”) in their state-m achine

description of the topology of interpolants [17].

Let M be the stratified grid described above. It can be shown th a t if p is a point in a

d-dimensional s tra tum of M , it is always possible to find a (3 — d)-dimensional submanifold

of M (which might straddle many s tra ta) th a t meets transversely the stra tum containing

p, and whose intersection consists of only p (one way to th ink of this (3 — d)-manifold is as a

“topological orthogonal complement”). In this context, we can define a small neighborhood

Te(p) in the s tra ta containing p and the lower tangential link T—(p) as the set of points

in the boundary of Te(p) w ith scalar values less than th a t in p (see Figure 3.5). Similarly,

we can define the upper tangential link T+ (p) as the set of points in the boundary of Te (p)

with scalar value higher th an th a t at p. Lower normal N - (p) and upper normal N+ (p)

links are analogous notions, bu t the lower and upper links are taken to be subsets of N e (p),

itself a subset of the (3 — d)-dimensional submanifold transverse to the stra tum of p going

through p. The definitions above are needed in order to define the lower stratified link and

F ig u re 3.5. Example of tangential and normal link.

40

upper stratified link, as follows: given T£(p), TL (p), N £(p) and N L (p), the lower stratified

Morse link (and similarly for upper stratified link) is given by

L -(p) = (Te(p) x N -(p)) U (N£(p) x T -(p)) . (3.2)

These definitions allow us to classify critical points even in the nonsm ooth scenario. They

let us com pute topological changes w ith the same m ethodology used in the sm ooth case.

In other words, when a scalar value a crosses a critical value a p in a critical point p,

the topological change in the isosurface is characterized by removing L - (p) and attaching

L+(p), affecting the Euler characteristic as defined in Equation (3.1).

The rem aining problem is how to determ ine x (L - (p)) and x(L + (p)). Recalling th a t

X(A U B) = x(A) + x (B) - x (A n B), x (A x B) = x (A)x (B), and x(Te) = x (N) = 1 (we

are om itting the point p) we have:

x (L -) = x (Te x N - U N £ x T -) (3 3)
= x (N -) + x (T -) - x(T e x N - n N x T - (.)

Now, we can define T£ = T - U Tr , T- n Tr = 0 and similarly for N £ and N - . Then, expand

the partitions and products, and d istribute the intersections around the unions, noticing all

but one of intersections will be empty:

T x N - n N£ x T- = ((Tr U T - x N -) n ((N r U N -) x T-)

= ((Tr x N -) U (T - x N -)) n

((Nr x T - U (N - x T -))

= N - x T -

Therefore:

x(T £ x N - n N £ x T -) = x (N - x T -

= x (N -)x (T L-)

which gives the final result

x (L -) = x (N -) + x (T -) - x (N -) x (T -) . (3.4)

The same result is valid for x (L +), if we replace the superscript ‘- ’ by ‘+ ’ in E qua

tion (3.4). If T - or T+ are one-dimensional, then we are done. If not, then we can recursively

apply the same equation to T- and T+ and look at progressively lower-dimensional s tra ta

41

until we reach Te(p) and Ne(p) given by 1-disks. The lower and upper links for these

1 -disks will always be discrete spaces w ith zero, one, or two points, for which x is simply

the cardinality of the set.

In some cases, the Euler characteristic of the lower and upper link might be equal.

Then, x (L - (p)) = x(L + (p)), and A x(p) = 0. These cases correspond to the v irtual critical

points m entioned above. Critical points in the interior of cubic cells are handled by the

sm ooth theory, since in th a t case the normal Morse d a ta are 0-dimensional. This implies

th a t the link will be an em pty set w ith Euler characteristic zero. So, by Equation (3.4),

x (L -) = x (T —). Because the restriction of the scalar field to a grid edge is a linear function,

no critical point can appear there. As a result, the new cases are critical points occurring at

vertices or in the interior of faces of the grid. For a critical point p in a vertex, stratification

can be carried out recursively, using the edges of the cubes meeting in p as tangential and

normal submanifolds. Denoting by n 11,n 12,n 13 the num ber of vertices adjacent to p with

scalar value less th an th a t of p in each Cartesian coordinate direction, Equation (3.4) gives:

x(L + (p)) can be com puted similarly, but considering the num ber of neighbors of p in each

Cartesian direction w ith scalars higher th an th a t of p .

If p is a critical point lying in a face r of a cube, we consider the face itself as the tangential

submanifold and the line segment r ± orthogonal to r through p the normal submanifold.

Recursively, the tangential submanifold can be further stratified in two 1-disks (tangential

and normal). Denote by ni the num ber of ends of r ^ w ith scalar value less than th a t of p.

Also, recalling th a t the critical point lying in the face r is necessarily a saddle, thus having

two face corners with scalar values less and two higher th an th a t of p, Equation (3.4) gives:

Analogously, we can com pute x(L +(p)) = n u + 2 — 2 n u where n u is the num ber of ends of

r ± w ith scalar value higher than th a t of p.

A similar analysis can be be carried out for every type of critical point, regardless of

whether the point belongs to the interior of a grid cell (and so would yield equally well to a

sm ooth Morse theory analysis), an interior face, a boundary face, or a vertex of any type.

The Euler characteristic x« of any isosurface w ith isovalue a is simply given as:

x (L (p)) = n u + n i2 + ni3 — n n (n i2 + n«) (3.5)

x (L (p)) = ni + 2 — 2 ni (3.6)

x« = A x (p*) (3.7)
Pi£-Ca

42

where Ca is the set of critical points with critical values less than a.

It is worth mentioning once again that, to the best of our knowledge, no other work

has presented a scheme which provides such a simple mechanism for computing the Euler

characteristic of level sets of piecewise-smooth trilinear functions. Compare, for example,

the case analyses and state machines performed separately by Nielson [125], by Carr and

Snoeyink [17], and by Carr and Max [15]. In contrast, we can recover an (admittedly weaker)

topological invariant by a much simpler argument. In addition, this argument already

generalizes (trivially because of the stratification argument) to arbitrary dimensions, unlike

the other arguments in the literature.

3.4 Manufactured Solution Pipeline
We now put the pieces together and build a pipeline for topology verification using the re

sults presented in Section 3.3. In the following sections, the procedure called Isosurfacing

refers to the isosurface extraction technique under verification. InvariantF romMesh

computes topological invariants of a simplicial complex.

3.4.1 C on sisten cy

As previously mentioned, MC-like algorithms which use disambiguation techniques are

expected to generate PL manifold isosurfaces no matter how complex the function sampled

in the vertices of the regular grid. In order to stress the consistency test, we generate

a random scalar field with values in the interval [—1, 1] and extract the isosurface with

isovalue a = 0 (which is all but guaranteed not to be a critical value) using a given

isosurfacing technique, subjecting the resulting triangle mesh to the consistency verification.

This process is repeated a large number of times, and if the implementation fails to produce

PL manifolds for all cases, then the counterexample provides a documented starting point

for debugging. If it passes the tests, we consider the implementation verified.

3.4.2 V erification U sin g Stratified M orse T heory

We can use the formulation described in Section 3.3.2 to verify isosurfacing programs

which promise to match the topology of the trilinear interpolant. The SMT-based verifi

cation procedure is summarized in Algorithm 3. The algorithm has four main steps. A

random scalar field with node values in the interval [—1,1] is initially created. Representing

the trilinear interpolation in a grid cell by f (x, y, z) = axyz+6xy+cxz+dyz+ex+fy+gz+h,

43

A lgorithm 3 Overview of the method of manufactured solutions (MMS) using stratified
Morse theory. InvariantF romC Ps is computed using Equation (3.7). The method either
fails to match the expected topology, in which case G is provided as a counterexample, or
succeeds otherwise.

MMS-SMT(G)
1 [> Let the input G be n x n x n rectilinear grid
2 for i ^ 1 to #tests
3 do G ^ randomly sampled n x n x n grid
4 CPs ^ C om pu teC ritica lP o in ts(G)
5 if p e C P s is degenerate or
6 p is an internal saddle close to edges or faces
7 th en GoT o 3
8 else K ^ Isosurfacing(G)
9 (xv)i ^ Invarian tF rom C Ps(G)

10 (x k)i ^ In v arian tF ro m M esh (K)
11 Compare (xv)i and (xk)i

the internal critical points are given by:

tx = (dAx ± \ / AxAyAz)/(aA x)
ty = (cAy ±,/K XK yK ~z) / (aAy)
tz = (bAz ± ,/AxAyAz)/(aAz),

where Ax = bc — ae, Ay = bd — a f , and Az = cd — ag [130]. Critical points on faces of the

cubes are found by setting x,y, or z to either 0 or 1, and solving the quadratic equation. If

the solutions lie outside the unit cube [0 , 1]3, they are not considered critical points, since

they lie outside the domain of the cell. The scalar field is regenerated if any degenerate

critical point is detected (these can happen if either the random values in a cubic cell have,

by chance, the same value or when Ax, Ay, or Az are zero). In order to avoid numerical

instabilities, we also regenerate the scalar field locally if any internal critical point lies too

close to the border of the domain (that is, to an edge or to a face of the cube).

The third step computes the Euler characteristic of a set of isosurfaces with random

isovalues in the interval [—1,1] using the theory previously described, jointly with Equa

tion (3.7). In the final step, the triangle mesh M approximating the isosurfaces is ex

tracted using the algorithm under verification, and x(M) = V (M) — E (M) + F (M), where

V (M) ,E (M), and F (M) are the number of vertices, edges, and triangles. If the Euler

characteristic computed from the mesh does not match the one calculated via Equation (3.7),

44

the verification fails. We carry out the process a number of times, and implementations

that pass the tests are less likely to contain bugs.

3.4 .3 V erification U sing D ig ita l T opology

Algorithm 4 shows the verification pipeline using the MI algorithm, and Figure 3.6

depicts the refinement process. Once again a random scalar field, with potentially many

ambiguous cubes, is initially generated in the vertices of a grid Q. The algorithm illustrated

in Algorithm 4 is applied to refine Q so as to generate a new grid Q which does not have

ambiguous cells. If the maximum number of refinement is reached and ambiguous cells still

remain, then the process is restarted from scratch. Notice that cube subdivision does not

need to be uniform. For instance, each cube may be refined using a randomly placed new

node point or using t^s critical points, and the result of the verification process still holds.

This is because Theorem 3.3.1 only requires ci to be unambiguous. For simplicity, in this

work, we refine Q uniformly doubling the grid resolution in each dimension.

Scalars are assigned to the new vertices of Q (the ones not in Q) by trilinearly in

terpolating from scalars in Q, thus ensuring that Q and Q have exactly the same scalar

field [125]. As all cubic cells in Q are unambiguous, Theorem 3.3.1 guarantees the topology

of the digital surface obtained from Q is equivalent to that of t(x) = a. Algorithm

In v arian tF ro m D S computes topological invariants of dOa using the scheme discussed in

Section 3.3.1. In this context, In v arian tF ro m D S is the algorithm illustrated in Algo-

&

Figure 3.6. Our manufactured solution is given by t(x) = a. Q is depicted in solid lines
while Q is shown in dashed lines. Q is a uniform subdivision of Q. The trilinear surfaces
t i are defined for each cube ci € Q and resampled in cj e Q. The cubes in the center of Q
have four maxima each (left) and thus induce complicated topology. The final isosurface
may have several tunnels and/or connected components even for coarse Q (right).

45

A lgorithm 4 Overview of the method of manufactured solutions (MMS) using digital
topology. The method either fails to match the expected topology, in which case G is
provided as a counterexample, or succeeds otherwise.

MMS-DS(G)
1 [> Let the input G be a n x n x n rectilinear grid
2 for i ^ 1 to #tests
3 do G ^ randomly sampled n x n x n grid
4 G ^ R efineAndR esample(G)
5 if G has ambiguous cubes
6 th en G oTo 3
7 O ^ MajorityInterpolation(G)
8 K ^ Isosurfaoing(G)
9 (fai, fai, fai)* ^ InvariantF romDS(<9O)

10 (fak, fak, far)* ^ In v arian tF ro m M esh (K)
11 Compare (fa0, fai , fai)* and (fak,fak, far)*

rithm 5. Surfaces with boundary are avoided by assigning the scalar value 1 to every vertex

in the boundary of G.

3.5 Experimental Results
In this section, we present the results of applying our topology verification methodology

to a number of different isosurfacing techniques, three of them with topological guarantees

with respect to trilinear interpolant. Specifically, the techniques are:

VTKMC [155] is the Visualization Toolkit (VTK) implementation of the Marching

Cubes algorithm with the implicit disambiguation scheme proposed by Montani et al.

[117]. Essentially, it separates positive vertices when a face saddle appears and assumes

A lgorithm 5 A simple formula for genus computation.

GenusF romDS(<9 Oa)
1 > Let dOa be a 2-manifold without boundary
2 > Let |N*| be the number of surface points with

exactly i neighbors.
3 > Let g be the surface genus
4 g = 1 + (|N5| + 2 |n6| — |N3|)/8
5 re tu rn g

46

no tunnels exist inside a cube. The proposed scheme is topologically consistent, but it does

not reproduce the topology of the trilinear interpolant.

Marching Cubes with Edge Transformations or Macet [33] is a Marching Cubes-based

technique designed to generate triangle meshes with good quality. Quality is reached by

displacing active edges of the grid (edges intersected by the isosurface), both in normal and

tangential direction toward avoiding “sliver” intersections. Macet does not reproduce the

topology of the trilinear interpolant.

Afront [153] is an advancing-front method for isosurface extraction, remeshing, and

triangulation of point sets. It works by advancing triangles over an implicit surface. A sizing

function that takes curvature into account is used to adapt the triangle mesh to features of

the surface. Afront uses cubic spline reconstruction kernels to construct the scalar field

from a regular grid. The algorithm produces high-quality triangle meshes with bounded

Hausdorff error. As occurred with the VTK and Macet implementations, Afront produces

consistent surfaces but, as expected, the results do not match the trilinear interpolant.

Matlab® [103] is a high-level language for building codes that requires intensive nu

merical computation. It has a number of features and among them an isosurface extraction

routine for volume data visualization. Unfortunately, Matlab documentation does not

offer information on the particularities of the implemented isosurface extraction technique

(e.g., Marching Cubes, Delaunay-based, etc; consistent or correct).

SnapMC [141] is a Marching Cubes variant which produces high-quality triangle meshes

from regular grids. The central idea is to extend the original lookup table to account for cases

where the isosurface passes exactly through the grid nodes. Specifically, a user-controlled

parameter dictates maximum distance for “snapping” the isosurface into the grid node. The

authors report an improvement in the minimum triangle angle when compared to previous

techniques.

MC33 was introduced by Chernyaev [21] to solve ambiguities in the original MC. It

extends the Marching Cubes table from 15 to 33 cases to account for ambiguous cases and

to reproduce the topology of the trilinear interpolant inside each cube. The original table

was later modified to remove two redundant cases, which leads to 31 unique configurations.

Chernyaev’s MC solves face ambiguity using Nielsen and Hamann’s [126] asymptotic decider

and internal ambiguity by evaluating the bilinear function over a plane parallel to a face.

Additional points may be inserted to reproduce some configuration requiring subvoxel

accuracy. We use the implementation provided by Lewiner et al. [94].

DelIso [32] is a Delaunay-based approach for isosurface extraction. It uses the inter

section of the 3D Voronoi diagram and the desired surface to define a restricted Delaunay

triangulation. Moreover, it builds the restricted Delaunay triangulation without having to

compute the whole 3D Voronoi structure. DelIso has theoretical guarantees of homeomor-

phism and mesh quality.

M C Flow is a proof-of-concept implementation of the algorithm described in Schei-

degger et al. [151]. It works by successive cube subdivision until it has a simple edge

flow. A cube has a simple edge flow if it has only one minima and one maxima. A

vertex s e c is a minimum if all vertices Sj e c connected to it has t(s j) > t(si).

Similarly, a vertex is a maximum if t(s j) < t(sj) for every neighbor vertex j . This property

guarantees that the Marching Cubes method will generate a triangle mesh homeomorphic

to the isosurface. After subdivision, the surfaces must be attached back together. The final

mesh is topologically correct with respect to the trilinear interpolant.

We believe that the implementation of any of these algorithms in full detail is nontrivial.

The results reported in the following section support this statement. They show that

coding isosurfacing algorithms is complex and error-prone, and they reinforce the need for

robust verification mechanisms. In what follows, we say that a mismatch occurs when

invariants computed from a verification procedure disagree with the invariants computed

from the isosurfacing technique. A mismatch does not necessarily mean an implementation

is incorrect, as we shall see later in this section. After discussions with the developers,

however, we did find that there were bugs in some of the implementations.

3.5.1 T opology C on sisten cy

All implementations were subject to the consistency test (Section 3.4.1), resulting in the

outputs reported in the first column of Table 3.1. We observed mismatches for DelIso,

SnapMC (with nonzero snap value), and Matlab implementations. Now, we detail these

results.

3.5.2 D elIso

We analyzed 50 cases where DelIso’s output mismatched the ground truth produced

by MMS, and we found that: 1) 28 cases had incorrect hole(s) in the mesh, 2) 15 cases

had missing triangle(s), and 3) 7 cases had duplicated vertices. These cases are illustrated

in Figure 3.7. The first problem is possibly due to the nonsmooth nature of the piecewise

47

48

Table 3.1. Rate of invariant mismatches using the PL manifold property, digital surfaces,
and stratified Morse theory for 1000 randomly generated scalar fields (the lower the rate
the better). The invariants $ 1 and $2 are computed only if the output mesh is a 2-manifold
without boundary. We run correctness tests in all algorithms for completeness and to test
tightness of the theory: algorithms that are not topology-preserving should fail these tests.
The high number of D elIso , SnapMC, and M a tla b mismatches are explained in Section
3.5.1. 1 indicates zero snap parameter and 2 indicates snap value of 0.3.

Consistency (%) Correctness (%)

Disk Digital Surfaces
$0 Pi $2 X

SMT
x

Afront 0.0 35.9 22.8 35.9 47.5 25.5
Matlab 19.7 32.2 18.9 20.5 49.3 70.3
v t k m c 0.0 27.6 23.2 27.6 43.5 70.7
Macet 0.0 54.3 20.9 54.3 64.0 100.0
SnapM C1 0.0 45.0 25.4 45.0 57.3 72.0
SnapM C2 53.7 41.6 17.3 23.1 87.1 74.0
MC33 0.0 2.4 1.1 2.4 3.4 5.4
D elIso 19.1 24.4 0.1 20.0 37.2 33.2
M CFlow 0.0 0.0 0.0 0.0 0.0 0.0

4 ^

Figure 3.7. D elIso mismatch example. From left to right: holes in C0 regions; single
missing triangle in a smooth region; duplicated vertex (the mesh around the duplicated
vertex is shown). These behaviors induce topology mismatches between the generated
mesh and the expected topology.

trilinear interpolant, since in all 28 cases, the holes appeared in the faces of the cubic grid.

It is important to recall that D elIso is designed to reproduce the topology of the trilinear

interpolant inside each grid cube, but the underlying algorithm requires the isosurface to

be C 2 continuous everywhere, which does not hold for the piecewise trilinear isosurface.

In practice, real-world datasets such as medical images may induce “smoother” piecewise

trilinear fields when compared to the extreme stressing from the random field, which should

reduce the incidence of such cases. Missing triangles, however, occurred in the interior of

cubic cells where the trilinear surface is smooth. Those problems deserve a deeper analysis,

as one cannot say beforehand if the mismatches are caused by problems in the code or

numerical instability associated with the initial sampling, ray-surface intersection, and the

3D Delaunay triangulation construction.

3.5 .3 Sn a pMC

Table 3.1 shows that SnapMC with nonzero snap value causes the mesh to be topolog

ically inconsistent (Figure 3.8(a)) in more than 50% of the performed tests. The reason for

this behavior is in the heart of the technique: the snapping process causes geometrically

close vertices to be merged together which may eliminate connected components, or loops,

join connected components, or even create nonmanifold surfaces. This is why there was an

increase in the number of mismatches when compared with SnapMC with zero snap value.

Since nonmanifold meshes are not desirable in many applications, the authors suggest a

postprocessing for fixing these topological issues, although no implementation or algorithm

for this postprocessing is provided.

3.5 .4 Matlab

Matlab documentation does not specify the properties of the implemented isosurface

extraction technique. Consequently, it becomes hard to justify the results for the high

number of mismatches we see in Table 3.1. For instance, Figure 3.8(b) shows an example

of a nonmanifold mesh extracted using Matlab. In that figure, the two highlighted edges

have more than two faces connected to them and the faces between these edges are coplanar.

Since we do not have enough information to explain this behavior, this might be the actual

expected behavior or an unexpected side effect. An advantage of our tests is the record of

the observed behavior of mesh topologies generated by Matlab.

3.5.5 Macet

In our first tests, Macet failed in all consistency tests for a 5 x 5 x 5 grid. An inspection

in the code revealed that the layer of cells in the boundary of the grid has not been traversed.

Once that bug was fixed, Macet started to produce PL manifold meshes and was successful

in the consistency test, as shown in Table 3.1.

3.5 .6 T opology C orrectness

The verification tests described in Section 3.4.2 and 3.4.3 were applied to all algorithms,

although only MC33, DelIso, and M CFlow were expected to generate meshes with the

49

50

(a) Sn a pM C (0.3) (b) M atlab (c) M C F low

Figure 3.8. Mismatches in topology and geometry. (a) SnapMC generates nonmanifold
surfaces due to the snap process. (b) Matlab generates some edges (red) that are shared
by more than two face. (c) MCFLowbefore (left) and after (right) fixing a bug that causes
the code to produce the expected topology, but the wrong geometry.

same topology of the trilinear interpolant. Our tests consisted of one thousand random

fields generated in a rectilinear 5 x 5 x 5 grid G. The verification test using Digital Surfaces

demanded a compact, orientable, 2-manifold without boundary, so we set scalars to one

for grid vertices in the boundary of the grid. As stratified Morse theory supports surfaces

with boundary, no special treatment was employed in the boundary of G. We decided to

run these tests using all algorithms for completeness and also for testing the tightness of

the theory, which says that if the algorithms do not preserve the topology of the trilinear

interpolant, a mismatch should occur. Interestingly, with this test, we were able to find

another code mistake in M ac e t that prevented it from terminating safely when the SMT

procedure was applied. For all nontopology-preserving algorithms, there was a high number

of mismatches as expected.

One might think that the algorithms described in Algorithms 3 and 4 do not cover all

possible topology configurations because some scalar fields are eventually discarded (lines 7

and 6 , respectively). This could happen due to the presence of ambiguous cells after refining

the input grid to the maximum tolerance (digital topology test) or critical points falling too

close to edges/faces of the cubic cells (SMT test). However, we can ensure that all possible

configurations for the trilinear interpolation were considered in the tests. Figure 3.9 shows

the incidence of each possible configuration (including all ambiguous cases) for the trilinear

interpolation in the generated random fields. Dark bars correspond to the number of times a

specific case happens in the random field, and the light bars show how many of those cases

are accepted by our verification methodology, that is, the random field is not discarded.

Notice that no significant differences can be observed, implying that our rejection-sampling

method does not bias the case frequencies.

51

■ Random ■ Manufactured Solution
100

r o r - n ^ H ^ H
^ ,* t ^d io i> i > © © ^ (N c s ^ ^ ^ ^ ^ o n r - n

Table Configuration

Figure 3.9. The horizontal axis shows the case and subcase numbers for each of the 31
Marching Cubes configurations. The dark bars show the percentage of random fields that
fit a particular configuration. The light bars show the percentage of random fields that fit a
particular configuration and do not violate the assumptions of our manufactured solution.

Some configurations, such as 13 or 0 , have low incidence rates and therefore might not

be sufficiently stressed during verification. While the trivial case 0 does not pose a challenge

for topology-preserving implementations, configuration 13 has 6 subcases whose level-sets

are fairly complicated [98, 125]. Fortunately, we can build random fields in a convenient

fashion by forcing a few cubes to represent a particular instance of the table, such as case

13, which produces more focused tests.

Table 3.1 shows statistics for all implementations. For MC33, the tests revealed a

problem with configuration 4, 6 , and 13 of the table (ambiguous cases). Figure 3.10 shows

the obtained and expected tiles for a cube. Contacting the author, we found that one of

the mismatches was due to a mistake when coding configuration 13 of the MC table. A

nonobvious algorithm detail that is not discussed in either Chernyaev’s or Lewiner’s work

is the problem of orientation in some of the cube configurations [92]. The case 13.5.2 shown

in Figure 3.10 (right) is an example of one such configuration, where an additional criterion

is required to decide the tunnel orientation that is lacking in the original implementation

of MC33. This problem was easily detected by our framework, because the orientation

changes the mesh invariants, and a mismatch occurs.

D elIso presented a high percentage of p0 mismatches due to the mechanism used for

tracking connected components. It uses ray-surface intersection to sample a few points over

each connected component of the isosurface before extracting it. The number of rays is

a user-controlled parameter and its initial position and direction are randomly assigned.

52

Figure 3.10. MC33 mismatch example. From left to right: problem in the case 4.1.2, 6.1.2,
and 13.5.2 of Marching Cubes table (all are ambiguous). Each group of three pictures shows
the obtained, expected, and implicit surfaces. Our verification procedure can detect the
topological differences between the obtained and expected topologies, even for ambiguous
cases.

DelIso is likely to extract the biggest connected component and, occasionally, it misses

small components. It is important to say that the ray-sample based scheme tends to work

fine in practical applications where small surfaces are not present. The invariant mismatches

for and are computed only if no consistency mismatch happens.

For M CFlow, we applied the verification framework systematically during its imple

mentation/development. Obviously, many bugs were uncovered and fixed over the course

of its development. Since we are randomizing the piecewise trilinear field, we are likely

to cover all possible Marching Cubes entries and also different cube combinations. As

verification tests have been applied since the very beginning, all detectable bugs were

removed, resulting in no mismatches. The downside of M CFlow, though, is that typical

bad quality triangles appearing in Marching Cubes become even worse in M CFlow, because

cubes of different sizes are glued together. M CFlow geometrical convergence is presented

in the supplementary material [151].

3.6 Discussion and Limitations
3.6.1 Q uality o f M anufactured Solu tions

Whenever one uses MMS, one very important question is that of the quality of the

manufactured solutions, since it reflects directly on the quality of the verification process.

Using random solutions, for which we compute the necessary invariants, naturally seems

to yield good results. However, our random solutions will almost always have nonidentical

values. This raises the issue of detecting and handling degenerate inputs, such as the ones

arising from quantization. We note that most implementations use techniques such as

Simulation of Simplicity [37] (for example, by arbitrarily breaking ties using node ordering)

to effectively keep the facade of nondegeneracy. However, we note that developing man

ufactured solutions specifically to stress degeneracies is desirable when using verification

53

tools during development. We decided against this since different implementations might

employ different strategies to handle degeneracies and our goal was to keep the presentation

sufficiently uniform.

3.6.2 T opology and G eom etry

This work extends the work by Etiene et al. [46] toward including topology in the loop

of verification for isosurface techniques. The machinery presented herein combined with the

methodology for verifying geometry comprises a solid battery of tests able to stress most of

the existing isosurface extraction codes.

To illustrate this, we also submitted MC33 and M CFlow techniques to the geometrical

test proposed by Etiene, as these codes have not been geometrically verified. While MC33

has geometrical behavior in agreement with Etiene's approach, the results presented in

Section 3.5 show it does not pass the topological tests. On the other hand, after ensuring

that M CFlow was successful regarding topological tests, we submitted it to the geometrical

analysis, which revealed problems. Figure 3.8(c) shows an example of an output generated

in the early stages of development of M CFlow before (left) and after (right) fixing the bug.

The topology matches the expected one (a topological sphere); nevertheless, the geometry

does not converge.

3.6 .3 SM T vs. D T

The verification approach using digital surfaces generates detailed information about

the expected topology because it provides ,0o, A , and fi2. However, verifying isosurfaces

with boundaries would require additional theoretical results, as the theory supporting

our verification algorithm is only valid for surfaces without boundary. In contrast, the

verification methodology using stratified Morse theory can handle surfaces with boundary.

However, SMT only provides information about the Euler characteristic, making it harder

to determine when the topological verification process fails. Another issue with SMT is that

if a code incorrectly introduces topological features so as to preserve x, then no failure will

be detected. For example, suppose the surface to be reconstructed is a torus, but the code

produces a torus plus three triangles, each one sharing two vertices with the other triangles

but not an edge. In this case, torus plus three “cycling” triangles also has x = 0, exactly the

Euler characteristic of the single torus. In that case, notice that the digital surface-based

test would be able to detect the spurious three triangles by comparing ^0. Despite being less

54

sensitive in theory, SMT-based verification revealed similar problems as the digital topology

tests have. We believe this effectiveness comes in part from the randomized nature of our

tests.

3.6 .4 Im plem en tation o f SM T and D T

Verification tools should be as simple as possible while still revealing unexpected behav

ior. The pipeline for geometric convergence is straightforward and thus much less error-

prone. This is mostly because the approach of Etiene et al. uses analytical manufactured

solutions to provide information about function value, gradients, area, and curvature. In

topology, on the other hand, we can manufacture only simple analytical solutions (e.g.,

a sphere, torus, double-torus, etc.) for which we know topological invariants. There are

no guarantees that these solutions will cover all cases of a trilinear interpolant inside a

cube. For this reason, we employ a random manufactured solution and must then compute

explicitly the topological invariants. A point which naturally arises in verification settings

is that the verification code is another program. How do we verify the verifier?

First, note that the implementation of either verifier is simpler than the isosurfacing

techniques under scrutiny. This reduces the chances of a bug impacting the original

verification. In addition, we can use the same strategy to check if the verification tools

are implemented correctly. For SMT, one may compute x for an isovalue that is greater

than any other in the grid. In such case, the verification tool should result in x = 0.

For DT, we can use the fact that Majority Interpolation always produces a 2-manifold.

Fortunately, this test reduces to check for two invalid cube configurations, as described by

Stelldinger et al. [164]. Obviously, there might remain bugs in the verification code. As

we have stated before, a mismatch between the expected invariants and the computed ones

indicates a problem somewhere in the pipeline; our experiments are empirical evidence of

the technique’s effectiveness in detecting implementation problems.

Another concern is the performance of the verification tools. In our experiments, the

invariant computation via SMT and DS is faster than any isosurface extraction presented in

this work, for most of the random grids. In some scenarios, DS might experience a slowdown

because it refines the grid in order to eliminate ambiguous cubes (the maximum number of

refinement is set to 4). Thus, both SMT and DS (after grid refinement) need to perform a

constant number of operations for each grid cube to determine the digital surface (DS) or

critical points (SMT). In this particular context, we highlight the recent developments on

55

certifying algorithms, which produce both the output and an efficiently checkable certificate

of correctness [107].

3.6.5 C ontour Trees

Contour trees [18] are powerful structures to describe the evolution of level-sets of simply

connected domains. It normally assumes a simplicial complex as input, but there are

extensions to handle regular grids [130]. Contour trees naturally provide ^0, and they can

be extended to report 0 1 and fi2. Hence, for any isovalue, we have information about all

Betti numbers, even for surfaces with boundaries. This fact renders contour trees a good

candidate for verification purposes. In fact, if an implementation is available, we encourage

its use so as to increase confidence in the algorithm’s behavior. However, the implementation

of a contour tree is more complicated than the techniques presented here. For regular-grids,

a divide-and-conquer approach can be used along with oracles representing the split and

join trees in the deepest level of the recursion, which is nontrivial. Also, implementing

the merging of the two trees to obtain the final contour tree is still involving and error-

prone. Our approach, on the other hand, is based on regular grid refinement and voxel

selection for the DT method and critical point computation and classification for the SMT

method. There are other tools, including contour trees, that could be used to assess topology

correctness of isosurface extraction algorithms, and an interesting experiment would be to

compare the number of mismatches found by each of these tools. Nevertheless, in this

work, we have focused on the approaches using SMT and DT because of their simplicity

and effectiveness in finding code mistakes in publicly available implementations. We believe

that the simpler methodologies we have presented here are more likely to be adopted during

development of visualization isosurfacing tools.

3 .6 .6 T opology o f th e U nd erly ing O bject

In this work, we are interested in how to effectively verify topological properties of codes

which employ trilinear interpolation. In particular, this means that our verification tools

will work for implementations other than marching methods (for example, DelIso is based on

Delaunay refinement). Nevertheless, in practice, the original scalar field will not be trilinear,

and algorithms which assume a trilinearly interpolated scalar field might not provide any

topological guarantee regarding the reconstructed object. Consider, for example, a piecewise

linear curve 7 built by walking through diagonals of adjacent cubes ci e Q and define the

distance field d(x) = min{\\x — x'\\ such that x' G y }. The isosurface d(x) = a for any a > 0

is a single tube around 7 . However, none of the implementations tested could successfully

reproduce the tubular structure for all a > 0. This is not particularly surprising, since the

trilinear interpolation from samples of d is quite different from the d. Figure 3.11 shows

a typical output produced by VTK Marching Cubes for the distance field d = a . Notice,

however, that this is not only an issue of sampling rate because if the tube keeps going

through the diagonals of cubic cells, VTK will not be able reproduce d = a yet. Also

recall that some structures cannot even be reproduced by trilinear interpolants, as when 7

crosses diagonals of two parallel faces of a cubic cell, as described in [21, 130]. The aspects

above are not errors in the codes but reflect software design choices that should be clearly

expressed to users of those visualization techniques.

3.6 .7 L im itations

The theoretical guarantees supporting our manufactured solution rely on the trilinear

interpolant. If an interpolant other than trilinear is employed, then new results ensuring

homeomorphism (Theorem 3.3.1) should be derived. The basic infrastructure we have

described here, however, should be appropriate as a starting point for the process.

3.7 Conclusion
In this chapter, we extended the framework presented in the previous chapter by in

cluding topology into the verification cycle. We used machinery from digital topology and

stratified Morse theory to derive two verification tools that are simple and yet capable

of finding unexpected behavior and coding mistakes. We argue that researchers and de

velopers should consider adopting verification as an integral part of the investigation and

development of scientific visualization techniques. Topological properties are as important

as geometric ones, and they deserve the same amount of attention. It is telling that the only

56

Figure 3.11. Isosurface extracted with VTK Marching Cubes

algorithm that passed all verification tests proposed here is the one that used the verification

procedures during its development. We believe this happened because topological properties

are particularly subtle and require an unusually large amount of care.

57

CHAPTER 4

PRACTICAL CONSIDERATIONS ON THE

TOPOLOGICAL CORRECTNESS OF
MARCHING CUBES 33

Isosurface extraction techniques can be divided into two classes according to their topo

logical guarantees, namely, consistency or correctness. Topologically consistent techniques

produce surfaces that are piecewise-linear (PL) manifolds (i.e ., crack-free surfaces), except

at the boundary of the domain. Topologically correct techniques produce a PL-manifold

homeomorphic to the surface induced by a given interpolant, such as the trilinear inter-

polant. Although there are many topologically consistent MC-based techniques, only a

handful are topologically correct. Marching Cubes 33 is one of the first MC-based algorithms

that aim to preserve the topology of the trilinear interpolant.

Topological correctness increases the complexity of isosurface extraction algorithms. The

many isosurface configurations possible for a given interpolant in a cubic grid makes both the

algorithm and its implementation a challenging task. As algorithms and implementations

become more complex, issues may be overlooked and remain hidden in the multitude of

(pseudo-) lines of code. Throughout years of research, it has been shown that some

supposedly topologically correct techniques, including MC33, have issues that prevent

correctness [45, 98, 124]. In particular, the work of Etiene et al. [45] shows that the

MC33 implementation by Lewiner et al. [93, 94] fails to produce topologically correct

isosurfaces. Alas, the authors do not provide an explanation for the problem source, let

alone fix the problem. They only provide cases that are mishandled by MC33 and a

conjecture regarding the root of one of the observed flaws. As we studied the MC33

implementation, we realized that the source of the problem was not merely implementation

bugs but the core ideas behind the implemented algorithm. In this work, we address issues

with Chernyaev’s original algorithm, its extension, and its implementation. Our work closes

an existing gap in the topological correctness of Marching Cubes 33.

The subtleties involved in the correctness of isosurface extraction techniques are some

times difficult to grasp in the ordinary paper medium. Both the geometry and topology

inside grid voxels are often complex and challenging to understand, study and replicate (e.g.,

see Figures 9 and 10 in [125]). As an attempt to bridge this gap, we build on recent efforts

towards executable papers [82, 172]. Executable papers extend the traditional paper/digital

counterpart by including tools that allow readers to interact, explore, and verify experiments

more easily. In this chapter, we use executable papers to increase the reproducibility of our

results. Our contributions, which have a practical nature, are the following:

• We explain and address three algorithmic issues and one nontrivial implementation

issue with Marching Cubes 33. In particular, we solve an issue with the core MC33

disambiguation procedure that, as far as we know, has not been addressed elsewhere.

Hence, we close an existing gap in the MC33 literature.

• We make our results reproducible. CrowdLabs [172] and Vistrails [49] are used to

create an executable paper that can reproduce the results shown in the following

sections.

• We provide datasets that can be used to verify the correctness of any topologically

correct isosurface extraction technique.

A by-product of this work is a thorough analysis of both the MC33 algorithm and its

implementation that can be used by anyone interested in the use or development of correct

isosurface extraction algorithms based on MC33. The results of our efforts are materialized

into an extended version of the MC33 implementation [93], henceforth called Corrected-

MC33 (C-MC33).

This work is organized as follows. Section 4.2 reviews key aspects related to the Marching

Cubes 33 algorithm. Section 4.3 explains how experiments that uncovered problems in both

MC33 algorithm and implementation were conducted. The details of the problems found

are shown in Section 4.4 and the solutions are presented in Section 4.5. Section 4.6 shows the

results of applying algorithm with different topological guarantees to real-world datasets.

4.1 Related Work
Soon after the publication of the MC algorithm, the quest for a topologically correct

isosurface extraction technique began. A number of approaches were proposed for dealing

with cracks, face ambiguity, and, lastly, interior ambiguity. Durst [35] was the first to point

out that some MC cases allow multiple triangulations. A consequence of this is that MC

59

60

does not always generate topologically consistent surfaces. This problem arises due to the

ambiguity problem; the Asymptotic Decider [126] provides a simple and elegant solution to

face ambiguity.

The ambiguity problem also occurs in the interior of a voxel. Natarajan [122] was the

first to address this problem by adding four new cases to the standard MC triangulation

table (subcases of cases 3, 4, 6 , and 7). To find the correct subcases, the author proposed

a disambiguation procedure based on both face and interior critical points. Nevertheless,

the method misses the possibility of two interior critical points in case 7; consequently, the

proposed algorithm may generate a surface with the incorrect topology [15, 124].

Using a different approach, Chernyaev [21] extended the original MC table to 33 cases

- hence MC33; this extension included all the subcases for each ambiguous case. He used

the Asymptotic Decider and a new interior ambiguity test to discriminate among subcases.

Lewiner et al. [94] provided a practical open-source implementation of the Chernyaev

algorithm. It is worth noting that some of the configurations shown in Chernyaev’s work [21]

may have been inspired by personal communication with Nielson [125]. Matveyev [105]

introduced an isosurface technique that is also based on an extended table and used the

intersections of isosurfaces with cube diagonals to determine the correct case.

Lopes and Brodlie [98] extended the tests proposed by Natarajan. The goals of the work

are threefold: i) extract topologically correct isosurfaces; ii) produce geometrically accurate

isosurface; iii) allow continuity with respect to changes in threshold and data. Nevertheless,

as in Natarajan’s work, the method missed the possibility of two interior critical points in

case 7 [98]. Cignoni et al. [23] also used the test proposed by Natarajan to reconstruct

topologically correct isosurfaces. The work of Theisel [168] uses Bezier patches to build G1

continuous isosurfaces that are topologically correct. Nielson [125] lists all possible cases

of a trilinear interpolant inside a cubic grid and builds a topologically correct MC using a

three stage algorithm for surface polygonization.

The past two decades have also produced a number of isosurface techniques that are

not MC-based. Dual Contouring [73] (DC) is a robust, crack-free, isosurface extraction

technique that works on the dual grid. Several improvements over Dual Contouring have

been proposed: Schaefer et al. [149] address the issue of nonmanifold surfaces generated by

DC; Varadhan et al. [182] combine a signed distance field with DC to reconstruct details

such as thin features; and Zhang et al. [193] use DC for topology-preserving simplification of

isosurfaces. Note that none of these techniques are intended to preserve the topology of the

61

trilinear interpolant. Dey and Levine [32] presented an algorithm that computes a Delaunay

triangulation based on the intersection between the isosurface and the 3D Voronoi diagram.

Another paradigm for isosurface extraction is the advancing front method. Advancing front

algorithms build a triangulated surface by progressively adding triangles to an implicit

surface [59], possibly creating several fronts that are simultaneously advanced one triangle

at a time. A number of extensions have been proposed for advancing front techniques

[153, 154, 159].

In the following sections, we focus on MC33. Note that, although many of the algorithms

presented previously are topologically consistent, only a handful of them are topologically

correct [21, 32]. Also, the implementation of a topologically correct isosurface extraction

algorithm is nontrivial. Hence, once the algorithm is implemented, topological guarantees,

both consistency and correctness, may be lost because of algorithm or implementation

issues, as shown in the work of Etiene et al. [45]. Although it has been ten years since

the publication of MC33, we believe it is important to correct a mistake in the algorithm

that has gone unnoticed since Chernyaev published it almost 20 years ago. In this work,

we aim to close an existing gap in the MC33 literature. Furthermore, we aim not only

to provide a correct algorithm but verify that our modified implementation is faithful to

the correct algorithm. We explain the issues and propose solutions for both algorithm

and implementation. We note that “MC33” may refer to either the Marching Cubes 33

algorithm presented in Chernyaev’s work [21] or its implementation, as in Lewiner et al.

[94] depending on the context.

4.2 Preliminaries
In this section, we present the notation that will be used throughout this chapter. We

also briefly review the main concepts behind Chernyaev’s algorithm and the implementation

of Lewiner et al.. Let G be a rectilinear grid with scalar values associated with each vertex

Xj € G. Let g : R3 ^ R be a piecewise-trilinear interpolation function defined on G. Given

an isovalue A, the isosurface Sa is defined as the set of points for which g(x) = A. For each

voxel vi C G, and x e vi , g(x) = gi(x) where gi is the trilinear interpolant inside the cubic

cell vi .

The output of MC-based algorithms is a piecewise-linear mesh Ma, and we say that an

algorithm and its implementation are topologically correct if Ma is homeomorphic to SA.

Without loss of generality, we assume that A = 0, and thus Sa = S0 = S . We say that a

62

point x is positive (negative) if g(x) > 0 (g(x) < 0).

Given a voxel v , and a cutting-plane P parallel to one of v ’s faces, define f : R2 ^ R

as the bilinear interpolant along P . Note that f (x) = gi (x) for x £ P . Throughout the

text, we deal with a single voxel v; thus, we omit the subscript i. We also assume that v

and P are defined in the domains [0,1]3 and [0,1]2, respectively.

4.2.1 C hernyaev’s M C 33

The two pillars of Marching Cubes 33’s topological correctness are Nielson and Hamann’s

Asymptotic Decider and Chernyaev’s interior ambiguities test; together these solve the face

ambiguity and interior ambiguity problems in the Marching Cubes 33 algorithm. A face

ambiguity occurs when face vertices have alternating signs. That is, one face diagonal is

positive (both vertices are positive) and the other is negative (both vertices are negative).

In this case, the signs of the face vertices are insufficient to determine the correct way to

triangulate the isosurface. Similarly, an interior ambiguity occurs when the signs of the cube

vertices are insufficient to determine the correct surface triangulation, i.e., when multiple

triangulations are possible for the same cube configuration (see Figure 4.1).

The idea behind the Asymptotic Decider is to verify the face saddle sign and compare

it to the sign on the face vertices. A positive saddle means that the positive face vertices

are connected; consequently, the positive face vertices are separated if the face saddle point

is negative (see Figure 4.2). To compute the face saddle sign, the saddle point position xc

must be computed [21]:

A D A B
A + C - B - D ’ A + C - B - D

(4.1)

where A, B , C , and D are the scalar values at the face vertices (see Figure 4.2). The sign

xc

F igure 4.1. Left: case 4 ambiguity. The interior ambiguity test proposed by Chernyaev
is used choose the correct configuration.Right: face ambiguity. The Asymptotic Decider is
used to resolve the ambiguity.

63

Figure 4.2. Asymptotic Decider (left) and MC33 interior ambiguity test for MC case 4
(right). The gray areas represent regions with positive scalar values, and the capital letters
represent the scalar value at each vertex. In the left image, we observe that f (xc) < 0,
where xc is the saddle point position. Positive areas will be connected if f (xc) > 0. The
orange squared plane shown in the right image represents the cutting-plane. The goal of the
MC33 algorithm is to find a cutting-plane such that the gray areas in the top and bottom
planes are joined in the interior.

of xc can easily be checked by replacing Equation (4.1) into the bilinear interpolant:

„ x AC - B D .
f <x'c) = A + C - B - D ■ (4-2)

For an ambiguous face, assuming A, C positive and B and D negative, the denominator of

the Equation (4.2) is always positive (see Figure 4.2). Then, the face ambiguity is solved

by evaluating the sign of the numerator of f (xc).

Due to the interior ambiguity, the Asymptotic Decider alone cannot solve the topological

correctness problem. Chernyaev uses the idea behind the Asymptotic Decider to solve the

interior ambiguity problem. The proposed test uses a sweeping cutting-plane to evaluate

the behavior of the trilinear interpolant inside the cube.

Given a cube with an ambiguous configuration, define the scalar values at the base and

top planes as A0, B0, Co, D0, and Ai, Bi, Ci, Di, respectively (see Figure 4.2). Let Ao

and C1, the vertices to be tested, be positive. Observe that, although A0 and C1 belong

to opposite cube faces, they can be connected through the cube interior. In other words,

there may exist a path from A0 to Ci passing through the voxel interior for which all

points belonging to that path are positive. To determine whether A0 and Ci are connected,

Chernyaev begins by observing that the saddle points at the top and base cube faces are

negative, i.e., Equation (4.2) is negative at the bottom and top faces. Since the denominator

is positive, it follows that:

A 0 C0 — B 0 D 0 < 0 (4.3)

A 1 C 1 — B 1 D 1 < 0 . (4.4)

Then, if there is a plane cutting the cube such that its saddle point is positive, it means

that there is a positive area crossing the cube, i.e., the positive vertices are connected inside

the cube. In other words, the Chernyaev interior test searches for a t for which:

F (t) = AtCt — BtD t > 0. (4.5)

This can be achieved by solving a second order equation in t. Replacing X t = X0 + (X 1 —

X 0)t, X e {A, B, C, D} and t e [0,1] in Equation (4.5), one obtains a second order equation

in t :

F (t) = AtCt — BtDt (4.6)

= at2 + bt + c, (4.7)

where a, b, and c are functions of A, B ,C, and D (see Appendix A). Chernyaev concludes

that positive vertices A0 and C1 are connected through the cube interior if:

1. a < 0 ;

2. tmax = —b/2a £ (0,1);

3. F(tmax) > 0 .
If one of the above conditions fails, the positive vertices are separated.

4.2 .2 M C 33 o f Lew iner et al.

Lewiner et al. [94] proposed a modification of Chernyaev’s interior test. In this modifi

cation, they use an alternative method for computing the height plane t for most ambiguous

cases. For cases 6 , 7, 12, and 13, the authors compute the height t based on the barycenter

of the end vertices of an edge e (a cube edge intersected by the isosurface) weighted by the

values of the scalar field on these vertices (see Lewiner et al. [94] for details). In practice,

the implementation uses:

talt = V0 - V1 , (4.8)
where V0 and V1 are the scalar values at the vertices of e. Note that this is equivalent to

finding the intersection point between the isosurface S and e. The authors keep the structure

64

65

of the test proposed by Chernyaev, but condition (i) is not used, and condition (ii) is always

true because e is an edge intersected by the isosurface; consequently, tait € (0, 1).

Section 4.4 explains why the algorithm proposed by Chernyaev and its modified version

proposed by Lewiner et al. may fail to extract surfaces that are topologically correct. In

the following section, we present the tools we use to detect, debug, and reproduce the issues

found in the MC33 algorithm and its implementation. The full Marching Cubes table can

be found in the works of Chernyaev [21] and Lewiner et al. [94].

4.3 Experiments Setup
We begin by investigating the source of topological problems in the MC33 implemen

tation [45]. The topological issues described were obtained by systematically stress-testing

the implementation over many topological configurations using the verification framework

proposed in Etiene et al. [45]. These authors’ algorithm can be summarized as follows. (I)

A random scalar field G is built by uniformly sampling scalar values in the range [-1,1]

for each xj e G. (II) The expected topological invariants are obtained directly from S , i.e.,

without extracting the isosurface of interest. The topological invariants used are the Euler

characteristic x(S) and the Betti numbers (S). (III) The MC33 implementation is used to

extract a piecewise linear mesh M , and its invariants x (M) and (M) are computed. (IV)

Lastly, the pairs of topological invariants {x(S), x(M)} and (S),^k(M)} are compared.

A mismatch indicates that a problem has occurred. Nevertheless, as the authors note, a

match between invariants does not imply a bug-free code [45]. The verification process

does not prove the absence of bugs but only increases one's confidence in its correctness.

In this chapter, we exploit the fact that when the expected and obtained surfaces are not

homeomorphic, a counterexample is given in the form of a scalar field G and a mesh M .

We use this information to find and correct errors in MC33.

4.3 .1 R ep rod u cib ility

As investigators in a mature field within the scientific visualization community, isosurface

extraction researchers have developed ways to help other researchers and practitioners repro

duce their results. Published journal articles offer a first approximation of reproducibility.

Nevertheless, many details regarding implementation, source code, input data, and other

types of information are often omitted. Many, but not all, published techniques make

source code and input data freely available, and some are part of widely used visualization

66

packages such as VTK [155]. This practice greatly increases the degree of reproducibility of

the work. We use CrowdLabs [172] and Vistrails [49, 158] as a platform to achieve this goal.

To explore some of the results shown in this chapter, the reader may click on individual

figure captions and interact with the results via web browser. We have selected cases in

which MC33 fails and have provided the respective correct results. In addition, to allow

the reader to explore and study the results presented here, he or she can also download the

scalar fields and respective topological invariants x and used for stress testing MC33. We

also provide 10000 Marching Cubes cases grids and randomly generated 5x5x5 grids [28].

This dataset can be used to test any topologically correct isosurface extraction technique.

4.4 Issues with the MC33
In this section, we discuss specific issues regarding both the work of Chernyaev [21] and

Lewiner et al. [94]. Because Lewiner et al. extends Chernyaev’s work, the issues presented

in the latter are also part of the former. Specifically, we detail three algorithmic issues -

two in Chernyaev’s MC33 and one in Lewiner et al. - and one implementation issue. The

solutions for the issues raised here will be presented in the next section.

This section is organized as follows. First, we explain an algorithmic problem with the

MC33 core disambiguation procedure. This issue has not been discussed in the literature

to date. We then discuss a second algorithmic problem related to the triangulation table

and the extraction of nonmanifold meshes. Although this problem has been discussed in

the literature, we discuss it here for completeness and because we provide an alternative

solution to the problem (see Section 4.5). Next, we show a third algorithmic problem related

to the alternative approach proposed by Lewiner et al. for computing the height plane t.

Lastly, we show a nontrivial problem with the open-source implementation of the MC33.

4.4 .1 Issue I — C ase 13.5

Here, we show a problem with the core disambiguation procedure described in the work

of Chernyaev. To our knowledge, this problem has not been exposed or addressed in the

literature.

Case 13 is certainly the most complex table case; all faces are ambiguous, and six

subcases are possible. Four of the subcases can be discriminated by using Asymptotic De

cider. The remaining cases 13.5.1 and 13.5.2 require Chernyaev’s MC33 interior ambiguity

resolution method. Recall that the MC33 approach discriminates between tunnels and

http://liscustodio.github.io/C_MC33/MarchingCubes_cases.zip
http://liscustodio.github.io/C_MC33/Closed_Surfaces.zip

67

isolated sheets by finding a cutting-plane for which positive nodes in the cube diagonal are

joined by points in the interior of the cubic cell (see Figure 4.2). Cases 13.5.1 and 13.5.2

differ precisely because the positive nodes in case 13.5.2 are connected to one another by

interior points, which is not true for 13.5.1 (see Figure 4.3).

Although it seems that the MC33 methodology described in Section 4.2 fits naturally

in this scenario, as it turns out this disambiguation procedure cannot be applied for 13.5.

Let us illustrate this point with an example. Figure 4.4 shows the expected changes in the

sign of the saddle point xc as a function of the height t. Mathematically

Figure 4.3. Challenging cases for Chernyave’s interior test: voxel diagonal has vertices
with opposite signs. Case 13.5.2 needs to be oriented correctly. One of the diagonal vertices
is isolated from all other vertices in the cube, while the other is faced by the tunnel. In
order to determine which vertex is isolated, we apply the same tool used for disambiguation
of case 13.5. For case 13.5.1, the orientation of the isosurface have no influence on the
topology.

Figure 4.4. Sign changes of the cutting-plane saddle point as a function of the height
t. The gray area depicts f (x) > 0. The black (resp. white) dots are face saddles with
f (xc) > 0 (resp. f (x c) < 0). From left to right, the four leftmost images show the sign
of the face saddle points changing from negative to positive to negative and to positive
again, respectively. The rightmost image shows the hyperbolic trajectory of the face saddle
position xc(t). The MC33 algorithm fails to track the saddle point sign because it ignores
the influence of the hyperbolic trajectory shown here.

68

xc (t) (c t + Ct - S t - Dt ’ At + C t - Bt - Dt) . (4'9)

It follows that the face saddle value (and thus sign) is also defined as a function of t:

(4.10)

(4.11)

As can be seen in Figure 4.4, from left to right, as the plane height t changes, the value of

the face saddle f (xc(t)) changes from negative to positive to negative and to positive again.

These changes occur at the roots t 1 and t2 of f (xc(t)) and the asymptote of f (xc(t)), i.e.,

the root ta of the denominator of f (see left image in Figure 4.5). Thus, in total, three

sign changes will occur. The rightmost image in Figure 4.4 shows the path traced by the

face saddles xc(t); as t grows, there is a “jump” not only in the sign of f (xc(t)) but also in

the position of xc(t) . The change occurs precisely when the height t passes through the

asymptote of f (xc(t)).

Nevertheless, contrary to what is expected, the polynomial F(t) (Equation (4.7)), used

by Chernyaev’s MC33 algorithm for tracking the sign of the saddle point, is a second order

equation in t and thus can only allow for two sign changes. Therefore, the sign tracked by

the MC33 algorithm will not match the expected one at some point. Because the sign of

F igure 4.5. Counterexample to Chernyaev’s core disambiguation algorithm. The MC33
algorithm incorrectly interprets case 13.5.2 as 13.5.1. The left image shows the zero-level
set for case 13.5.2 and cutting-planes at heights t 1, t2, and ta, which correspond to both
roots of F(t) and the asymptote of f (xc(t)), respectively. The blue ribbon shows the path
of the face saddle xc(t). The right image shows the changes in f (xc(t)) and F(t). According
to the three criteria of the MC33 algorithm described in Section 4.2, the upward-facing red
parabola defines the absence of a tunnel (condition (i)), which is incorrect. The blue curve,
on the other hand, shows the correct sign change.

, . At Ct — Bt Dtf(xc (t)) = t t t t
A t + Ct - Bt - Dt

a t2 + bt + c
At + C t - Bt — Dt

the saddle points is embedded in all three conditions for verifying the presence or absence

of tunnels, MC33 will eventually provide a wrong result.

The source of the problem can be tracked to Equations (4.3) and (4.4) and the as

sumption that the denominator of f (xc) (Equation (4.2)) is positive. These assumptions

can easily be verified to be true for case 4, shown in Figure 4.2. However, for case 13,

the saddle points at the top and bottom planes have opposite signs, which contradicts

Equations (4.3) and (4.4). In addition, the denominator A + C — B — D of f (xc) changes its

sign at the asymptote of f (xc), contrary to the assumption that it is always positive. The

consequence of incorrectly tracking sign changes is that the three rules used for resolving

internal ambiguity will fail for some scalar fields. As an example, Figure 4.5 shows a case

13.5.2 that will mistakenly be taken as case 13.5.1 because a > 0 characterizes multiples

surface sheets instead of a tunnel (see also Appendix A). The problem is not only related

to the misclassification of case 13.5.2 as 13.5.1. We have also devised examples in which

case 13.5.1 is mistakenly taken as case 13.5.2 because the three criteria shown in Section 4.2

hold. Thus, Chernyaev’s interior ambiguity test does not always yield topologically correct

isosurfaces.

4.4 .1 .1 Tunnel orien tation

A second minor issue regarding case 13.5.2 is the tunnel orientation of configuration

13.5.2. Once case 13.5.2 is determined, one needs to properly orient the tunnel inside

the voxel. Figure 4.6 shows the two possibilities. Both vertices at the voxel diagonal are

separated from all other voxel vertices at the voxel faces (note that this is not the case

for other vertices). Nevertheless, either the positive or the negative vertex of the cube

69

Figure 4.6. Two possible tunnel orientations for case 13.5.2. The difference between them
is the location of the positive vertex.

70

diagonal will connect with vertices with the same sign through the voxel’s interior. This

will determine which vertex is isolated and which is facing the tunnel. This problem with

the tunnel orientation is not dealt with or mentioned in either the work of Chernyaev or

Lewiner et al. Nevertheless, it was briefly mentioned in Etiene et al. [45], but no solution to

the problem was provided. As the authors observed, the isosurface topology changes if the

tunnel orientation is incorrect; thus, it must be oriented correctly. Section 4.5.1.1 provides

a solution for this issue.

The second algorithmic issue is related to the triangulation table used to build trian

gulated surfaces. The choice of the correct MC configuration is only part of the process of

building an algorithm that preserves the topology of the piecewise-trilinear field. The voxel

triangulation table is, in fact, the determinant of the final mesh topology. Chernyaev’s orig

inal triangulation table contains cases that lead to topologically inconsistent nonmanifold

meshes in scenarios such as the one shown in Figure 4.7. This problem occurs because the

MC33 triangulation table allows faces that are coplanar with the grid voxel faces. Hence,

when neighbor voxels have “tunnels” in their interiors, and share an ambiguous, coplanar

face, the end result will be nonmanifold edges, as shown in Figure 4.7. Because this is

F igure 4.7. Top: Problem with Chernyaev’s triangulation table. The figure shows the
zero level-set of a 5 x 5 x 5 randomly generated piecewise-trilinear scalar field G (left)
and two meshes extracted using the MC33 (center) and C-MC33 (right) algorithms. The
isolated voxel patches, shown in green and yellow, represent the two voxels at the center
of G. The face shared by two consecutive tunnels, shown in purple, generates nonmanifold
edges. After one subdivision at the critical point of this case, the problem no longer occurs,
and a valid manifold surface is obtained (right). Bottom: Triangulation for tunnels used by
Lewiner et al. [94]. Each has a face that is coplanar to the voxel faces, which may lead to
nonmanifold surfaces [28].

4.4 .2 Issue II — N onm anifo ld Surfaces

http://liscustodio.github.io/C_MC33/figure8.html
http://liscustodio.github.io/C_MC33/figure8.html
http://liscustodio.github.io/C_MC33/figure8.html
http://liscustodio.github.io/C_MC33/figure8.html
http://liscustodio.github.io/C_MC33/figure8.html
http://liscustodio.github.io/C_MC33/figure8.html
http://liscustodio.github.io/C_MC33/figure8.html
http://liscustodio.github.io/C_MC33/figure8.html
http://liscustodio.github.io/C_MC33/figure8.html
http://liscustodio.github.io/C_MC33/figure8.html
http://liscustodio.github.io/C_MC33/figure8.html

71

an issue with the triangulation table, any topologically correct algorithm whose table is

based on Chernyaev’s triangulation table will build nonmanifold surfaces whether or not

the algorithm can correctly distinguish the voxel cases.

This problem with Chernyaev’s work was pointed out by Lopes and Brodlie [98] (follow

ing earlier work by Van Gelder and Wilhelms [52]) and is one of the motivations of Lopes

and Brodlie’s work on topologically correct and geometrically accurate isosurface extraction

algorithm [98]. Lopes and Brodlie aimed at improving the geometry quality of the trilinear

surface patches and consequently solving the topology problem. They achieve this goal by

adding points to the voxel faces as well as to the voxel interior. These extra points are

placed on the trilinear patch, which increases geometry accuracy. They are classified into

three different classes and used for extending the contour of the trilinear patch with the

voxel faces. The implementation of this technique becomes intricate and error-prone due

to the additional steps required for voxel triangulation.

4.4 .3 Issue III — C u ttin g-p lan e C om pu tation

The third algorithmic issue is related to an MC33 improvement proposed by Lewiner

et al. [94] for computing the plane height. The problem is that Equation (4.8) may fail

to find an appropriate height that can correctly distinguish between tunnels and surface

sheets. Let us illustrate this point with an example. For the cases previously cited, two

of the conditions in the Chernyaev interior test described in Section 4.2 are not used. The

MC33 implementation does not use condition (i), and (ii) is always true because the edge

e will always have a positive and a negative vertex, implying that talt £ (0,1). Thus, only

condition (iii) is used in retrieving the correct voxel topology. Suppose that the scalar field

in a given voxel defines a tunnel, as shown in the left image in Figure 4.8. In this case, to

retrieve the correct topology, F(t) should be a downward-facing parabola with both roots

t i , t 2 £ (0,1), ti < t2, and tmax £ (t i , t2). In this case, F(t) > 0 only for t £ (t i , t2); hence,

F (tmax) > 0, and a tunnel is retrieved according to condition (iii). The problem with the

alternative approach is that, as shown in Figure 4.8, the solution to Equation (4.8) is not

guaranteed to fall within the (t1, t 2) interval, which implies that the scalar field may be

incorrectly interpreted as containing two sheets of surface (shown on the right). In other

words, because talt £ (0 , t 1) and F (talt) < 0, condition (iii) verifies the absence of a tunnel.

72

Figure 4.8. Case 6 configuration. Left: the cut plane height t = tait > 0 used in the
MC33 implementation. Middle: the test proposed in the MC33 algorithm provides a
different t = tmax > 0, which reaches the tunnel. Right: the former test decides that the
isosurface is homeomorphic to two discs whereas the correct answer is a tunnel [28].

4 .4 .4 Issue IV - C ase 10

The last issue described in this work is related to the implementation of MC33. De

velopers know all too well that code mistakes are inherent to software and the MC33

implementation is not an exception.

Due to a missing step in the implementation of the disambiguation algorithm, MC33

fails to correctly resolve the ambiguity in cases 10 and 12. Note that both cases have exactly

two ambiguous faces and the nodes in ambiguous faces can be either separated or joined.

In the discussion that follows, we restrict ourselves to case 10; case 12 is similar.

Let us assume that the ambiguous faces are located at the top and bottom of the voxel.

Then, following the algorithm proposed by Chernyaev [21], depending on the sign of the

face saddles and the interior ambiguity test, one can identify the correct case:

• Case 10.1.1: the positive nodes on both faces are separated, and the positive nodes

at cube diagonals are also separated;

• Case 10.1.2: the positive nodes on both faces are separated, and the positive nodes

at the cube diagonals are not;

• Case 10.2: the positive nodes are separated on the top and connected on the bottom

face.

The cases shown above assume that the positives nodes at the top face are separated.

But a similar reasoning must be applied to cases in which the positives nodes at the top

faces are joined. In the implementation of Lewiner et al., the possibility that the positive

nodes at the top faces are joined is missing.

http://liscustodio.github.io/C_MC33/figure9.html
http://liscustodio.github.io/C_MC33/figure9.html
http://liscustodio.github.io/C_MC33/figure9.html
http://liscustodio.github.io/C_MC33/figure9.html
http://liscustodio.github.io/C_MC33/figure9.html

4.5 Solutions
We present solutions for the four issues raised in the previous section.

73

4.5 .1 Issue I — C ase 13.5

The disambiguation of case 13.5 has been approached in different ways for different

frameworks for isosurface extraction. For example, Nielson [125] presents an algorithm that

is concerned with connectivity along edges, faces and the voxel interior. The author presents

a detailed description of the behavior of the trilinear interpolant inside the cubic grid and

uses these descriptions to solve the ambiguity problem in the interior. Lopes and Brodlie

[98], on the other hand, use critical points in order to resolve some ambiguities. In this case,

the sign of the critical point determines the correct configuration. Unfortunately, the above

solutions do not seamlessly integrate with the MC33 algorithm. The core idea for solving

interior ambiguity, namely, that tunnels can be detected by a sweeping plane through the

voxel, is absent in both approaches. This motivated us to devise an alternative solution

that we feel follows the idea presented in the original algorithm.

We solve this problem by proposing a new interior test that uses the fact that case

13.5.2 requires both roots t 1 and t2 of f (xc(t)) and the associated saddle points to be inside

the voxel. First, recall that xc(t) tracks the path of the face saddle inside the voxel as a

function of height plane at height t, and f (xc(t)) tracks the value (and thus the sign) of that

saddle. Both functions are illustrated in the rightmost image in Figure 4.4, in which the

black hyperbolic curves represent the path of xc(t) and the color of the circles represents

the sign of the face saddle at a given point (white and black circles are points with negative

and positive values, respectively). For case 13.5.2, the path traced by the curve xc(t) must

intersect the isosurface tunnel twice, once at each of the roots t 1 and t2 of f (xc(t)). This

implies that both saddle points xc(t1) and xc(t2) must lie inside the voxel. This is not the

case for 13.5.1 because the face saddle can cross the middle sheet at most once. Therefore,

it suffices to verify that both roots of f (xc(t)) and its saddle points are inside the voxel.

Algorithm 6 illustrates our solution. Our algorithm is very simple, and does not require the

computation of the critical points of the trilinear interpolant, or a detailed description of

its behavior inside a voxel. Our algorithm uses the ideas proposed by Chernyaev in order

to fix an algorithmic problem in his work. We have implemented and tested this solution

on C-MC33 using over 10000 randomly generated instances of case 13.5.

74

A lgorithm 6 A simple disambiguation procedure for Case 13.5

Case 13.5(a, b, c)
> Let t 1 and t2 be the roots of at2 + bt + c (Equation (4.7))

1 if t i , t2 E (0,1) and xc(ti), x c(t2) E (0 ,1)2
2 th en re tu rn Case 13.5.2
3 else re tu rn Case 13.5.1

4.5 .1 .1 Tunnel orien tation

To find the correct tunnel orientation one can use the sign of any point between the

roots t 1 and t2. This is because any point in this range must have the same sign as the

critical points of the trilinear interpolant for case 13.5.2. This can be seen in the black path

shown in the rightmost image in Figure 4.4 and from the graph in Figure 4.5. All points

between roots t 1 and t2 will have the same sign, which is the sign of the “interior” of the

tunnel. Thus, we compare the sign of f ((t1 + t2)/2) with the sign of both vertices of the

voxel diagonal which is inside the tunnel. The tunnel will face the vertex with the same sign

as f ((t1 + 12)/2), whereas the other vertex must be isolated from all cube vertices. Figure

4.9 illustrates this scenario. Note that Lopes and Brodlie [98] used the sign of the critical

points of the trilinear interpolant to retrieve the correct tunnel orientation. We provide a

different solution that fits nicely with Chernyaev’s framework.

F igure 4.9. Solution to the orientation problem. The black dots represent regions with
positive scalar values. The cutting-plane location is at (t1 + 12)/2. The sign of f ((t1 + 12)/2)
determines the tunnel orientation.

4 .5 .2 Issue II - N onm an ifo ld Surfaces

A possible solution to this problem involves postprocessing the mesh to remove nonman

ifold features. Although many works in the literature proposed methods for fixing meshes

(see Ju [72] for an excellent survey), these are mainly focused on retrieving a valid manifold

mesh. Topologically correct algorithms, on the other hand, require that the topology of

the trilinear interpolant be preserved. In addition, mesh repairing techniques may mask

implementation issues by fixing them, which complicates the verification process.

We use an alternative approach that does not require any changes in the MC33 tri

angulation table. An interesting fact is that this problem has a low probability of being

generated at random and an even lower probability of occurring in real-world datasets. In

our tests, it occurred only once in 10000 randomly generated 5 x 5 x 5 scalar fields. Thus,

instead of implementing the approach of Lopes and Brodlie, we adopt a different solution

that takes advantage of the fact that this is a rare event.

Nonmanifold surfaces are created when two adjacent voxels that share an ambiguous

face have tunnels in the voxel interior. By splitting both voxels at the critical point of that

face, the face ambiguity is eliminated [15]. To simplify the algorithm, we split not only the

voxels sharing the ambiguous face but all faces in the volume slice that contains that face

(see Figure 4.10). Assuming an input of size n x n x n, each subdivision will add n 2 voxels to

the grid. Assuming that k subdivisions are required, kn2 voxels will be added. In practice

k = O(1), and thus kn2 = O(1)O(n2) = O(n2). This implies that the asymptotic size

of the dataset does not change. This subdivision adds the degree of freedom necessary to

eliminate the problem, making this implementation of the Marching Cubes 33 topologically

correct (see Figure 4.7).

75

Figure 4.10. Grid refinement. The slice of voxels containing the offending configuration
is splitted into two slices.

76

4.5 .3 Issue III — C u ttin g-p lan e C om pu tation

Because this is a problem with the alternative method used in Lewiner et al., the issue

can be avoided by replacing the use of tait with use of the originally proposed tmax.

Algorithm 7 illustrates the required steps for disambiguation on case 10. We fixed the

MC33 implementation by adding the lines 16-20, which in the original implementation were

replaced by the result case 10.1.1.

We now turn our attention to the practical impact of the topological correctness of the

trilinear interpolant. For real-world datasets, the vast majority of Marching Cubes cases

match the nonambiguous configurations, namely, 1, 2, 5, 8 , and 9. This means that the

standard Marching Cubes will match the topology generated by both MC33 and C-MC33.

A lgorithm 7 Algorithm for case 10 [28]
1: Positive nodes are denoted as n+
2: if n+ are separated at top face then
3: if n+ are separated at bottom face then
4: if n+ at voxel diagonals are separated then

4 .5 .4 Issue IV — C ase 10

4.6 Experiments with Real-world Datasets

5
6
7
8
9

10
11:
12:
13:
14:
15:
16
17
18
19
20
21
22

end if
else

else
Case 10.1.1

Case 10.1.2

end if
else

if n + are separated at bottom face then

Case 10.2

else
Case 10.2

if n + a t v o x e l d ia g o n a ls jo in e d the*1

end if
end if

else
Case 10.1.1

Case 10.1.2

end if

http://liscustodio.github.io/C_MC33/alg2.html

77

Nevertheless, for some voxels, there will be topological differences in the approaches, which

may result in quite different meshes.

For the sake of completeness, in this section, we provide a qualitative analysis of these

differences. The aneurysm dataset shown in Figure 4.11 provides an example of the dif

ferences. From left to right, Figure 4.11 shows meshes extracted with VTK Marching

Cubes, MC33, and C-MC33. The VTK implementation is based on the work of Montani

et al. [116] and does not have topological guarantees aside from consistency. These three

implementations can be viewed as three distinct ways of extracting the mesh topology.

Although only a handful of voxels differ among the implementations, for the aneurysm

dataset, the consequence is that the (largest) main brain artery appears quite different in

each interpretation. Because the dataset contains several thin features, subvoxel accuracy is

required to connect the pieces of the blood vessels. As shown in the inset images in Figure

4.11, one voxel is sufficient to separate fairly large vessels.

VTK and MC33 generate more extra connected components (shown in purple) than

does C-MC33. Figure 4.12 shows the difference in the number of connected components

Figure 4.11. Aneurysm dataset. From left to right, the displayed isosurfaces were
extracted using VTK, MC33, and C-MC33, respectively. We show the main brain
artery component in yellow and the extra connected components in purple. From the
images shown, it is clear that the purple components should be part of the main branch.
Nevertheless, due to the implicit disambiguation in VTK and the issues in MC33, the final
isosurface contains multiple components (left and middle figures). The isosurface generated
using C-MC33 is shown on the right [28].

http://liscustodio.github.io/C_MC33/figure12.html
http://liscustodio.github.io/C_MC33/figure12.html
http://liscustodio.github.io/C_MC33/figure12.html
http://liscustodio.github.io/C_MC33/figure12.html
http://liscustodio.github.io/C_MC33/figure12.html
http://liscustodio.github.io/C_MC33/figure12.html
http://liscustodio.github.io/C_MC33/figure12.html
http://liscustodio.github.io/C_MC33/figure12.html

78

Figure 4.12. The left plot shows the difference between the number of connected
components extracted by VTK implementation of Marching Cubes and the number of
connected components extracted by our C-MC33 implementation. The right plot shows
the difference in the number of connected components but between the MC33 and C-MC33
implementations. Negative values indicate that the C-MC33 implementation generated
more connected components. Clearly, VTK generates more components that C-MC33.
MC33 generates more components for most of the isovalues.

generated by VTK and C-MC33 (left) and by MC33 and C-MC33 (right) as a function of

the isovalue for the aneurysm dataset. Clearly, VTK produces substantially more connected

components than C-MC33 (up to 2400 more components). The differences between MC33

and C-MC33 are not as large, although they are sufficient to disconnect important artery

segments. In this example, MC33 generates more connected components than C-MC33 for

most isovalues. The aneurysm dataset shows that changes in the topology of some voxels

can impact the final surface. In this particular example, it is reasonable to assume that

the blood vessels form a single connected component and thus that the dataset contains

as few connected components as possible. Using this criterion, C-MC33 shows the best

performance for most isovalues. We emphasize that the “importance” of the differences

in the number of connected components ought to be measured. For instance, although in

general C-MC33 produced fewer connected components, for some isovalues the number of

components extracted with C-MC33 was greater than the number extracted using MC33.

As it turns out, this is due to the presence of pieces of small components disconnected

from the main artery. However, because small isolated components do not disconnect large

portions of the datasets, contrary to what is shown in Figure 4.11, MC33 and C-MC33

could be considered only “slightly” different. A thorough study of impact of the different

approaches for extracting mesh topology is desirable but is beyond the scope of this work.

The second problem is due to the extraction of nonmanifold features. The issue explained

in Section 4.4.2 also pertains to real-world datasets. Figure 4.13 shows an example of a

medical dataset in which the output of MC33 implementation is a nonmanifold surface.

We have observed the same problem for certain isovalues of other commonly used datasets,

such as the backpack and bonsai datasets. Nevertheless, in our experiments, this problem

occurred rarely in the datasets tested: on average, one case of nonmanifold edges was found

per 107 evaluated voxels.

4.7 Conclusion
In this chapter, we discussed in detail three issues with the Marching Cubes 33 algorithm

and one nontrivial issue with its implementation. We presented solutions for the issues raised

and implement them into C-MC33, a topologically correct version of MC33. In addition,

we made our results reproducible so that the reader can easily study, explore, and use the

results presented here for his or her own purpose.

79

Figure 4.13. Skull dataset. The image shows a progressive zoom-in into the dataset in
order to reveal nonmanifold edges. The face containing the nonmanifold edges is highlighted
in purple. The rightmost image is an isolated version of the case shown in the dataset, with
a slightly different geometry for the sake of clarity. A nonmanifold edge appeared six times
in total for 50 distinct isosurfaces.

CHAPTER 5

VERIFYING DIRECT VOLUME

RENDERING ALGORITHM

In the last several decades, the visualization and graphics communities have developed a

wide range of volume rendering techniques. As they are used in several different disciplines

of science, and thus form a basis for new scientific insights, it is essential to assess their

reliability and identify errors. Furthermore, the increasing complexity of volume rendering

algorithms makes the correctness of the algorithm itself as well as its potentially error-prone

implementations complementary and equally important issues. Being that volume rendering

is essential in areas such as medical imaging, where accuracy and precision play a crucial

role, a formal methodology for assessing correctness is highly desirable [76, 137]. While

verification has been widely adopted in many different branches of computer science - see

model checking [25], fuzzing [56], and convergence analysis [146] - there has not been signifi

cant work accomplished on a formalized praxis for asserting the correctness of visualization

techniques. We use the word verification in the same sense as Babuska and Oden [3]:

“verification is the process of determining if a computational model, and its corresponding

numerical solution, obtained by discretizing the mathematical model (with corresponding

exact solution) of a physical event, and the code implementing the computational model can

be used to represent the mathematical model of the event with sufficient accuracy” [3]. The

presented methodology is based on order of accuracy and convergence analysis [146] which

we can apply after deriving the expected behavior of the algorithms under observation.

To allow the verification of volume rendering algorithms, we start with an analysis

of the volume rendering integral and the most common discretization of this continuous

model - Riemman summation. This analysis gives us insight into the expected behavior

of the observed algorithms, which is essential to perform verification [67]. In this sense,

our main assumption, serving as a foundation for the proposed verification approach, is

that discretization errors of the implementations under verification should behave as the

errors introduced by the discretization of the volume rendering integral. Based on this,

81

we can mathematically derive the expected behavior from the discretization of the volume

rendering integral and verify existing implementations through convergence analysis by

comparing their actual behavior to the expected behavior. Based on the results of this

comparison, we can assess the correctness of the implementation under verification. To get

further insights about deviations from the expected behavior, we present an investigation

of the sensitivity of this method. We can demonstrate that our methodology is capable of

increasing the confidence in volume rendering algorithms. To our knowledge, the proposed

approach is the first step towards the verification of DVR algorithms. Thus, it can be seen

as an important contribution towards a formal verification methodology of volume rendering

techniques [143]. Our main contributions are:

• we derive the theoretical foundations necessary for verifying volume rendering with

order of accuracy and convergence analysis. We analyze the volume rendering integral

and its (common) discretization using Riemann summation to derive an algorithm's

expected behavior when being subject to parameter changes;

• we explain how to exploit these theoretical foundations to perform a practical verifi

cation of implemented volume rendering algorithms, such that it can be easily used

for the verification of existing volume rendering frameworks;

• we discuss the limitations of the proposed concepts by analyzing frequently occurring

errors and by documenting those errors we could identify when applying the presented

methodology to two widely used volume rendering frameworks, VTK [155] and Voreen

[113] (see Figure 5.1).

5.1 Related Work
Critical decisions in fields such as medical imaging often rely on images produced

by volume rendering algorithms, where it is of utmost importance that the results are

correct [34]. The multitude of algorithms components and their interactions make this

guarantee a challenge. As a consequence, many authors focus on specific aspects of the

problem such as numerical aspects of the evaluation of the volume rendering integral,

shading, transfer functions, and interpolation schemes. The quality of volume rendering

has always been of central interest to the community, and relying on visual inspection is

a common practice. Meissner et al. [111] evaluate volume rendering techniques using the

human visual system as a reference while, more recently, Smelyanskiy et al. [161] present a

domain expert guided comparison scheme.

Dataset size refinement (expected k = 0)

-3 -2 -1

log10(/)

(a) (b) (c) (d)

Figure 5.1. Our verification procedure was applied to the Voreen engine, (a) shows the result of our verification procedure for
dataset refinement. The blue line corresponds to the initial behavior, which deviates from the expected slope (solid dark line).
After fixing the issues, we obtain the orange curve, with a slope closer to the expected one (denoted by k). (b) and (c) show a
human torso, displaying the blood vessels and the spine, before and after our changes, (d) shows the difference between (b) and
(c).

00to

83

While those approaches are valuable, the need for a more systematic evaluation is

discussed in several papers [55, 70, 71, 76]. See Pommert and Hohne [137, 138] for a

survey.

Among several aspects to consider in the correctness of volume rendering algorithms, one

of the most important is the approximation of the volume rendering integral. The solution

with linearly interpolated attributes is presented by Williams and Max [188], with further

discussions on its numerical stability by Williams et al. [189]. Interpolant approximations

and errors [39, 114, 115, 128], gradient computation [179] and opacity correction [90] are

also the subject of analysis with regard to numerical accuracy. The idea of pre-integration

enables high-quality, accurate and efficient algorithms using graphics hardware [42, 85,

145]. Similarly, VTK currently uses partial pre-integration, in particular for unstructured

grids [119]. Note that although there has been work on high-accuracy volume rendering - to

the best of our knowledge - none of these approaches attempted to evaluate the convergence

rate of the standard discretization process of the volume rendering integral.

The use of a verification framework has only recently been discussed in scientific vi

sualization, despite the vast literature on verification in computer science. Globus and

Uselton [55] first pointed out the need to verify not only visualization algorithms but also

their implementations, and Kirby and Silva suggested a research program around verifica

tion [76]. The verification of isosurface algorithms was discussed by Etiene et al. [45, 46],

where a systematic evaluation identified and corrected problems in several implementations

of isosurface extraction techniques. Zheng et al. [194] address CT reconstruction and

interpolation errors in direct volume rendering algorithms using a verifiable framework

based on projection errors. In contrast, our work focuses on the verification of the final

image produced through direct volume rendering.

5.2 Verification
Before presenting our verification procedure, let us consider four of the techniques used

for code verification in computational science [146]: expert judgment, a procedure in which

a field expert determines if the output of an implementation is correct by evaluating the

results; error quantification, which is the quantification of the discretization errors when

compared to an analytical solution, a benchmark solution or some ground-truth; convergence

analysis, a procedure in which one evaluates if the discretization errors converge to zero as

a function of some parameter; and order of accuracy, a procedure where one evaluates if

the discretization errors decrease according to the expected rate. In this list, the expert

judgment is the least rigorous test, followed by error quantification and convergence analysis.

Order of accuracy is widely recognized as the most rigorous code verification tool [3, 80,

143, 146]. In this chapter, we focus on the latter two methods, namely, convergence analysis

and order of accuracy. Before we dive into these methods, let us first consider some of the

limitation of the expert analysis and error quantification.

In visualization, expert analysis and error quantification are, to the best of our knowl

edge, the only two verification tools previously employed for verification of volume rendering

techniques [111, 114, 161]. Whereas it is easy to envision situations where an expert

may fail to predict a code mistake, it is more difficult to see when error quantification

fails. We devise the following experiment to understand potential limitations of both

approaches. We artificially introduced a code mistake in a volume rendering implemen

tation: the trilinear interpolation was changed from p(x, y, z) = A xyz + B xy(1 — z) + . . . to

p(x, y, z) = Axyz + Axy(1 — z) +. . . . We then used this implementation to render an image

whose analytical solution is known. Finally, we compute the maximum error between the

rendered and the analytical solution, which in this case is 3.6 x 10-3 . How can one decide if

this value is good enough? Does the sampling distance d or the input scalar field s(x, y, z)

give us enough data to make an informed decision? In this particular case, the correct

interpolant generates an image with maximum error of 3.4 x 10-3 : the two images are very

similar by this metric. Also, it may be challenging, even for an expert, to notice such a small

deviation, as shown in Figure 5.2. On top of this, the maximum errors for another code

mistake could be even smaller. (We point out that this particular case can be uncovered

by “playing around” with the data or other ad hoc methods. The goal is to show that

error quantification can also fail to predict code mistakes, even for a severe bug.) On the

other hand, we will have enough information to make such a decision if one observes how

errors behave when input parameters change instead of quantifying them from one image.

The convergence and order of accuracy tests work in this way, and they are the focus of

this chapter. We advocate the use of convergence and order of accuracy verification not

as a replacement but as an extension of the current testing pipeline. Note that these are

not the only approaches for assessing correctness of computer code. As mentioned before,

verification is well-developed in computer science [25, 47, 56, 192].

We apply verification in the spirit of Babuska and Oden’s procedure, which we summa

rize in Figure 5.3 [3]. It starts with a mathematical evaluation of the expected convergence

84

85

Figure 5.2. Expert analysis and error quantification may fail to detect problems. Left:
the volume rendering of the torso dataset using an incorrect trilinear interpolation. Middle:
same dataset with the correct interpolation. Right: difference between the two images.

F igure 5.3. Our verification procedure works by evaluating discretization error during
refinement of one of three sampling parameters.

of the volume rendering integral (Section 5.4). The result of this step is an articulation of the

asymptotic error according to some discretization parameter (step size, dataset size, or pixel

size). Then, we use the volume rendering implementation under verification to generate a

sequence of images by successive refinement of one of the discretization parameters. Next, we

compute the observed discretization errors by comparing these images against a reference

- an analytical solution, if one is available, or one of the rendered images. Finally, we

86

compare the sequence of observed outputs against expected errors to evaluate if expected

and observed convergence match (Sections 5.5 and 5.6).

In this section, we present the mathematical model used in volume rendering algorithms

and its expected behavior, which we write in terms of the errors involved in each discretization

step. Let us assume the well-known low albedo emission plus absorption model [106]. The

volume rendering integral (VRI) I , as described by Engel et al. [42], is:

where D is the ray length, C(s(x(A))) is the reflected/emitted light, t(s(x(A))) is the light

extinction coefficient, and s(x(A)) is the scalar value at position x in the ray parameterized

by A. There are three natural ways to discretize the equation. We will generate progressively

denser ray sampling (by refining the integration step size), progressively larger datasets (by

refining the size of the voxel in the dataset), and progressively higher-resolution images

(by refining the pixel size in the final image). Each of these three variables will introduce

errors that may appear in a volume rendering system, where the first two of these variables

specifically impact the volume rendering integration (per pixel/ray). In the following sec

tion, we discretize the VRI using the most common approximation in literature - Riemann

summation.

5.3.1 Errors D u e to Step Size R efinem ent

In this section, we are interested in the errors generated by successive ray step refine

ments (see Figure 5.4). Equation (5.1) is commonly discretized using traditional Riemann

summation for numerical integration:

where n is the number of subintervals and d = D /n . The proof of linear convergence follows

from Taylor expansion of the integrand over small intervals d. Other methods are available

and they provide different convergence rates. For instance, the Trapezoidal Rule is a 2nd

order method on the integral of f .

In the case of the VRI, we approximate not only the outer integral but also the integrand

T (s(x(A))) = exp (- foA t (s(x(A')))dAM. Moreover, T requires two approximations: et(A)

5.3 Discretization Errors

(5.1)

i=0
(5.2)

87

Figure 5.4. Step size refinement. The figure shows an isosurface of a trilinear function
defined on the volume.

and the inner integral. Before we derive the convergence rate for the VRI, let us first

evaluate the convergence of T . Throughout the text, we assume that all transfer functions

are smooth, i.e., C (s),T (s) G C ^ . Although this is not the case in practice, this restriction

is useful for convergence evaluation and verification purposes.

5.3 .1 .1 A pp roxim ation o f T(A)

Let T(A) = T \ = e-t(A), where t(A) = J0 t (A7)dA7, and A parameterizes a ray position.

We will first approximate t(A) and then T(A). Typically, the integral is solved using Riemann

summation. In the following, d = D /n is the ray sampling distance, D is the ray length

and n is the number of subintervals along the ray:

/ ;Jo

i 1
T(A7)dA7 = T(jd)d + O(d),

j=o

where A = id. Using Equation (5.3):

T(A) = exp ^— t (A7)dA7

i—1
exp \ —J 2 t (jd)d + O (d)

j=o
i—1
J J e xp (—t (jd)d) I exp (O (d)).

\j=° /

Let us define Tj = t (jd). We start with a Taylor expansion of exp (O(d)):

Tx = \] —[exp (—Tj d) | (1 + O(d))

i—1 i—1
= IT exp (—Tj d) + exp (—Tj d) O (d).

j=o j=o

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

88

Let us focus on the second term in the right-hand side of Equation (5.8). The first

observation is that it contains only approximation errors, which means that we are interested

only in its asymptotic behavior. Let us expand it using first order Taylor approximation

and use the fact that Tjd = O(d):

where the change in the sign is warranted because the goal is to determine the asymptotic

behavior. For i = 1, only one step is necessary for computing the volume rendering integral

along the ray, and the previous equation will exhibit linear convergence. Nevertheless, in

the general case, the numerical integration requires multiple steps, hence errors accumulate,

and the convergence may change. Thus, we set i = n. Knowing that (1 + O(d))n = O(1)

(see Appendix) and inserting Equation (5.9) into Equation (5.8), we obtain:

We now show that the first term on the right side of Equation (5.11) also converges

linearly with respect to d. In the course of this section, we omit the presence of the term

O(d) in Equation (5.11) for the sake of clarity. Let us define the set K as the set of indices

j for which 1 — Tjd = 0. The size of K is denoted as |K| = k. We also define K as the set

of indices j for which 1 — Tjd = 0, and |K| = i — k. Equation (5.11) can be written as:

[] (1 — O(d)) O(d) = (1 + O(d))* O(d), (5.9)

Tx = H exp(—Tjd) + O(d)O(1) (5.10)

— | (1 — Tjd + O(d2)) + O(d). (5.11)

(5.12)

(5.13)

Because 1 — Tj d = 0 for j e K :

Tx = (n (1 —Tj d) (1 + 1 —j) j O(d2k). (5.14)

89

From the definition of big O notation, 1/(1 — Tjd) = O(1), hence:

Ta = (n (1 — Tjd) (1 + O(1)O(d2)) l O(d2k)
\ je K)

n (1 — Tjd)(1 + O(d2)) l O(d2k)
VjeK /

n 1 — Tjd I (1 + O(d2))i-kO(d2k).
VjeK /

(5.15)

(5.16)

(5.17)

In real-world implementation, k = 0 implies that at least one of the terms 1 — Tjd = 0.

Hence, the code accumulating the value of T , T = T * (1 - t j * d) , will invariably return

T = 0. This can also be seen in our theoretical analysis. For k = 0, the entire right-hand

side of Equation (5.17) is the approximation error. The larger k is - i.e., the more zeroes in

the product of Equation (5.17) - the faster the sequence converges to zero due to the O(d2k)

factor. So, when k = 0, one obtains a high order approximation of TA = 0. Nevertheless,

because we want to recover the approximation errors for the general case (TA = 0), we set

k = 0 in Equation (5.17), and i = n (for the same reasons as previously stated):

' n— 1
Ta = H I 1 — Tjd I (1 + O(d2))n

j =0
(5.18)

Using the fact that (1 + O(d2))n = 1 + O(d) and (1 + O(d))n = O(1) (see Appendix):

T a =

n 1

n 1 — Tj d
j=0

n— 1

n 1 —Tj d
j=0

n 1

n 1 —Tj d
j=0

n 1

n 1 —Tj d
j=0

n 1

n 1 —Tj d
j=0

(1 + O(d))

n— 1
+ O(d) (n (1+ O(d))

j=0

+ O(d)(1 + O(d))n

+ O(d)O(1)

+ O(d).

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

90

(5.24)

(5.25)

5.3 .1 .2 A pp roxim ation o f th e O uter Integral

Let T be the approximation of T(Aj). We write T(Aj) = Ti = T + O(d), and Ci = C(id).

In typical volume rendering implementations, the outer integral is also approximated using

a Riemann summation. Thus:

Because both Ti and Ci are bounded, one can write CiTidO(d) = O(d2) and ^ i O(d2) =

We have now shown that the dominant error when considering step size in the VRI is of

order O(d). In other words, when decreasing the step size by half, the error should be

reduced by a factor of a half.

5 .3 .1 .3 N um erical Integration Techniques

The interplay between the approximation errors of the inner and outer integrals is non

trivial; here we demonstrate this fact with a simple numerical example. Table 5.1 shows the

result of using different integration methods for the inner and outer integrals along a single

ray. We simulate the integration along a single ray to compute these quantities numerically.

For this experiment, we assume: x € [0, D], t (s(x)) = cos(s(x)), C(s(x)) = sin(s(x)),

s(x) = x, and thus the solution for the VRI is I = 1 — exp(-sin(D))(sin(D) + 1). To

evaluate the effects of the discretization errors of the integrals, we further assume that

n—1
I (x,y) = ^ C (id)T (id)Tid + O(d) (5.26)

i=0
n 1

(5.27)
i=0
n— 1 n— 1

(5.28)

nO(d2) = DdO(d2) = O(d). The above equation can be rewritten as:

I (x,y) = ^ C (id)T (id)dT + O(d). (5.29)

91

Table 5.1. Effects of the different integration methods.
Outer integral

Riemann Trapezoidal

Inner
integral

Monte Carlo
Riemann

O(da43)
O(da99)

O(d°.58)
O(d°.98)

Trapezoidal O(dL01) 0).02.(dO(
exp(x) does not introduce errors. The computation of the convergence rate is detailed in

Section 5.4. The results shown in Table 5.1 suggest that one needs to improve the accuracy

of both the inner and outer integrals to obtain a high order method.

5.3.2 Errors D u e to D a ta set R efinem ent

For the purposes of this chapter, we assume that no additional errors will be created

during the refinement of the scalar field. Hence, we need to find an interpolation function

that fulfills the so-called two-scaling property. Fortunately, B-splines fulfill the two-scale

property [178]; we choose the linear B-spline, which results in the well-known trilinear

interpolator. Care must be taking on the refinement step. In this chapter, we will choose

a refinement factor of two, which simplifies to a simple averaging of the nearest neighbors.

The errors introduced so far remain unchanged:

n—1
I (x, y) = ^ C (s(xi))T (s(xj))dT(s(xj)) + O(d). (5.30)

i=0

The previous equation shows that the grid size refinement errors are constant and due

to sources other than the grid size N , such as the O(d) term.

5.3 .3 Errors D u e to P ix e l Size R efinem ent

The final source of errors we investigate comes from the finite number of rays sent into

the image. This error is not one that arises due to the VRI discretization per se, but rather

due to how the VRI is used to render the final image seen by the viewer. We quantify

these errors by creating a sequence of images of progressively higher resolution, and then

examine the supremum of the difference between values of the finite approximations of the

volume-rendered image and the true solution. In this section, we assume that the derivatives

along image axes of the volume rendering integral exist.

Denote the true volume-rendered image as I(x, y). The approximation is constructed by

92

sampling I(x,y) in a finite subset of the domain (in our case, a square lattice of increasing

resolution). At a level of detail j , I j (x,y) denotes the nearest-neighbor interpolation of

the sampled values, and the error is measured as E j = s u p ^ ^ p ^ p |I(x,y) — I j (x,y)|.

Effectively, this procedure assigns to the entire square pixel the value sampled in its center,

but evaluates the error over the entirety of the pixel values. Figure 5.5 illustrates the process.

We use the notation I = I(x, y), I j = I j (xi , yi), and 5i = (x, y) —(xi, yi). In what follows,

the Taylor expansion assumes a fixed level of detail j. We omit the superscript j for the

sake of clarity. Let us write the values of I as a Taylor series expansion (Hi = H (xi ,yi)

and is the Hessian and I f and I f are the partial derivatives of Ii at (xi ,yi)):

I = Ii + V If 5i + 2 Hi^i + . . . (5.31)

= I + O (V If ̂ i) (5.32)

= £ + O ((If,Iy)T (x — xi ,y — y i^ (5.33)

Ii is a nearest-neighbor reconstruction from a square lattice for the pixel (xi , yi) at a given

level j. In the regime where the Hessian terms are negligible, the dominant errors (and

hence the supremum of the difference) occur when (x — xi, y — yi) = (h, h), where h is half

the pixel size. Thus:

1° I' I2 I3 I

Figure 5.5. Pixel refinement. Typically, the VRI is evaluated only at pixel centers
(top). The value at the center is then interpolated in the domain defined by the pixel size
(bottom) using nearest-neighbor interpolation to obtain / \ In a correct implementation, as
i increases, .P approaches the true solution I .

93

1 — I i + O(h) (5.34)

— C (s (x i))r (s(xi))Td(s(xi))) +

+ O(h) + O(d). (5.35)

As can be seen, the error in the pixel approximation decays linearly with the pixel size.

Equation (5.35) contains all the errors we examine for verification purposes, and it will be

the basis for our analysis in Section 5.4.

Two practical aspects tha t are worth noting. In practice, the sup(x, y) of the error over

a pixel (x, y) cannot be computed. Thus, we use a finite high-resolution image as a proxy

for the true solution. This allows us to evaluate the maximum error over a pixel. Note

also tha t colors are evaluated at pixel center, as shown in Figure 5.5. Also, often the final

image is not a smooth function. However, our goal is not to provide a characterization

of discretization errors that can be used in any arbitrary setting, but instead one that

can be used for verification purposes. Therefore, to use the analysis outlined above, one

must manufacture scalar fields and transfer functions which yield a smooth function (cf.

Section 5.5).

The heart of our method is the evaluation of the discretization errors. Once we have

the discretization errors, we can evaluate the order of accuracy and convergence rate.

The error computation and analysis will proceed differently depending on whether an

analytical solution for the VRI is available or not. We highlight that previous frameworks for

verification of visualization algorithms could benefit from the fact tha t analytical solutions

can be easily constructed [46]. For the case of the VRI, this is no longer true, and therefore

we should not rely on known solutions. We describe two ways in which to proceed with the

convergence analysis. First, we will show how to calculate errors using a known solution,

and then how to do so when the analytical solution is not known a priori.

5.4.1 N um erical Errors U sing a K now n Solu tion

When a solution F (x , y) for the VRI is known, the procedure is equivalent to the Method

of Manufactured Solutions [3]. In the previous section, we have shown tha t the solution F

can be written as:

5.4 Convergence Computation

F (x, y) — I (x, y) + O (rk) — I (x, y) + + HOT, (5.36)

where I is the approximated image, r is the discretization parameter, and P € R is

a constant, multiplicative factor tha t is not a function of the dataset. An important

assumption is tha t the HOT, or “higher order term s”, are small enough tha t they do

not affect the convergence of order k € R; i.e., high order derivatives of F must have

negligible impact in the asymptotic convergence of I [146]. This formulation implies that

not all solutions F are suitable for verification purposes, only those for which the HOT are

negligible. In addition, integration methods whose approximation errors cannot be written

as shown cannot be compared by only evaluating k, as we propose next. The expected

value of k for the cases of step size and pixel size refinement is k = 1, whereas we do not

expect to see error reduction when examining grid size refinement. This implies tha t the

pixel intensity converges to the true solution at a rate determined by k, and thus the error

can be written as:

e(x,y) = I(x ,y) — F (x ,y) « P rk. (5.37)

One can evaluate the convergence for all pixels in the image using L2, L ^ , or other norms.

Henceforth, we adopt the norm because it provides a rigorous and yet intuitive way of

evaluating errors: it tells us tha t the maximum image error should decay at the same rate

k. Mathematically, the error is then:

E = sup(e(x, y)) = sup(|1 (x, y) — F (x, y)|) = P rk. (5.38)
x,y x,y

We denote individual images (and the respective errors) by a subscript i. For each image

I i , we first calculate the supremum of the absolute difference supxy (|F (x ,y) — Ii (x,y)|).

We then compute the observed convergence rate k by taking logarithms of both definitions

of E and solving the resulting equations for log(P) and k in a least-squares sense:

log Ei = log sup (|F (x , y) — Ii(x ,y)|)
x,y

= log(P) + k log(ri). (5.39)

The system of equations has as many equations as the number of images and calculated

errors. We note tha t the solution F (x ,y) cannot always be computed analytically [106]. In

the general case, we need an alternative method for determining the error.

5.4.2 N um erical Errors w hen th e True S olu tion Is U nknow n

In the case where the true solution is unknown a priori, using a numerical approximation

in a high-precision context (i.e ., a gold standard solution) to compute a reference image

94

is a valid approach for verification [83]. The main disadvantage of this approach is that

it might mask errors which appear in the reference image itself. Our slightly different

approach requires neither an analytical solution nor a numerical approximation, but still

retains a high sensitivity to errors. Suppose we want to verify the convergence of a sequence

of images I i with ri+ 1 = cri , where c e (0,1) is a constant factor. As we have seen in the

previous section, the approximation for the solution F at resolution i and i + 1 can be

written respectively as:

F (x, y) = Ii (x,y) + O (rk)

= Ii (x ,y)+ £rk + HOT, (5.40)

F (x y) = ^ + 1^ y) + O (r*k+ i)

= Ii+1(x ,y)+ ^ri+1 + HOT. (5.41)

Again, we assume tha t the HOT are negligible. Now, we subtract Equation (5.41) from

Equation (5.40) to eliminate the unknown F:

0 = (Ii+1(x ,y)+ £ r k+1) - (Ii(x ,y) + P rk) (5.42)

0 = Ii+1 (x, y) - Ii(x, y) + P rk+1 - P rk. (5.43)

Thus, the convergence order k can be computed by evaluating the errors involved in the

subtraction of consecutive images:

e i(x ,y)= Ii+1(x,y) - Ii(x ,y) = - P r k+1 + P rk (5.44)

= P (1 - ck)rk . (5.45)

As before, we use the L ^ norm to compute the maximum error amongst all pixels:

Ei = sup(ei(x,y))
x,y

= sup(|Ii+1(x,y) - I i(x ,y) |)= P (1 - ck) rk. (5.46)
x,y

Thus, the observed convergence is again computed by taking logarithms of both sides. We

then write y = log P (1 - ck) to hide the dependency of the term in k and determine y and

k via least-squares:

log E i = logP(1 - ck) rk (5.47)

= log P(1 - ck) + k log r i (5.48)

= y + k log r i . (5.49)

95

96

In the case of the grid size test, the linear regression measures the constant error due

to sources other than the grid size, since no approximation errors with respect to N are

introduced.

Equation (5.49) shows us how to compute the convergence rate using only the images ob

tained from the VRI approximation and consequently avoiding any bias and/or limitations

introduced by simple manufactured solutions or numerical approximations using reference

images. We have generated sequences of images based on the refinements in the following

section. The steps are shown in Algorithm 8.

5.5 Application Examples
We present the results of applying our verification framework to two mature and widely-

used libraries, namely, VTK and Voreen. We stress tha t the goal here is first to show that

our verification technique is very sensitive to changes tha t cause the output image to deviate

from the correct solution; secondly, it is very easy to apply and thus can help developers

and practitioners to gain confidence in their implementations.

5.5.1 Im p lem entation s U nder V erification

In what follows, we show all the implementations tha t will be under scrutiny.

A lg o rith m 8 A simple algorithm for verification via step size, dataset size, or pixel size.

V erification P rocedure(G, t (s), d0, N0, h0, p)
1 [> Let G be the scalar field
2 > Let t (s) be a transfer function
3 > Let d0, N0 x N0 x N0, and h0 be the initial step size,

dataset size and pixel size, respectively
4 > Let p e {step, dataset, pixel}
5 F0 ^ VolumeR endering(G ,t (s), d0, N0, h0)
6 for i ^ 1 to # te sts
7 do R e f i n e ^ , Ni , or hi depending on p)
8 Fi ^ V o lu m e R e n d e rin g (G ,t(s) , di , Ni , hi)
9 if there is an analytical solution I:

10 th e n Ei — maxXi9 |I(x ,y) - F i(x,y)|
11 else Ei — maxx,y |F i-i(x ,y) - F i(x,y)|
12 Linear regression of Ei using Equations (5.39) or (5.49)

97

5.5 .1 .1 V T K

The VTK library provides several implementations of the well-known VRI techniques.

In our tests, we included two modules from version 5.6.1: vtkVolumeRayCast (RCM)

and vtkFixedPointVolumeRayCast (FP). The RCM module accepts as input scalar fields

with 8- or 16-bit precision and internal computations are performed with single or double

precision. FP accepts input datasets with up to 32 bits of precision but it uses 15-bit

fixed-point arithmetic internally. Both techniques use back-to-front compositing. We have

also modified the VTK source to capture 15 bit and 32 bit precision images for FP and

RCM respectively.

5.5 .1 .2 Voreen

As opposed to the tested modules in VTK, Voreen uses the graphics processing unit

(GPU) and front-to-back compositing for its implementations. From the ray casting pro

cessors available within Voreen, we have chosen the SingleVolum eRaycaster, which is the

standard processor in most Voreen workspaces. At the time of writing, version 2.6.1 is the

latest, and the one we verified. We made minor modifications to the code so tha t floating

point data of the format Nearly Raw Raster D ata NRRD [74] could be imported and

smaller step sizes could be used.

5.5.2 S ystem Setup

The grid lies in the domain [0,2]3 for VTK and [0,1]3 for Voreen. The scalar values

at grid nodes are chosen from a uniform random distribution. The camera is centered at

the xy plane and is aimed along the z axis. We did not include shading since that gives

a more complex VRI. To verify shaded results, a different theoretical analysis is necessary.

The images can be generated using both perspective and parallel projections. We only use

postclassification, which simplifies the analysis. In addition, we assume an identity opacity

transfer function (that is, the opacity is exactly equal to the sampled scalar). We do this

because for every pair of scalar field and opacity transfer function, there is another scalar

field (which admittedly need to be of finer resolution) that, when combined with the identity

transfer function, represents the composition arbitrarily well. The function composition

arising from volume classification can increase the high-frequency content of a volume [4],

and a full treatm ent of the impact of arbitrary transfer functions on the convergence of the

integral remains a topic for future explorations. In addition, this assumption enabled much

of the theoretical analysis that would not be possible otherwise, while still being stringent

enough to uncover issues in the implementations.

To apply verification via step size refinement, we start with d0 = 1 and a refinement

factor of half, di+1 = 2di . We use a dataset of size 23 since we have experienced tha t low

resolution grids with random scalar fields are effective at stressing the code for debugging

purposes.

Let l be the cell size. For verification via dataset refinement, we start with 23 grid nodes,

and we refine grid cells until we reach 5133 nodes, corresponding to cell sizes li+1 = 1 li .

Step size is fixed at d = 10-2 . This is done to evaluate the effects of discretization errors

due only to grid refinement.

For verification via pixel size refinement, we start by generating images with 322 pixels

using the implementation under verification, and then continue to refine pixel size until we

reach 10242 pixels. The pixel size h is refined according to hi+1 = 2hi . The errors are com

puted taking the difference between the rendered image and an analytical solution. In this

case, we use an analytical solution for the volume rendering integral in the domain [0,1]2. We

assume the following: s(x ,y ,z) = zcos(xy), t (s) = sin(s), x(A) = (x,y, A), C(s) = 1, and

ray length D = 1. The analytical solution is then: I(x ,y) = 1 - e x p (- COS1xy)) .

The dataset size used is 5133, and the step size is set at d = 10-5 to mitigate sampling errors.

Both step and dataset size are fixed to only evaluate errors due to pixel size refinement.

For VTK, we also have the following setup: no auto adjustment of the step size d; single

thread; interpolation type is set to linear. For Voreen, we enabled floating point buffers in

the pipeline. The Voreen version under verification does not support parallel projection.

The errors are computed using the L ^ norm and are given by the maximum distance

between two images, defined as E i = maxx,y |Ii (x, y) - I i+1(x, y)|, where I i (x,y) is the pixel

with center in (x, y) of the image I i rendered with the implementation under verification.

If a solution F is available, E i = maxx,y |Ii (x,y) - F (x ,y)|.

In the following sections, we report the results of applying the verification framework

with known and unknown exact solutions to three volume rendering implementations.

5.5 .3 O bserved B ehavior

The results of our verification procedure are summarized in Figure 5.6. We tested

both VTK and Voreen and found unexpected behaviors. We emphasize tha t this does not

immediately translate into a code mistake but only tha t a deeper investigation is needed.

98

99

Step size convergence (expected k = 1)

-2 -1 -2 -1 -2 -1

Pixel size convergence (expected k = 1)

Dataset size test (expected constant error)

F ig u re 5.6. Each plot shows the convergence experiments for one particular implementa
tion and one particular type of convergence. The behavior before any changes to the source
code were made are shown in blue. The results of the changes are shown by the orange lines.
The black line indicates the expected slope from the theoretical analysis. Notice the black
lines indicate only the expected slope of the results. Any line parallel to the black indicator
line has the same slope and is equally acceptable. The convergence order is denoted by k.
Notice also tha t the dataset refinement test does not introduce errors and thus all tha t is
expected is a constant error.

To find the reason for the unexpected behavior, we analyzed the source code of the given

systems. We expect linear convergence when step size or pixel size are refined (k = 1) and

constant error when dataset refinement is used.

5.5 .3 .1 F P

The results obtained for the FP module (blue curves in Figures 5.6(a), (b), and (c)) were

different from expected for all tests. The 15-bit fixed-point precision could, to some extent,

justify this behavior. Still, we only expected this influence to have a negative effect after

a certain threshold for step size. The perspective projection curve shown in Figure 5.6(a),

for instance, has what appears to be a constant error when using step size refinement and

perspective projection. We expect the error to decrease for large values of d; we acknowledge

tha t when d is too small, the errors due to 15-bit fixed-point precision will dominate. After

investigating the reason for this deviation, we found tha t depending on the pixel position,

some rays might cross only half of the volume instead of the full volume. In other words,

instead of sampling the ray in n locations, for some pixels, the ray was only sampled n

times. This is a combination of several factors which includes domain size, step size, and

ray direction. Details can be found in the supplementary material.

Using our synthetic dataset, we observed a ‘+ ’ pattern shown in Figure 5.7 (left). The

darker regions are precisely the pixels where the ray does not cover the whole domain. Arti

facts may also be seen in standard datasets such as the Carp shown in Figure 5.8. The orange

curves in Figures 5.6(a), (b), and (c) show the convergence results after modifying V TK’s

source. Notice that for step size refinement using perspective projection, the convergence

curve changed from 0.02 to 0.92 for the first seven samples. For the eight and ninth samples,

the error slightly increases. A similar phenomenon occur in the parallel convergence curve.

The curve starts to diverge in the high-resolution regime (parallel and perspective projection

plot). This is likely to be due to the limit of 15-bit fixed point arithmetic. Although the

pixel size refinement convergence for perspective projection substantially improved (from

0.01 to 0.94), the convergence curves for parallel projection remained similar, which can be

explained by the O(d) error.

5.5 .3 .2 R C M

The RCM module (blue curves in Figures 5.6(d), (e), and (f)) produces nearly linearly

converging sequences when refining the step size or pixel size. However, dataset refinement

100

101

F ig u re 5.7. The figure shows images rendered using VTK 5.6.1. In our experiments,
the ‘+ ’ pattern became more evident in two cases: when coarse datasets are used, and/or
high number of sampling points along the ray are used. Darker pixels belong to regions
where the ray traverses only half of the volume, preventing convergence. The image on
the middle shows the result using our modified version of VTK. The convergence curve
improved significantly after the issue was fixed. Note tha t this effect only occurs when
perspective projection is used. For orthogonal projection, the problem is not noticeable.
For the convergence analysis, we used a scalar field given by S (x ,y ,z) — xyz, D — 1,
transfer function t (s) — s in the domain [0,1]3, and solution for the VRI given by
I(x , y) — 1 — exp (—xy/2), which means the integration is along z (from zero to one).

F ig u re 5.8. A CT scan of a carp, rendered with VTK 5.6.1 and Fixed-Point Raycast
Mapper (FP). On the left, we see the artifacts (dark lines) tha t prevented FP convergence.
In the middle, we see the results after fixing the issues tha t prevented convergence. The
artifacts are no longer visible. On the right, we see the difference image.

with either perspective or parallel projection fails to present the expected constant error.

Analyzing the source code, we found the discrepancy to be due to the number of steps

taken when marching inside the volume. For instance, suppose tha t the step size is set in

such a way tha t 200 steps are required to traverse the volume. Instead of 200 steps, the

RCM module used values between 195 and 199 steps, depending on some conditions. The

consequence of this deviation is shown in Figure 5.9.

The orange curves in Figures 5.6(d), (e), and (f) show the convergence results for the

102

(a) Dataset refinement. Before, a linear trend is observed. After fixing an issue, a constant error is
obtained.

(b) Pixel size refinement. Exp.: k = 1. Before: k = 0.37. After: k = 1.23

F ig u re 5.9. The two figures show images rendered before and after fixing an issue with the
number of ray samples in the RCM module. This change was motivated by a mismatch in the
dataset convergence test. Although the images are indistinguishable to the human eye, the
errors (computed as the difference between images, shown on the right) are large enough
to change the expected convergence rate. For both images, we applied our verification
procedures on a grid with a scalar field given by S (x , y , z) = xyz and transfer function
t(s) = s in the domain [0,1]3. Hence, the solution for the VRI is I(x , y) = 1 — exp (—xy/2).
(a) uses dataset refinement while (b) uses pixel size refinement.

RCM module after fixing the issue that prevented code convergence. It consists of changing

the epsilon values used during the computation of the number of steps. Notice that the

behavior is close to the expected one and the errors are very small (10-5). The convergence

curve using pixel size refinement is close to linear for large pixel size but seems to be

converging to some positive value. This might be due to other sources of error which

become dominant after sufficient refinement.

103

5 .5 .3 .3 Voreen

Our first ray refinement tests did not result in linear convergence for Voreen (blue line

in Figure 5.6(g)) due to the early ray termination (ERT). By simply adapting the ERT

threshold, we were able to obtain the expected convergence for ray refinement (orange line

in the Figure 5.6(g)).

As can be seen in the Figure 5.6(i), the blue curve indicates tha t increasing the resolution

of the dataset decreases the error. We remind the reader that using our upsampled data, as

described in Section 5.3.2, rendering the same scalar field represented by a different number

of voxels should not affect the result. For Voreen, the unexpected behavior was caused

by sampling at incorrect texture locations. More specifically, internally, Voreen assumed

tha t the texture data are node centered when, in fact, OpenGL uses grid centered data.

In this case, both the volume and transfer function values were affected. In OpenGL, the

texture coordinates of a texture of resolution R m lie in the domain [0,1]m, where m is the

texture dimension. Since the data values are grid centered, this means that the outermost

data values are located at [2R, 1 —] with the settings used in Voreen. We will refer to

the domain in which the data values lie as the data domain. For volume rendering, the

integration of a ray should be done over the data domain, but for Voreen, the entry and

exit points of the rays went outside of tha t domain which caused the unexpected behavior.

To obtain the expected constant convergence, we apply the following transformation to the

input texture coordinate p (see orange line in Figure 5.6(i)):

real-world example can be seen in Figure 5.1. We provide an explanation for why this

does not affect ray entry and exit point sampling, and also discuss the implications of

different boundary values in the supplementary material. Although the scaling of texture

coordinates has been addressed for multiresolution volumes [97], to our knowledge, it has

not been applied to the sampling of transfer functions [41, 84, 144]. There are other solutions

for recovering the expected convergence rate, which include changing the way we refine our

sampling grid to match OpenGL grid centered data. However, we have chosen this solution

for several reasons. First, it matches Voreen’s initial assumption on node-centered data; it

(5.50)

Equation (5.50) scales and translates the texture coordinate to be in the domain [, 1 —

2R]m, where the data values lie. The effect of transforming the input coordinate for a

does not require special treatm ent at the border of the domain; and due to its simplicity, it

is easy to implement. We have contacted Voreen developers and the issue found was indeed

identified as a bug. The proposed solution will be adopted into Voreen’s next release.

No unexpected behavior could be detected for pixel size convergence, as shown in

Figure 5.6(h), neither before nor after changing the texture coordinate sampling. Both

curves lie near the expected behavior (0.93 and 0.94).

5.6 Discussion
The convergence analysis presented in the previous section helped us to identify un

expected behavior in two stable and widely-used frameworks. Unexpected behavior is

not indicative of an implementation bug but rather a warning about potential problems.

For instance, some valid design decisions might affect the convergence results. Consider

the widely used ERT acceleration technique. Depending on the thresholds involved, the

convergence results might deviate from the ideal, and the expected curve is recovered once

this feature is turned off. In this sense, the verification tool can help the developer to

identify portions of the code tha t introduce numerical errors and quantify their effect on

the final image. The issue with the RCM module is another example. The dataset size

convergence curve was unexpectedly linear because of a small variation in the number of

steps. While this particular issue might not be harmful, we were able to learn and reason

about its consequences after the verification process was done. Furthermore, “minor” bugs

and even design decisions cannot be ignored as they can mask more complex mistakes.

Therefore, one will be more confident after the design decisions that affect convergence are

“turned off” and the expected convergence is recovered. The FP module, on the other

hand, significantly deviates from the ideal number of steps required to march inside the

volume. Although we could force VTK to march the expected number of steps, we are still

investigating possible solutions to and consequences of this issue. To promote an unexpected

behavior to a bug, we need interaction with the developers of the code to confirm the code

mistake, which was the case with Voreen. One should be aware of the discussed issues when

implementing a volume rendering algorithm as their consequences are often not discussed

in the literature [41].

104

5.6.1 T est Sen sitiv ity

A verification technique ideally should be sensitive to any deviation from the correct

implementation. Unfortunately, in practice, verification has limited scope, and we gain

confidence if it helps us understand the code behavior, test sensitivity, and reveal bugs.

There are several ways to attain this goal: Yang et al. applied model checking to filesystem

verification and reported unknown bugs [192]; Howden [65] evaluated the efficacy of dynamic

and static testing for the detection of known real bugs of a mathematical library; Knupp

and Salari [80], on the other hand, used the order of accuracy verification procedure to

uncover known manufactured bugs in a proof-of-concept code. In software engineering, the

process of evaluating a testing suite by injecting defects into a program is known as mutation

testing [142].

We already presented the results of applying our verification framework to two libraries

and with our experiments we confirm the previously reported sensitivity of convergence

analysis [146]. We went further to explore other scenarios in volume rendering tha t may

affect the convergence curve. Thus, in the spirit of mutation testing, we created new versions

of VTK which contain known issues. Table 5.2 shows the results of some of the performed

tests. In our experiments, we observed tha t some issues did not affect the observed behavior.

The reason for this is tha t an incomplete set of tests [80] was performed, as shown with

test #10 in Table 5.2. In tha t case, a bug in the G and B color lookups went unnoticed

because our framework only used the R channel. Once the verification framework includes all

three channels, the convergence behavior does not match the expectations, hence revealing

an aberrant behavior that should be investigated. For bug #9 , we swapped two of the

polynomial coefficients, but they were equal for the scalar field used and thus the bug was

not detected. After changing the scalar field to s(x, y, z) = 1xyz + 2xy + 3xz + ■ ■ ■, the

convergence curve no longer matches the expected one, and thus the bug is detected. Bug

#11 was introduced in a matrix-vector multiplication routine which turned out to be dead

code. However, for bug #12, the loop range was slightly incorrect and it was not detected,

even after additional changes to the verification framework.

Aside from the defects injected into VTK, the following is a list of details known to

affect the convergence curve: E R T , as explained before; opacity correction, when using

the analytical solution of the volume rendering integral; hardcoded tolerance constants, the

famous “epsilons” ; off-by-one indexing problems (sometimes VTK does not render pixels

in the first or last column of an image); improper volume sampling (cell centered versus

105

T able 5.2. This table shows the sensitivity of convergence verification for different scenarios in a volume renderer. We applied
our step size verification using a manufactured solution with a scalar field given by S(x, y, z) = xyz + xy + x z + yz + x + y + z + 1
and transfer function t (s) varying linearly from zero to one for s £ [0, max(S,(.T, y, z))]. On the right, we show what part of the
volume rendering algorithm was affected by the issue. On the bottom, the first row shows the rendered images for each of the
issues. The second row shows the error difference between the exact and rendered solutions. See Section 5.6.1 for an explanation
of the undetected issues.___

Ii Observed
i f ISSUG Detected behavior (k =)
1 Incorrect opacity accumulation Yes O.oVolume Rendering

2 Incorrect ray increment Yes 0.0 for each pixel
3 Small changes to early ray termination Yes 0.1 do Find pixel center (#7)
4 Piecewise constant r Yes 0.0 Transform rays to voxels space (#5 , #11)
5 Incorrect matrix-point. multiplication Yes 0.0 for each step along the ray (#12)
6 Incorrect evaluation of trilinear interpolant Yes 0.0 do Compute interpolant coefficients (#8
7 Uninitialized pixel center offset Yes 0.0 Interpolate scalar values (#6)
8 Incorrect coefficients computation 1 Yes 0.0 Retrieve color and opacity (#4, #10)
9 Incorrect coefficients computation 2 No 1.0 Compositing (#1)
10 Incorrect color lookup No 1.0 Increment sample position (#2)
11 Incorrect matrix-viewpoint. multiplication No 1.0 Check for early ray termination (#3)
12 Incorrect loop range No 0.95

L I l l l l l l L l l l l
Exact solution 1 2 3 4 5 6 7 8 9 10 11 12

107

grid centered scalar fields); high-frequency transfer functions; high-frequency scalar fields;

incorrect texture coordinate mapping, as reported with Voreen; inconsistent number of steps

through the volume, as reported with FP and RCM; etc. From all the observed situations

where the step/dataset/pixel size convergence was affected, many of these are deliberate

design decisions, minor mistakes during the verification procedure or minor problems with

the implementation itself which can be easily fixed. Note tha t those issues were not all inside

the ray integration routine itself, but in a variety of locations, spanning from preprocessing

steps to OpenGL texture sampling of data. Our verification procedure was sensitive enough

to detect all these situations.

5.6.2 O ther V olum e R endering T echniques

While we focus on ray casting, our approach can be extended to other techniques.

Because the core of our method is a discretization of the VRI, the only requirement is

to formulate the volume rendering algorithm as a numerical approximation to the true

integral. Splatting [186], for instance, uses a reconstruction kernel before accumulating the

contributions of voxels into the final image. This approach is substantially different from

ray casting in the way it approximates the VRI, and so the asymptotic errors involved will

have to account for errors in both accumulation and filter reconstruction [114].

Algorithmic improvements for volume rendering may require a more careful approach.

For example, pre-integration computes the results of the integral with high precision over

sample intervals and stores them in a look-up table. This increases efficiency and quality,

since fewer steps are typically needed [42]. How the table approximates the integral will

affect the convergence rate: if there is an analytical solution, then no error is associated

with d intervals; otherwise, a numerical approximation scheme might be used which means

the error will depend on d! = d/m, where m is the number of sample points used in that

interval and the integration method used. For example, if a linear approximation is used

for the VRI during ray integration (instead of a standard sum of rectangles, as done above),

the final approximation should have second order accuracy.

5 .6 .3 M anufactured Solu tions

In the interest of brevity, verification via pixel size and the results presented in Table

5.2 were generated from an analytical solution for the volume rendering integral. Notice,

still, tha t the use of an analytical solution for verification is known as the Method of

108

Manufactured Solutions [3] and can be a more rigorous procedure than convergence analysis

alone [146]. In this way, we can verify tha t the results generated by an implementation is

converging at the expected rate to the correct solution. The disadvantage lies in the difficulty

of designing solutions which are simultaneously simple (so tha t we can write the theoretical

convergence analysis down) and yet expressive (so that the experiment analysis catches

bugs).

5.7 Limitations
Both the discretization and verification procedures have limitations. In the discretization

of the VRI equation, we assume tha t the solution I(x ,y) is smooth. Moreover, we assume

tha t high order terms are negligible. This assumption implies tha t we can safely discard all

high order terms when deriving the errors. In addition, the verification is done in a controlled

fashion to avoid other error sources, as shown in Figure 5.6(a). Additional asymptotic

analysis is necessary for each new error source. Also, I must be defined everywhere in the

image plane. For instance, this condition is violated if we change the camera position and

orientation. One needs to account for these transformation in x(A), an extra complication

in the generation of analytical solutions.

The verification process has the same limitations previously described but it also has

practical limitations. For instance, one may be able to observe tha t the convergence rate

may not be the expected one for low sampling rates. However, this is not due to the random

scalar field generated (which is a trilinear function and thus can be represented exactly

with the trilinear interpolant) but high-frequency details in t or C . This may lead to a

violation of the Nyquist rate. Because the process is iterative, the expected convergence

must be recovered once the resolution is fine enough, assuming tha t the implementation

under verification is correct. Another limitation is related to the number of rays used per

pixel. Many implementations can shoot several rays per pixel, although this work assumes

tha t only one ray is used. Also, because the verification procedure considers the code as a

blackbox, it does not provide clues on the reasons for the unexpected behavior.

The scope of the mistakes tha t can be found by the verification procedure is not clearly

defined. All we can say is that it can find bugs tha t actively affects the convergence of the

method [80]. A common example of bugs tha t cannot be found by this type of procedure are

bugs tha t affect the performance: the code is slower due to the mistake but the convergence

rate is still the same [143]. The results shown in Table 5.2 are a first attem pt to understand

the scope of problems that can be fixed by the verification procedure.

Currently, our verification procedure is focused on the solution for the VRI without

shading and other improvements on the final image quality. Hence, if one wants to use

our verification procedure in an implementation tha t supports, for instance, shading, the

feature will need to be deactivated. Lastly, for the case of dataset refinement, we assume

tha t the underlying scalar field is defined by a piecewise-trilinear function.

5.8 Conclusion
In this chapter, we presented verification techniques for volume rendering based on

the use of convergence analysis. Using these techniques, we successfully found discrepan

cies in the behavior of the volume rendering algorithms of two widely-used visualization

packages. We note tha t we do not see our techniques as a replacement for the currently

used direct visual inspection or expert evaluations, but instead as a way to complement

those approaches, and lead to a more comprehensive way to evaluate visualization software.

By providing attractive quantitative alternatives, we hope to help make evaluation of

visualization software both easier and more effective, and also contribute to a higher level

of user trust in visual data analysis. We believe the use of verification techniques will be of

increasing importance as the field of visualization matures and visualization methods are

used in a wide range of commercial and societal areas of highest importance.

There is ample opportunity for future work. Extending our approach to deal with

volume shading and level-of-detail techniques would be interesting and relevant research

as these are widely used in practice. Another important problem would be to explore

the verification of unstructured volume rendering techniques. Lastly, there is room for

improving the approximation error for the three presented refinements. In addition, a new

way for comparing the convergence curves tha t allows one to gain insight on the correctness

of the implementation under verification is another welcomed step.

109

CHAPTER 6

FLOW VISUALIZATION

Flow visualization has been around in some form for as long as people have studied

flows. In some cases, visualization was done explicitly - that is, with the expressed purpose

of the viewer to highlight some feature of the flow. In other cases, it was done tacitly,

as when a child looks out the window of an airplane to see the slip-stream over the wing

generated upon take-off. Visualization has many roles, spanning from art to science. In

this chapter, we focused on visualization techniques used for the scientific exploration and

explanation of flow phenomena. In particular, we are interested in how two communities

- the AIAA community and the Visualization community - consider flow visualization.

To accomplish this task, we have used the A IA A Journal and the IEEE Transactions on

Visualization and Computer Graphics (TVCG) as “representative” publication venues of

the two communities, and have explored the papers published therein to try to glean how

each community approaches visualization of flow, how they might differ from each other,

and how the two communities might complement each other.

This chapter is organized as follows. In Section 6.1, we provide a review of the state-of-

the-art in flow visualization, both from the perspective of the Visualization and well as the

AIAA communities. Tools such as Tecplot [2] and Paraview [163] have implemented many

standard flow visualization techniques such as LIC (line integral convolution), streamlines,

stream ribbons, and more. As we will show, our review encompasses much of the current

practices in flow visualization and also provide pointers to new developments. In the next

two sections, we focus our attention on research advances made within the Visualization

community tha t we think will, in time, have impact on flow visualization and on other

application domains that use visualization as a means of both scientific exploration and

explanation. In Section 6.2, we show how perception and user studies may impact flow

visualization, and in particular, we focus on issues related to color maps. In Section 6.3,

we then provide discussions on the current Visualization community research trends in

Visualization Verification and Uncertainty Quantification. We have chosen these topics

because they are all related to flow visualization. In Section 6.4, we speculate on some

of the opportunities for collaboration and more effective communication between the two

communities, and we conclude in Section 6.5.

6.1 Review of Flow Visualization Techniques
Vector field visualization is an important and vibrant subfield of both the Visualization

and AIAA communities. The techniques developed for vector field visualization extend

beyond these communities to fields such as medical imaging, meteorology, the automotive

industry, and others. In the past two decades, visualization experts and practitioners

have seen the development and improvement of many vector field visualization techniques.

The contributions are numerous: the ability of handling different grid types (structured,

unstructured, curvilinear, etc), high dimension data (2D, 2.5D, and 3D), time-dependent

flow, seeding and placement of geometric primitives, improved performance, perception,

rendering, among others. In this section, we review some of the developments inside the

Visualization community and compare with current practices inside the AIAA community.

6.1.1 P relim inaries

Although the concept of flow visualization is well defined in both communities, we

start by clarifying what is meant by flow visualization in this section. The difference

between computational flow visualization and flow visualization is tha t the latter focus

on visualization of flow behavior using experimental data (e.g., flow in a wind tunnel),

whereas the former visualizes flow from simulated or computed data. Some computational

visualization techniques are inspired by techniques used in flow visualization, such as dye

advection. Since the subject of this section only addresses computational flow visualization,

we will refer to tha t topic simply as flow visualization.

For thoroughness, we also define some commonly used mathematical/physical terms

used within the flow visualization literature. A streamline is the path traced by a massless

particle in a steady flow. Streamlines are sometimes referred to as “instantaneous particle

trace” . A streakline is the path traced by massless particles seeded at the same position

but at different times in a unsteady flow. Stream surfaces and streak surfaces are the

2-manifold analog of streamlines and streakline, where the seeding primitive is a curve

instead of a point.

111

6.1.2 C lasses o f Techniques

Flow visualization techniques can be classified as direct, geometric, texture-, and feature-

based (see Figure 6.1). Table 6.1 provides an overview of the classification and a subset

of the available techniques within each class. The table provides a hierarchy of the flow

visualization tools available. The Subclass column provides the main component of a given

visualization techniques that can be found within the Technique column. One can find

reference to extra material within the Reference column. For more details about the articles

shown in Table 6.1 and others, we refer the interested reader to the excellent surveys by

Hauser et al. [60] and Peng and Laramee [134] for an overview of the flow visualization

field, Edmunds et al. [38] and McLoughlin et al. [108] for geometric flow visualization,

Laramee et al. [88, 87] for texture-based flow visualization, and Pobitzer et al. [136] for

feature-based flow visualization. Next, we briefly go over each of the classes.

6.1 .2 .1 D irect v isu a lization

Direct visualization techniques provide an intuitive and straightforward way of visual

izing vector fields. In this approach, primitives of interest - such as arrows, glyphs, or

lines - are placed at (often regularly-spaced) seed points. The primitives are then oriented

according to the vector field. Optionally, the vector magnitude can be mapped to the

primitives via scaling. Other flow properties, such as pressure and vorticity, can also be

mapped using color maps. In the 3D case, volume rendering [40] is the natural choice

for mapping flow properties into color and transparency. Although direct visualization

provides an easy first approximation of the vector field, the visual complexity and occlusion

may impair the interpretation of the results, especially in 3D datasets.

112

F ig u re 6.1. Examples of flow visualization using direct, geometry, texture-, and fea
ture-based techniques, respectively.

113

T able 6.1. Advances in flow visualization. This table is not meant to be comprehensive.
Class Subclass Technique Reference

Standard Klasshen and Harrington [78]

^ , Arrows D irec t
Hybrid Color-coding and arrows [77]

3D Arrows in 3D space, 2-manifolds embedded
in 3D [133]

Enhancements Large data [133], resampling [89]
Color coding Standard Color maps, volume rendering [40]

Streamline Turk and Banks [176]

Curve
Seeding User-assisted [68], automatic [109, 96], and

hierarchical [69]

G eo m e try
3D 2-manifolds embedded in 3D [162]

Rendering Illuminated [104], streamtubes and stream-
ribbon [177]

Unsteady Wiebel and Scheuermann [187]
Stream surface Hultquist [66]

Surface Enhancements
Unsteady

Seeding and placement [132], accuracy [51]
Schafhitzel et al. [150]

Standard Cabral and Leedom [14]

LIC
Performance Improved algorithm, parallelism, real-time,

GPU [95]

T ex tu re 3D 3D and 2-manifolds embedded in 3D [129]
Rendering Flow orientation cues, local velocity magni

tude
Unsteady Li et al. [95]

Spot Noise
Standard

Enhanced
van Wijk [181]
It deals with highly curved/high velocity
vector fields. [31]

Performance Parallel implementation. [91]

VFT*
F e a tu re

Standard First-/High-order critical point tracking
[61, 30, 152]

Compression Theisel et al. [169]
Simplification Weinkauf et al. [185]

Streakline Weinkauf and Theisel et al. [184]
STD** Pathline Theisel et al. [171]
LM*** FLTE Haller [58], Garth et al. [50]

* Vector Field Topology ** !Space-Time Domain *** Lagrangian Method

114

6 .1 .2 .2 G eom etric v isua lization

In geometric visualization, curves and surfaces are used for summarizing flow behavior at

particular seed points. Geometry-based approaches requires a more intensive processing of

the data before the visualization than direct approaches. The main idea behind integration-

based geometric flow visualization is to trace particles or curves through the vector field.

By tracing particles (or respectively curves) one builds a 1-manifold (or respectively a

2-manifold) tha t can later be visualized. Geometric visualization techniques have a two

steps: first, geometry computation; and secondly, rendering. Often, the rendering step

is straightforward - e.g., rendering a polyline - in which case the algorithm collapses

into one step. Streamlines are one of the most well-known representative visualization

tools within this class. Although flow visualization using both curves and surface dates

back over two decades, in recent years, there has been constant research on the topic

[38]. For curves, the main contributions of the past decade are related to rendering,

seeding, and placement of curves. Edmunds et al. [38] classify the surface-based flow

visualization into surface construction and rendering. Methods for surface construction

are based on integral surface, implicit, and topological construction. This is an area of

intense research in the past few years. The authors present a variety of algorithm for

both steady and time-dependent surfaces. Surface rendering methods involve the use of

several techniques for improving the quality of the visualization of the flow over a surface of

interest. Surface-based techniques can take advantages of direct or texture-based methods

by including static/anim ated arrows over stream surfaces, shading for the evaluation of the

shape of surfaces, placing streamlines over 3D surfaces, employing line-integral convolution

(LIC) techniques, and/or nonphotorealistic rendering techniques.

6 .1 .2 .3 Feature-based v isualization

In feature-based flow visualization, the input vector field is segmented according to

features of interest. As an example, consider a segmentation using classical vector field

topology in 2D [61] (see also the right image in Figure 6.1). Let us assume that the features

of interest are first order critical points, namely, focus source, focus sink, node source,

node sink, and saddles. A segmentation is performed by building a topological skeleton

through the computation of the vector field’s separatrices. The final result provides a

cleaner representation of the flow behavior in terms of the aforementioned features. The

intensive processing of extracting features before visualization brings many advantages to

115

the practitioner. First, feature-based techniques are valuable for visualization purposes:

feature extraction provides an excellent level of abstraction of the data by removing unde

sired features and focusing the viewer on the important regions of the dataset. In addition,

it can be used for vector field compressing, topological simplification, and even for building

custom vector fields [170]. Topology-based approaches for feature-based visualization is not

the only methodology available. In Lagrangian methods, the trajectories of particles are

used to describe and segment the fluid flow. In particular, FLTE [58] methods have gained

prominence as a research area within the last decade. One advantage of Lagrangian methods

over traditional vector field topology is that they can naturally deal with unsteady flow [136].

Space-time domain techniques are another example of feature-based visualization. In this

approach, in order to deal with the problems involved in unsteady flows, the problem of 2D

and 3D flow visualization is moved to higher dimensions. As an example, time-dependent

domains are merged into a single dataset where traditional techniques used for steady

vector fields can be employed. A comprehensive survey on the topic can be found in the

state-of-the-art report by Pobitzer et al. [136].

6 .1 .2 .4 T exture-based v isualization

In texture-based flow visualization, the user replaces geometrical information with 2D

texture mapped over surfaces. Line integral convolution (LIC) is a well-known (within

the visualization community, at least) representative of the class. Texture-based techniques

generate what is considered a dense visualization, i.e., it covers the entire domain of interest,

and it does not have to deal with the problem of finding appropriate seeding spots for

streamlines. Texture-based techniques can be applied along with geometric or feature-based

visualization; for instance, it can be used to render flow on 2-manifolds embedded in 3D

spaces, or providing an overview of the flow behavior along with topological skeletons. The

main issue with texture-based visualizations is the high computational cost associated with

it. Nevertheless, the advances in both computer hardware and algorithms have granted to

users the ability to handle large data sets and unstructured grid at interactive rates [38, 87].

6.1 .3 M eans to an End

In his position paper “On the death of visualization” [99], Lorensen argues for the need

to bring visualization researchers closer to experts and practitioners. We have run a simple

experiment in order to attem pt to ascertain “the distance” between the Visualization and

AIAA communities. We evaluated 78 articles published within the A IA A Journal over

the period of Jan/2010-Oct/2012 containing at least one flow visualization image. Then,

we simply counted the number of papers that contained at least one occurrences of the

techniques shown in Table 6.1. We did not include the 2D color mapping and 2D isocontour

visualizations as they appear quite often. Since multiple visualization techniques can be

used in a single article, the percentages shown below are just the fraction of publications

containing at least one particular type of visualization. Particle tracing using integration-

based geometric visualization techniques for 2D vector fields is the most commonly used

technique (42%), followed by 3D isocontouring (35%), 2D and 3D arrows and glyphs (33%),

and 3D particle tracing (19%). Excluding isocontouring (which is mainly used for depicting

scalar, instead of vector, data), 61% of the articles used at least one geometric approach

to flow visualization, whereas 33% used a direct approach. Finally, 73% of the papers

contained at least one visualization for 2D domains, whereas this number is 56% for 3D

domains. The latter number drops to 22% if one considers only techniques for visualization

of vector field data (i.e., excluding 3D isocontouring).

Although the data are limited to a short window of time, they raised a few interesting

points. W ith the exception of a handful of papers, most of the flow visualization appears

to be using the standard form of the traditional visualization technique. As an example,

consider some the papers tha t use streamlines for visualizing 3D flow. It may be the case that

a subset of these paper can benefit from using stream ribbons [177], which simultaneously

encode the streamlines path and local flow vorticity, or from stream tubes [177], which

simultaneously encode the streamlines path and local cross flow divergence. Both stream

ribbons and stream tubes are well-known, and commonly used visualization packages such as

Paraview or Tecplot have them available within their tool options. Secondly, the preference

for the two visualization techniques (direct and curve-based geometric visualization) shown

in past three years is perhaps due to their simplicity and availability. The underrepre

sented methods in the same period of time are texture-, feature-, and surface-based flow

visualization. Third, one could argue that the visualized datasets were “simple” , and thus

standard techniques worked well. Even though this may be the case for some datasets,

some vector fields, especially in 3D, suffered from traditional problem of curves and arrows:

cluttering, irregularly spaced streamlines, poor seeding, lack of depth cues, etc. These

problems can make the detection of some flow features such as vortex more difficult. Direct

visualization for 2D vector fields using glyphs can be improved by using, for instance,

116

117

a resampling technique, such as shown in Laramee [89], where the author introduce a

user-driven approach for reducing visual clutter via resampling. Another way is to segment

the flow using features of interest, e.g., critical points. Possible reasons for not using

alternative techniques include tha t the technique might not be easily available, the technique

might not improve the quality of the visualization, users are not aware of their existence or

find them difficult to use, or the AIAA community requires a different class of techniques,

among other. Both communities would benefit from knowing the reasons for using one

technique over another. The visualization community has, throughout the years, defined a

set of priorities based on an interaction with researchers from different fields and their own

experience. Some recurrent themes that are the focus of research are: a more comprehensive

theory and techniques for dealing with unsteady 3D flows; improved rendering (for instance,

by using techniques inspired in handcrafted illustrations [13]); handling of large data sets;

and others. Together, the AIAA and Visualization communities should be able to define a

set of priorities for their research agendas in order to address the concerns and issues raised.

6.2 Perception and Evaluation
An important aspect of the visualization research consists of the building of new vi

sualization techniques and tools. Ideally, new techniques should be able improve the user

cognitive process [174], for instance, by allowing the visualization of data tha t have never

been visualized before, or increasing ones ability to interact with, understand, and explore

data. As visualization techniques are developed and improved, a question is raised: how can

we compare and understand the differences between visualization techniques? The answer to

this question leads us to a second important research topic: the need for rigorous evaluation

of the strengths and weaknesses of visualization techniques. By “strength” and “weakness”

we mean not only the evaluation of techniques according to traditional (computer science)

metrics such as performance, memory footprint, ability to handle large datasets, etc., but

also in terms of the errors introduced through visualization, property of these errors, user

perception, among others. In particular, questions involving perception and cognition are

related to the user. In this section, we review two topics of interest for flow visualization

from the point of view of perception and evaluation: the use of color maps for visualization

of scalar properties and the representation of steady 2D vector fields, respectively.

6.2.1 P erception and Color M aps

The mapping between data and colors is ubiquitous and essential across the sciences. In

the scientific pipeline, color maps are often used to study, explain, explore, and ultimately

help experts to gain insight about a phenomenon of interest. Alas, color maps are not all

equal, and depending on the choices made, one can accelerate or impair scientific inquiry.

Since they are just means-to-an-end, their impact on the underlying data should be as

minimal as possible. In a myriad of choices, one color map has been shown to be a bad

choice for virtually any type of visualization: the well-known and widely-used rainbow color

map [10, 101, 160].

The rainbow color map is built by varying hue in order to cover the whole spectrum

of visible light, from red to purple or vice versa. In practice, many visualization tools use

colors varying from red to blue because red and purple are very similar. It is the default map

in several visualization / simulation software packages, such as M atlab®. Here we review

three issues known to hinder visualizations, namely, lack of ordering, iso-luminance, and

introduction of artifacts. Figure 6.2 shows examples for each of these issues. The first issue

is due to the lack of a natural sorting order. Even though the rainbow color map is ordered

from shorter to longer wavelength of light, users do not easily perceive it as such, which

makes quantitative analysis more difficult [10]. In addition, the rainbow color map can

obscure data. The problem arises for data containing high spatial frequency. Isoluminant

maps can obfuscate these frequencies because our visual system perceives them through

changes in luminance. This is illustrated in the left images in Figure 6.2. Note how details

on the top half and left portions of the rainbow color mapped image were “removed” by

the choice of the color map. Lastly, the rainbow color map can also add artifacts to the

visualization [175]. The problem is tha t the gradient in color map creates the illusion of

patterns where none exist. This is illustrated in the right image in Figure 6.2. In association

with the lack of a natural sorting order, it becomes difficult to identify tha t patterns are

not due to the underlying data but due to the color map. Although Figure 6.2 shows

simple synthetic examples, there have also been user studies and analysis showing that

these problems are also present in the visualization of real-world scenarios [175]. Despite its

disadvantages, the rainbow color map is widely used in the sciences. In the study by Borkin

et al. [9], participants reported tha t they liked it because they are “used to seeing” , that

the saturated colors are “easier to see” , and it is the “most aesthetically pleasing” . Another

possible reason for its widespread use is tha t it is default in many popular simulation and

118

F ig u re 6.2. Problems with the rainbow colormap. Left: the images show the color mapping
of the spatial contrast sensitivity function. Frequency increases from left to right whereas
contrast increases from the top to the bottom. The isoluminance of the rainbow color map
obfuscate low contrast regions and small details, which can be seen using gray scale. Right:
changes in color in the rainbow color map may be perceived as features in the data. The
“boring” scalar field f (x ,y) = x2 + y2 appears to have more features when rainbow color
map is used than in the gray scale image.

visualization tools. Paraview is one of the tools that no longer uses the rainbow color

map as the default option since the publication of “Rainbow Color Map (Still) Considered

Harmful” [118] by Borland et al. The author even suggest that a better name for it would

be “misleading color map” . In light of the many pitfalls of the rainbow color map, the

visualization community has, in the past few years, been moving away from it. In 2005,

52% of the scientific publication using a color map at the IEEE Visualization Conference had

at least one occurrence of the rainbow color map [10]. This number has dropped to a single

paper published at the IEEE Transactions on Visualization and Computer Graphics in 2011.

Motivated by this experiment, we reviewed all publications from the A IA A Journal for the

years of 2010, 2011, and 2012 that contained a color map and counted the number of papers

that used the rainbow color map. Table 6.2 shows the obtained results. Note that we do not

evaluate the potential problems caused by the rainbow color map. Nevertheless, we tried

the methodology explained above for a flow simulation dataset. The left image in Figure 6.3

shows the results of a flow simulation. Note how some regions are over-emphasized (shown

in red) while details are blurred (shown in green). The problems with the rainbow color

T able 6 .2 . Color maps in the AIAA journal
Rainbow color map Gray scale map Other

2010 68.63% 13.73% 17.64%
2011 64.7% 15.69% 19.61%
2012 79.03% 8.65% 12.32%

map can be avoided by simply switching to another color map, such as the gray scale color

map shown in the middle image in Figure 6.3. The image to the right shows the decolorized

rainbow color map: although some details are easier to see, the result is still very different

from the gray scale color map.

The visualization community has also investigated what should constitute a “good” color

map. Research on the topic of color selection can be found in the work by Treinish et al.

[175], Moreland [118], Kindlmann et al. [75], and others [101, 173]. The AIAA community

can benefit from a set of standard color maps suitable for visualization of typical simulation

data such as pressure fields, angle fields, etc.

6.2 .2 E valuation and U ser S tudies

In recent years, the Visualization community has seen a substantial increase in the

number of papers dealing with evaluation of visualization techniques published within IEEE

TVCG. Figure 6.4 shows the number of such papers published per year within the IEEE

TVCG journal. The data were obtained by searching the TVCG website for the keywords

“evaluation” , “user study” , “design study” , and “case study” in articles published in the

period between 2002 and 2012. We then read the abstracts to make sure the papers were

indeed relevant. From this corpora, 96% of the aforementioned articles were user studies.

As a representative example, we focus on a user study by Laidlaw et al. [86] comparing

techniques for the visualization of steady 2D vector fields. The authors recruited five experts

and 12 nonexperts users to evaluate the efficacy of each of the six techniques displayed in

Figure 6.5. The evaluation was measured by the user performance during the execution

of several tasks of three types: critical point detection; critical points classification; and

simulation of particle advection. The first two tasks are standard whereas the third task is

120

F ig u re 6.3. Velocity magnitude. Rainbow (left) and gray scale (middle) color maps were
applied to a 2D flow simulation using a spectral element code for solving the incompressible
Navier-Stokes Equations. Note how red regions on the rainbow color map are over-empha
sized while green regions “blur” details that are shown in the gray color map. The image
on the right is the decolorized rainbow color map.

121

60

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Year

F ig u re 6.4. Evolution of the number of papers published on the topic of evaluation at
TVCG.

, 1 , 1 , , , ____ ' ' ' '
i i , i i i i i ' ' ---- \ i / /

\ W W W \I f / y W Z Z Z Z

: J ; J / ; ; ' '
, . f * t r * f 1 1 1 t r t f t * - . . , .

. . . .
c i / t , r t t t t I t 1 t t t t , , , . ' * s s

. i t i t i i i 1 1 1 1 i i i i i i t , i , .
t 1 r l l 1 t 1 I 1 t t 1 t) 1 t i 1 > . ____ Z Z
\ i t i r t t j j M j 1 t t u * \ ______ " Z

■ t 1 M t f t t t I t t J J \ \ \ \ \ X N » _ ^
" 1 1 1 t 1 J U \ \ \ \ v ^ . ____
M u n n u m w w ^ . ______

J \ \ \ \ U } \ U W \ \ \ w * ____________

J J 5 S 5 S " ^ " " ______-
\ U \ \ \ U \ \ \ \ \ \\\v , . , . ' ' ____ __
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ X . . * ‘ ' \ ' r —
\\\ \ \ \\\\A \ \ \ v - . . ‘ ' ' ' _
\\\ \ \ \ \\ \ \ v \» , . . . ' j j

\\\\ \ \ \,\ v ' \ W W \ \» "

GRID

- . " A W ’ l ! ’ K " i -
.nun

KWO 'X\: ■ ■. \ \ ,

JIT

M p i

v V \ \ \ \ v v M
LIT

■

17^ 0/0.tM

v\w\N\\\\\\\\\K\w\\\\n/

w t
LIC OSTR GSTR

F ig u re 6.5. Comparing visualization methods for steady 2D vector fields [86]. Top:
standard arrow visualization, jittered arrow, icons using concepts borrowed from oil paint
ing, respectively. Bottom: line-integral convolution, image-guided streamlines, streamlines
seeded in a regular grid, respectively. Image used with permission.

motivated by the fact tha t often experts were interested in the global flow direction. The

three tasks were chosen based on the authors interaction with fluid mechanics researchers.

The authors built a collection of 500 vector fields for evaluation of the tasks. Among

the results, they cite no significant difference between experts and nonexperts regarding

accuracy in the tasks or the response times. More interestingly, performance when using

the standard method of arrows on a regular grid (GRID in Figure 6.5) falls below average

for multiples tasks involving critical points location, classification, and advection (which

means tha t users required more time to complete the task and committed more errors).

On the other end of the spectrum, user performance when using GSTR consistently scored

above average. Another similar study compare the user performance when using line and

tube integral curves (with monoscopic and stereoscopic viewing) for 3D vector field data

[48]. User study can be a powerful tool for helping users choose the best tool for their needs

and the visualization community has been working on evaluating and testing techniques as

they become more widespread.

6.3 Uncertainty and Verification
Uncertainty visualization and visualization verification are two important topics in the

pursuit for reliable visualizations. The AIAA community is familiar with both topics. In

this chapter, however, we present some of the recent advancements in this area from the

point of view of the Visualization community. The goal is to increase the user confidence in

the results of the visualization by answering questions such as: how can one visualize the

inherent error sources in the visualization? or, how can one increase her/his confidence that

an implementation of a visualization algorithm does what was intended? In the following

sections we present some of the recent developments in uncertainty visualization and the

verification of isosurface extraction techniques.

6.3.1 U n certa in ty V isualization

In the course of scientific inquiry, uncertainty is the norm. The visualization community

has recently turned its attention to uncertain data, and is trying to solve problems on

how to best compute and convey uncertainty information. Since 2010, around 30 papers

were published at TVC G on the topic, with application on information visualization and

scientific visualization. So far, the community has seen several different representation for

uncertainty, varying from traditional method such as bars, glyphs, and colors, to texture,

122

multilayering, animations, and volume rendering. At the AIAA community, we analyzed

ten papers since 2010 dealing with material uncertainty, uncertainty in flows, and fluid

simulation. The visualization step, on the other hand, is restricted almost exclusively to

error bars and charts.

In the user study conducted by Sanyal et al. [148], the authors evaluate the effectiveness

of four commonly used uncertainty visualization techniques: namely, glyphs size, glyphs

color mapping, surface color mapping, and error bars (see Figure 6.6 for examples). The

users performed two search tasks by identifying regions that are least and most uncertain,

and two counting tasks where users counted the number of data and uncertainty features.

The authors reported that, in general, users required more time and committed more

mistakes when using error bars. The authors conjecture that a possible reasons for the

poor performance displayed by error bars is due to the high density of the dataset used in

their study. Nevertheless, a similar pattern can be found in the AIAA community (e.g., see

Figures 4 and 6 in Chassaing and Lucor [19]).

Several techniques for uncertainty visualization of vector fields are available. Botchen

et al. [11] introduce a texture-mapping approach for uncertainty visualization of 2D vector

fields. Hlawatsch et al. [63] introduce a new static visualization of unsteady vector fields

with uncertainty based on a new type of glyph. Osorio and Brodlie [1] introduce a LIC-

based method for uncertainty visualization. The work by Petz et al. [135] uses Gaussian

random fields and takes into account spatial correlation of the data, which affects vector

field features. Fout and Ma [123] presents a framework based on possibility theory for

uncertainty visualization and as a case study, the authors use streamlines in 3D steady

vector fields. Because many researchers have recently turned their attention to uncertainty

visualization, this area of research is rapidly evolving.

123

F ig u re 6.6. The four uncertainty visualization methods used by Sanyal et al. [148] in their
user study. From left to right: glyphs size, glyphs color mapping, surface color mapping,
and error bars.

6.3 .2 V erifiable V isualization

As Chapter 2 and 3 have shown, there has been work on the verification of the imple

mentation of isosurface extraction algorithms.

6.4 Opportunities
Much of the early motivation for flow visualization in the visualization community

came from the AIAA community, but over the last two decades, it appears tha t a major

gap has developed, and developments in the visualization community have been done

much more independently of applications and new developments in the aeronautics area.

This is in part due to the different needs of the many users of visualization techniques,

including the automotive industry, meteorology, medical imaging, geosciences, to cite a few.

Summarizing decades of developments in the field of flow visualization and related areas is

a nontrivial process. As an alternative, every year, a summary of recent relevant advances

of visualization techniques could be published at the AIAA community; and conversely, the

AIAA community could help the visualization community not only by providing expertise,

but also research directions [121]. Yearly panels are held at the IEEE Vis conference,

many of them with an applications focus. Consistent participation by the AIAA in these

communities would help raise the level of awareness of current pressing issues. This gap

between communities seems to be particular true in the need for validation and verification

of visualizations techniques and codes, which over time seem to have lost track with the new

rigor expected of computational codes. A related topic is the need for increasing the level

of reproducibility of computational results, which cannot be simply accomplish by making

codes available to other researchers [158].

There is a natural progression from research idea within the visualization community

to prototype tool, and from prototype tool to “hardened” user-available software. The

challenge put forward to the visualization community to continue to seek out how to be

relevant to collaborators such as our colleagues in the AIAA community, and the challenge

of disseminating the advances made by the visualization community to application domains.

Over the last 20 years, visualization techniques have merged as a key enabling technology for

computation science by helping people explore and explain data through the creation of both

static and interactive visual representations. Visualizations libraries such as Kitware's VTK

contain a very large number of highly-complex visualization algorithms with thousand of

lines of code implementing them. The most powerful of these algorithms are often based on

124

125

complex mathematical concepts, e.g., Morse-Smale complex, spectral analysis, and partial

differential equations (PDEs). Robust implementations of these techniques require the use

of nontrivial techniques. The overall complexity and size of these datasets leave no room

for inefficient code, thus making their implementation even more complex. The complexity

of the codes coupled with the new visualization techniques make it highly nontrivial for

nonexperts to use them, although, in principle, it should be “easier” .

We believe better connections between the two communities have the chance to improve

the adoption of new techniques. Furthermore, by working together, AIAA researchers can

also help the Visualization community not only by providing new problems and datasets

and being a major driver of problems to the community (such as they were when the

visualization field was coming of age), but also by making sure the needs of the AIAA

community are reflected in new research topics in Visualization.

6.5 Conclusion
In this chapter, we have briefly visited two decades worth of flow visualization. In

particular, we first focused on vector field visualization. In this regard, we presented a

classification of flow visualization seen from the perspective of the Visualization community

and contrasted it with AIAA publications containing flow visualization over the last 3 years.

By exposing the current advances in visualization, we have a starting point for building a

common research agenda that can benefit both communities. In addition, we have also

visited some topics related to flow visualization tha t have been attracting attention in

the Visualization community, namely, evaluation of visualization techniques, perception,

uncertainty visualization, and verifiable visualization. The common thread in all these

topics is the need for improving visualization techniques in general via error mitigation,

and understanding how visualization can improve the user cognitive process. We showed

some of the recent work on each of these topics in the context of flow visualization. As

we mentioned at the start, (computational) flow visualization is a research area that was

birthed simultaneously in two communities, and early in its development benefited from

strong interaction between the communities. It is our hope tha t a more tight coupling

between the research needs/interests of the AIAA community and the research agendas of

the Visualization community can be developed. This can only happen through cooperation,

collaboration, and communication. In part, we hope that this work is the start of a dialog

between the two communities.

CHAPTER 7

CONCLUSION

In this dissertation, we have introduced a framework for the verification of two of the

most popular visualization techniques available in scientific visualization, namely, isosurface

extraction and volume rendering. The framework is based on the Method of Manufactured

Solutions (MMS), a well-established idea inside the Computation Science & Engineering

community.

7.1 The Method of Manufactured Solutions
As previously mentioned, the two main steps involved in the practice of the MMS are

the theoretical analysis of important mathematical properties and the black-box testing.

The analysis was the most time-consuming part because required intense research. The

convergence of geometrical properties of isosurfaces, such as function value and normals,

were mostly available in the literature. Hence, the research was fairly straightforward in this

case. On the other hand, the verification of topological properties were available only by

using relatively complex algorithms, such as contour trees. The complexity was one of our

motivations to devise new algorithms for computing the Euler characteristics of isosurfaces

directly from scalar fields. In addition to that, our work on topological verification played

a crucial role in correcting an almost 20-year-old bug with Marching Cubes 33. The case

of verification of volume rendering algorithms also required a convergence analysis not

available in the literature. Thus, the analysis of the theoretical behavior of visualization

algorithms presented in this work constitute an important contribution of this dissertation.

Another important consideration is tha t often simplifications must be made so tha t an

algorithm can be verified, such as illustrated by the volume rendering case. Many of the

commonly used improvements to the standard volume rendering, such as opacity correction

or advanced shading, must be “turned off” because the theoretical analysis does not include

the influence of these improvements.

Because of its simplicity, we believe MMS could become a standard tool for the verifi

cation of scientific visualization software in the same way tha t it has been adopted by the

CS&E community as a trustworthy tool for assess code correctness.

We observed tha t the MMS contrasts with a common practice within the visualization

community, namely, the evaluation of new techniques through the use of real-world data.

By using real-world data during development, one can evaluate a new technique using the

data it is supposed to represent. When the data do not “look right” in the eyes of an expert,

or the error quantification exceeds some predetermined threshold, it is assumed tha t there

is a problem tha t must be fixed. This approach is certainly valuable and we do not advocate

the MMS as a replacement for using real-world data, or any other method tha t users are

accustomed with for tha t matter. Instead, we advocate its use in addition to the methods

already adopted by developers.

7.2 Order of Accuracy
As our work have shown, it is not always possible to use order of accuracy as a standard

method for the verification of visualization algorithms. While geometrical properties can be

continuously evaluated, topological properties have a binary nature. We then conclude that

the implementation of the MMS is problem-dependent and the necessary mathematical tools

must be tailored accordingly. Nevertheless, the idea of verification through manufactured

solutions can be used across many visualizations techniques. We expect MMS to enjoy

a similar effectiveness in many areas of scientific visualization. This is the most direct

direction of future work: the application of the MMS to other visualization techniques such

as vector field visualization and mesh simplification.

7.3 Evaluation
The economic impact due to the lack of appropriate infrastructure for software testing

is well studied. A NIST report estimates tha t the total loss due to lack of software testing

is about $22.2 to $59.5 billion [166]. To the best of our knowledge, the economic impact

and consequences of the lack of software testing for the subfield of scientific visualization

has not yet been evaluated. Nevertheless, there is anecdotal evidence of the need for this

evaluation. As an example, we cite a medical report extracted from the Manufacturer and

User Facility Device Experience (MAUDE), a data repository of adverse events involving

medical devices under the umbrella of the FDA:

127

The patient was undergoing a kidney operation and the kidney image as dis-

128

played on the system’s image monitor allegedly flipped in orientation without
any operator intervention and as a result it is alleged tha t the patient had the
wrong kidney operated upon.

The bug described previously is not “severe” in the sense tha t the final image is a

perfectly valid one. Nevertheless, the outcome is quite alarming. There are several similar

reports involving images flips and artifacts in medical devices dating from early 90s - when

the information started to be collected - until now. Many of these reports highlight tha t the

problem did not cause any injury; however, they also emphasize the risk of misdiagnosis. It

may be interesting to perform a user study using visualization results tha t contains known

bugs and bug-free images to evaluate the class of problems tha t developer/expert can detect.

This is out of scope of this work and is left as future work.

7.4 Broad Impact
Verification has gained some traction inside the field of visualization in recent years. We

have seen several initiatives tha t support this: two workshops on reproducibility, verifica

tion, and validation in visualization (EuroRV3 2012-2013) at Eurovis; a discussion panel

“Verification in Visualization: Building a Common Culture” at IEEE VisWeek 2011; and

verification as part of the “call for participation” for IEEE VisWeek 2010-2013. We hope the

examples presented here will further encourage the adoption of MMS by the visualization

community at large, increasing the impact of its contributions to a wider audience. We

believe that researchers and developers should consider adopting verification as an integral

part of the investigation and development of scientific visualization techniques. We hope

tha t the results of this work further motivate the visualization community to develop a

culture of verification.

APPENDIX A

THE COUNTEREXAMPLE IN NUMBERS

We provide the data necessary for reproducing the counterexample shown in Figure 4.5.

The isosurface of interest is homeomorphic to configuration 13.5.2 of the extended Marching

Cubes table.This example can be used to show tha t both the original and modified versions

of the MC33 algorithm will fail to retrieve the correct case. Following the interior test

proposed by Chernyaev, let

Ao = +0.2864 Ai = —0.2384

Bo = —0.0639 Bi = +0.9486

Co = +0.6568 Ci = —0.5049

Do = -0.1692 D i = +0.1075.

The coefficient a, b, and c in F (t) are given by

a = + (Ai — Ao)(C i — Co)

— (Bi — Bo)(Di — Do) = 0.3296

b = + Co(Ai — Ao)

+ Ao (Ci — Co)

— Do(Bi — Bo

— Bo(Di — Do) = —0.4886

c = AoCo — BoDo = 0.1701

Condition (i) does not hold because a > 0, which means tha t a tunnel is absent. Therefore,

under Chernyaev’s conditions, case 13.5.2 is incorrectly interpreted as 13.5.1.

Now, following the Lewiner’s implementation, for the same scalar field, let

Ao = +0.1075 A \ = -0.5049

Bo = -0.1692 B i = +0.6568

Co = +0.2864 Ci = -0.0639

Do = -0.2384 D i = +0.9486.

The proposed alternative t is given by

A0
tait = ^ = 0.1756, alt A0 - A1

and:

F (tait) = -0.0007 < 0.

Thus condition (iii) fails, which means tha t case 13.5.2 is again incorrectly interpreted as

13.5.1.

130

APPENDIX B

AUXILIARY EXPANSIONS

In this chapter, we provide auxiliary expansions and proofs. More details on the

expansions shown below can be found in the textbook by Sedgewick and Flajolet [156].

Recall tha t d — D /n .

B.1 Proof of convergence of (1 + O(d))n
Let us first expand the term (1 + C1x)C'2/x, where C1C2 € R+ and x ^ 0.

(1 + Cix) C — exp ^ l o g (1 + C lx)^ (B.1)

— exp ^ — (Cix + O (x2))^ (B.2)

— exp(CiC 2 + O(x)) (B.3)

— 1 + C 1C2 + O(x) — O(1) (B.4)

Hence:

(1 + O(d))n — (1 + O(d))D/d — O(1) (B.5)

B.2 Proof of convergence of (1 + O(d2))n
Let us first expand the term (1 + C1x2)C2/x, where C 1, C2 € R+ and x ^ 0.

(1 + C1x2) C — exp ^ — log(1 + C1x2^ (B.6)

— exp ^ — (C1x2 + O(x4))^ (B.7)

— exp(C1C2x + O (x3)) (B.8)

— 1 + C ^ x + O (x3) (B.9)

— 1 + O(x) (B.10)

Hence:

(1 + O(d2))n — (1 + O(d2))D/d — 1 + O(d) (B.11)

REFERENCES

[1] A lle n d e s O so rio , R ., a n d B ro d lie , K. Uncertain flow visualization using lic.
7th EG UK Theory and Practice of Computer Graphics: Proceedings (2009).

[2] A m teo E n g in e e r in g Inc. Tecplot, version 7 user’s manual. Amtec Engineering,
Inc., 1996.

[3] B ab u sk a , I., an d O den, J. Verification and validation in computational engineering
and science: basic concepts. Computer Aided Geometric Design Methods in Applied
Mechanics and Engineering 193, 36-38 (2004), 4057-4066.

[4] B e rg n e r , S., M o l le r , T ., W eiskop f, D., a n d M u rak i, D. J. A spectral
analysis of function composition and its implications for sampling in direct volume
visualization. IEEE Transactions on Visualization and Computer Graphics 12 (2006),
1353-1360.

[5] B essey, A., B lo c k , K ., C h e lf , B., C hou, a . , F u l to n , B., H a lle m , S., H en ri-
G ro s, C., K am sky, A., M cP eak , S., a n d E n g le r , D. A few billion lines of code
later: using static analysis to find bugs in the real world. Commun. AC M 53, 2 (2010),
66-75.

[6] B h an iram k a , P ., W e n g e r , R ., a n d C raw fis , R. Isosurface construction in any
dimension using convex hulls. IEEE Transactions on Visualization and Computer
Aided Geometric Design Graphics 10, 2 (2004), 130-141.

[7] B ird , D. L., a n d M unoz, C. U. Automatic generation of random self-checking test
cases. IBM Syst. J. 22, 3 (1983), 229-245.

[8] B lo o m e n th a l , J. Polygonization of implicit surfaces. Computer Aided Geometric
Design 5, 4 (1988), 341-355.

[9] B o rk in , M. A., G a jo s , K. Z., P e te r s , a . , M its o u ra s , D., M e lch io n n a ,
S., R ybicki, F . J ., F e ld m an , C. L., an d P f i s t e r , H. Evaluation of artery
visualizations for heart disease diagnosis. IEEE Transactions on Visualization and
Computer Graphics 17 (12/2011 2011).

[10] B o r la n d , D., an d T a y lo r II, R. M. Rainbow color map (still) considered harmful.
IEEE Comput. Graph. Appl. 27, 2 (mar 2007), 14-17.

[11] B o tc h e n , R. P ., a n d W eiskopf, D. Texture-based visualization of uncertainty in
flow fields. Visualization Conference, IEEE 0 (2005), 82.

[12] B ow en, J. P ., a n d H inchey , M. G. Ten commandments of formal methods.
Computer 28, 4 (1995), 56-63.

133

[13] B ra m b illa , A., C a rn e o k y , R ., P e ik e r t , R ., V io la , I., a n d H a u se r , H.
Illustrative flow visualization: State of the art, trends and challenges. In EuroGraphics
2012 State of the Art Reports (STARs) (2012), pp. 75-94.

[14] C a b ra l , B., a n d Leedom , L. C. Imaging vector fields using line integral con
volution. In Proceedings of the 20th annual conference on Computer graphics and
interactive techniques (1993), pp. 263-270.

[15] C a r r , H., a n d M ax, N. Subdivision analysis of the trilinear interpolant. IEEE
Transactions on Visualization and Computer Graphics 16 (2010), 533-547.

[16] C a r r , H., M o l le r , T ., a n d Snoeyink , J. Artifacts caused by simplicial subdi
vision. IEEE Transaction on Visualization and Computer Aided Geometric Design
Graphics 12, 2 (2006), 231-242.

[17] C a r r , H., a n d S noeyink , J. Representing interpolant topology for contour tree
computation. In Topology-Based Methods in Visualization I I (2009), Springer-Verlag,
pp. 59-73.

[18] C a r r , H., Snoey ink , J ., a n d A xen, U. Computing contour trees in all dimensions.
Computational Geometry: Theory and Applications 24, 2 (2003), 75-94.

[19] C h assa ing , a n d L u o o r, D. Stochastic investigation of flows about airfoils at
transonic speeds. A IA A Journal 48 (2010), 938-950.

[20] C hen, L., a n d R ong , Y. Linear time recognition algorithms for topological
invariants in 3d. CoRR abs/0804.1982 (2008).

[21] C h e rn y ae v , E. V. Marching Cubes 33: Construction of topologically correct
isosurfaces. Tech. Rep. CN/95-17, High Energy Physics, 1995.

[22] C ignoni, P ., G a n o v e ll i , F ., M o n tan i, C., a n d Soopigno, R. Reconstruction
of topologically correct and adaptive trilinear isosurfaces. Computer Aided Geometric
Designs & Graphics 24 (2000), 399-418.

[23] C ignoni, P ., G a n o v e ll i , F ., M o n tan i, C., a n d Soopigno, R. Reconstruction
of topologically correct and adaptive trilinear isosurfaces. Computers & Graphics 24,
3 (2000), 399 - 418.

[24] C ignoni, P ., R ooohini, C., a n d Soopigno, R. Metro: measuring error on
simplified surfaces. Computer Aided Geometric Design Graphics Forum 17, 2 (1998),
167-174.

[25] C la rk e , E. The birth of model checking. In 25 Years of Model Checking, O. Grum-
berg and H. Veith, Eds., vol. 5000 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2008, pp. 1-26.

[26] C o h e n -S te in e r , D., E d e ls b ru n n e r , H., a n d H a r e r , J. Stability of persistence
diagrams. Discrete and Computational Geometry 37, 1 (2007), 103-120.

[27] C o le s , P . Einstein, Eddington and the 1919 eclipse. arXiv preprint astro-
ph/01024 62 (2001).

134

[28] C ustodio , L., E t ien e , T ., P esco , S., and Silva, C. Practical considerations on
Marching Cubes 33. h ttp :/ / l is c u s to d io .g ith u b .io /C _ M C 3 3 , April 2013.

[29] C u s to d io , L., E tie n e , T ., P e sco , S., a n d S ilva, C. Practical considerations on
marching cubes 33 topological correctness. Computers & Graphics 37, 7 (2013), 840
- 850.

[30] D e L eeuw , W ., a n d Van L ie re , R. Visualization of global flow structures using
multiple levels of topology. In Data Visualization (1999), vol. 99, pp. 45-52.

[31] D e Leeuw , W. C., a n d van W ijk , J. Enhanced spot noise for vector field
visualization. In Proceedings of the 6th conference on Visualization (1995), pp. 45-52.

[32] D ey, T. K ., a n d L evine, J. A. Delaunay meshing of isosurfaces. In SM I ’07: Pro
ceedings of the IEEE International Conference on Shape Modeling and Applications
2007 (2007), IEEE Computer Aided Geometric Design Society, pp. 241-250.

[33] D ie t r ic h , C., S c h e id e g g e r , C., S c h re in e r , J ., Comba, J ., N ed e l, L., a n d
S ilva, C. Edge transformations for improving mesh quality of Marching Cubes.
IEEE Transaction on Visialization and Computer Aided Geometric Design Graphics
15, 1 (2008), 150-159.

[34] D u n can , J ., a n d A yache, N. Medical image analysis: progress over two decades
and the challenges ahead. IEEE Transactions on Pattern Analysis and Machine
Intelligence 22, 1 (Jan. 2000), 85-106.

[35] D u r s t , M. Letters: additional reference to marching cubes. Computer Graphics
(1988).

[36] E d e ls b ru n n e r , H., a n d H a r e r , J. L. Computational Topology. American
Mathematical Society, 2010.

[37] E d e ls b ru n n e r , H., an d M ucke, E. P . Simulation of simplicity: A technique to
cope with degenerate cases in geometric algorithms. ACM Transactions on Graphics
9 (1990), 66-104.

[38] E dmunds, M., Laram ee , R. S., Chen , G., Max , N., Zhang , E ., and Wa r e ,
C. Surface-based flow visualization. Computers & Graphics 36, 8 (2012), 974-990.

[39] E l H a j ja r , J .-F ., M arch es in , S., D is c h le r , J.-M ., a n d M o n g e n e t, C. Second
order pre-integrated volume rendering. In PacificVIS ’08 (2008), pp. 9-16.

[40] E n g e l, K ., H ad w ig e r, M., K niss, J. M., L e fo h n , A. E., S a lam a , C. R ., a n d
W eiskop f, D. Real-time volume graphics. In ACM SIGGRAPH 2004 Course Notes
(New York, NY, USA, 2004), SIGGRAPH ’04, ACM, pp. 1-266.

[41] E ngel , K., Hadw iger , M., K niss, J. M., R ezk-Salama , C., and W eisk o pf ,
D. Real-time Volume Graphics. A K Peters, 2006.

[42] E n g e l, K ., K ra u s , M., a n d E r t l , T. High-quality pre-integrated volume ren
dering using hardware-accelerated pixel shading. In Graphics Hardware Workshop
(2001), pp. 9-16.

http://liscustodio.github.io/C_MC33

135

[43] E tie n e , T ., Jo n sso n , D., R opinski, T ., S c h e id e g g e r , C., Com ba, J ., N o n a to ,
L., K irb y , R ., Y n n erm an , A., a n d Silva, C. Verifying volume rendering using
discretization error analysis. Visualization and Computer Graphics, IEEE Transac
tions on PP, 99 (2013), 1-1.

[44] E tie n e , T ., N guyen , H., K irb y , R. M., a n d S ilva., C. T. “flow visualiza
tion” juxtaposed with “visualization of flow” : Synergistic opportunities between two
communities. 51st A IA A Aerospace Meeting (2013).

[45] E tie n e , T ., N o n a to , L. G., S c h e id e g g e r , C., T ie rn y , J ., P e te r s , T. J.,
P a scu cc i, V., K irb y , R. M., a n d S ilva, C. T. Topology verification for isosurface
extraction. IEEE Transactions on Visualization and Computer Graphics 18, 6 (June
2012), 952-965.

[46] E tie n e , T ., S c h e id e g g e r , C., N o n a to , L. G., K irb y , R. M., a n d Silva, C.
Verifiable visualization for isosurface extraction. IEEE Transactions on Visualization
and Computer Graphics 15, 6 (2009), 1227-1234.

[47] F lo y d , R. W . Assigning meaning to programs. In Proceedings of the Symposium on
Applied Mathematics (1967), vol. 19, AMS, pp. 19-32.

[48] F o r s b e rg , A., C hen, J ., an d L a id law , D. Comparing 3d vector field visualization
methods: A user study. IEEE Transactions on Visualization and Computer Graphics
15, 6 (Nov. 2009), 1219-1226.

[49] F r e i r e , J ., T, S ilva, C., C a l la h a n , S., S a n to s , E., E, S c h e id e g g e r , C., a n d
T, Vo, H. Managing rapidly-evolving scientific workflows. In Proceedings of the
International Conference on Provenance and Annotation of Data (2006), pp. 10-18.

[50] G a r th , C., G e r h a r d t , F ., T r ic o c h e , X., an d H ans, H. Efficient computation
and visualization of coherent structures in fluid flow applications. IEEE Transactions
on Visualization and Computer Graphics 13, 6 (nov 2007), 1464-1471.

[51] G a r th , C., K rish n a n , H., T r ic o c h e , X., T r ic o c h e , T ., a n d Joy , K. I.
Generation of accurate integral surfaces in time-dependent vector fields. IEEE
Transactions on Visualization and Computer Graphics 14, 6 (nov 2008), 1404-1411.

[52] G e ld e r , A. V., a n d W ilh e lm s, J. Topological considerations in isosurface
generation. ACM Transactions on Graphics 13 (1994), 337-375.

[53] G ibson, S. Using distance maps for accurate surface representation in sampled
volumes. In IEEE Volume Visualization (1998), pp. 23-30.

[54] G lo b u s, A., a n d R a ib le , E. Fourteen ways to say nothing with scientific visual
ization. Computer 27, 7 (July 1994), 86-88.

[55] G lo b u s, A., an d U se lto n , S. Evaluation of visualization software. SIGGRAPH
29, 2 (1995), 41-44.

[56] G o d e fro id , P ., K iezun, A., a n d Levin, M. Y. Grammar-based whiteboxfuzzing.
SIG PLAN Not. 43, 6 (2008), 206-215.

[57] G o re sk y , M., a n d M a c P h e rso n , R. Stratified Morse Theory. Springer, 1988.

136

[58] H a l l e r , G . Distinguished material surfaces and coherent structures in three
dimensional fluid flows. Phys. D 149, 4 (mar 2001), 248-277.

[59] H a rtm a n n , E. A marching method for the triangulation of surfaces. The Visual
Computer 14 (1998), 95-108.

[60] H a u se r, H., L a ram ee , R. S., a n d D o le isch , H. The State of the Art in
Flow visualization, part 1: Direct, Texture-based and Geometric Techniques. IEEE
Visualization (2003).

[61] H elm an , J. L., a n d H esse lin k , L. Representation and display of vector field
topology in fluid flow data sets. Computer 22, 8 (aug 1989), 27-36.

[62] H i ld e b ra n d t , K ., P o l th i e r , K ., a n d W a rd e tz k y , M. On the convergence of
metric and geometric properties of polyhedral surfaces. Geometriae Dediacata, 123
(2006), 89-112.

[63] H la w a tsc h , M., L eube, P ., N ow ak, W ., a n d W eiskopf, D. Flow radar glyphs
& static visualization of unsteady flow with uncertainty. IEEE Transactions on
Visualization and Computer Graphics 17, 12 (dec. 2011), 1949-1958.

[64] Ho, C .-C ., W u, F .-C ., C hen, B .-Y ., C huangs, Y .-Y ., a n d O uhyoungs, M.
Cubical Marching Squares: Adaptive feature preserving surface extraction from
volume data. Computer Aided Geometric Design Graphics Forum 24, 3 (2005),
537-545.

[65] H ow den, W. E. Applicability of software validation techniques to scientific pro
grams. ACM Trans. Program. Lang. Syst. 2 (July 1980), 307-320.

[66] H u l tq u is t , J. P . M. Constructing stream surfaces in steady 3d vector fields. In
Proceedings o f the 3rd conference on Visualization ’92 (Los Alamitos, CA, USA, 1992),
VIS ’92, IEEE Computer Society Press, pp. 171-178.

[67] IE E E . Ieee standard glossary of software engineering terminology. IEEE Std 610.12
1990 (1990), 1.

[68] J o b a rd , B., a n d L e fe r , W . Creating evenly-spaced streamlines of arbitrary
density. In EG Workshop on Visualization in Scientific Computing (1997), pp. 43-56.

[69] J o b a rd , B., an d L e fe r , W . Multiresolution flow visualization. WSCG (Posters)
(2001), 34-35.

[70] Jo h n so n , C. Top scientific visualization research problems. IEEE CG&A. 24 (July
2004), 13-17.

[71] Jo h n so n , C. R., a n d S a n d e rso n , A. R. A next step: Visualizing errors and
uncertainty. IEEE CG&A. 23 (September 2003), 6-10.

[72] Ju , T. Fixing geometric errors on polygonal models: A survey. Journal of Computer
Science and Technology 24 (2009), 19-29. 10.1007/s11390-009-9206-7.

[73] Ju , T ., L osasso , F ., S c h a e fe r , S., an d W a rre n , J. Dual contouring of hermite
data. ACM Trans. Graph. 21, 3 (July 2002), 339-346.

137

[74] K indlmann, G. http://teem .sourceforge.net. Last accessed on March 24th, 2011.

[75] K ind lm ann , G., R e in h a rd , E., a n d C reem , S. Face-based luminance matching
for perceptual colormap generation. In Proceedings of IEEE Visualization 2002
(October 2002), pp. 299-306.

[76] K irb y , R ., a n d Silva, C. The need for verifiable visualization. IEEE Computer
Aided Geometric Design Graphics and Applications 28, 5 (2008), 78-83.

[77] K irb y , R. M., M arm anis, H., a n d L a id law , D. H. Visualizing multivalued
data from 2d incompressible flows using concepts from painting. In Proceedings of
the conference on Visualization ’99: celebrating ten years (Los Alamitos, CA, USA,
1999), VIS ’99, IEEE Computer Society Press, pp. 333-340.

[78] K la sse n , R. V., an d H a r r in g to n , S. J. Shadowed hedgehogs: a technique for
visualizing 2d slices of 3d vector fields. In Proceedings o f the 2nd conference on
Visualization ’91 (Los Alamitos, CA, USA, 1991), VIS ’91, IEEE Computer Society
Press, pp. 148-153.

[79] K le in , G., E lp h in s to n e , K ., H e ise r, G., A n d ro n io k , J ., C ook, D., D e rr in ,
P ., E lk a d u w e , D., E n g e lh a r d t , K., K o la n sk i, R ., N o rr is h , M., S e w e ll , T.,
T uoh , H., a n d W inw ood, S. sel4: formal verification of an os kernel. In SOSP ’09:
Proceedings of the AC M SIGOPS 22nd symposium on Operating systems principles
(New York, NY, USA, 2009), ACM, pp. 207-220.

[80] K nupp, P ., a n d S a la r i , K. Verification of Computer Codes in Computational
Science and Engineering. Chapman and Hall/CRC, 2002.

[81] K o b b e lt , L., B o tso h , M., S ohw aneoke, U., a n d S e id e l, H .-P . Feature
sensitive surface extraction from volume data. In SIG GRAPH ’01 (2001), ACM,
pp. 57-66.

[82] K o o p , D., Santos, E ., Mates, p ., Vo , H. T ., B o n n et , p ., Bau er , B., Su rer ,
B., T royer , M., N, W illiams, D., E, T ohline , J ., F r e ir e , J ., and T, Silva,
C. A provenance-based infrastructure to support the life cycle of executable papers.
Procedia Computer Science (2011).

[83] K ro n a n d e r , J ., U n g e r , J ., M o l le r , T ., an d Y n n erm an , A. Estimation and
modeling of actual numerical errors in volume rendering. Computer Graphics Forum
29, 3 (2010), 893-902.

[84] K ru g e r , J ., a n d W e s te rm a n n , R. Acceleration techniques for GPU-based volume
rendering. In IEEE Visualization 2003 (2003), VIS ’03, pp. 38-43.

[85] K ye, H., Shin, B., a n d Shin, Y. Interactive classification for pre-integrated volume
rendering of high-precision volume data. Graphical Models 70, 6 (2008), 125-132.

[86] L a id law , D. H., K irb y , R. M., Jao k so n , C. D., D avidson , J. S., M il le r ,
T. S., d a S ilva, M., W a r re n , W . H., an d T a r r , M. J. Comparing 2d vector
field visualization methods: A user study. IEEE Transactions on Visualization and
Computer Graphics 11, 1 (Jan. 2005), 59-70.

http://teem.sourceforge.net

138

[87] L aram ee , R ., E r l e b a c h e r , G., G a r th , C., S c h a fh i tz e l , T ., T h e ise l, H.,
T r ic o c h e , X., W e in k au f, T ., a n d W eiskopf, D. Applications of texture-
based flow visualization. Engineering Applications of Computational Fluid Mechanics
(EACFM) 2, 3 (2008), 264-274.

[88] L aram ee , R ., H a u se r , H., D o le isch , H., V ro l i jk , B., P o s t , F ., a n d
W eiskop f, D. The state of the art in flow visualization: Dense and texture-based
techniques. Computer Graphics Forum 23, 2 (2004), 203-221.

[89] L aram ee , R. S. First: a flexible and interactive resampling tool for cfd simulation
data. Computers & Graphics 27, 6 (2003), 905 - 916.

[90] Lee, J ., a n d N ew m an, T. New method for opacity correction in oversampled
volume ray casting. Journal o f WSCG 15 (2007), 1-8.

[91] L eeuw , D., a n d V an L ie re , R. Divide and conquer spot noise. Supercomputing,
AC M /IEEE 1997 Conference (1997).

[92] L ew in e r, T. Personal communication. March 2010.

[93] L ew in e r, T. http://www.matmidia.mat.puc-rio.br/tomlew, 2012 (accessed July 24,
2012).

[94] L ew in e r, T ., Lopes, H., V ie ira , A. W ., a n d T av a res , G. Efficient implementa
tion of Marching Cubes’ cases with topological guarantees. Journal of Graphics Tools
8, 2 (2003), 1-15.

[95] Li, G .-S., T r ic o c h e , X., a n d H ansen , C. Gpuflic: interactive and accurate dense
visualization of unsteady flows. In Proceedings of the Eighth Joint Eurographics /
IEEE VGTC conference on Visualization (Aire-la-Ville, Switzerland, Switzerland,
2006), EUROVIS’06, Eurographics Association, pp. 29-34.

[96] Li, L., H sieh, H., a n d Shen, H. Illustrative streamline placement and visualization.
In Visualization Symposium, 2008. PacificVIS’08. IEEE Pacific (2008), IEEE, pp. 79
86.

[97] L jung , P ., L u n d s tro m , C., a n d Y n n erm an , A. Multiresolution interblock
interpolation in direct volume rendering. In EuroVis (2006), pp. 259-266.

[98] Lopes, A., an d B ro d lie , K. Improving the robustness and accuracy of the
Marching Cubes algorithm for isosurfacing. IEEE Computer Aided Geometric Design
9, 1 (2003), 16-29.

[99] L o re n se n , B. On the Death of Visualization. In Position Papers N IH /N SF Proc.
Fall 2004 Workshop Visualization Research Challenges (2004), NIH/NSF Press.

[100] L o re n se n , W ., a n d C lin e , H. Marching cubes: A high resolution 3d surface
construction algorithm. SIG GRAPH 21 (1987), 163-169.

[101] M a c D o n a ld , L. Using color effectively in computer graphics. Computer Graphics
and Applications, IEEE 19, 4 (1999), 20-35.

http://www.matmidia.mat.puc-rio.br/tomlew

139

[102] M a rs c h n e r , S. R ., an d Lobb, R. J. An evaluation of reconstruction filters for
volume rendering. In IEEE Visualization ’94 (1994), pp. 100-107.

[103] M a th W o rk s . Matlab. http://w w w .m athw orks.com /products/m atlab/. Last ac
cessed on March 24th, 2011.

[104] M a tta u s c h , O., T h e u ss l, T ., H a u se r, H., an d G r o l l e r , E. Strategies for
interactive exploration of 3d flow using evenly-spaced illuminated streamlines. In
Proceedings of the 19th spring conference on Computer graphics (New York, NY,
USA, 2003), SCCG ’03, ACM, pp. 213-222.

[105] M a tv ey e v , S. V. Marching cubes: surface complexity measure. Tech. rep., Institute
for High Energy Physics, 1999.

[106] M ax, N. Optical models for direct volume rendering. IEEE Transactions on
Visualization and Computer Graphics 1, 2 (1995), 99-108.

[107] M c C o n n e ll, R ., M e h lh o rn , K., N h e r, S., a n d S c h w e itz e r , P . Certifying
algorithms. Computer Aided Geometric Design Science Review In Press, Corrected
Proof (2010), -.

[108] M cL o u g h lin , T ., L a ram ee , R. S., P e ik e r t , R., P o s t , F. H., a n d Chen,
M. Over two decades of integration-based, geometric flow visualization. Computer
Graphics Forum 29, 6 (2010), 1807-1829.

[109] M eb a rk i, A., A llie z , P ., a n d D e v il le r s , O. Farthest point seeding for efficient
placement of streamlines. In 16th IEEE Visualization Conference (VIS 2005), 23-28
October 2005, Minneapolis, MN, USA (2005), IEEE Computer Society, p. 61.

[110] M eek, D ., a n d W a lto n , D. On surface normal and gaussian curvature approx
imation given data sampled from a smooth surface,. Computer Aided Geometric
Design-Aided Geometric Design 17 (2000), 521-543.

[111] M eissner, M., H uang , J ., B a r tz , D., M u e l le r , K ., a n d C raw fis , R. A
practical evaluation of popular volume rendering algorithms. In IEEE Volume
Visualization (2000), pp. 81-90.

[112] M ero n ey , R. Wind tunnel and numerical simulation of pollution dispersion: a
hybrid approach. Wind Engineering and Fluid Laboratory, Colorado State University,
Fort Collins, USA. Invited Lecture, Croucher Advanced Study Institute, Hong Kong
University o f Science and Technology, 6th-10th December (2004).

[113] M ey e r-S p rad o w , J., R opinski, T ., M ensm ann, J ., a n d H in rich s , K. H.
Voreen: A rapid-prototyping environment for ray-casting-based volume visualizations.
IEEE CG&A. 29, 6 (Nov./Dec. 2009), 6-13.

[114] M o l le r , T ., M a c h ira ju , R., M u e l le r , K ., a n d Y ag e l, R. Classification and
local error estimation of interpolation and derivative filters for volume rendering. In
IEEE Volume Visualization (1996), pp. 71-78.

[115] M o l le r , T ., M a c h ira ju , R ., M u e l le r , K ., a n d Y ag e l, R. Evaluation and
design of filters using a Taylor series expansion. IEEE Transactions on Visualization
and Computer Graphics 3 (April 1997), 184-199.

http://www.mathworks.com/products/matlab/

140

[116] M o n tan i, C., S c a te n i, R ., a n d S copigno , R. A modified look-up table for
implicit disambiguation of marching cubes. The Visual Computer: International
Journal o f Computer Graphics (1994).

[117] M o n tan i, C., S c a te n i, R ., a n d S copigno , R. A modified look-up table for
implicit disambiguation of Marching Cubes. The Visual Computer Aided Geometric
Design 10, 6 (December 1994), 353-355.

[118] M o re la n d , K. Default color map. h ttp ://w w w .parav iew .o rg /ParaV iew 3/index .
php/Default_Color_M ap, 2007.

[119] M o re la n d , K ., a n d A n g e l, E. A fast high accuracy volume renderer for unstruc
tured data. In IEEE Volume Visualization and Graphics (2004), pp. 9-16.

[120] M u n k res , J. R. Topology, A First Course. Prentice-Hall, Inc., 1975.

[121] M un zn er, T ., Jo h n so n , C., M o o rh e a d , R ., P f i s t e r , H., R h e in g an s, p ., a n d
Y oo, T. S. Nih-nsf visualization research challenges report summary. IEEE Comput.
Graph. Appl. 26, 2 (Mar. 2006), 20-24.

[122] N a ta r a ja n , B. K. On generating topologically consistent isosurfaces from uniform
samples. The Visual Computer 11, 1 (Jan. 1994), 52-62.

[123] N a th a n ie l F o u t, K .- l. M. Reliable visualization: Verification of visualization
based on uncertainty analysis. Tech. rep., University of California, Davis, 2012.

[124] N ew m an, T. S., a n d Yi, H. A survey of the Marching Cubes algorithm. Computer
Aided Geometric Designs & Graphics 30, 5 (2006), 854-879.

[125] N ie lso n , G. M. On Marching Cubes. IEEE Computer Aided Geometric Design 9,
3 (2003), 283-297.

[126] N ie lso n , G. M., an d H am ann, B. The asymptotic decider: resolving the ambiguity
in marching cubes. In Proceedings of the 2nd conference on Visualization (Los
Alamitos, CA, USA, 1991), IEEE Computer Society Press, pp. 83-91.

[127] N ing, P ., an d B lo o m e n th a l , J. An evaluation of implicit surface tilers. IEEE
Computer Aided Geometric Design Graphics and Applications 13, 6 (1993), 33-41.

[128] N ovins, K ., a n d A rvo , J. Controlled precision volume integration. In AC M Volume
Visualization (1992), pp. 83-89.

[129] P a la c io s , J ., a n d Z hang , E. Interactive visualization of rotational symmetry fields
on surfaces. IEEE Transactions on Visualization and Computer Graphics 17 (2011),
947-955.

[130] P ascu cc i, V., a n d C o le -M c L a u g h lin , K. Parallel computation of the topology
of level sets. Algorithmica 38, 1 (2003), 249-268.

[131] P a te r a , J ., a n d S k a la , V. A comparison of fundamental methods for iso surface
extraction. Machine Graphics & Vision International Journal 13, 4 (2004), 329-343.

http://www.paraview.org/ParaView3/index.php/Default_Color_Map
http://www.paraview.org/ParaView3/index.php/Default_Color_Map

141

[132] P e ik e r t , R ., a n d S a d lo , F. Topologically relevant stream surfaces for flow
visualization. In Proceedings of the 2009 Spring Conference on Computer Graphics
(New York, NY, USA, 2009), SCCG ’09, ACM, pp. 35-42.

[133] P en g , Z., G ru n d y , E ., L a ram ee , R. S., C hen, G., an d C r o f t , N. Mesh-
driven vector field clustering and visualization: An image-based approach. IEEE
Transactions on Visualization and Computer Graphics 18, 2 (feb 2012), 283-298.

[134] P en g , Z., an d L aram ee , R. Higher dimensional vector field visualization: A survey.
In Theory and Practice o f Computer Graphics (2009), The Eurographics Association,
pp. 149-163.

[135] P e tz , C., P th k o w , K., a n d H ege, H .-C. Probabilistic local features in uncertain
vector fields with spatial correlation. Computer Graphics Forum 31, 3pt2 (2012),
1045-1054.

[136] P o b itz e r , A., P e ik e r t , R ., Fuohs, R ., S o h in d le r , B., K uhn, A., T h e ise l, H.,
M atk o v i? , K ., an d H a u se r, H. The state of the art in topology-based visualization
of unsteady flow. Computer Graphics Forum 30, 6 (2011), 1789-1811.

[137] P o m m ert, A., a n d H ohne, K. H. Evaluation of image quality in medical volume
visualization: The state of the art. In Proceedings of the 5th International Conference
on Medical Image Computing and Computer-Assisted Intervention-Part I I (London,
UK, 2002), MICCAI ’02, Springer-Verlag, pp. 598-605.

[138] P o m m ert, A., a n d H ohne, K. H. Validation of medical volume visualization: a
literature review. International Congress Series 1256 (2003), 571-576. CARS 2003.
Computer Assisted Radiology and Surgery. Proceedings of the 17th International
Congress and Exhibition.

[139] P o m m ert, A., T iede, U., a n d H ohne, K. On the accuracy of isosurfaces in
tomographic volume visualization. In M IC C AI’02 (London, UK, 2002), Springer-
Verlag, pp. 623-630.

[140] P o p p e r , K. R. The Logic of Scientific Discovery. Routledge, 2002. 1st English
Edition:1959.

[141] R am an, S., a n d W e n g e r , R. Quality isosurface mesh generation using an extended
Marching Cubes lookup table. Computer Graphics Forum 27, 3 (2008), 791-798.

[142] R ile y , T ., G o u o h e r, A., Tim, R ., a n d Adam, G. Beautiful Testing: Leading
Professionals Reveal How They Improve Software, 1st ed. O’Reilly Media, Inc., 2009.

[143] R oaohe, P . J. Verification and Validation in Computational Science and Engineer
ing. Hermosa Publishers, 1998.

[144] R o t t g e r , S., G u th e , S., W eiskop f, D., E r t l , T ., a n d S t r a s s e r , W. Smart
hardware-accelerated volume rendering. In VISSYM ’03 (2003), pp. 231-238.

[145] R o t t g e r , S., K ra u s , M., a n d E r t l , T. Hardware-accelerated volume and isosur
face rendering based on cell-projection. In IEEE Visualization (2000), pp. 109-116.

142

[146] R oy, C. J. Review of code and solution verification procedures for computational
simulation. J. Comput. Phys. 205, 1 (2005), 131-156.

[147] S a k k a lis , T ., P e te r s , T. J ., an d B isce g lio , J. Isotopic approximations and
interval solids. Computer Aided Geometric Design-Aided Design 36, 11 (2004), 1089
1100.

[148] S a n y a l, J ., Z hang , S., B h a t ta c h a ry a , G., A m burn, p ., a n d M o o rh e a d ,
R. A user study to compare four uncertainty visualization methods for 1d and 2d
datasets. IEEE Transactions on Visualization and Computer Graphics 15, 6 (Nov.
2009), 1209-1218.

[149] S c h a e fe r , S., Ju , T ., an d W a rre n , J. Manifold dual contouring. IEEE
Transactions on Visualization and Computer Graphics 13, 3 (May 2007), 610-619.

[150] S c h a fh i tz e l , T ., T e ja d a , E., W eiskop f, D., a n d E r t l , T. Point-based stream
surfaces and path surfaces. In Proceedings of Graphics Interface 2007 (New York,
NY, USA, 2007), GI ’07, ACM, pp. 289-296.

[151] S c h e id e g g e r , C., E tie n e , T ., N o n a to , L. G., a n d S ilva, C. Edge flows: Strat
ified Morse Theory for simple, correct isosurface extraction. Tech. rep., University of
Utah, 2010.

[152] S ch eu erm an n , G., K ru g e r , H., M enzel, M., a n d R o ck w o o d , A. P . Vi
sualizing nonlinear vector field topology. IEEE Transactions on Visualization and
Computer Graphics 4, 2 (apr 1998), 109-116.

[153] S c h re in e r , J ., S c h e id e g g e r , C., a n d S ilva, C. High-Quality Extraction of
Isosurfaces from Regular and Irregular Grids. IEEE Transactions on Visualization
and Computer Aided Geometric Design Graphics 12, 5 (2006), 1205-1212.

[154] S c h re in e r , J ., S c h e id e g g e r , C. E., F le ishm an , S., a n d Silva, C. T. Direct
(re)meshing for efficient surface processing. Computer Graphics Forum 25, 3 (2006),
527-536.

[155] S c h ro e d e r , W ., M a r tin , K., a n d L o ren sen , W. Visualization Toolkit, An
Object-Oriented Approach to 3D Graphics - 2nd ed. Prentice-Hall, 1998.

[156] S edgew ick , R ., a n d F l a j o l e t , P . Introduction to Analysis of Algortithms, 1st ed.
Addison-Wesley Professional, 1995.

[157] S e g e r , C. An introduction to formal hardware verification. Tech. rep., University
of British Columbia, Vancouver, BC, Canada, Canada, 1992.

[158] S ilva, C. T ., F r e i r e , J ., a n d C a l la h a n , S. P. Provenance for visualizations:
Reproducibility and beyond. Computing in Science and Engineering. 9, 5 (Sept.
2007), 82-89.

[159] S ilva, C. T ., an d M itc h e l l , J. S. B. Greedy cuts: an advancing front terrain
triangulation algorithm. In Proceedings of the 6th ACM international symposium on
Advances in geographic information systems (New York, NY, USA, 1998), GIS ’98,
ACM, pp. 137-144.

143

[160] S ilva, S., S a n to s , B. S., a n d M a d e ira , J. Using color in visualization: A survey.
Computers & Graphics 35, 2 (2011), 320 - 333.

[161] Sm elyanskiy , M., H olm es, D., C hhugan i, j . , L a rso n , A., C arm ean , D. M.,
H anson , D., D ubey, p ., A u g u stin e , K ., Kim, D., K y k e r , A., Lee, V. W .,
N guyen , A. D., S e ile r , L., a n d R obb, R. Mapping high-fidelity volume rendering
for medical imaging to CPU, GPU and many-core architectures. IEEE Transactions
on Visualization and Computer Graphics 15 (November 2009), 1563-1570.

[162] S p en ce r, B., L a ram ee , R ., C hen, G., a n d Z hang , E. Evenly spaced streamlines
for surfaces: An image-based approach. Computer Graphics Forum 28, 6 (2009),
1618-1631.

[163] S q u i l la c o te , A. The ParaView Guide: A Parallel Visualization Application.
Kitware, 2007.

[164] S te l ld in g e r , P ., L a te c k i , L. J ., a n d S iq u e ira , M. Topological equivalence
between a 3D object and the reconstruction of its digital image. IEEE Transactions
on Pattern Analysis and Machine Intelligence 29, 1 (2007), 126-140.

[165] S u t to n , p ., H ansen , C., Shen, H .-W ., a n d S c h ik o re , D. A case study of
isosurface extraction algorithm performance. In Data Visualization 2000 (2000),
Springer, pp. 259-268.

[166] T assey , G. The economic impacts of inadequate infrastructure for software testing.
Tech. Rep. 7007.011, National Institute of Standards and Technology, RTI Project,
2002.

[167] T aubin , G., C uk ie rm an , F ., S u lliv a n , S., P o n c e , J ., a n d K riegm an , D.
Parameterized families of polynomials for bounded algebraic curve and surface fitting.
IEEE P A M I16, 3 (Mar 1994), 287-303.

[168] T h e ise l, H. Exact isosurfaces for marching cubes. Computer Graphics Forum 21, 1
(2002), 19-32.

[169] T h e ise l, H., R ss l, C., a n d S e id e l, H .-P . Compression of 2d vector fields under
guaranteed topology preservation. Computer Graphics Forum 22, 3 (2003), 333-342.

[170] T h e ise l, H., R ss l, C., a n d W ein k au f, T. Topological representations of vector
fields. In Shape Analysis and Structuring, L. Floriani and M. Spagnuolo, Eds.,
Mathematics and Visualization. Springer Berlin Heidelberg, 2008, pp. 215-240.

[171] T h e ise l, H., W e in k au f, T ., H ege, H .-C ., a n d S e id e l, H .-P . Topological
methods for 2d time-dependent vector fields based on stream lines and path lines.
IEEE Transactions on Visualization and Computer Graphics 11, 4 (jul 2005), 383-394.

[172] T o h lin e , J. E ., a n d S a n to s , E. Visualizing a Journal tha t Serves the Compu
tational Sciences Community. Computing in Science & Engineering 12, 3 (2010),
78-81.

[173] Tom inski, C., F u ch s, G., a n d Schum ann. Task-Driven Color Coding. In Informa
tion Visualisation, 2008. IV ’08. 12th International Conference (2008), pp. 373-380.

144

[174] T o ry , M., a n d M o l le r , T. Human factors in visualization research. IEEE
Transactions on Visualization and Computer Graphics 10,1 (Jan. 2004), 72-84.

[175] T re in ish , L., e t a l . Why should engineers and scientists be worried about color?
IB M Thomas J. Watson Research Center, Yorktown Heights, N Y (2009).

[176] T u rk , G., a n d B anks, D. Image-guided streamline placement. In Proceedings of
the 23rd annual conference on Computer graphics and interactive techniques (New
York, NY, USA, 1996), SIGGRAPH ’96, ACM, pp. 453-460.

[177] U eng, S.-K ., S ik o rsk i, C., a n d M a, K .-L. Efficient streamline, streamribbon, and
streamtube constructions on unstructured grids. IEEE Transactions on Visualization
and Computer Graphics 2, 2 (jun 1996), 100-110.

[178] U n se r, M. Splines: a perfect fit for signal and image processing. Signal Processing
Magazine, IEEE 16, 6 (nov 1999), 22 -38.

[179] Usm an, A., M o l le r , T ., a n d C o n d a t, L. Gradient estimation revitalized. IEEE
Transactions on Visualization and Computer Graphics 16, 6 (2010), 1495-1504.

[180] van G e ld e r , A., an d W ilh e lm s, J. Topological considerations in isosurface
generation. ACM Transactions on Graphics 13, 4 (1994), 337-375.

[181] V an W ijk , J. Spot noise texture synthesis for data visualization. ACM SIGGRAPH
Computer Graphics (1991).

[182] V a ra d h a n , G., K rish n a n , S., Kim, Y. J ., an d M an o ch a , D. Feature-sensitive
subdivision and isosurface reconstruction. In Proceedings of the 14th IEEE Visualiza
tion 2003 (V IS ’03) (Washington, DC, USA, 2003), VIS ’03, IEEE Computer Society,
p. 14.

[183] W e b e r, G. H., S ch eu erm an n , G., H agen , H., a n d H am ann, B. Exploring
scalar fields using critical isovalues. In Proceedings of the conference on Visualization
’02 (Washington, DC, USA, 2002), IEEE Computer Aided Geometric Design Society,
pp. 171-178.

[184] W e in k au f, T ., an d T h e ise l, H. Streak lines as tangent curves of a derived vector
field. IEEE Transactions on Visualization and Computer Graphics 16, 6 (nov 2010),
1225-1234.

[185] W e in k au f, T ., T h e ise l, H., Shi, K ., H ege, H .-C ., an d S e id e l, H .-P . Extract
ing higher order critical points and topological simplification of 3D vector fields. In
Proc. IEEE Visualization 2005 (Minneapolis, U.S.A., October 2005), pp. 559-566.

[186] W e s to v e r , L. Interactive volume rendering. In ACM Volume Visualization (1989),
pp. 9-16.

[187] W ieb e l, A., a n d S ch eu erm an n , G. Eyelet particle tracing-steady visualization of
unsteady flow. In Visualization, 2005. VIS 05. IEEE (2005), IEEE, pp. 607-614.

[188] W illiam s, P . L., a n d M ax, N. A volume density optical model. In ACM Volume
Visualization (1992), pp. 61-68.

145

[189] W illiam s, P . L., M ax, N. L., a n d S te in , C. M. A high accuracy volume renderer
for unstructured data. IEEE Transactions on Visualization and Computer Graphics
4 (January 1998), 37-54.

[190] Xu, G. Convergence analysis of a discretization scheme for gaussian curvature over
triangular surfaces. Computer Aided Geometric Design 23, 2 (2006), 193-207.

[191] Xu, Z., Xu, G., an d Sun, J .-G . Convergence analysis of discrete differential
geometry operators over surfaces. In Mathematics of Surfaces X I , vol. 3604 of LNCS .
Springer, 2005, pp. 448-457.

[192] Y ang, J ., T w ohey , P ., E n g le r , D., a n d M usuva th i, M. Using model checking
to find serious file system errors. ACM Trans. Comput. Syst. 24 (November 2006),
393-423.

[193] Z hang , N., H ong, W ., a n d K aufm an , A. Dual contouring with topology-
preserving simplification using enhanced cell representation. In Proceedings of the
conference on Visualization ’04 (Washington, DC, USA, 2004), VIS ’04, IEEE
Computer Society, pp. 505-512.

[194] Z heng, Z., Xu, W ., a n d M u e l le r , K. VDVR: Verifiable volume visualization of
projection-based data. IEEE Transactions on Visualization and Computer Graphics
65, 6 (2010), 1515-1524.

[195] Zhou, L., an d P ang , A. Metrics and visualization tools for surface mesh compar
ison. In Proc. SPIE - Visual Data Exploration and Analysis V III (2001), vol. 4302,
pp. 99-110.

