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Abstract

Interactive isosurface visualisation has been made possible by mapping algorithms to GPU architectures. However, current
state-of-the-art isosurfacing algorithms usually consume large amounts of GPU memory owing to the additional acceleration
structures they require. As a result, the continued limitations on available GPU memory mean that they are unable to deal with
the larger datasets that are now increasingly becoming prevalent.

This paper proposes a new parallel isosurface-extraction algorithm that exploits the blocked organisation of the parallel threads
found in modern many-core platforms to achieve fast isosurface extraction and reduce the associated memory requirements.
This is achieved by optimising thread co-operation within thread-blocks and reducing redundant computation; ultimately, an
indexed triangular mesh could be produced.

Experiments have shown that the proposed algorithm is much faster (up to 10x ) than state-of-the-art GPU algorithms and has
a much smaller memory footprint, enabling it to handle much larger datasets (up to 64x) on the same GPU.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation—Viewing

Algorithms

1. Introduction

High-speed isosurface extraction has long been an important tech-
nique in the interactive visualisation of scalar fields and has been
used in a wide variety of applications — medical imaging, molecu-
lar surface visualisation, physics-based simulation, etc. It provides
a simple and effective way of identifying and visualising distinct
surfaces present within volume data and has become an important
tool for exploring and understanding such data sets.

Isosurfaces are typically visualised either by rasterising the poly-
gons extracted by the Marching Cubes (MC) algorithm [LC87,
DZTSO08] or by direct ray casting [HL09, VMDO08, KWHO09]. While
ray casting, when properly applied, can produce superior images, it
does not create an explicit representation of the isosurface. Having
such a surface model is useful in many applications, such as volume
or surface area calculations, freeform modelling, surface-based
simulation, surface fairing or surface-related effects for movies and
games, as it allows further processing of the geometry. In such
cases, the rapid availability of an explicit surface representation can
be extremely beneficial. As a result, 30 years after its first introduc-
tion, Marching Cubes (and its many variants) still remains popular
and in regular use.

In recent years, the resolution of volume datasets from both scan-
ning devices and simulations has continually improved. Accord-
ingly, tools to be applied to such data, including those that ex-
tract isosurfaces, must scale effectively to support these increased
volumes and their associated memory requirements. However, the
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main stumbling block associated with large datasets is the GPU
memory consumption — not only of the input volume data but also
of the accelerating structures used and the output data associated
with the large number of polygons generated. This places a heavy
burden on the available GPU memory, which continues to be rel-
atively small. If the memory footprint of an algorithm exceeds the
available storage, it will simply fail. To cope with the larger datasets
that are becoming increasingly available nowadays, there is an ur-
gent need for a fast and efficient algorithm that makes reduced de-
mands on the GPU memory.

Recent GPU-based approaches such as NVIDIA’s CUDA SDK
[NVI15b] and Histogram Pyramid [DZTS14] (which will be re-
ferred to as nvsdk and hpmc, respectively) provide high-speed MC
implementations, but they fail to handle large datasets, as their large
memory requirements rapidly deplete the available storage capac-

1ty.

Previous parallel methods have treated the MC cells indepen-
dently, using an individual thread for each [DBG10, NVI15b,
DZTS14,CJD15] — the triangles are thus created one-by-one, and
coincident vertices are not reused. As a result, vertices are calcu-
lated and stored by multiple independent threads; these duplicated
vertices are redundant, and their creation has a significant adverse
effect on the computing time expended and the amount of memory
used.

In a serial implementation, it is possible to merge the duplicated
vertices [LCGRO2], but this is not easy in a many-core parallel
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computing environment. Since the numbers of vertices and trian-
gles output by individual MC cells are not constant (a priori, the
total numbers are unknown), and the output mesh is created dy-
namically, it is not trivial to parallelise efficiently the merging of
the duplicated vertices and their assembly into a compact indexed
triangle mesh. Indeed, NVIDIA’s specialist Simon Green [Grel0]
said that this was "too complicated" when he wrote their parallel
MC code.

In this paper, we introduce Parallel Marching Blocks (PMB),
a block-based parallel MC algorithm for fast, full-resolution
isosurface-extraction. PMB generates an indexed triangle mesh,
even for complex isosurfaces and dynamic isovalues. Its use pro-
vides the benefits of rapid empty-block removal, fast data caching
and reuse, and real-time interactivity to support the identification
of the best threshold (isovalue) for the desired isosurface, and it
works on much larger datasets than was previously possible. The
main contributions of the paper can be summarised as follows.

1) The new GPU isosurfacing algorithm presented is fast (up to
10x faster than existing state-of-the-art GPU algorithms) and has
a low memory footprint; this enables it to cope with much larger
datasets (64x) than them, as they often run out of GPU memory
when the datasets are large.

2) In contrast to previous parallel algorithms, which assign one
independent thread to each MC cube, PMB employs a simple two-
level block layout in which the voxel-blocks are arranged to fit per-
fectly into the thread-block execution units to be found in modern
many-core architectures. All of the threads within a block collabo-
rate to jointly process a voxel-block in a synchronised manner, with
shared memory being used to cache each thread’s intermediate data
so that they can be re-used by other threads.

3) Within the particular restrictions of the parallel computing en-
vironment, PMB parallelises the merging of the duplicated vertices
and the creation of a compact indexed triangle mesh in which a
vertex that is shared by multiple triangles (within a voxel-block)
is calculated and stored only once — its unique index is calculated
from an offset cached in the shared memory. This is in sharp con-
trast to the “triangle soup” (groups of unorganised triangles with
many redundant/duplicated vertices) produced by previous GPU
approaches.

4) PMB uses a new look-up table (with only 12 entries) to expe-
dite the extraction of the vertices. The table maps an edge of an MC
cell to a distinct edge of one of its neighbour cells. Its use means
that each cell needs to output at most 3 vertices in contrast to the
previous up-to-15 vertices. This significantly reduces the amount of
computation associated with vertex generation. It should be empha-
sised that use of this table is not restricted to GPU or parallelised
implementations; it can also deliver benefits in standard serial iso-
surfacing implementations.

5) To compute offsets for the output data, previous GPU MC
algorithms have used the global prefix-sum function; unfortunately,
this requires the use of several very large arrays stored in the GPU
global memory. In place of this, we perform a new local prefix sum
within each block. The resulting offsets are retained only in the
local shared memory (but not in the global memory) — as a result,

we avoid the need to store the large global arrays. Experiments have
shown that this greatly reduces GPU memory usage.

6) The full source code for PMB will be released alongside this
paper, which will be beneficial to many users who are interested in
a fast isosurfacing implementation.

The remainder of the paper is organised as follows. Section 2
covers previous work and Section 3 gives an overview of PMB. The
algorithm is described in detail in Section 4; the results obtained are
presented in Section 5 and discussed in Section 6, with concluding
remarks following in Section 7.

2. Related Work

Marching cubes [LC87] is the most commonly used algorithm for
extracting isosurfaces from a scalar field. It divides a voxel grid
into cubes (the so-called MC cells) and marches through these one
by one, processing each independently. In each MC cell, variable
numbers of triangles (up to 5) are produced to approximate the iso-
surface within the cell. MC has spawned many variants; a survey
of them was published by Newman and Yi [NYO06].

Some acceleration techniques have used complex pre-processing
strategies [KWOS5]. Unfortunately, this greatly inhibits data explo-
ration (dynamic isosurfacing) in which users change the isovalues
frequently at runtime in order to investigate structures within the
dataset. While Johansson and Carr [JC06] improved MC perfor-
mance by precomputing the topology for each cell and using a
kd-tree to cull empty regions, they noted that the pre-processing
on the CPU limited the overall speed of the algorithm. Other ap-
proaches have built hierarchical accelerating data structures, such
as octrees [WVG92] and kd-trees [LSJ96]. Kipfer et al. [KWO05]
identified empty regions using an interval tree.

While MC was originally designed for serial processing, recent
variants have attempted to harness the processing power of multi-
core processors by introducing parallelised versions, with differing
degrees of success. The ever-increasing sizes of the datasets to be
analyzed have made parallel isosurface extraction very attractive.
However, while one can conceptually map MC algorithms to data-
parallel architectures as each MC cell is processed individually, a
naive mapping will generally prove to be rather inefficient. The rea-
son is that the distribution of the isosurfaces throughout the volume
tends to be highly non-uniform, which presents unbalanced work-
loads to the processing cores. In addition, the number of MC cells
is large, which leads to high memory bandwidth and heavy compu-
tational demands during processing. Moreover, it is not easy to ef-
ficiently parallelise the merging of the duplicate vertices produced
when creating the indexed triangle mesh [Gre10].

Recently, there is a new parallel MC algorithm called Flying
Edges (FE) [SMG15], which is implemented on multi-core CPUs,
and the performance is reported to be up to 11x faster than pre-
vious CPU algorithms. In FE, a CPU thread processes a row of
MC cells along X-axis (like a lamb kebab), so that multiple threads
can independently process multiple rows of cells in parallel. While
within each thread, all the MC cells along a kebab have to be pro-
cessed one-by-one in a serial manner, such that coincident vertices
could be merged during the serial processing of the consecutive
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cells along a kebab by an individual thread. In this sense, FE is a
coarse-grained parallel algorithm, where each thread has to process
hundreds or thousands of cells in serial. If the volume resolution is
N x N x N, one thread has to process N cells (along x-axis) one-
by-one. Therefore, the coarse-grained parallelism of FE is more
suitable for multi-core CPUs than for many-core GPUs, which are
good at large amount of light-weight threads in a fine grained paral-
lelism algorithm, such as the proposed PMB, in which each thread
processes only one single MC cell, and all the N> cells could be
processed in parallel as long as there are enough GPU cores.

Other examples have been provided by Tatarchuk et al. [TSD07]
who proposed a technique using GPU geometry shaders to gen-
erate the triangle geometry and Dias et al. [DBG10] who em-
ployed the same global prefix sum approach as nvsdk in an appli-
cation for polygonising convolution molecular surfaces. Schmitz et
al. [SSO*10] implemented a modified dual contouring on the GPU,
while Loffler et al. [LS12] extracted isosurfaces from volumetric
terrain datasets with complex caves and overhangs.

Recent CUDA-based MC implementations have generated in-
dexed triangles [GWBO12, CJD15], but results have shown that
their speed performance is worse than approaches that create tri-
angle soup [NVI15b, DBG10], as generating the indexed triangles
introduces severe overheads. If triangle soup is generated, a post-
processing step [Wnb12] can weld triangle vertices by eliminat-
ing redundant vertices and coincident edges, but this may intro-
duce even more computing time and extra memory usage. Miller
et al. described a faster and more reliable vertex merging approach
in [MMM 14].

Although view-dependent or LoD-based isosurfacing methods
implemented on GPUs can work in real time [SBD15], this perfor-
mance level is usually gained only at the cost of a reduced quality of
the resulting mesh, which may be too coarse for further processing
or analysis.

Hughes et al. [HLJ*13] proposed in-kernel stream compaction
on the GPU that performs stream compaction using bitwise binary
operations; however, it is unable to perform stream expansion. Un-
fortunately, the MC algorithm is a mix of stream compaction and
expansion.

Parallel prefix sum (or parallel scan) creates, in parallel, a ta-
ble that associates each input element with output offsets; Harris
[HSOO7] designed an efficient implementation of this. NVIDIA’s
CUDA SDK (nvsdk) [NVI15b] provides a high-speed MC imple-
mentation using the global prefix-sum function from the highly op-
timised Thrust library to compute output offsets for the triangle
data generated. However, as explained below, nvsdk is unsuitable
for medium or large datasets as it rapidly exhausts the available
GPU memory.

For an N volume, nvsdk performs global prefix-sum operations
for two arrays: the “number of vertices” array indicates how many
vertices each cell will generate, and the “voxel occupied” array in-
dicates whether or not an MC cell is empty. For these two global
prefix-sum operations, four 32-bit-integer arrays must be available,
each having the same length as the total number of voxels in the
volume. To skip empty space, nvsdk also needs another large 32-
bit-integer array to compact all of the active voxels. These five ar-
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rays consume 5 X 4 x N3 bytes. Thus, for a 10243 volume dataset,
the memory consumption of the accelerating structure will be 20
GB, which is far beyond the capacity of even the most modern
GPU. Moreover, this does not even include the storage require-
ments of the input volume data and the output mesh data.

Dyken et al. [DZTS08, DZTS14] proposed hpmc, a high speed
MC algorithm on the GPU, based on the Histogram Pyramid (HP)
data structure introduced by Ziegler et al. [ZTTS06]. However, its
pyramid structure leads to large memory consumption (often larger
than the input volume itself). This is because all of the HP levels are
stored as mipmapped textures in which each 32-bit integer texel has
to store the sum of the vertex counts from all of its sub-level texels,
with the total vertex count being stored in the single texel at the top
mipmap level.

When the data size increases, the memory footprint of the accel-
erating structure inevitably grows too. The GPUs memory has to
accommodate not only the input volume data, but also the output
mesh and the accelerating structure involved. So an accelerating al-
gorithm with high performance and a small memory footprint can
offer significant benefits in the GPU-based processing of the large
datasets that are becoming the norm [BHP14]; PMB has this poten-
tial.

3. Algorithm overview

In modern many-core architectures, hardware cores and threads are
organised into many fixed-sized groups (blocks of cores/threads),
as shown in Figure 1. And all of the threads within a same block can
use the shared memory to exchange reusable data with each other.
PMB explicitly exploits this feature using a block-based accelerat-
ing structure. This is in sharp contrast to previous GPU algorithms
in which each thread processes a single MC cell independently of
the others.

Software Hardware Memory
Thread | PEII' thread
processor ocal memory
Thread
g
og
g8 Per block
E shared memory

Thread block

Grid Device

Multiprocessor

Global memory

Figure 1: Block-based hierarchies of software, hardware and memory
on GPU architectures, which are corresponding to each other along the
horizontal direction.

As shown in Figure 2, the PMB algorithm is organised with a
two-level 3D blocking hierarchy, where the input 3D volume is
broken into regular voxel-blocks, and each voxel-block will be pro-
cessed by a single thread group, which forms a 3D thread-block.
Each thread in the thread-block will process only one cuboid MC
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cell, but will co-operate closely with other threads within the same
thread-block.

Thread Algorithmic
hierarchy:

hierarchy:

e

Figure 2: Mapping of algorithmic hierarchy onto GPU thread hierarchy.

Since all of the GPU threads are grouped into an array of 3D
thread-blocks, instead of building a full-level accelerating hierar-
chy from the input volume data (as in an octree or span space de-
composition), we use a simple, two-level blocking layout in which
the 3D voxel-blocks fit exactly into the blocked structure of the ex-
ecution units of the many-core hardware being targeted. Thus, the
input volume data (resolution Nx x Ny x Nz) is treated as an array
of cuboid bricks of voxels; the voxel resolution of each brick is set
to Bx x By x Bz. As illustrated in Figure 2, PMB’s algorithmic hi-
erarchy is perfectly mapped onto the hardware thread hierarchy of
the modern GPUs, which enables us to maximize the utility of the
hardware.

Furthermore, to fully exploit the high-speed shared memory on
the GPUs, we especially optimise thread co-operation within each
thread-block — via shared memory, all threads within a block can
share data that are loaded and computed by other threads. This
helps to avoid redundant computation and storage.

We also employ a new local intra-block prefix sum operation to
compute the output offset for the vertex and triangle data generated,
so that the threads can identify the correct output address at which
to jointly output the compact indexed triangle mesh. Since the local
prefix-sum operations are performed only inside the thread-blocks,
the resulting offset data is stored purely in the local registers and
shared memory (i.e., on-chip memory), which are distinct from the
global GPU memory (i.e., off-chip memory). By this means, we re-
place slow global memory access with fast local access. This also
avoids having to store the five large memory-consuming global ar-
rays involved in nvsdk.

To skip empty voxel-blocks, we launch a CUDA kernel to com-
pute the min-max values for each block. The indices of only the
active blocks are compacted into a 1D array, by the use of which
empty blocks (which generate no triangles) can be removed, leav-
ing only active blocks on which to run the kernel to generate the
triangles.

The following section provides greater algorithmic detail; for
further implementation detail, please refer to the pseudocode that
accompany the paper.

4. The algorithm in detail

The algorithm involves three steps, each implemented by a CUDA
kernel. The subsections below elaborate on these individual steps.
Figure 3 explains the general data flow through the GPU global
memory.

Compute

. Compact Generate
min-max active blocks triangles
pair for i
each block
input output
volume [ MinMaxArray compactedBl (ol
data Array mesh

Figure 3: The data flowchart of the algorithm. Yellow boxes stand for
the three CUDA kernels; pink ellipses stand for the data in the GPU global
memory, and green arrows indicate the direction of data fetches or writes
to the GPU global memory.

4.1. Computing the min-max pair for each block

In applications in which isosurface extraction is employed, the vol-
ume datasets tend to be rather sparse, with many inactive voxels.
These occupy much of the volume but make no contribution to the
output, so it is expedient to remove them before starting to generate
the triangles.

To test whether a block is empty or not, we compute a min-max
pair of scalar values for each block, and store the result in a 1D
array, the length of which is determined by the total number of
blocks: rotalBlkNum = (Nx—1)/(Bx—1) x (Ny—1)/(By—1) x
(Nz—1)/(Bz—1).

This is accomplished by a “block-based stream-reduction” ker-
nel, using CUDA’s fast shuffle instructions, which enable a thread
to read a register directly from another thread in the same warp.
This allows threads in a warp to exchange or broadcast data collec-
tively [NVI15a].

We launch total BlkNum 3D thread-blocks, each with Bx X By x
Bz threads, which collaboratively compute a min-max pair for
a voxel-block. Overall, the kernel has three steps. 1) Compute
the min-max pair for each warp using a warp-reduce procedure
[Dem13], which uses the fast shuffle instruction to exchange data
between threads. 2) The first thread of each warp now holds the
result of the warp; this partial result is written to the shared mem-
ory. 3) After thread synchronisation, the first warp alone reads the
partial results from the shared memory and applies the warp-reduce
procedure to the partial results of all the warps to produce the min-
max pair of the block, which is output to MinMaxArray in the
global memory.
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4.2. Compacting the active blocks

nvsdk skips empty space at the finest granularity (the voxel level) —
all of the voxels are scanned and the non-empty ones are compacted
into a large 1D array which is used to remove the empty voxels.
We found this fine granularity to have three disadvantages: 1) the
scanning and compaction of the non-empty voxels consume a great
deal of memory as the number of the voxels to be scanned may be
very large; 2) non-empty voxels that are adjacent in the compacted
array may not be physically located in adjacent parts of the input
volume — this can cause poor GPU memory- and cache-locality and
hence impair the overall performance; 3) this separation of their
physical locations also means that adjacent threads cannot share
their intermediate results.

PMB, in contrast, skips empty space at the voxel-block level.
This reduces demands on memory space as the scanning and com-
pacting arrays will be much smaller (because there are many fewer
blocks than voxels) and improves memory locality as adjacent
threads in a thread-block deal only with voxels in the same voxel-
block, which must therefore be located in neighbouring parts of the
3D volume. This also enables adjacent threads to share the inter-
mediate results cached in the shared memory.

To remove the empty voxel-blocks, we compact the indices of
the active blocks into a 1D array, which will be used later in the
“generatingTriangles” kernel (Section 4.3). This compacting step
is performed by a CUDA kernel which assigns one thread to each
voxel-block. For this kernel, we launch total BlkNum threads, each
of which computes a global offset for its voxel-block. Our experi-
ments suggest that optimal performance is achieved by giving each
thread-block 128 threads, as this provides suitable thread occu-
pancy for a thread-block. As warpSize is 32, the number of warps
for a thread-block, nWarp, is 4.

To compute the output offset for the index of a non-empty voxel-
block, we use a local prefix sum to find the intra-thread-block offset
followed by an atomic operation (performed only once per thread-
block) to obtain the inter-thread-block offset. Adding these pro-
duces the global offset for the current thread. Here, the calculation
of the local prefix sum employs a procedure called warp — scan
[Dem13], which uses the fast shuffle instruction to exchange data
between threads.

This compacting kernel acts as follows. First, each thread calcu-
lates a bool variable bTest by testing if its voxel-block is empty (by
comparing the input isovalue with the block’s min-max pair). The
warp — scan procedure [Dem13] is then applied to bTest among
all the threads inside each warp. And then, warp — scan is ap-
plied again but to the partial results of the multiple warps within
a thread-block, with the results stored in the shared memory. Since
nWarp < warpSize, a single warp can perform this warp-scan pro-
cedure on all of the partial results within the thread-block. After
that, an atomic operation adds the entire thread-block’s sum to the
global sum (activeBlkNum), which is then added to each thread’s
sum to generate the global offset for each thread in the thread-
block. Note that the atomic operation is performed only once per
thread-block, so it does not have a detrimental effect on the over-
all performance. Finally, if the current voxel-block is not empty, its
index is written to a 1D array compactedBlkArray using the global
offset as the address.
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4.3. Generating the triangles

The final CUDA kernel generates triangles for only the active
voxel-blocks, as identified by the 1D array compactedBlkArray.
This kernel is a block-based parallel MC algorithm in which
activeBlkNum voxel-blocks are processed each by a 3D thread-
block with Bx x By x Bz threads.

Note that an MC cell is not processed independently by a thread
as in previous parallel algorithms; rather, all of the cells in a block
are jointly processed by a thread-block in a synchronised, collab-
orative manner. While each thread processes just a single voxel,
it reuses intermediate results (the voxel sampling values, and the
vertices generated and their offsets) from other threads via shared
memory, so that duplicate vertices could be merged as a natural part
of the mesh creation.

In these computations, each thread outputs at most 3 vertices (not
up-to-15, as in standard MC implementations); these can be re-used
by other threads. The outcome is an indexed mesh in which a vertex
that is shared by multiple triangles (within a voxel-block) is com-
puted and stored only once; moreover, its unique vertex-index is
calculated from the cached local offset, which is reused by other
threads when outputting multiple triangles that share this vertex.
This kernel can be summarised in the 3 steps described in the fol-
lowing subsections.

4.3.1. Generation of at most 3 vertices by each thread

Firstly, each thread samples a voxel value from the input vol-
ume and caches it into the shared memory, for reuse by adjacent
threads after thread synchronisation. From the 8 corner-voxel val-
ues cached, the thread computes an MC case index, cubeCase,
which will be used to look up MC tables.

Figure 4: A 3D MC cell (with 8 corner voxels) and its three distinct edges.

Within a grid of 3D MC cells, a typical cell edge is shared by
4 adjacent cells. In previous GPU implementations, this edge is
processed repeatedly by each of the adjacent MC cells. To avoid
these redundant calculations, we associate the thread with the base
voxel that lies at its MC cell’s origin (relative to the 3 coordinate
axes). We define the 3 distinct edges, xEdge, yEdge, zEdge, of
base voxel (i,j,k), to be the edges from (i,j,k) to (i+1,j,k), (i,j+1.k),
(i,j,k+1), respectively. The MC cell in Figure 4 is based at voxel 0,
and its xEdge, yEdge and zEdge are shown in red, green and blue,
respectively.

We restrict each thread to generate vertices along only the 3 dis-
tinct edges of its voxel. Vertices lying on the other edges of the
MC cell are found from the distinct edges of adjacent threads. This
avoids the redundancy that the standard MC approach introduces
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when finding where the triangle vertices occur between the adja-
cent cuboid cells.
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Figure 5: 2D illustration of vertex generation (A and D) along only dis-
tinct edges of a cell (gray). Vertices B and C will be “borrowed” from other
adjacent cells (blue).

This is most easily illustrated in 2D — see Figure 5, where the
MC cell shown in grey, with origin at base voxel (2,1), will produce
two triangles (AABC and AACD); Vertices A and D (on xEdge and
yEdge of this voxel, shown in red and green, respectively) are the
only 2 vertices found by the thread processing this voxel. Vertices
B and C are found by adjacent threads processing the MC cells
shown in blue — yEdge of voxel (3,1) and xEdge of voxel (2,2),
respectively. In order to assemble output triangles for the current
thread processing the gray cell at base voxel (2,1), vertices B and C
will be “borrowed” from these two adjacent threads.

The position of a vertex is found by linear interpolation between
the two end-points of the distinct edge. The per-vertex normal vec-
tor is computed by central differencing of 6 samples; note that the
block boundaries do not affect this calculation as the 6 samples are
acquired from the original input 3D volume texture via hardware
trilinear interpolation.

4.3.2. Computing output offsets

To compute offsets for the output mesh data, previous GPU MC
algorithms [NVI15b, CJD15, DBG10] used the global prefix-sum
function; as noted earlier, this requires several large arrays to be
stored in the GPU global memory. PMB, however, performs a local
prefix sum within each block, and the resulting offsets are retained
only in the local register and shared memory (but not the global
memory), thus avoiding the need to store the global arrays.

The output offsets are calculated using the local intra-block pre-
fix sum described in Section 4.2, with shuffle instructions again
supporting the exchange of data between threads. Here the warp —
scan procedure is applied to two variables (numVerts and numTris,
the numbers of vertices and triangles generated by each thread) in
one go. A warp — scan is first performed inside a thread-warp, and
then it is applied to the partial results of multiple warps within the
thread-block to obtain the local offsets within a block. Finally, an
atomic operation adds the sum of the block (local sum) to the global
sum, which will be added to each thread’s sum to determine the
global offset for each thread. This produces the local offset (within
a block) and the global offset for the vertex data (of fset2) and the
triangle data (of fset1).

Each thread now outputs the vertices thus generated into a 1D

edgelD edgemap.x edgemap.y edgemap.z edgemap.w
0 0 0 0 0
1 1 0 0 1
2 0 1 0 0
3 0 0 0 1
4 0 0 1 0
5 1 0 1 1
6 0 1 1 0
7 0 0 1 1
8 0 0 0 2
9 1 0 0 2
10 1 1 0 2
11 0 1 0 2

Table 1: neighborMappingTable maps an edgel D (of one of the 12 edges
of an MC cell) to a distinct edge of a neighbour cell indicated by the four
integers stored in edgemap.xyzw.

array VertexArray at the address indicated by the global vertex off-
set of fset2. The local offset (intraBlockOf fset) for each vertex is
cached in the shared memory and is reused (see Section 4.3.3) to
calculate a unique vertex-index by other threads when assembling
their own triangles that share this vertex. The prefix sum of all the
previous blocks’ vertices, interBlockO f fset, which is returned by
the atomic operation above, is also cached for later use.

4.3.3. Assembling triangles using vertex-indices

Each thread will output up to 5 triangles depending on its MC case
index, cubeCase. To output the triangle data in an indexed form,
one must output three correct vertex-indices for each triangle to
the storage locations indicated by the global offset of f'set1. Their
calculation is described below.

For each thread’s base voxel, we have cached in the shared mem-
ory the 3 bool variables in xyzEdges which indicate if its 3 distinct
edges will produce a vertex. Vertices on the other 9 edges of the
MC cell are “borrowed” from the distinct edges of neighbouring
voxels, as shown in Figure 5. For this, we first find which of those
edges have an intersection with the isosurface; an active edge’s ID
(0 <= edgelD < 12) can be retrieved from the MC edge table ac-
cessed by cubeCase.

We now design another table, neighborMappingTable (see Ta-
ble 1) whose 12 entries reflect the 3D relations of the adjacent MC
cells — it maps an edge, edgelD, of the current cell to a distinct edge
of one of its neighbour cells. Of the four integer components in
edgemap, the first three (edgemap.xyz, with each component 0/1)
indicate the XYZ offsets to the neighbour voxel, and the fourth
(edgemap.w) indicates the distinct edge of this neighbour to which
edgelD is mapped (0, 1, 2 for xEdge, yEdge, zEdge, respectively).
The small size of this new table allows it to be stored conveniently
in the high-speed constant memory of the GPU.

The position of the neighbour is (i+edgemap.x, j+edgemap.y,
k+edgemap.z), and from its location in shared memory are re-
trieved the correct intraBlockOf fset and the information about its
distinct edges (xyzEdges).

The vertex-index for the original edge, edgelD, is now evaluated
as vertexIndex = edgeSum -+ intraBlockO f f set + interBlkOf fset.
Here, edgeSum, the prefix sum among the 3 distinct edges of this
neighbour voxel, is calculated from xyzEdges and edgemap.w.
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Figure 6: Quality comparison for nvsdk (left), PMB (middle) and hpmc
(right) using the visMale dataset. The lower images show corresponding
close-up views.

vertexIndex is output to the global array for triangle data at the
address indicated by of fset1.

The result is an indexed mesh in which each vertex shared by
multiple triangles (within a voxel-block) is computed and stored
only once (this includes both its X YZ-coordinates and its per-vertex
normal vector) allowing the vertex to be accessed by a unique in-
dex, which is reused by multiple threads when assembling and out-
putting their own triangles.

As the vertex and triangle data of the mesh are already stored
in the global memory of the GPU, for display we can map them
into OpenGL VBOs (Vertex Object Buffer) without any mem-
ory copies and thus render the mesh with a single draw call
glDrawElements().

5. Results

PMB was compared with two state-of-the-art GPU isosurface-
extraction algorithms nvsdk and hpmc, the source codes of which
are publicly available. For nvsdk, we used NVIDIA’s latest CUDA
SDK (v7.0) [NVI15b], which provides a high speed MC implemen-
tation using the global prefix-sum function from the highly opti-
mised Thrust library. hpmc [DZTS14], the fastest Marching Cubes
implementation yet reported, is an open-source library that extracts
isosurfaces using a pyramid structure [DZTSO08]. Without changing
any algorithmic part of their code, we measured their performance
using precisely the same datasets, isovalues, viewing configurations
and hardware platform to ensure fair comparisons.

The tests were performed on a desktop workstation equipped
with an NVIDIA GeForce GTX Titan GPU, which has 6 GB video
memory. This GPU was chosen because of its super-large video
memory so that nvsdk and hpmc would not fail too early, and the
comparisons could run on as many datasets as possible. All results
were rendered at a screen resolution of 10242

As all computation at runtime takes place solely on the GPU,
the performance is CPU-independent. The frame-rates (involving
both extraction and rendering) are presented in Tables 2 and 3,
which also show the numbers of input voxels and output triangles.
All timings in the tables are for dynamic isovalues, i.e., empty-
space skipping is performed at every frame on the assumption that
the user is interactively changing the isovalue, so a new isovalue is
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volume nl n2 nvsdk hpmc PMB
resolution in22% | (in 10%) (fps) (fps) (fps)
5123 128 1.3 25.6 69.3 193.1
5122x1024 256 2.1 133 58.3 138.7
10247x512 512 3.4 fail fail 87.5
10247 1024 5.0 fail fail 55.2
1024%x2048 2048 8.4 fail fail 32.5
20482x1024 4096 13.4 fail fail 213
20483 8192 20.1 fail fail 13.2
20487x4096 16384 33.5 fail fail 7.6

Table 2:  Performance comparison (in frames per second) for dynamic
isovalues among nvsdk, hpme, and PMB using the analytical Cayley sur-
face with isovalue -0.012. nl is the number (in 22°) of input voxels; n2 is
the number (in 10°) of output triangles. “fail" means the program ran out

of GPU memory and crashed.

data volume n2 iso- nvsdk hpmce PMB
names resolution (in 106) value (fps) (fps) (fps)
visMale 5123 2.8 0.094 23.8 56.5 1352
backpack 5123 3.8 0.2 23.0 49.5 136.8
hazelnut 5123 34 0.2 232 53.6 1232
Xmastree 5123 15 0.15 253 672 | 2189
neat 5123 2.5 0.15 239 585 145.8
aneurism 5123 0.7 0.19 26.3 753 360.1
trabecula 5123 1.6 0.184 25.0 66.1 194.7
macoessix 5123 3.8 0.215 22.8 48.6 99.8
abdomen 5123 33 0.315 232 523 120.5
manix 5123 33 0.354 233 53.6 1222
melanix 5122x1024 25 0.374 fail 559 163.3
visFemale 5122x1024 34 0.294 fail 50.6 126.8
stagBeetle 1024%x512 6.5 0.214 fail fail 61.3
flower 10243 22.1 0.193 fail fail 18.5
rm 10243 494 0.369 fail fail 8.3
beechnut 1024°x1546 64.2 0.233 fail fail 6.2

Table 3:  Performance comparison for dynamic isovalues among nvsdk,
hpmc, and PMB using a variety of input volumes. n2 and fail are as in
Table 2.

provided for every frame. Screen shots shown in Figures 6 and 7
correspond precisely with the data given in the tables.

5.1. Comparison of rendering quality

As expected, the three algorithms extract triangular meshes of es-
sentially the same quality, with the same number of triangles; the
quality of the rendering is determined by the different methods used
for calculating the vertex normals.

For each triangle, nvsdk computes only a single planar normal.
From Figure 6, it is clear that the rendering quality of nvsdk is the
worst — the faceted appearance is very obvious when the camera
is close. hpmc uses forward differences to compute a per-vertex
normal vector; this requires 3 extra texturing samples. While its
results are better, there are still some “wood grain” artefacts. PMB
uses central differences, for which 6 extra texturing samples have to
be taken. This makes the per-vertex normal vectors more accurate
and produces much smoother results, as illustrated in Figure 6.
Despite this additional calculation, PMB is still much faster than
the other methods, as described below.
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Figure 7: Rendering results of PMB for a variety of datasets (from left to
right and top to bottom): backpack, hazelnut, Xmastree, ncat, aneurism, tra-
becula, macoessix, abdomen, manix, melanix, visFemale, stagBeetle, flower,
rm, beechnut, and cayley.

5.2. Comparison of performance

To compare the performance of the algorithms under various loads,
we first extracted isosurfaces from an implicit surface at 8 differ-
ent input resolutions. As the input voxel values are evaluated at
runtime from an algebraic function, there is no need to store any
input volume data. The surface used was the Cayley surface in
which the 32-bit float scalar voxel values are found from the func-
tion f(x,y,z) = 1 — 16xyz — 4x> — 4y> — 4z>. PMB extracted iso-
surfaces at resolutions up to 20482 x 4096, while nvsdk and hpmc
failed at any resolution higher than 5122 x 1024 on the same GPU
— this shows that PMB can cope with 64 x the number of voxels
that nvsdk and hpmc can. The performance statistics are shown in
Table 2, and the resulting isosurfaces in Figure 7.

Results from comparisons on a wide variety of input volume
datasets from CT/MRI scans and physically-based simulations are
reported in Table 3. These show that nvsdk is the slowest algorithm,
and, as it consumes the most GPU memory, it is the earliest to fail
for large datasets. PMB was consistently the fastest in all exam-
ples and it continued to deliver speedy results even for the largest
datasets, for which both nvsdk and hpmec failed.

5.3. Comparison of memory consumption

The memory consumption of an isosurfacing algorithm depends
upon the sizes of three items: the input volume data, the accelerat-
ing structure and the output mesh data. As the input volume size is
identical for all three implementations, we consider only the latter
two items in the following subsections, where the tests found that
PMB performed significantly better than nvsdk and hpmc in both
aspects.

5.3.1. The accelerating structures

As mentioned in Section 2, the accelerating structures for nvsdk and
hpmc can consume considerably more GPU memory than the input
volume data. Consequently, when applied to large datasets, both
methods will run out of memory and crash. In our tests, neither
method ran successfully at any data resolution greater than 5122 x
1024, shown as “fail” in Tables 2 and 3.

Apart from the input volume data and output mesh data,
PMB needs to store only two 1D arrays: MinMaxArray and
compactedBlkArray; the length of both of these is less than or
equal to the number of voxel-blocks, total BlkNum, which is much
smaller than the number of voxels. Our experiments showed that,
to balance the thread occupancy in a thread-block with the threads’
joint usage of the limited shared memory and registers, the optimal
values for the voxel-block resolution Bx x By x Bz were 8 x 4 x 4;
this provides each thread-block with the optimal 128 threads. As
an example, the rm dataset, with resolution 10243, had 17 million
voxel-blocks, and the memory usage of our accelerating structure
was less than 17 x 2417 x 4 = 102 MB, which is less than 10% of
the input volume’s size.

5.3.2. The output triangle mesh

nvsdk and hpmc both output “triangle soup” in which the mesh is
represented by a group of unorganised triangles, each of which is
stored as 3 separate vertices. Vertices shared by multiple triangles
are stored multiple times (once for each triangle), so the mesh will
contain many repeated vertices. Each vertex has to store the XYZ-
coordinates and its normal vector, which fill 3 x4 +3 x4 =24
bytes. Thus, if a dataset outputs numT'ri triangles, the resulting ver-
tex data size of nvsdk and hpmc will be numTri x 3 x 24 bytes. As
an example, the backpack dataset outputs 3.8 million triangles, and
the resulting vertex data size of nvsdk and hpmc is 3.8 x 3 x 24 =
273.6 MB.

In contrast, PMB outputs an indexed mesh in which all vertices
are computed and stored only once (within each voxel-block). For
the same backpack dataset, it outputs only 3 million vertices, so the
resulting vertex data size is only 3 x 24 = 72 MB, that is roughly
a quarter (72/273.6 = 26.3%) of the original size of the storage
needed by the other algorithms.

6. Discussion
6.1. The ingredients for PMB to be efficient

By developing this technique, we found the following ingredients
for the algorithm to be more efficient than previous GPU algo-
rithms.

1) The blocking feature of the algorithm is the key to reducing
redundant computation. It enables threads in a block to collaborate
closely to jointly produce an indexed triangular mesh by sharing the
cached intermediate results, with each MC cell having to output
at most 3 vertices. In contrast, nvsdk and hpmc output up to 15
vertices for each cell.

2) Since we perform the local prefix sum (within the blocks) and
add the sum of all the preceding blocks using an atomic instruc-
tion to obtain the global offset, the resulting offset data is stored
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purely in the local registers and shared memory. As a result, we
avoid the need to store in the GPU global memory the five memory-
consuming large arrays that are required for the global prefix sum
operations used in [NVI15b, CJD15, DBG10]. Experiments have
shown that this strategy greatly reduces GPU memory usage.

3) The offsets that are needed to arrange the output compactly
can be computed efficiently by exchanging data among threads
within thread-warps and thread-blocks.

4) nvsdk and hpmc skip empty space at the voxel level, which
hurts memory coherence since the active voxels that are processed
adjacently in a thread-block may not be physically adjacent in the
input voxel grid. A side-effect of this is that adjacent threads cannot
share and reuse each other’s intermediate data. Performing empty-
space skipping at the voxel-block level made it possible to ensure
that GPU memory- and cache-locality are well preserved among
threads within the same block.

6.2. Possible extensions

Our implementation using CUDA on an NVIDIA GPU is only a
prototype of PMB, which could possibly be extended in the fol-
lowing directions.

1) It is feasible to generalise the algorithm to other many-core
architecture (including AMD GPUs and many-core CPUs such as
intel’s MIC architecture). Due to the similarities of the blocked
thread-organisation and the memory hierarchy (including global
memory and shared memory) on these architectures, we cannot see
any algorithmic obstacles to stop us from implementing it on these
platforms.

2) The block-based algorithm presented is complementary to ex-
isting hierarchical accelerating structures (such as an octree) and
hence could be combined with them. As a result, much larger out-
of-core data could be organised into a block-based octree [GMI08],
in which each leaf node is a voxel-block to be processed by PMB.

3) It is straightforward to extend PMB to a multi-GPU environ-
ment, in which each GPU deals concurrently with a separate sub-
volume of the data. This would open the possibility of real-time dy-
namic isosurfacing of truly huge volume datasets on a commodity
PC fitted with multiple GPUs. Similarly, it could be extended to a
multi-node cluster, in which each computing node could have mul-
tiple GPUs. We anticipate that PMB will demonstrate good scal-
ability (due to its blocking feature), which will allow significant
expansion of the size of the datasets to which it can be applied.

6.3. Limitation of the algorithm

Since PMB operates within individual voxel-blocks (as shown in
Figure 8) and there is no direct data communication between blocks
(which could be very expensive on GPUs), its output is multiple
separate manifold triangular patches (one for each block). The co-
incident vertices on the cell-edges along the block boundaries are
not merged, which means that there are still redundant vertices lo-
cated only on the boundaries of the blocks. For visualisation pur-
pose, this is not a problem because the resulting mesh has no geo-
metrical seam anywhere of the mesh, which can be guaranteed by
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the underlying MC algorithm logics employed by PMB. But there
are still topological seams across the boundaries of the triangular
patches of the individual blocks, because the coincident vertices
across blocks are not merged. Since the proportion of the edges

\ )

0

Figure 8: 2D illustration of the limitation: vertex merging are only per-
formed at the interior edges (green) of the blocks, but not performed at the
edges on the block boundaries (red).

(shown in red) on the block boundaries are much smaller than that
of the interior edges (shown in green) of the individual MC cells,
the majority of the redundant vertices are already merged by PMB.
This can be confirmed by the experiment in Section 5.3.2, where
the resulting vertex data size is only 26.3% of the size needed by
the traditional MC algorithms, which means roughly three quarters
of the total vertices are already removed as redundant ones.

However, for applications where a single manifold triangular
patch (for the whole volume) is required for further processing such
as topological analysis, a postprocess will be necessary to merge
those small percentage of redundant vertices located on the block
boundaries in order to avoid the topological seams there.

7. Conclusion

We have introduced PMB, a practical isosurfacing algorithm suit-
able for use with large datasets. Experiments demonstrated that it is
much faster than state-of-the-art algorithms, exhibiting a speed-up
factor of up to 10x in the tests. Moreover, it uses far less mem-
ory than previous GPU methods (providing 64 x memory improve-
ment), so it is suitable for use on memory-limited GPUs, and it can
be applied to much larger datasets than was previously possible.

As the computation is performed wholly on the GPU, PMB is
suitable for dynamic isosurface extraction, as demonstrated in the
accompanying executable program and the videos. Its speed and
ability to cope with large datasets provide opportunities for its use
in topics beyond the current major applications.
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