7,736 research outputs found

    Multi-agent systems for power engineering applications - part 2 : Technologies, standards and tools for building multi-agent systems

    Get PDF
    This is the second part of a 2-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part 1 of the paper examined the potential value of MAS technology to the power industry, described fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications, and presented a comprehensive review of the power engineering applications for which MAS are being investigated. It also defined the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part 2 of the paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented. Given the significant and growing interest in this field, it is imperative that the power engineering community considers the standards, tools, supporting technologies and design methodologies available to those wishing to implement a MAS solution for a power engineering problem. The paper describes the various options available and makes recommendations on best practice. It also describes the problem of interoperability between different multi-agent systems and proposes how this may be tackled

    Issues in integrating existing multi-agent systems for power engineering applications

    Get PDF
    Multi-agent systems (MAS) have proven to be an effective platform for diagnostic and condition monitoring applications in the power industry. For example, a multi-agent system architecture, entitled condition monitoring multi-agent system (COMMAS) (McArthur et al., 2004), has been applied to the ultra high frequency (UHF) monitoring of partial discharge activity inside transformers. Additionally, a multi-agent system, entitled protection engineering diagnostic agents (PEDA) (Hossack et al., 2003), has demonstrated the use of MAS technology for automated and enhanced post-fault analysis of power systems disturbances based on SCADA and digital fault recorder (DFR) data. In this paper, the authors propose the integration of COMMAS and PEDA as a means of offering enhanced decision support to engineers tasked with managing transformer assets. By providing automatically interpreted data related to condition monitoring and power system disturbances, the proposed integrated system offer engineers a more comprehensive picture of the health of a given transformer. Defects and deterioration in performance can be correlated with the operating conditions it experiences. The integration of COMMAS and PEDA has highlighted the issues inherent to the inter-operation of existing multi-agent systems and, in particular, the issues surrounding the use of differing ontologies. The authors believe that these issues need to be addressed if there is to be widespread deployment of MAS technology within the power industry. This paper presents research undertaken to integrate the two MAS and to deal with ontology issues

    An Analysis of Service Ontologies

    Get PDF
    Services are increasingly shaping the world’s economic activity. Service provision and consumption have been profiting from advances in ICT, but the decentralization and heterogeneity of the involved service entities still pose engineering challenges. One of these challenges is to achieve semantic interoperability among these autonomous entities. Semantic web technology aims at addressing this challenge on a large scale, and has matured over the last years. This is evident from the various efforts reported in the literature in which service knowledge is represented in terms of ontologies developed either in individual research projects or in standardization bodies. This paper aims at analyzing the most relevant service ontologies available today for their suitability to cope with the service semantic interoperability challenge. We take the vision of the Internet of Services (IoS) as our motivation to identify the requirements for service ontologies. We adopt a formal approach to ontology design and evaluation in our analysis. We start by defining informal competency questions derived from a motivating scenario, and we identify relevant concepts and properties in service ontologies that match the formal ontological representation of these questions. We analyze the service ontologies with our concepts and questions, so that each ontology is positioned and evaluated according to its utility. The gaps we identify as the result of our analysis provide an indication of open challenges and future work

    The Information-Flow Approach to Ontology-Based Semantic Integration

    No full text
    In this article we argue for the lack of formal foundations for ontology-based semantic alignment. We analyse and formalise the basic notions of semantic matching and alignment and we situate them in the context of ontology-based alignment in open-ended and distributed environments, like the Web. We then use the mathematical notion of information flow in a distributed system to ground three hypotheses that enable semantic alignment. We draw our exemplar applications of this work from a variety of interoperability scenarios including ontology mapping, theory of semantic interoperability, progressive ontology alignment, and situated semantic alignment

    A group learning management method for intelligent tutoring systems

    Get PDF
    In this paper we propose a group management specification and execution method that seeks a compromise between simple course design and complex adaptive group interaction. This is achieved through an authoring method that proposes predefined scenarios to the author. These scenarios already include complex learning interaction protocols in which student and group models use and update are automatically included. The method adopts ontologies to represent domain and student models, and object Petri nets to specify the group interaction protocols. During execution, the method is supported by a multi-agent architecture

    How to Find Suitable Ontologies Using an Ontology-based WWW Broker

    Get PDF
    Knowledge reuse by means of outologies now faces three important problems: (1) there are no standardized identifying features that characterize ontologies from the user point of view; (2) there are no web sites using the same logical organization, presenting relevant information about ontologies; and (3) the search for appropriate ontologies is hard, time-consuming and usually fruitless. To solve the above problems, we present: (1) a living set of features that allow us to characterize ontologies from the user point of view and have the same logical organization; (2) a living domain ontology about ontologies (called ReferenceOntology) that gathers, describes and has links to existing ontologies; and (3) (ONTO)2Agent, the ontology-based www broker about ontologies that uses the Reference Ontology as a source of its knowledge and retrieves descriptions of ontologies that satisfy a given set of constraints. (ONTO)~Agent is available at http://delicias.dia.fi.upm.es/REFERENCE ONTOLOGY

    OperA/ALIVE/OperettA

    Get PDF
    Comprehensive models for organizations must, on the one hand, be able to specify global goals and requirements but, on the other hand, cannot assume that particular actors will always act according to the needs and expectations of the system design. Concepts as organizational rules (Zambonelli 2002), norms and institutions (Dignum and Dignum 2001; Esteva et al. 2002), and social structures (Parunak and Odell 2002) arise from the idea that the effective engineering of organizations needs high-level, actor-independent concepts and abstractions that explicitly define the organization in which agents live (Zambonelli 2002).Peer ReviewedPostprint (author's final draft

    A Semantic-Based Information Management System to Support Innovative Product Design

    Get PDF
    International competition and the rapidly global economy, unified by improved communication and transportation, offer to the consumers an enormous choice of goods and services. The result is that companies now require quality, value, time to market and innovation to be successful in order to win the increasing competition. In the engineering sector this is traduced in need of optimization of the design process and in maximization of re-use of data and knowledge already existing in the company. The “SIMI-Pro” (Semantic Information Management system for Innovative Product design) system addresses specific deficiencies in the conceptual phase of product design when knowledge management, if applied, is often sectorial. Its main contribution is in allowing easy, fast and centralized collection of data from multiple sources and in supporting the retrieval and re-use of a wide range of data that will help stylists and engineers shortening the production cycle. SIMI-Pro will be one of the first prototypes to base its information management and its knowledge sharing system on process ontology and it will demonstrate how the use of centralized network systems, coupled with Semantic Web technologies, can improve inter-working activities and interdisciplinary knowledge sharing

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web

    Ontology-based patterns for the integration of business processes and enterprise application architectures

    Get PDF
    Increasingly, enterprises are using Service-Oriented Architecture (SOA) as an approach to Enterprise Application Integration (EAI). SOA has the potential to bridge the gap between business and technology and to improve the reuse of existing applications and the interoperability with new ones. In addition to service architecture descriptions, architecture abstractions like patterns and styles capture design knowledge and allow the reuse of successfully applied designs, thus improving the quality of software. Knowledge gained from integration projects can be captured to build a repository of semantically enriched, experience-based solutions. Business patterns identify the interaction and structure between users, business processes, and data. Specific integration and composition patterns at a more technical level address enterprise application integration and capture reliable architecture solutions. We use an ontology-based approach to capture architecture and process patterns. Ontology techniques for pattern definition, extension and composition are developed and their applicability in business process-driven application integration is demonstrated
    • 

    corecore