
Chapter 9
OperA/ALIVE/OperettA

Huib Aldewereld, Sergio Álvarez-Napagao, Virginia Dignum, Jie Jiang,
Wamberto Vasconcelos, and Javier Vázquez-Salceda

9.1 Introduction

Comprehensive models for organizations must, on the one hand, be able to specify
global goals and requirements but, on the other hand, cannot assume that particular
actors will always act according to the needs and expectations of the system design.
Concepts as organizational rules [46], norms and institutions [12], [15], and social
structures [34] arise from the idea that the effective engineering of organizations
needs high-level, actor-independent concepts and abstractions that explicitly define
the organization in which agents live [46].

The OperA framework takes these distinctions between organization and indi-
viduals, constraining and autonomy, social and selfish, as principal keystones of
organizational design. Organizations are something more than the people that act
in it; e.g., the organization of the University of Delft has been around since 1842,
even though the people (lecturers, deans, students, support staff, etc.) that work in it
today are very different from those that worked in it then.

In OperA, we take formal processes and requirements as a basis for the modeling
of complex systems that regulate the action of the different agents. Organizational
models must enable the explicit representation of structural and strategic concerns
and their adaptation to environment changes in a way that is independent from the
behaviours of the agents. The deployment of organizations in dynamic and unpre-
dictable settings brings forth critical issues concerning the design, implementation,

Huib Aldewereld, Virginia Dignum, Jie Jiang
Delft University of Technology, Delft, The Netherlands
e-mail: {h.m.aldewereld, m.v.dignum, j.jiang}@tudelft.nl

Sergio Álvarez-Napagao, Javier Vázquez-Salceda
Universitat Politecnica de Catalunya, Barcelona, Spain
e-mail: {salvarez, jvazquez}@lsi.upc.edu

Wamerberto Vasconcelos
University of Aberdeen, Aberdeen, United Kingdom
e-mail: w.w.vasconcelos@abdn.ac.uk

1

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-33570-4_9

2 Aldewereld, Álvarez-Napagao, Dignum, Jiang, Vasconcelos, and Vázquez-Salceda

and validation of their behaviour [18, 35, 42], and should be guided by two princi-
ples:

• Provide sufficient representation of the institutional requirements so that the over-
all system complies with the norms.

• Provide enough flexibility to accommodate heterogeneous components.

Therefore, organizational models must provide means to represent concepts and
relationships in the domain that are rich enough to cover the necessary contexts
of agent interaction while keeping in mind the relevance of those concepts for the
global aims of the system. The OperA model [11] proposes an expressive way
for defining open organizations distinguishing explicitly between the organizational
aims, and the agents who act in it. That is, OperA enables the specification of or-
ganizational structures, requirements and objectives, and at the same time allows
participants to have the freedom to act according to their own capabilities and de-
mands.

The explicit distinction between organization and agent, and a clear separation
of each of their concerns, permeats also into the extentions of the OperA frame-
work that have been made. Since the organization is considered as separate from the
agents, it has to be checked and verified (at design-time and at run-time) whether
the coordinated set of agents bring about the objectives of the organization.

The OperA framework consists of three interrelated models. The Organizational
Model (OM) is the result of the observations and analysis of the domain and de-
scribes the desired behaviour of the organization, as determined by the organiza-
tional stakeholders in terms of objectives, norms, roles, interactions, and ontologies.

interaction
model

social model

agents

dynamic instantiation

runtime deployment

organization
model

design

Fig. 9.1 The OperA development process.

9 OperA/ALIVE/OperettA 3

The OM provides the overall organization design that fulfills the stakeholders re-
quirements. Objectives of an organization are achieved through the action of agents,
which means that, at each moment, an organization should employ the relevant
agents that can make its objectives happen. However, the OM does not specify how
to structure groups of agents and constrain their behaviour by social rules such that
their combined activity will lead to the desired results. The Social Model (SM)
maps organizational roles to agents and describes agreements concerning role en-
actment and other conditions in social contracts. Finally, the Interaction Model (IM)
specifies the interaction agreements between role-enacting agents as interaction con-
tracts. IM specification enables variations to the enactment of interactions between
role-enacting agents.

9.1.1 Brief History

The OperA modelling framework was developed as a result of the PhD thesis of
Virginia Dignum [11]. The aim of the model then was to describe organizational in-
teractions in knowledge management for insurance companies. The model has since
evolved through various projects and interactions. In [41], Dignum, Dignum and
Vazquez extended the OperA modelling framework with additional normative ele-
ments taken from HarmonIA [39]. In [13] Dignum and Dignum formulated a formal
logic for organizations based on the principles and ideas of the OperA framework.

In [6] the framework was extended with runtime components. Up to then, most
efforts were taken on the modelling aspect of organization design (i.e., the OM). The
ALIVE project allowed for the creation of an integrated modelling toolkit (OperettA
[4]) and the use of OperA models in the development of flexible, dynamic service-
oriented systems. The former created a user-friendly interface for the specification
and verification of OperA OM models, the latter explored (runtime) components of
the SM and IM models. These runtime components resulted in an integrated ser-
vice software development kit (ALIVEclipse1). Ideas from the ALIVE framework
resulted in a number of additional elements of the OperA framework, namely: a
Norm Monitoring framework [8] and a Normative Planner [33]. Recently, [26, 28]
extended the OperA framework with the conceptualisation of organizations of orga-
nizations (OperA+ framework) and organizational compliance verification (CCCP
toolkit). Finally, Jenssen and Dignum recently started the development of agent-
oriented organizational reasoning mechanisms for the development of OperA-aware
agents (AORTA [22]).

1 ALIVEclipse and accompanying documentation can be downloaded from
http://ict-alive.sourceforge.net/.

4 Aldewereld, Álvarez-Napagao, Dignum, Jiang, Vasconcelos, and Vázquez-Salceda

9.1.2 Applications

OperA has been applied to a number of different domains and applications:

• Support for systems for knowledge management that incorporate the manage-
ment of knowledge assets with the facilitation and encourgement of interaction
between people in an open environment [11];

• Models for scenario development to develop and evaluate organizational/corporate
strategy [32];

• Analysis and design of inter- and intr-organizational interaction in the mainte-
nance systems of the Dutch railways [28];

• Simulations of crisis scenarios for the purpose of critical infrastructure and con-
trol mechanisms [36, 7];

• Improving flexibility and modularity of control software for warehouse manage-
ment planning/scheduling systems [21, 2, 3];

• Process and regulation compliance verification for Customs authorities in Inter-
national Container Trade [27, 26]

• Formalisation and implementation of adaptive serious games using multi-agent
organizations [45, 43, 44]

• OperA has also been used in a day-long session with research staff of the project
”International Technology Alliance in Network and Information Sciences”2; the
aim was to facilitate information and knowledge sharing among coalitions of
military forces.

• Formalization of improvisation theatrical performances (formalising dynamic in-
terplay between actors on a high level of abstraction) [24].

9.2 Metamodel

In this section we present the metamodel of OperA / ALIVE, with the aim of com-
paring to the other framework presented in this book. A formal meta-model, based
on OMG MOF [20], of the Organizational Model of OperA, and parts of the ALIVE
framework have been created as part of the ALIVE project and can be found in [6]
and on the ALIVE website: http://ict-alive.sourceforge.net.

9.2.1 Overview

OperA consists of three interrelated models, OM, SM, IM. Organizational Models
(OM) are the main specification of the purposes (aims, objectives, means) of an or-
ganization to function. The OM is composed of four main elements, shown in Figure

2 https://www.usukita.org/.

9 OperA/ALIVE/OperettA 5

9.2 below; the social structure (SS), the interaction structure (IS), the communica-
tive structure (CS), and the normative structure (NS). The social structure defines
the parties involved in an organization, the relations between these parties, and the
objectives of each of these parties (and furthermore, the relations between these ob-
jectives). The interaction structure is a second part of organizational models that
defines the patterns of interaction between the various parties involved in the orga-
nization. These patterns of interaction are grouped in small (on their own standing)
bits called scenes. The interaction structure defines the ordering of these scenes and
how roles traverse through the scenes to reach their (and the organizations) objec-
tives. The interactions specified in the interaction structure require communication
between the roles. The vocabulary of these communications (ontology) and the var-
ious different formulas used in other parts of the organizational model are defined
in the Communicative Structure. Norms are an important aspect of organizations as
they prescribe how the roles are to act within the organization. The norms of an or-
ganization are defined in the Normative Structure. The metamodels of the different
structures in an Organizational Model can be found in Appendix A.

Fig. 9.2 Meta-model: Organisational Model (OM).

9.2.2 Assumptions

In OperA, the concept of organization reflects the idea that interactions occur not
just by accident, but aim at achieving some desired global goals. That is, there are
goals external to each individual participant (or agent) that must be reached through
their interaction. Desired behaviour of the organization is therefore external to the
participants and must be guaranteed by the organizational structure. However, as-

6 Aldewereld, Álvarez-Napagao, Dignum, Jiang, Vasconcelos, and Vázquez-Salceda

suming open environment where neither the internal architecture nor the actual aims
of the agents can be verified, such guarantees on desired global behaviour should be
achieved without relying on the design of agents nor compromising the agents au-
tonomy [39].

A consequence of this view is that organizational structure is independent from
that of the participants, and determined by the designer of the organization. From an
organizational perspective, the main function of an individual agent is the enactment
of a role that contributes to the global aims of the organization. Organization goals
determine which roles and interaction norms must be specified. Agents are then seen
as the actors that perform role(s) described by the organization design.

However, the very notion of agent autonomy refers to the ability of individual
agents to determine their own actions, plans and beliefs. From an agents perspective,
its own capabilities and aims determine the reasons and the specific way an agent
will enact its role(s), and the behaviour of individual agents is motivated from their
own goals and capabilities [10, 42]. That is, agents bring in their own ways into the
society, in that they will follow their own goals and motivations and will bring in
their own ways of doing things in the system. In other words, the actual behaviour
of the society emerges from the goal-pursuing behaviour of the individual agents
within the constraints set by the organization.

These considerations lead to the two pillars of the OperA approach [42]:

Internal autonomy: interaction and structure of the organization must be repre-
sented independently from the internal design of the agents.

Collaboration autonomy: activity and interaction in the organization must be
specified without completely fixing in advance all interaction possibilities.

The first requirement relates to the fact that since an open organization allows
the participation of multiple heterogeneous entities, the number, characteristics and
architecture of which are unknown to the designer, the design of the organization
cannot be dependent on their individual designs. The second requirement highlights
the fundamental tension between the goals of the organization and the autonomy of
the participating entities. On the one hand, the more detail about interactions pro-
vided by organization design, the more requirements can be checked and guaranteed
at design time. This allows, for example, to ensure that certain rules are always fol-
lowed. On the other hand, there are good reasons to allow the agents some degree of
freedom, basically to enable their autonomy to choose their own way of achieving
collaboration, and as such increase their flexibility and adaptability.

Taken together, these requirements enable the realization of the objectives of
an organization without ignoring the individual aims and personalities of the au-
tonomous participant agents.

Different degrees of abstraction on organization specification have consequences
to the level of autonomy required from each agent to accomplish organizational ob-
jectives. Intuitively, the more detailed specification given, the less alternative ways
(and thus less autonomy) are available for the agents to achieve the organizational
objectives. On the other hand, abstract organization models require more autonomy
and reasoning capabilities from the agents as they will need to be able to interpret

9 OperA/ALIVE/OperettA 7

the specification and decide how to coordinate with each others in each situation.
This, however, provides higher flexibility of operation. It is then a design decision
how to better regulate agent autonomy by deciding on the level of abstractness or
concreteness of the organizational description.

9.2.3 Main Constructs

The following details the main elements of OperA with regards to the comparison
table, as presented in a later chapter. We discuss each of the elements of that table
separately.

Ontology

OperA distinguishes between two different ontologies: the OperA ontology (con-
taining all elements described above as modelling concepts) and the domain ontol-
ogy (containing all the concepts related to and used by the organizational model). As
ontologies do not provide operational semantics for actions, actions in the ontology
have an additional operational description in an action language (e.g., PDDL).

Atomic actions

On the specification level, i.e., the OM of OperA, OperA does not represent atomic
actions, but rather specifies results (required/desired states of affairs). There is no
notion of activity in the Organizational Model, but ordering and importance of
states. How the roles (enacted by the agents) move from state to state is not spec-
ified in the OM. In the Social Model (SM) and Interaction Model (IM), however,
the agents propose, by means of a contract, how they will enact a role, and which
actions (or tasks) they will perform to achieve the role objectives.

Activities

The relations between states is represented on two separate levels in the Interaction
Structure of the Organizational Model. On the top level, a distinction is made in to
pieces of interaction that have a meaning on their own; these are called scenes (see
Subspaces and their interrelation below).

The second level of activity specification in OperA is through the use of Land-
mark Patterns. Each scene has a Landmark Pattern that describes the protocol to
follow in the scene on a high level of abstraction. The landmark pattern consists of
the important states that should happen in the running of the scene (landmarks) and
the order in which these states should follow each other (partial ordering).

8 Aldewereld, Álvarez-Napagao, Dignum, Jiang, Vasconcelos, and Vázquez-Salceda

Subspaces and their interrelation

As mentioned above, interaction/activity in OperA is divided into pieces of inter-
action that have a meaning on their own, called scenes. The scenes are related (in
order/parallel) through the use of transitions (which serve as flow control operators
and access control operators). OperA distinguishes 3 types of transitions:

• AND: all scenes leading into this transition need to be finished before agents can
proceed. All scenes after this transition need to be visited in parallel.

• OR: the scenes leading into this transition do not need to finish at the same time
(but they can), and a choice can be made in visiting the scenes that follow this
transition.

• XOR: only one of the scenes leading to this transition can finish at the same time,
and only one of the scenes following this transition can be chosen for a visit.

Interactions within the scenes are described by a Landmark Pattern (see above).

Ubiquity and concurrency

Agents can be in multiple scenes at the same time; access to (and from) the scenes
is regulated by the transition norms that are imposed on the transitions that connect
the scenes. There are three different types of scenes in OperA:

• single instance scenes: only one of these can be present at a time.
• multiple instance scenes: many can happen at the same time; sometimes bounded

by an upper limit.
• persistent scenes: scene cannot be finished, and will exist as long as the organi-

zation exists.

Coordination devices

The coordination between the scenes is done via transitions (equipped with transi-
tion norms), see above. Coordination between the agents is assumed through the fact
that particular roles are required to be together in a scene for it to play out. However,
this coordination between the roles/agents is not strictly enforced by the model.

Social and organizational arrangements

OperA abstracts from individual actors, and only describes the social/organizational
arrangements. OperA uses roles for this, which can be related (through dependen-
cies). There are three types of dependencies: market, hierarchy, and network.

Incompatibility between roles is handled through the norms. Roles can be related
into collective identities through the use of Groups. All roles in the group share the
same objective, right, or dependency.

9 OperA/ALIVE/OperettA 9

The dynamics of the interaction between roles is implicitly specified in the type
of dependency used. Market dependencies between roles typically lead to a Call-for-
Proposal type of interaction. Hierarchy dependencies typically leads to a delegation
type of interaction. Network dependencies, finally, lead to coordinated action type
of interaction.

The organization among the roles is structured through the use of dependencies.
Roles can have attached Rights, which are special abilities (capabilities, like marry-
ing people) granted to the agents enacting that role.

Regulatory system

There are three types of norms in OperA:

• Restricted Norms norms that cannot be violated. These are incorporated into the
structure of the model; e.g., objectives should be achieved, particular orderings
have to be followed in the interaction structure, for the organization to advance.
Transition norms are a part of this; they specify how to move through the IS, but
cannot be violated.

• Regulative norms explicit norms represented in the normative structure, specify-
ing soft constraints on the behaviour of the agents. These norms can be violated,
which might lead to sanctions (sanction are represented as a second-level norm,
activated when the original norm was violated [17]).

• Constitutive norms the communicative structure includes the possibility to
specify the constitutive elements of the organization through counts-as rules [1].

The first two types of norms in OperA are modelled as CTL* state-logics. Al-
though not the entire complexity of CTL* is used. For constitutive norms, we use
production rules, with semantics inspired in the counts-as operator [30, 19].

Social Devices

The use of social devices is left to the designer of the organization. Methodologi-
cal guidelines are given depending on the chosen organizational structure (market,
hierarchy, network).

Dynamics of the system

Changes to the model over time have not been fully covered so far. We have the
ability to describe the changes between two occurrences of an organization, but
how to move the agent system implementing the organization to incorporate these
changes, has not been extensively covered (yet).

10 Aldewereld, Álvarez-Napagao, Dignum, Jiang, Vasconcelos, and Vázquez-Salceda

Types of agents

OperA allows for the distinction between internal and external agents. Internal
agents are assumed to be designed by the designer of the organization and used
for enforcement tasks.

No further assumption is made about the nature of the agents, and the roles of
an OperA organization can be enacted by agents, organizations, or humans, without
requiring a change to the OperA model.

9.2.4 Operations

The OperA framework supports the specification (modelling) of organizations, and
provides implementation guidelines (through the ALIVE framework) for implemen-
tation. Since the implementation needs additional sources of information (for con-
textualisation, concretisation and operationalisation of the organization), automatic
implementation is not possible (human intervention is required).

9.2.5 Languages

OperA uses a number of languages, but the core of the framework is based on a
(simplified) temporal predicate logic. Properties of various model fragments, such
as objectives, landmarks, rights, etc, are expressed as Partial State Descriptions,
which are, in essence, predicate logic sentences. The ontology component, in the
Communicative Structure, is expressed in a (simplified) version of OWL. Norms in
OperA are specified using a deontic modal logic (based on CTL*) that is temporal,
relativized (in terms of roles and groups) and conditional. For instance, the following
norm might hold: Supplier must submit their bids before the deadline, which can be
formalized as Osupplier(submit(bid)≤ Deadline).

In order to check norms and act on possible violations of the norms by the agents
within an organization, abstract norms are translated into actions and concepts that
can be handled within such organizations. To do so, the definition of abstract norms
are iteratively concretized into more concrete norms, and then translated into spe-
cific rules, violations and sanctions.

Concrete norms are related to abstract norms through a mapping function, based
on the counts-as operator as developed in [1]. For example, in the context of Org,
submit(bid) can be concretized as:

send(supplier,docs)∨ sendpost(supplier,hardcopies)→Org submit(bid)

9 OperA/ALIVE/OperettA 11

9.3 Tools and Platform

OperA / ALIVE is supported by a range of tools:

OperettA: a specification and validation tool created for the modelling and ver-
ification of OperA Organization Models (OM). OperettA [4] has a fully graphi-
cal interface, including social structure, interaction structure and partial-state ed-
itors. Moreover, OperettA collects all concepts (e.g., role names, objectives, etc.)
to automatically build the Organizational Ontology while the designer is inputting
the Organizational Model. OperettA stores Organizational Model in a standardised
XML-format, which can be used by other components of the OperA-family. Finally,
OperettA can perform automatic syntactic (and limited semantic) verification of the
designed model, and can generate reorganization scripts to describe the changes
made to an organizational model.

Norm Monitor: because of the strict separation between organization and individ-
uals (roles vs. agents), runtime compliance to the organizational model needs to be
monitored. In [8] we designed and implemented a norm monitoring framework that
takes the norms from an OM (in XML) as input and checks whether the agents in
the system comply with the given specification. A prototype of the norm monitor
has been implemented in Java and Clojure for the parsing of the norms, and Drools
for the rule engine [8].

Fig. 9.3 Normative Monitor and Normative Planner

12 Aldewereld, Álvarez-Napagao, Dignum, Jiang, Vasconcelos, and Vázquez-Salceda

Normative Planner: another form of operationalisation of OperA models is done
through the implementation of a Normative Planner [33] to assist agents enacting
roles in an OperA organization. Implemented as a combination of TLPlan [9] and
PDDL [16], it provides a complete, robust and rather fast implementation. In order
to implement the normative planner, the norms from an OperA specification are
simplified into a control statement that is fed into the planner. During execution, the
planner will only allow paths where a norm never gets instantiated, or where a norm
gets instantiated and never violated, or where a norm violated but repaired before
the specified timeout is reached. That is, it discards the paths that do not conform
to the norm life cycle. The system allows for multiple instantiations of a norm to be
checked simultaneously.

ALIVEclipse: the integrated development framework ALIVEclipse allows design-
ers to design service-oriented applications by using an OperA model to specify the
high-level, abstract purposes of the system. Having the system organization explicit
allows the ALIVE framework [6] to dynamically and flexibly change services and
service invocations at runtime to achieve similar results. The OperA organizational
model gives the context in which the system is to run, and what goals/objectives
are important (and who is responsible for achieving it). The abstract organizational
model is used to specify the task, actions and plans of the intelligent middle-layer
(containing AgentScape agents), which on their turn choose the appropriate ser-
vices and make the necessary service invocations. The framework can also be used
in the opposite direction to derive organizational elements (roles, objectives, depen-
dencies) from a running system to give means/purpose to an existing system (and
achieve the same level of dynamic flexibility).

Norm Compliance and Conformance Checking Platform: a toolkit [26], based
on Colored Petri-Nets [25], that can take the organizational norms (from the Norma-
tive Structure of the Organizational Model) and compute whether: a) the norms are
consistent with each other (i.e., there are ways to comply with all the norms), and b)
whether existing workflow executions (e.g., from a log or from a business process
specification) is in conformance with those norms (i.e., testing norm compliance of
a protocol). Finally, in [29] we extended the CCCP toolkit with the means to verify
both normative compliance with individual preference to enable us to reason about
optimality of plans/protocols from not only a normative perspective, but also from
an individual agents perspective.

Organization Reasoning for Agents: a toolkit [22, 23], In open environments,
agents should be able to reason about the benefits and duties incurred by entering
an organisation, so that they can act within the expected boundaries and work to-
wards the objectives of the organization. The AORTA component can be integrated
into agents reasoning mechanism, allowing them to reason about (and act upon)
regulations specified by an organizational model using simple reasoning rules. The
added value is that the organizational model is independent of that of the agents,
and that the approach is not tied to a specific organizational model. Organizational
reasoning in AORTA is divided into two main parts: organizational option genera-
tion and organizational action deliberation. An organizational option is something

9 OperA/ALIVE/OperettA 13

that the agent should consider, such as an organizational objective or a role. An or-
ganizational action is the execution of an organizational option: enacting a role or
committing to an organizational objective. AORTA adds organisational facts to the
beliefbase of the agent, which can then be used in the deliberation process. Com-
mitment to organisation objectives leads to change in the agents intentions and are
incorporated in its plans. The approach is agent-centered, and independent from the
organization, allowing agents to join open systems which are regulated by arbitrary
organizations.

Other components:

• OperA / ALIVE assumes a strict separation between the organization and the
individuals. It makes no assumption about the individuals regarding their nature
or, in that sense, the way they are implemented. Agents in OperA can be pro-
grammed in any agent-oriented programming languages. OperA organizations
have been implemented in AgentScape, JASON, JADE, 3APL, and even lower-
level languages such as RePaST.
To program agents suitable for an OperA organization, a minimal of changes is
required:

– Minimal understanding of the OperA organizational language/structure (i.e.,
being able to read and understand the OperA XML-specification) [22].

– Capability to reason about the agents own capabilities to correctly apply for a
position in the organization [37].

– One (or more) agent(s) employed to act as gatekeeper agent; solving role en-
actment (i.e., accepting agents in organizational positions, based, e.g., on their
performance and capabilities) [5].

– One (or more) agent(s) employed as monitor (see Norm Monitor above) or as
enforcer [40].

9.4 OperA in use

In this section we present a brief description of how OperA approaches the tender
use-case (see chapter I.2).

9.4.1 Modelling and Implementation

As mentioned, the OperA framework consists of three interrelated models: the or-
ganizational model, the social model, and the interaction model. The Organization
Model (OM) is the result of the observation and analysis of the domain and de-
scribes the desired behavior of the organization, as determined by the organizational
stakeholders in terms of objectives, norms, roles, interactions and ontologies.

14 Aldewereld, Álvarez-Napagao, Dignum, Jiang, Vasconcelos, and Vázquez-Salceda

The OM provides the overall organization design that fulfills the stakeholders re-
quirements. Objectives of an organization are achieved through the action of agents,
which means that, at each moment, an organization should employ the relevant
agents that can make its objectives happen. However, the OM does not enable to
specify the individual agents. The Social Model (SM) maps organizational roles to
(existing) agents and describes agreements concerning the role enactment and other
conditions in enactment contracts. Finally, the Interaction Model (IM) describes
the runtime interactions between role-enacting agents. The overall development pro-
cess is depicted in figure 9.1.

In this section, we show how to develop an Organization Model (OM) to specify
the structure and global characteristics of a case from an organizational perspec-
tive. The OM describes the means to achieve global objectives. Components of OM
are the Social and Interaction Structures where global goals are specified in terms
of roles and interactions. Moreover, organization specifications should include the
description of concepts holding in the domain, and of expected or required behav-
iors. Therefore, these structures should be linked with the norms, defined in Norma-
tive Structure, and with the ontologies and communication languages defined in the
Communication Structure.

The Social Structure

The social structure describes the roles and dependencies holding in the organiza-
tion. It consists of a list of role definitions, Roles (including their objectives, rights
and requirements), a list of role groups’ definitions, Groups, and a Role Depen-
dency’s graph. Examples of roles in the Tender Process scenario are Contractor,
Bidder, Publication Body, etc.

Global objectives are the basis for the definition of the objectives of roles. From
the organization perspective, role descriptions should identify the activities and ser-
vices necessary to achieve its objectives and also enable to abstract from the individ-
uals that will eventually perform the role. From the agent perspective, roles specify
the expectations of the society with respect to the agent’s activity in the society. In
OperA, the definition of a role consists of an identifier, a set of role objectives, pos-
sibly sets of sub-objectives per objective, a set of role rights, a set of norms and the
type of role. An example of a role description for Evaluator in the Tender Process
scenario is depicted in table 9.1.

Groups provide means to collectively refer to a set of roles and are used to spec-
ify norms that hold for all roles in the group. Groups are defined by means of an
identifier, a non-empty set of roles, and group norms. An example of a group in the
Tender Process scenario is the bid consortium team consisting of the roles Bidder
and Partner.

The distribution of objectives in roles is defined by means of the Role Hierarchy.
Different criteria can guide the definition of Role Hierarchy. In particular, a role can

9 OperA/ALIVE/OperettA 15

Id Evaluator
Objectives bid evaluated(Bid,Rep)
Sub-objectives {read(Bid), report written(Bid, Rep),

review received(Contractor, Bid, Rep)}
Rights access bidregsystem system(me)
Norms & Evaluator OBLIGED understand english
Rules Evaluator OBLIGED bid evaluated BEFORE deadline

IF conflict interest THEN Evaluator FORBIDDEN bid evaluated

Table 9.1 Evaluator role description.

be refined by decomposing it in sub-roles that, together, fulfill the objectives of the
given role.

This refinement of roles defines Role Dependencies. A dependency graph repre-
sents dependency relations between roles. Nodes in the graph are roles in the society.
Arcs are labeled with the objectives for which the parent role depends on the child
role. Part of the dependency graph for the Tender Process scenario is displayed in
figure 9.4.

Contractor bidder

evaluator Consortium
partner

RFT

bidding

Publication
body

RFT_announced Bids_evaluated Consortium_formed

Fig. 9.4 Role dependencies in the Tender Process scenario.

For example, the arc between nodes Contractor and Evaluator represents the de-
pendency concerning bid-evaluated (Contractor �bid evaluated Evaluator). The way
objective g of role r1 in a dependency relation r1 �g r2 is actually passed to r2
depends on the coordination type of the system, defined in the Architectural Tem-
plates. In OperA, three types of role dependencies are identified: bidding, request
and delegation. These dependency types, result in three different interaction possi-
bilities:

Bidding defines market, or auction-like interactions, where the dependent (initia-
tor) of the dependency asks for proposals from the dependees. Typically, the best
proposal is selected for the achievement of the objective.

Request leads to networks, where roles interact cooperatively towards the achieve-
ment of an objective;

Delegation gives raise to hierarchies, where the dependent of the dependency del-
egates the responsibility of the achievement of the objective to the dependees
(i.e., subordinates).

16 Aldewereld, Álvarez-Napagao, Dignum, Jiang, Vasconcelos, and Vázquez-Salceda

The Interaction Structure

Interaction is structured as a set of meaningful scenes that follow pre-defined scene
scripts. Examples of scenes are the ‘bid submission’, which involves Bidder and
Contractor, or ‘Bid Evaluation Process’, involving Contractor and the Evaluators. A
scene script describes the players (roles), desired results and the norms regulating
the interaction. The results of an interaction scene are achieved by the joint activity
of the participating roles, through the realization of (sub-)objectives of those roles.
A scene script establishes also the desired interaction patterns between roles, that
is, a desired combination of the (sub-) objectives of the roles. Table 9.2 gives an
example of a scene script for the review process involving two Evaluators and the
Contractor.

Scene Bid Evaluation Process
Roles Contractor (1), Evaluator(2)
Results r1 = ∀ Bid ∈ Bids: evaluation done(Bid, eval1, eval2)
Interaction Pattern PATTERN(r1): see figure 9.5
Norms & Rules Contractor PERMITTEDbid assigned

IF bid assigned THEN Evaluator OBLIGED bid evaluated
BEFORE deadline

Table 9.2 Script for the Bid Evaluation Process scene.

Interaction scene descriptions are declarative, indicating the global aims of the
interaction rather than describing exact activities in details. Interaction patterns can
be more or less restrictive, which will give the agent enacting the role more or less
freedom to decide how to achieve the role objectives and interpret its norms. Fol-
lowing the ideas of [38, 31], we call such expressions landmarks, defined as con-
junctions of logical expressions that are true in a state. Landmarks combined with a
partial ordering to indicate the order in which the landmarks are to be achieved are
called a landmark pattern. Figure 9.5 shows the landmark pattern for the Bid Evalu-
ation Process. Several different specific actions can bring about the same state, that

start

assign
proposal

eval1

end

assign
proposal

eval2

Assign
deadline

receive
review
eval1

receive
review
eval2

Review
deadline

Fig. 9.5 Landmark pattern for Bid Evaluation Process.

9 OperA/ALIVE/OperettA 17

is, landmark patterns actually represent families of actual interaction protocols. The
use of landmarks to describe activity enables the actors to choose the best appli-
cable actions, according to their own goals and capabilities. The ordering relation

Prepare
Bid

Enroll
evaluators

Enroll
publication

body

Bid
submission

Evaluation
Process

Publish
bids

Award
contract

start end
Publish
contract
award

Fig. 9.6 Interaction Structure in the Tender Process scenario.

between scenes is given in the Interaction Structure (see figure 9.6). In this diagram,
transitions describe a partial ordering of the scenes, plus eventual synchronization
constraints. Note that, at runtime, several scenes can be happening at the same time
and one agent can participate in different scenes simultaneously. Transitions also de-
scribe the conditions for the creation of a new instance of the scene, and specify the
maximum number of scene instances that are allowed simultaneously. Furthermore,
the enactment of a role in a scene may have consequences in following scenes. Role
evolution relations describe the constraints that hold for the role-enacting agents as
they move from scene to scene, e.g., in the transition between paper acceptance and
conference registration authors will became participants.

The Normative Structure.

At the highest level of abstraction, norms are the values of a society, in the sense that
they define the concepts that are used to determine the value or utility of situations.
For the tender scenario, the desire to write out appropriate calls for tender and do a
fair allocation can be seen as values. However, the values do not specify how, when
or in which conditions individuals should behave appropriately in any given social
setup. In OperA, these aspects are defined in the Normative Structure.

In OperA, norms are specified using a deontic logic that is temporal, relativized
(in terms of roles and groups) and conditional [14]. For instance, the norm “The
bidders should submit their proposals before the submission deadline”is formalized
as, e.g.: Obidder(submit(proposal)≤ Submission deadline)

Furthermore, in order to check norms and act on possible violations of the norms
by the agents within an organization, abstract norms have to be translated into ac-
tions and concepts that can be handled within such organizations. To do so, the def-
inition of the abstract norms are iteratively concretized into more concrete norms,
and then translated into specific rules, violations and sanctions. Concrete norms are

18 Aldewereld, Álvarez-Napagao, Dignum, Jiang, Vasconcelos, and Vázquez-Salceda

related to abstract norms through a mapping function, based on the “counts-as” op-
erator as developed in [1].

The Communication Structure.

Communication mechanisms include both the representation of domain knowledge
(what are we talking about) and protocols for communication (how are we talking).
Both content and protocol have different meanings at the different levels of abstrac-
tion. E.g. while at the abstract level one might talk of disseminate knowledge, such
action will most probably not be available to agents acting at the implementation
level, where such abstract objective will be translated into concrete actions, such
as publish proceedings. Specification of communication content is usually realized
using ontologies, which are shared conceptualizations of the terms and predicates in
a domain. Agent communication languages (ACLs) are the usual means in MAS to
describe communicative actions. ACLs are wrapper languages in the sense that they
abstract from the content of communication.

In OperA, the Communication Structure describes both the content and the lan-
guage for communication. The content aspects of communication, or domain knowl-
edge, are specified by Domain Ontologies and Communication Acts define the lan-
guage for communication, including the performatives and the protocols.

9.4.2 Discussion

The main structures in the tender scenario fit well with OperA concepts. Given that
the current tool support for OperA focus on the design of organisational structure,
we have limited the application of OperA to the case study to these aspects. As
such, the work described in the previous section concerns the specification of the
Organisational Model for the RFT scenario. We have particularly focussed on the
specification of roles, dependencies and interaction scenes as these are the main and
most distinctive concepts of OperA OM. The use of landmarks enables to specify
a sufficient rich organisation such that all organisational requirements and goals are
taken into account and enable the verification of global properties, but the resulting
model is still sufficiently open for adaptation to an individual agents needs. Using
AORTA [22, 23], it is possible to provide an agent-readable specification of the
organisational model to a BDI agent. We did not illustrated this aspect here, because
that would require the introduction of specific agent platforms, which is outside the
scope of this volume and would unduly extend the length of the chapter.

9 OperA/ALIVE/OperettA 19

9.5 Critical Assessment

A key feature of the OperA approach is the strict separation between the agents
and the organization. The difference of interests of the agents individually and the
organization as a whole are a cornerstone of the framework.

The strongest point is the modelling framework (with accompanying tools sup-
port) for modelling the organizational model. The fact that the organizational model
abstracts from the actual agents implemeting the organization, means that it is much
easier for non-computer scientists to model in OperA (no implementation details
are required to make the organisational model).

This abstraction, however, comes with a cost. The transition from organizational
model to implementation is more difficult to make, due to the fact that there is a gap
in knowledge and/or ontology between the organization and the implementation.
OperA speaks only about organizational aspects (in an almost declarative manner),
which make operationalisation difficult.

While we have tried Model-driven architectures to assist in the automatic gener-
ation of implementations, these still require a designer present to enhance/complete
the aspects of the model that are missing on the organizational abstraction level.
More recent work on organization-aware agents circumvents some of the problems,
as the link between the implementation and specification is done directly within the
agent program.

9.6 Key references

For a more detailed reading about the OperA framework and its use, we recommend
the following:

[11] Dignum, V.: A Model for Organizational Interaction: based on Agents,
founded in Logic. SIKS Dissertation Series 2004-1. Utrecht University (2004)
PhD-thesis covering the main concepts of OperA, the initial assumptions for the
model and motivations for choices made.
[4] Aldewereld, H., Dignum, V.: OperettA: Organization-oriented development
environment. In: Proceedings of the 3rd International workshop on Languages,
Methodologies and Development Tools for Multi-agent Systems (LADS2010@Mallow)
(2011)
Introduction and explanation of the OperettA-tool, as support tool for building
and maintaining OperA OM models.
[23] Jensen, A.S., Dignum, V., Villadsen, J.: A framework for organisation-aware
agents. JAAMAS (2015). Submitted.
Introduces and elaborates on the use of organization-aware agents.
[6] Aldewereld, H., Padget, J., Vasconcelos, W., V azquez-Salceda, J., Sergeant,
P., Staikopoulos, A.: Adaptable, organization-aware, service-oriented computing.
Intelligent Systems, IEEE 25(4), 2635 (2010)

20 Aldewereld, Álvarez-Napagao, Dignum, Jiang, Vasconcelos, and Vázquez-Salceda

Shows the role and place of organizational modelling in service-oriented architecture-
based software development.

References

1. Aldewereld, H., Álvarez-Napagao, S., Dignum, F., Vázquez-Salceda, J.: Making norms con-
crete. In: Proceedings of the 9th International Conference on Autonomous Agents and Multia-
gent Systems, pp. 807–814. International Foundation for Autonomous Agents and Multiagent
Systems (2010)

2. Aldewereld, H., Dignum, F., Hiel, M.: Re-organization in warehouse management systems. In:
Proceedings of the IJCAI 2011 workshop on artificial intelligence and logistics (AILog-2011),
pp. 67–72 (2011)

3. Aldewereld, H., Dignum, F., Hiel, M.: Decentralised warehouse control through agent organ-
isations. In: Automation in Warehouse Development, pp. 33–44. Springer (2012)

4. Aldewereld, H., Dignum, V.: OperettA: Organization-oriented development environment. In:
Proceedings of the 3rd International workshop on Languages, Methodologies and Develop-
ment Tools for Multi-agent Systems (LADS2010@Mallow) (2011)

5. Aldewereld, H., Dignum, V., Jonker, C.M., van Riemsdijk, M.B.: Agreeing on role adoption
in open organisations. KI-Künstliche Intelligenz 26(1), 37–45 (2012)

6. Aldewereld, H., Padget, J., Vasconcelos, W., Vázquez-Salceda, J., Sergeant, P., Staikopoulos,
A.: Adaptable, organization-aware, service-oriented computing. Intelligent Systems, IEEE
25(4), 26–35 (2010)

7. Aldewereld, H., Tranier, J., Dignum, F., Dignum, V.: Agent-based crisis management. In:
Collaborative Agents-Research and Development, pp. 31–43. Springer (2011)

8. Alvarez-Napagao, S., Aldewereld, H., Vázquez-Salceda, J., Dignum, F.: Normative Monitor-
ing: Semantics and Implementation. Coordination, Organizations, Institutions, and Norms in
Agent Systems VI 6541, 321–336 (2011)

9. Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowledge for plan-
ning. Artificial Intelligence 116(1-2), 123–191 (2000)

10. Dastani, M., Dignum, V., Dignum, F.: Role-assignment in open agent societies. In: Proceed-
ings of the second international joint conference on Autonomous agents and multiagent sys-
tems, pp. 489–496. ACM (2003)

11. Dignum, V.: A Model for Organizational Interaction: based on Agents, founded in Logic.
SIKS Dissertation Series 2004-1. Utrecht University (2004)

12. Dignum, V., Dignum, F.: Modelling agent societies: Co-ordination frameworks and institu-
tions. In: Progress in artificial intelligence, pp. 191–204. Springer (2001)

13. Dignum, V., Dignum, F.: A logic of agent organizations. Logic Journal of IGPL 20(1), 283–
316 (2012)

14. Dignum, V., Meyer, J.J.C., Dignum, F., Weigand, H.: Formal specification of interaction in
agent societies. In: Formal approaches to agent-based systems, pp. 37–52. Springer (2003)

15. Esteva, M., Padget, J., Sierra, C.: Formalizing a language for institutions and norms. In:
Intelligent agents VIII, pp. 348–366. Springer (2002)

16. Gerevini, A., Long, D.: Plan constraints and preferences in PDDL3: The Language of the Fifth
International Planning Competition. Tech. Rep. R.T. 2005-08-07 (2005)

17. Grossi, D., Aldewereld, H., Dignum, F.: Ubi lex, ibi poena: Designing norm enforcement in
e-institutions. In: Coordination, organizations, institutions, and norms in agent systems II, pp.
101–114. Springer (2007)

18. Grossi, D., Dignum, F., Dastani, M., Royakkers, L.: Foundations of organizational structures
in multiagent systems. In: Proceedings of the fourth international joint conference on Au-
tonomous agents and multiagent systems, pp. 690–697. ACM (2005)

19. Grossi, D., Meyer, J.J.C., Dignum, F.: Classificatory aspects of counts-as: An analysis in
modal logic. Journal of Logic and Computation 16(5), 613–643 (2006)

9 OperA/ALIVE/OperettA 21

20. Group, O.M.: Meta Object Facility (MOF) Specification (2003)
21. Hiel, M., Aldewereld, H., Dignum, F.: Modeling warehouse logistics using agent organiza-

tions. In: Collaborative Agents-Research and Development, pp. 14–30. Springer (2011)
22. Jensen, A.S., Dignum, V., Villadsen, J.: The aorta architecture: Integrating organizational rea-

soning in jason. In: Engineering Multi-Agent Systems, pp. 127–145. Springer (2014)
23. Jensen, A.S., Dignum, V., Villadsen, J.: A framework for organisation-aware agents. JAAMAS

(2015). Submitted
24. Jensen, A.S., Spurkeland, J.S., Villadsen, J.: Formalizing theatrical performances using multi-

agent organizations. In: SCAI, pp. 135–144 (2013)
25. Jensen, K.: Coloured petri nets. In: Petri nets: central models and their properties, pp. 248–

299. Springer (1987)
26. Jiang, J., Aldewereld, H., Dignum, V., Tan, Y.H.: Compliance checking of organizational in-

teractions. ACM Transactions on Management Information Systems (TMIS) 5(4), 23 (2014)
27. Jiang, J., Dignum, V., Aldewereld, H., Dignum, F., Tan, Y.H.: Norm compliance checking.

In: Proceedings of the 2013 international conference on Autonomous agents and multi-agent
systems, pp. 1121–1122. International Foundation for Autonomous Agents and Multiagent
Systems (2013)

28. Jiang, J., Dignum, V., Tan, Y.H.: An agent-based inter-organizational collaboration frame-
work: Opera+. In: Coordination, Organizations, Institutions, and Norms in Agent System VII,
pp. 58–74. Springer (2012)

29. Jiang, J., Thangarajah, J., Aldewereld, H., Dignum, V.: Reasoning with agent preferences in
normative multi-agent systems. In: Proceedings of the 2014 international conference on Au-
tonomous agents and multi-agent systems, pp. 1373–1374. International Foundation for Au-
tonomous Agents and Multiagent Systems (2014)

30. Jones, A.J., Sergot, M.: A formal characterisation of institutionalised power. Logic Journal of
IGPL 4(3), 427–443 (1996)

31. Kumar, S., Huber, M.J., Cohen, P.R., McGee, D.R.: Toward a formalism for conversation
protocols using joint intention theory. Computational Intelligence 18(2), 174–228 (2002)

32. Mensonides, M., Huisman, B., Dignum, V.: Towards agent-based scenario development for
strategic decision support. In: Agent-oriented information systems IV, pp. 53–72. Springer
(2008)

33. Panagiotidi, S., Vázquez-Salceda, J., Dignum, F.: Reasoning over norm compliance via plan-
ning. In: Coordination, Organizations, Institutions, and Norms in Agent Systems VIII, pp.
35–52. Springer (2013)

34. Parunak, H.V.D., Odell, J.J.: Representing social structures in uml. In: Agent-Oriented Soft-
ware Engineering II, pp. 1–16. Springer (2002)

35. Penserini, L., Dignum, F., Dignum, V., Aldewereld, H., Grossi, D.: Evaluating organizational
configurations. In: Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference
on Web Intelligence and Intelligent Agent Technology-Volume 02, pp. 153–160. IEEE Com-
puter Society (2009)

36. Quillinan, T.B., Brazier, F., Aldewereld, H., Dignum, F., Dignum, V., Penserini, L., Wijn-
gaards, N.: Developing agent-based organizational models for crisis management. In: Proc.
of the 8th Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 2009),
pp. 45–51 (2009)

37. van Riemsdijk, M.B., Dignum, V., Jonker, C.M., Aldewereld, H.: Reflection about capabilities
for role enactment. In: The 10th International Conference on Autonomous Agents and Mul-
tiagent Systems-Volume 3, pp. 1231–1232. International Foundation for Autonomous Agents
and Multiagent Systems (2011)

38. Smith, I.A., Cohen, P.R., Bradshaw, J.M., Greaves, M., Holmback, H.: Designing conversa-
tion policies using joint intention theory. In: Multi Agent Systems, 1998. Proceedings. Inter-
national Conference on, pp. 269–276. IEEE (1998)

39. Vázquez-Salceda, J.: The role of norms and electronic institutions in multi-agent systems
applied to complex domains. the harmonia framework. Ai Communications 16(3), 209–212
(2003)

22 Aldewereld, Álvarez-Napagao, Dignum, Jiang, Vasconcelos, and Vázquez-Salceda

40. Vázquez-Salceda, J., Aldewereld, H., Grossi, D., Dignum, F.: From human regulations to reg-
ulated software agents behavior. Artificial Intelligence and Law 16(1), 73–87 (2008)

41. Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems. Autonomous
Agents and Multi-Agent Systems 11(3), 307–360 (2005)

42. Weigand, H., Dignum, V.: I am autonomous, you are autonomous. In: Agents and Computa-
tional Autonomy, pp. 227–236. Springer (2004)

43. Westra, J., Dignum, F., Dignum, V.: Modeling agent adaptation in games. In: BNAIC 2008
Belgian-Dutch Conference on Artificial Intelligence, p. 381 (2008)

44. Westra, J., Dignum, F., Dignum, V.: Keeping the trainee on track. In: Computational Intelli-
gence and Games (CIG), 2010 IEEE Symposium on, pp. 450–457. IEEE (2010)

45. Westra, J., van Hasselt, H., Dignum, F., Dignum, V.: Adaptive serious games using agent
organizations. In: Agents for Games and Simulations, pp. 206–220. Springer (2009)

46. Zambonelli, F.: Abstractions and infrastructures for the design and development of mobile
agent organizations. In: Agent-Oriented Software Engineering II, pp. 245–262. Springer
(2002)

9 OperA/ALIVE/OperettA 23

Appendix A

Fig. 9.7 OperA metamodel: Social Structure (SS).

24 Aldewereld, Álvarez-Napagao, Dignum, Jiang, Vasconcelos, and Vázquez-Salceda

Fig. 9.8 OperA metamodel: Interaction Structure (IS).

Fig. 9.9 OperA metamodel: Communicative Structure (CS).

9 OperA/ALIVE/OperettA 25

Fig. 9.10 OperA metamodel: Normative Structure (NS).

