5 research outputs found

    Application of Risk Analysis and Simulation for Nuclear Refurbishment Projects

    Get PDF
    In this thesis, a planning methodology is proposed for nuclear refurbishment projects as a means to address project objectives, influential factors, constraints, and their interdependencies to attain a more reliable estimate of project outcomes. As part of this process, the uncertainty and impact of risk events around project outcomes are taken into account. The proposed methodology consists of two stages. The first stage addresses the impact of commonly identified risks (i.e., Type I risks) and uncertainty on the project outcomes. Also, the interdependence among shift schedule, productivity rate, calendar duration, and risk registers within each identified what-if scenario has been taken into account. The confidence in achieving each of the what-if scenarios is determined using Monte Carlo simulation and a 3-dimensional joint confidence limit model. Based on the simulation results, the deterministic values of the selected project outcomes and the mean values of the resultant distributions are driven primarily by uncertainty, and the distribution tails represent the impact of materialized risks. Also, the probability of failure for each project outcome is less than the joint probability of failure for multiple outcomes. In the second stage of the methodology, the resultant distribution tails (attained from the previous stage) are explored by primarily assessing the impact of outliers (i.e., Type II risks) on project outcomes. Although outliers are typically considered rare events with extreme impacts, the scale and complexity of megaprojects such as refurbishment of nuclear reactors leads to a more frequent occurrence of such events. The applied methodology stems from the reliability analysis approach used to partially justify soft error within integrated circuits due to the observed commonalities such as scale and complexity. A combination of probability theory, Critical Path Method, and Monte Carlo simulation is used to assess the true probability of occurrence for such events. Based on the simulation results, the outliers should be acknowledged and incorporated in the risk management plan of large-scale and complex ventures such as megaprojects. The proposed methodology is validated via Delphi and sensitivity analysis, and functional demonstration using information from an actual multi-billion dollar nuclear refurbishment project and a unique full-scale mock-up of the reactor’s fuel channels and feeders

    A dynamic scheduling model for construction enterprises

    Get PDF
    The vast majority of researches in the scheduling context focused on finding optimal or near-optimal predictive schedules under different scheduling problem characteristics. In the construction industry, predictive schedules are often produced in advance in order to direct construction operations and to support other planning activities. However, construction projects operate in dynamic environments subject to various real-time events, which usually disrupt the predictive optimal schedules, leading to schedules neither feasible nor optimal. Accordingly, the development of a dynamic scheduling model which can accommodate these real-time events would be of great importance for the successful implementation of construction scheduling systems. This research sought to develop a dynamic scheduling based solution which can be practically used for real time analysis and scheduling of construction projects, in addition to resources optimization for construction enterprises. The literature reviews for scheduling, dynamic scheduling, and optimization showed that despite the numerous researches presented and application performed in the dynamic scheduling field within manufacturing and other industries, there was dearth in dynamic scheduling literature in relation to the construction industry. The research followed two main interacting research paths, a path related to the development of the practical solution, and another path related to the core model development. The aim of the first path (or the proposed practical solution path) was to develop a computer-based dynamic scheduling framework which can be used in practical applications within the construction industry. Following the scheduling literature review, the construction project management community s opinions about the problem under study and the user requirements for the proposed solution were collected from 364 construction project management practitioners from 52 countries via a questionnaire survey and were used to form the basis for the functional specifications of a dynamic scheduling framework. The framework was in the form of a software tool fully integrated with current planning/scheduling practices with all core modelling which can support the integration of the dynamic scheduling processes to the current planning/scheduling process with minimal experience requirement from users about optimization. The second research path, or the dynamic scheduling core model development path, started with the development of a mathematical model based on the scheduling models in literature, with several extensions according to the practical considerations related to the construction industry, as investigated in the questionnaire survey. Scheduling problems are complex from operational research perspective; so, for the proposed solution to be functional in optimizing construction schedules, an optimization algorithm was developed to suit the problem's characteristics and to be used as part of the dynamic scheduling model's core. The developed algorithm contained few contributions to the scheduling context (such as schedule justification heuristics, and rectification to schedule generation schemes), as well as suggested modifications to the formulation and process of the adopted optimization technique (particle swarm optimization) leading to considerable improvement to this techniques outputs with respect to schedules quality. After the completion of the model development path, the first research path was concluded by combining the gathered solution's functional specifications and the developed dynamic scheduling model into a software tool, which was developed to verify & validate the proposed model s functionalities and the overall solution s practicality and scalability. The verification process started with an extensive testing of the model s static functionality using several well recognized scheduling problem sets available in literature, and the results showed that the developed algorithm can be ranked as one of the best state-of-the-art algorithms for solving resource-constrained project scheduling problems. To verify the software tool and the dynamic features of the developed model (or the formulation of data transfers from one optimization stage to the next), a case study was implemented on a construction entity in the Arabian Gulf area, having a mega project under construction, with all aspects to resemble an enterprise structure. The case study results showed that the proposed solution reasonably performed under large scale practical application (where all optimization targets were met in reasonable time) for all designed schedule preparation processes (baseline, progress updates, look-ahead schedules, and what-if schedules). Finally, to confirm and validate the effectiveness and practicality of the proposed solution, the solution's framework and the verification results were presented to field experts, and their opinions were collected through validation forms. The feedbacks received were very positive, where field experts/practitioners confirmed that the proposed solution achieved the main functionalities as designed in the solution s framework, and performed efficiently under the complexity of the applied case study

    Advances in Grid Computing

    Get PDF
    This book approaches the grid computing with a perspective on the latest achievements in the field, providing an insight into the current research trends and advances, and presenting a large range of innovative research papers. The topics covered in this book include resource and data management, grid architectures and development, and grid-enabled applications. New ideas employing heuristic methods from swarm intelligence or genetic algorithm and quantum encryption are considered in order to explain two main aspects of grid computing: resource management and data management. The book addresses also some aspects of grid computing that regard architecture and development, and includes a diverse range of applications for grid computing, including possible human grid computing system, simulation of the fusion reaction, ubiquitous healthcare service provisioning and complex water systems
    corecore