72 research outputs found

    Architecture of a Cyberphysical Avatar

    Get PDF
    REACTION 2012. 1st International workshop on Real-time and distributed computing in emerging applications. December 4th, 2012, San Juan, Puerto Rico.This paper introduces the concept of a cyberphysical avatar which is defined to be a semi-autonomous robotic system that adjusts to an unstructured environment and performs physical tasks subject to critical timing constraints while under human supervision. Cyberphysical avatar integrates the recent advance in three technologies: body-compliant control in robotics, neuroevolution in machine learning and QoS guarantees in realtime communication. Body-compliant control is essential for operator safety since cyberphysical avatars perform cooperative tasks in close proximity to humans. Neuroevolution technique is essential for ”programming” cyberphysical avatars inasmuch as they are to be used by non-experts for a large array of tasks, some unforeseen, in an unstructured environment. QoS-guaranteed realtime communication is essential to provide predictable, boundedtime response in human-avatar interaction. By integrating these technologies, we have built a prototype cyberphysical avatar testbed

    Predictive Context-Based Adaptive Compliance for Interaction Control of Robot Manipulators

    Get PDF
    In classical industrial robotics, robots are concealed within structured and well-known environments performing highly-repetitive tasks. In contrast, current robotic applications require more direct interaction with humans, cooperating with them to achieve a common task and entering home scenarios. Above all, robots are leaving the world of certainty to work in dynamically-changing and unstructured environments that might be partially or completely unknown to them. In such environments, controlling the interaction forces that appear when a robot contacts a certain environment (be the environment an object or a person) is of utmost importance. Common sense suggests the need to leave the stiff industrial robots and move towards compliant and adaptive robot manipulators that resemble the properties of their biological counterpart, the human arm. This thesis focuses on creating a higher level of intelligence for active compliance control methods applied to robot manipulators. This work thus proposes an architecture for compliance regulation named Predictive Context-Based Adaptive Compliance (PCAC) which is composed of three main components operating around a 'classical' impedance controller. Inspired by biological systems, the highest-level component is a Bayesian-based context predictor that allows the robot to pre-regulate the arm compliance based on predictions about the context the robot is placed in. The robot can use the information obtained while contacting the environment to update its context predictions and, in case it is necessary, to correct in real time for wrongly predicted contexts. Thus, the predictions are used both for anticipating actions to be taken 'before' proceeding with a task as well as for applying real-time corrective measures 'during' the execution of a in order to ensure a successful performance. Additionally, this thesis investigates a second component to identify the current environment among a set of known environments. This in turn allows the robot to select the proper compliance controller. The third component of the architecture presents the use of neuroevolutionary techniques for selecting the optimal parameters of the interaction controller once a certain environment has been identified

    An Improved Bees Algorithm for Training Deep Recurrent Networks for Sentiment Classification

    Get PDF
    Recurrent neural networks (RNNs) are powerful tools for learning information from temporal sequences. Designing an optimum deep RNN is difficult due to configuration and training issues, such as vanishing and exploding gradients. In this paper, a novel metaheuristic optimisation approach is proposed for training deep RNNs for the sentiment classification task. The approach employs an enhanced Ternary Bees Algorithm (BA-3+), which operates for large dataset classification problems by considering only three individual solutions in each iteration. BA-3+ combines the collaborative search of three bees to find the optimal set of trainable parameters of the proposed deep recurrent learning architecture. Local learning with exploitative search utilises the greedy selection strategy. Stochastic gradient descent (SGD) learning with singular value decomposition (SVD) aims to handle vanishing and exploding gradients of the decision parameters with the stabilisation strategy of SVD. Global learning with explorative search achieves faster convergence without getting trapped at local optima to find the optimal set of trainable parameters of the proposed deep recurrent learning architecture. BA-3+ has been tested on the sentiment classification task to classify symmetric and asymmetric distribution of the datasets from different domains, including Twitter, product reviews, and movie reviews. Comparative results have been obtained for advanced deep language models and Differential Evolution (DE) and Particle Swarm Optimization (PSO) algorithms. BA-3+ converged to the global minimum faster than the DE and PSO algorithms, and it outperformed the SGD, DE, and PSO algorithms for the Turkish and English datasets. The accuracy value and F1 measure have improved at least with a 30–40% improvement than the standard SGD algorithm for all classification datasets. Accuracy rates in the RNN model trained with BA-3+ ranged from 80% to 90%, while the RNN trained with SGD was able to achieve between 50% and 60% for most datasets. The performance of the RNN model with BA-3+ has as good as for Tree-LSTMs and Recursive Neural Tensor Networks (RNTNs) language models, which achieved accuracy results of up to 90% for some datasets. The improved accuracy and convergence results show that BA-3+ is an efficient, stable algorithm for the complex classification task, and it can handle the vanishing and exploding gradients problem of deep RNNs

    Increasing Accuracy Performance through Optimal Feature Extraction Algorithms

    Get PDF
    This research developed models and techniques to improve the three key modules of popular recognition systems: preprocessing, feature extraction, and classification. Improvements were made in four key areas: processing speed, algorithm complexity, storage space, and accuracy. The focus was on the application areas of the face, traffic sign, and speaker recognition. In the preprocessing module of facial and traffic sign recognition, improvements were made through the utilization of grayscaling and anisotropic diffusion. In the feature extraction module, improvements were made in two different ways; first, through the use of mixed transforms and second through a convolutional neural network (CNN) that best fits specific datasets. The mixed transform system consists of various combinations of the Discrete Wavelet Transform (DWT) and Discrete Cosine Transform (DCT), which have a reliable track record for image feature extraction. In terms of the proposed CNN, a neuroevolution system was used to determine the characteristics and layout of a CNN to best extract image features for particular datasets. In the speaker recognition system, the improvement to the feature extraction module comprised of a quantized spectral covariance matrix and a two-dimensional Principal Component Analysis (2DPCA) function. In the classification module, enhancements were made in visual recognition through the use of two neural networks: the multilayer sigmoid and convolutional neural network. Results show that the proposed improvements in the three modules led to an increase in accuracy as well as reduced algorithmic complexity, with corresponding reductions in storage space and processing time

    Causally-Guided Evolutionary Computation for Design

    Get PDF
    During recent years, evolutionary computation methods have been used successfully to discover solutions to problems involving design and invention in a wide variety of fields. However, for the evolutionary process to remain computationally tractable when applied to increasingly complex design problems, new extensions must be developed that increase the efficiency and effectiveness with which evolutionary systems produce optimal designs. To this end, the goal of the research presented here is to develop one such potential extension: causally-guided evolution. By this I mean evolutionary systems where the application of genetic operators to an individual are driven in part by observing that individual's performance characteristics and applying these operators based on explicit cause-effect relations in the domain. This differs from past evolutionary methods in which, after fitness-based selection, genetic operators are applied to individuals blindly and randomly (i.e., without respect to the performance characteristics of the individuals). In this context, this dissertation makes a number of significant contributions. A framework for causally-guided evolution is defined, including causally-guided genetic operators based on causal knowledge that is supplied by domain experts. The ability of these methods and causally-guided mutation to produce better solutions than conventional evolutionary processes is demonstrated on a neural network optimization task. These methods are then extended to include crossover, and the synergistic effects of causally-guided crossover and mutation are demonstrated when applied to a real-world antenna design task. Causally-guided mutation is extended further to influence both where and how mutation occurs, and the effectiveness of this approach is shown when applied to a constructive design task that creates synthetic social networks. Finally, a causally-guided evolutionary system that acquires causal knowledge through observation of the evolutionary process, rather than being given the knowledge a priori, is developed and successfully applied, demonstrating the applicability of causally-guided evolution to problems in which causal knowledge is not available. Collectively, this work clearly demonstrates for the first time the promise of causally-guided evolutionary computation in a variety of forms and when applied to a range of application problems

    SusTrainable: Promoting Sustainability as a Fundamental Driver in Software Development Training and Education. 2nd Teacher Training, January 23-27, 2023, Pula, Croatia. Revised lecture notes

    Full text link
    This volume exhibits the revised lecture notes of the 2nd teacher training organized as part of the project Promoting Sustainability as a Fundamental Driver in Software Development Training and Education, held at the Juraj Dobrila University of Pula, Croatia, in the week January 23-27, 2023. It is the Erasmus+ project No. 2020-1-PT01-KA203-078646 - Sustrainable. More details can be found at the project web site https://sustrainable.github.io/ One of the most important contributions of the project are two summer schools. The 2nd SusTrainable Summer School (SusTrainable - 23) will be organized at the University of Coimbra, Portugal, in the week July 10-14, 2023. The summer school will consist of lectures and practical work for master and PhD students in computing science and closely related fields. There will be contributions from Babe\c{s}-Bolyai University, E\"{o}tv\"{o}s Lor\'{a}nd University, Juraj Dobrila University of Pula, Radboud University Nijmegen, Roskilde University, Technical University of Ko\v{s}ice, University of Amsterdam, University of Coimbra, University of Minho, University of Plovdiv, University of Porto, University of Rijeka. To prepare and streamline the summer school, the consortium organized a teacher training in Pula, Croatia. This was an event of five full days, organized by Tihana Galinac Grbac and Neven Grbac. The Juraj Dobrila University of Pula is very concerned with the sustainability issues. The education, research and management are conducted with sustainability goals in mind. The contributions in the proceedings were reviewed and provide a good overview of the range of topics that will be covered at the summer school. The papers in the proceedings, as well as the very constructive and cooperative teacher training, guarantee the highest quality and beneficial summer school for all participants.Comment: 85 pages, 8 figures, 3 code listings and 1 table; editors: Tihana Galinac Grbac, Csaba Szab\'{o}, Jo\~{a}o Paulo Fernande

    Corticospinal Excitability During a Perspective-Taking Task : Implications for Self Vs. Other Processing

    Get PDF
    Only by understanding the uniquely human ability to take a first- second- and third-person perspective, can we begin to elucidate the neural processes responsible for one’s inimitable conscious experience. The current study examined differences in hemispheric laterality during a first-person perspective (1PP) and third-person perspective (3PP) taking task, using Transcranial Magnetic Stimulation (TMS). Subjects were asked to take either the 1PP or 3PP in identifying the number of spheres in a virtual scene. During this task, single- pulse TMS was delivered to the motor cortex of both the left and right hemispheres of 10 healthy volunteers. Measures of TMS-induced motor-evoked potentials (MEP’s) of the contralateral abductor pollicus brevis (APB) were used as an indicator of lateralized cortical activation. The data suggest that the right hemisphere is an integral component for discriminating between 1PP and 3PP and that the link between the primary- representational “self” (1PP) and the meta- representational state of 3PP may lie within the LH

    Towards Automated Machine Learning on Imperfect Data for Situational Awareness in Power System

    Get PDF
    The increasing penetration of renewable energy sources (such as solar and wind) and incoming widespread electric vehicles charging introduce new challenges in the power system. Due to the variability and uncertainty of these sources, reliable and cost-effective operations of the power system rely on high level of situational awareness. Thanks to the wide deployment of sensors (e.g., phasor measurement units (PMUs) and smart meters) and the emerging smart Internet of Things (IoT) sensing devices in the electric grid, large amounts of data are being collected, which provide golden opportunities to achieve high level of situational awareness for reliable and cost-effective grid operations.To better utilize the data, this dissertation aims to develop Machine Learning (ML) methods and provide fundamental understanding and systematic exploitation of ML for situational awareness using large amounts of imperfect data collected in power systems, in order to improve the reliability and resilience of power systems.However, building excellent ML models needs clean, accurate and sufficient training data. The data collected from the real-world power system is of low quality. For example, the data collected from wind farms contains a mixture of ramp and non-ramp as well as the mingle of heterogeneous dynamics data; the data in the transmission grid contains noisy, missing, insufficient and inaccurate timestamp data. Employing ML without considering these distinct features in real-world applications cannot build good ML models. This dissertation aims to address these challenges in two applications, wind generation forecast and power system event classification, by developing ML models in an automated way with less efforts from domain experts, as the cost of processing such large amounts of imperfect data by experts can be prohibitive in practice.First, we take heterogeneous dynamics into consideration, especially for ramp events. A Drifting Streaming Peaks-over-Threshold (DSPOT) enhanced self-evolving neural networks-based short-term wind farm generation forecast is proposed by utilizing dynamic ramp thresholds to separate the ramp and non-ramp events, based on which different neural networks are trained to learn different dynamics of wind farm generation. As the efficacy of the neural networks relies on the quality of training datasets (i.e., the classification accuracy of ramp and non-ramp events), a Bayesian optimization based approach is developed to optimize the parameters of DSPOT to enhance the quality of the training datasets and the corresponding performance of the neural networks. Experimental results show that compared with other forecast approaches, the proposed forecast approach can substantially improve the forecast accuracy, especially for ramp events. Next, we address the challenges of event classification due to the low-quality PMU measurements and event logs. A novel machine learning framework is proposed for robust event classification, which consists of three main steps: data preprocessing, fine-grained event data extraction, and feature engineering. Specifically, the data preprocessing step addresses the data quality issues of PMU measurements (e.g., bad data and missing data); in the fine-grained event data extraction step, a model-free event detection method is developed to accurately localize the events from the inaccurate event timestamps in the event logs; and the feature engineering step constructs the event features based on the patterns of different event types, in order to improve the performance and the interpretability of the event classifiers. Moreover, with the small number of good features, we need much less training data to train a good event classifier, which can address the challenge of insufficient and imbalanced training data, and the training time is negligible compared to neural network based approaches. Based on the proposed framework, we developed a workflow for event classification using the real-world PMU data streaming into the system in real time. Using the proposed framework, robust event classifiers can be efficiently trained based on many off-the-shelf lightweight machine learning models. Numerical experiments using the real-world dataset from the Western Interconnection of the U.S power transmission grid show that the event classifiers trained under the proposed framework can achieve high classification accuracy while being robust against low-quality data. Subsequently, we address the challenge of insufficient training labels. The real-world PMU data is often incomplete and noisy, which can significantly reduce the efficacy of existing machine learning techniques that require high-quality labeled training data. To obtain high-quality event logs for large amounts of PMU measurements, it requires significant efforts from domain experts to maintain the event logs and even hand-label the events, which can be prohibitively costly or impractical in practice. So we develop a weakly supervised machine learning approach that can learn a good event classifier using a few labeled PMU data. The key idea is to learn the labels from unlabeled data using a probabilistic generative model, in order to improve the training of the event classifiers. Experimental results show that even with 95\% of unlabeled data, the average accuracy of the proposed method can still achieve 78.4\%. This provides a promising way for domain experts to maintain the event logs in a less expensive and automated manner. Finally, we conclude the dissertation and discuss future directions
    • …
    corecore