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Abstract

The increasing penetration of renewable energy sources (such as solar and wind) and

incoming widespread electric vehicles charging introduce new challenges in the power

system. Due to the variability and uncertainty of these sources, reliable and cost-effective

operations of the power system rely on high level of situational awareness. Thanks to the

wide deployment of sensors (e.g., phasor measurement units (PMUs) and smart meters)

and the emerging smart Internet of Things (IoT) sensing devices in the electric grid, large

amounts of data are being collected, which provide golden opportunities to achieve high

level of situational awareness for reliable and cost-effective grid operations.

To better utilize the data, this dissertation aims to develop Machine Learning (ML) meth-

ods and provide fundamental understanding and systematic exploitation of ML for situa-

tional awareness using large amounts of imperfect data collected in power systems, in order

to improve the reliability and resilience of power systems.

However, building excellent ML models needs clean, accurate and sufficient training data.

The data collected from the real-world power system is of low quality. For example, the

data collected from wind farms contains a mixture of ramp and non-ramp as well as the

mingle of heterogeneous dynamics data; the data in the transmission grid contains noisy,

missing, insufficient and inaccurate timestamp data. Employing ML without considering

these distinct features in real-world applications cannot build good ML models. This dis-

sertation aims to address these challenges in two applications, wind generation forecast and

power system event classification, by developing ML models in an automated way with less

efforts from domain experts, as the cost of processing such large amounts of imperfect data

by experts can be prohibitive in practice.
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First, we take heterogeneous dynamics into consideration, especially for ramp events. A

Drifting Streaming Peaks-over-Threshold (DSPOT) enhanced self-evolving neural networks-

based short-term wind farm generation forecast is proposed by utilizing dynamic ramp

thresholds to separate the ramp and non-ramp events, based on which different neural net-

works are trained to learn different dynamics of wind farm generation. As the efficacy of

the neural networks relies on the quality of training datasets (i.e., the classification accu-

racy of ramp and non-ramp events), a Bayesian optimization based approach is developed

to optimize the parameters of DSPOT to enhance the quality of the training datasets and

the corresponding performance of the neural networks. Experimental results show that

compared with other forecast approaches, the proposed forecast approach can substantially

improve the forecast accuracy, especially for ramp events.

Next, we address the challenges of event classification due to the low-quality PMU mea-

surements and event logs. A novel machine learning framework is proposed for robust

event classification, which consists of three main steps: data preprocessing, fine-grained

event data extraction, and feature engineering. Specifically, the data preprocessing step

addresses the data quality issues of PMU measurements (e.g., bad data and missing data);

in the fine-grained event data extraction step, a model-free event detection method is de-

veloped to accurately localize the events from the inaccurate event timestamps in the event

logs; and the feature engineering step constructs the event features based on the patterns

of different event types, in order to improve the performance and the interpretability of the

event classifiers. Moreover, with the small number of good features, we need much less

training data to train a good event classifier, which can address the challenge of insufficient

and imbalanced training data, and the training time is negligible compared to neural net-

work based approaches. Based on the proposed framework, we developed a workflow for
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event classification using the real-world PMU data streaming into the system in real time.

Using the proposed framework, robust event classifiers can be efficiently trained based on

many off-the-shelf lightweight machine learning models. Numerical experiments using the

real-world dataset from the Western Interconnection of the U.S power transmission grid

show that the event classifiers trained under the proposed framework can achieve high clas-

sification accuracy while being robust against low-quality data.

Subsequently, we address the challenge of insufficient training labels. The real-world

PMU data is often incomplete and noisy, which can significantly reduce the efficacy of ex-

isting machine learning techniques that require high-quality labeled training data. To obtain

high-quality event logs for large amounts of PMU measurements, it requires significant ef-

forts from domain experts to maintain the event logs and even hand-label the events, which

can be prohibitively costly or impractical in practice. So we develop a weakly supervised

machine learning approach that can learn a good event classifier using a few labeled PMU

data. The key idea is to learn the labels from unlabeled data using a probabilistic genera-

tive model, in order to improve the training of the event classifiers. Experimental results

show that even with 95% of unlabeled data, the average accuracy of the proposed method

can still achieve 78.4%. This provides a promising way for domain experts to maintain the

event logs in a less expensive and automated manner.

Finally, we conclude the dissertation and discuss future directions.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The increasing penetration of renewable energy sources (expected 62% of generated en-

ergy will be covered by renewable energy [67] in 2050) and incoming widespread electric

vehicles charging introduce new challenges in the power system. Due to the variability and

uncertainty of these sources, reliable and cost-effective operations of the power system rely

on a high level of situational awareness. As wide deployment of sensors (phasor measure-

ment units (PMUs) smart meters) and the emerging smart Internet of Things (IoT) sensing

devices have already been deployed in the electric grid, large amounts of data are being col-

lected, which provide golden opportunities to achieve high level of situational awareness

for reliable and cost-effective grid operations.

To better explore those real-world data to improve the reliability and resilience of power

system, we develop Machine Learning (ML) methods and provide fundamental understand-

ing and systematic exploitation of ML for situational awareness using large amounts of

imperfect data collected in power system. However, building excellent ML models needs

clean, accurate and sufficient training data. The data collected from the real-world power

system is of low quality and imperfect. For example, the data collected from wind farms

contains a mixture of ramp and non-ramp as well as the mingle of heterogeneous dynamics

data; the data in the transmission grid contains noisy, missing, insufficient and inaccurate

timestamp data.
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This dissertation aims to address these challenges in two applications, wind farm gen-

eration forecast and power system event classification in an automated and less effortful

way. However, employing existing machine learning approaches without considering these

distinct features in real-world applications cannot build good ML models. This dissertation

aims to address these challenges by considering its unique features in real-world applica-

tions.

First, to account for the distinct features of wind farm generation, especially ramps, we

proposed Drifting Streaming Peaks-over-Threshold (DSPOT) enhanced self-evolving neu-

ral networks based short-term wind farm generation forecasts. Using DSPOT, the proposed

method first classifies the wind farm generation data into ramp and non-ramp datasets,

where time-varying dynamics is considered by utilizing dynamic ramp thresholds to sep-

arate the ramp and non-ramp events, based on which different neural networks are trained

to learn different dynamics of wind farm generation. As the efficacy of the neural net-

works relies on the quality of training datasets (i.e., the classification accuracy of ramp and

non-ramp events), a Bayesian optimization based approach is developed to optimize the

parameters of DSPOT to enhance the quality of the training datasets and the corresponding

performance of the neural networks. Experimental results show that compared with other

forecast approaches, the proposed forecast approach can substantially improve the forecast

accuracy, especially for ramp events.

Next, we address the challenges of event classification due to the low-quality PMU mea-

surements and event logs. By analyzing the real-world PMU data, we find it is challenging

to directly use this dataset for event classifiers due to the low data quality observed in PMU

measurements and event logs. To address these challenges, we developed a novel machine

learning framework for training robust event classifiers, which consists of three main steps:

data preprocessing, fine-grained event data extraction, and feature engineering. Specifi-
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cally, the data preprocessing step addresses the data quality issues of PMU measurements

(e.g., bad data and missing data); in the fine-grained event data extraction step, a model-free

event detection method is developed to accurately localize the events from the inaccurate

event timestamps in the event logs; and the feature engineering step constructs the event

features based on the patterns of different event types, in order to improve the performance

and the interpretability of the event classifiers. Based on the proposed framework, we

developed a workflow for event classification using the real-world PMU data streaming

into the system in real time. Using the proposed framework, robust event classifiers can

be efficiently trained based on many off-the-shelf lightweight machine learning models.

Numerical experiments using the real-world dataset from the Western Interconnection of

the U.S power transmission grid show that the event classifiers trained under the proposed

framework can achieve high classification accuracy while being robust against low-quality

data.

Subsequently, we address the challenge of insufficient training labels. The real-world

PMU data is often incomplete and noisy, which can significantly reduce the efficacy of

existing machine learning techniques that require high-quality labeled training data. To

obtain high-quality event logs for large amounts of PMU measurements, it requires signifi-

cant efforts from domain experts to maintain the event logs and even hand-label the events,

which can be prohibitively costly or impractical in practice. To address this challenge,

we developed a weakly supervised machine learning approach that can learn a good event

classifier using a few labeled PMU data. The key idea is to learn the labels from unlabeled

data using a probabilistic generative model, in order to improve the training of the event

classifier. Experimental results show that even with 95% of unlabeled data, the average

accuracy of the proposed method can still achieve 78.4%. This provides a promising way

for domain experts to maintain the event logs in a less expensive and automated manner.
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1.2 Summary of Contributions

For this section, we briefly discuss the major contributions: (1) adaptive machine learn-

ing for wind farm generation forecasting, which addresses the challenges of the non-

stationarity and the ramp dynamics of wind farm generation and can greatly facilitate

the integration of wind generation in reality; (2) robust event classification using imper-

fect real-world PMU data, which addresses the challenges of using low quality real-world

PMU data to develop event classification for situational awareness in smart grids; and (3)

weakly supervised event classification using limited labeled PMU data, which can signif-

icantly reduce the efforts from domain experts to maintain the event logs for developing

event classifiers.

1.2.1 Drifting Streaming Peaks-Over-Threshold Enhanced Self-Evolving

Neural Networks based Short-Term Wind Farm Generation Fore-

cast

Real-world wind farm generation measurements often exhibit distinct features, such as

the non-stationarity and the heterogeneous dynamics of ramp and non-ramp events across

different classes of wind turbines. Employing existing machine learning approaches with-

out considering these features cannot accurately forecast wind farm generation, especially

for ramp events. To account for the distinct features of wind farm generation, we pro-

posed Drifting Streaming Peaks-over-Threshold (DSPOT) enhanced self-evolving neural

networks based short-term wind farm generation forecast. Using DSPOT, the proposed

method first classifies the wind farm generation data into ramp and non-ramp datasets,
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where time-varying dynamics is considered by utilizing dynamic ramp thresholds to sep-

arate the ramp and non-ramp events, based on which different neural networks are trained

to learn different dynamics of wind farm generation. As the efficacy of the neural net-

works relies on the quality of training datasets (i.e., the classification accuracy of ramp and

non-ramp events), a Bayesian optimization based approach is developed to optimize the

parameters of DSPOT to enhance the quality of the training datasets and the corresponding

performance of the neural networks. Experimental results show that compared with other

forecast approaches, the proposed forecast approach can substantially improve the forecast

accuracy, especially for ramp events.

1.2.2 Robust Event Classification Using Imperfect Real-world PMU

Data

A novel machine learning framework for training event classifiers using large-scale imper-

fect real-world PMU data is proposed, which consists of three main steps: data prepro-

cessing, fine-grained event data extraction, and feature engineering. The goal is to obtain

high-quality labeled PMU training data from the low-quality real PMU data. Specifically,

the data preprocessing step addresses the data quality issues of PMU measurements (e.g.,

bad data and missing data); the fine-grained event data extraction step accurately localizes

the events from the inaccurate event timestamps in the event logs by using a model-free

event detection method developed based on the low-rank property of PMU data; and the

feature engineering step constructs the event features based on the patterns of different

event types, in order to improve the performance and the interpretability of the event clas-

sifiers. Based on the proposed machine learning framework, we also develop a workflow

for event classification using the real PMU data streaming into the system in real time.



6

One salient merit of the proposed framework is that large-scale real PMU data is reduced

to a small set of event features, which can be used to efficiently train many off-the-shelf

lightweight machine learning models. As the features are constructed based on the event

patterns, the contribution of any single PMU measurement to the features is low, which can

effectively mitigate the impact of bad and missing data and improve the robustness of the

event classifiers.

Using the two-year real-world PMU data from the Western Interconnection of continen-

tal U.S. transmission grid, we evaluate the performance of the proposed machine learning

framework. Many off-the-shelf lightweight machine learning models can be efficiently

trained in our framework and achieve good performance. For example, the training time of

the Random Forest model is less than 2 seconds while the testing accuracy of the Random

Forest model is 94%. Moreover, our framework demonstrates a strong robustness against

missing data. Even under the missing rate of 50%, the accuracy of the Random Forest

model can still achieve 87%. In summary, the proposed machine learning framework pro-

vides a promising way to train robust event classifiers with good interpretability and low

training cost.

1.2.3 Automatic Labeling Using Imperfect Real-World PMU data with

Scarce Labels

We develop a weakly supervised learning based event classification approach that can train

good event classifiers using imperfect real-world PMU data with scarce labels. The key

idea is to estimate the labels of large amounts of unlabeled PMU data for training event

classifiers. Specifically, we first learn a series of labeling functions based on the knowledge
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of different types of events, which can generate initial estimates of the labels. As these la-

beling functions are learnt using the same dataset with scarce labels, the estimated labels are

often correlated and the estimates can be noisy and biased. Directly using such estimates

cannot generate good event classifiers. To enhance the accuracy of the estimated labels, a

generative model is developed to characterize the correlations among the estimated labels,

based on which the estimated labels from labeling functions are combined in a probabilistic

manner to generate the “true” labels. Then, the refined labels from the generative model are

used to train event classifiers. It is worth noting that using the proposed weakly supervised

learning approach, less efforts are required from domain experts to maintain the event logs

for building event classifiers; by examining the classification results, domain experts can

further enhance the classification models. To the best of our knowledge, this paper is the

first to study weakly supervised event classification in power system. The findings in the

paper can shed the light on using imperfect real-world PMU data with scarce labels for

event classification.

Using the two-year real-world PMU data from the Western Interconnection of the conti-

nental U.S. transmission grid, we evaluate the performance of the proposed weakly super-

vised event classification approach. The experimental results show that when only 5% of

data are labeled, the average accuracy of the estimated labels using our approach can be

around 70.9% and the average accuracy of the corresponding event classifier can achieve

about 78.4%. This shows a promising way of using weakly supervised learning for devel-

oping robust event classification with extremely insufficient labeled data.
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1.3 Organization

The remaining chapters are organized as follows. Chapter 2 studies how to address hetero-

geneous dynamics challenges(i.e. DSPOT). Chapter 3 elaborated how to develop a robust

classification ML model under low quality data. Chapter 4 studies how to do auto labeling

under extremely insufficient training data, and we propose a weakly supervised learning

framework. Finally, Chapter 5 makes a conclusion and discusses the future work.
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CHAPTER 2

DRIFTING STREAMING PEAKS-OVER-THRESHOLD ENHANCED

SELF-EVOLVING NEURAL NETWORKS BASED SHORT-TERM WIND FARM

GENERATION FORECAST

2.1 Introduction

Wind energy constitutes a significant portion of this renewable integration [11]. Due to the

high variability of wind energy and high penetration of wind generation make the power

system more vulnerable, especially during wind power ramps. This requires accurate fore-

casts of wind generation to increase the situational awareness. But the imperfect data of

wind farm contains the mixture of ramp and non-ramps, different seasonal dynamics, di-

rectly applying ML can not achieve a good result (e.g., extreme (or ramp) events are over-

looked might lead to poor performance [16]). We aim to develop approach to split the

tangled wind farm generation data for better ML models in an automatic way.

Our previous works [22, 61] have shown 1) the non-stationarity and the seasonality of

wind farm generation and 2) different dynamics of non-ramp, ramp-up, and ramp-down

events of wind farm generation. Therefore, simply applying neural networks without con-

sidering ramp events may not obtain the best prediction performance, not to mention the

tuning of network topology and hyperparameters, which is often a demanding task. More-

over, as wind farms often consist of different classes of wind turbines, the dynamics of wind

generation of different classes of wind turbines can be different, which is observed in our
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dataset. Motivated by these observations, we aim to develop neural networks based wind

generation forecast approaches that consider these unique features of wind farm generation.

In this chapter, we propose seasonal self-evolving neural networks based short-term wind

farm generation forecast that accounts for different power output dynamics of different

wind turbines under non-ramp, ramp-up, and ramp-down events, in order to achieve a more

accurate wind farm generation forecast. The basic idea is as follows: 1) first classify the his-

torical data into non-ramp, ramp-up, and ramp-down datasets, where the non-ramp dataset

is further split into 4 datasets for 4 seasons to account for the seasonality; and 2) then de-

velop different neural networks for different power output dynamics of different turbines

under non-ramp, ramp-up, and ramp-down events, with the intention of accounting for the

unique features of wind farm generation. To account for the non-stationarity as well as

reduce the burden of hyperparameter tuning, we leverage NeuroEvolution of Augment-

ing Topologies (NEAT) [53] to train neural networks, which evolves the neural networks

using a genetic algorithm to find the best weighting parameters and network topology.

Based on the proposed seasonal self-evolving neural networks, we study both point fore-

casts and distributional forecasts. Based on wind measurement data from a real-world

wind farm, the proposed forecast approach demonstrates significantly improved forecast

accuracy, compared with other approaches. Compared to the existing works, this work

provides a unified framework that considers 1) the non-stationarity and the seasonality of

wind farm power outputs and 2) different dynamics of wind non-ramp, ramp-up, and ramp-

down events across different classes of turbines. By using self-evolving neural networks,

the proposed approach does not require AI experts to tune the topology of neural networks

and the hyperparameters. Thus, the proposed approach can be easily implemented in prac-

tice.
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2.2 Related Works

There have been many studies on wind generation forecast based on physical models

(e.g., numerical weather prediction model [7]) and statistical models (e.g., autoregressive

model [43], Markov chains [42]). Recently, advanced artificial intelligence (AI) techniques

have been successfully applied to many applications. There have been some studies apply-

ing AI techniques for wind generation forecast (e.g., support vector machine (SVM) [31],

Artificial Neural Networks (ANN) [17], Wavelet Neural Network (WNN) [10], Adaptive

Neuro-Fuzzy Neural Network (ANFIS) [41]). In [51], a long short-term memory (LSTM)

prediction model is proposed for short-term wind power forecast. In [21], a two-stage fore-

casting model based on the error factor and the ensemble method is proposed for multi-step

wind power forecast. To deal with the non-stationarity of wind generation, wavelet com-

ponents decomposition [31], empirical mode decomposition (EMD) based model [58], and

variational mode decomposition (VMD) based model [3] are introduced; however, for these

works, it is challenging to find appropriate numbers of components or modes.

Although neural network (NN) based methods may enhance the forecast accuracy to a

certain degree, existing NN based approaches may have poor performance during ramp

events, simply because the ramp and non-ramp events are not separated when training

NNs. It has been shown that NNs may perform poorly if extreme (or ramp) events are

overlooked [16]. Our previous studies [22, 61] have revealed that 1) the non-stationary

and seasonal dynamics of wind farm generation and 2) heterogeneous dynamics of non-

ramp and ramp events. Moreover, as different classes of wind turbines are deployed in

wind farms, we observe that the dynamics of wind generation of different classes of wind

turbines can be different. Thus, employing NNs without considering these distinct features

of wind farm generation cannot accurately forecast wind farm generation, especially for
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ramp events. In our previous work, seasonal self-evolving neural networks [32] are built

for different seasons and ramps are defined using fixed thresholds. However, it is observed

that the dynamics of wind ramps may change within each season, and due to this time-

varying dynamics of wind ramps, it is challenging to use fixed thresholds to accurately

capture the dynamics of wind ramps. To address this challenge, we propose a dynamic

threshold based approach that can adapt to the time-varying dynamics of wind ramps.

2.3 Data Description and Key Observations

We use real wind generation data from a large wind farm. The wind farm has a rated ca-

pacity of 300.5 MW, where two classes of wind turbines are installed: Mitsubishi and GE

turbines. There are 221 Mitsubishi turbines with a rated capacity of 1MW and 53 GE tur-

bines with a rated capacity of 1.5MW. Each class of wind turbines has distinct power curves

as well as cut-in and cut-off speed. For each class, a meteorological tower (MET), collo-

cated with a wind turbine, is deployed to collect weather information. The instantaneous

power outputs of each turbine together with the weather information are saved every 10

min for the years of 2009 and 2010. In this chapter, we use the power outputs of Mitsubishi

turbines Pmit(t) and GE turbines Pge(t), the wind speed Ws(t), and the wind direction Wdir(t)

to develop the proposed NNs.

From the measurements of power outputs, we find 1) the non-stationarity of power mea-

surements and 2) heterogeneous dynamics of wind non-ramp and ramp events across each

class of turbines as illustrated in Fig. 2.1, where the Cumulative Distribution Functions

(CDFs) of wind power measurements of two classes of turbines over different seasons of

a year and different ramp events are presented. In addition, it is shown in Fig. 2.2 that the
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Figure 2.1: Empirical distribution of power outputs of GE and Mitsubishi turbines in 4 seasons and ramp
events, where season 4 is from October to December.

Figure 2.2: Empirical ramp distributions of GE and Mitsubishi turbines in different time windows l and
different time periods, which follow the generalized Pareto distribution.

distributions of ramps in different time windows l and different time periods are different

and follow the generalized Pareto distribution (GPD).
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2.4 DSPOT Enhanced Self-Evolving Neural Networks

As observed from Fig. 2.2, fixed thresholds cannot fully capture the dynamics of wind

ramp events. To address this challenge, we redefine the ramps by using dynamic thresholds,

which change over time based on the dynamics of the ramp events, in order to reduce the

forecast error of wind farm generation, especially for ramp events.

Motivated by the observations, we seek to design a short-term forecast of wind farm

generation method that accounts for not only heterogeneous dynamics of each class of

wind turbines but also the time-varying dynamics of ramp and non-ramp events. Inspired

by the success of artificial intelligence (AI) in a wide range of fields, our goal is to use

neural networks (NNs) to learn these different dynamics of power outputs. Although there

are several attempts along this line (e.g., ANNs [8] and LSTM [51]), these approaches

use a single model and overlook the extreme ramp events, which leads to poor forecast

performance, especially for ramp events. Additionally, to train good NNs, it is critical to

have high quality training datasets (i.e., the ramp and non-ramp datasets should be well

separated), which is a challenging task due to the time-varying dynamics of ramp and non-

ramp events. Further, when training NNs, it is challenging to find the optimal topology as

well as hyperparameters of NNs.

To tackle these challenges, we propose the DSPOT enhanced self-evolving neural net-

works, namely DSN, for short-term wind farm generation forecast. The idea is to 1) first

classify non-ramp and ramp events using DSPOT, which uses dynamic ramp thresholds to

account for the time-varying dynamics of non-ramp and ramp events and 2) then train dif-

ferent NNs for each dataset to learn heterogeneous generation dynamics of different classes

of wind turbines, where these NNs can self-evolve based on the data, in order to account for
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Figure 2.3: Empirical ramp distributions of GE and Mitsubishi turbines in different time windows l and
different time periods, which follow the generalized Pareto distribution.

the non-stationarity and reduce the overhead of tuning the topology and hyperparameters

of NNs.

The design of our model is illustrated in Fig. 2.3. The historical data are first classified

into non-ramp, ramp up and ramp down datasets by DSPOT, in which dynamic thresholds

are determined based on recent observations in a moving window with size d, in order to

appropriately define ramp and non-ramp events over time.

Then, we use NeuroEvolution of Augmenting Topologies [53] to train NNs using the

classified datasets, in which the NNs evolve based on a Genetic Algorithm to obtain the best

topology and hyperparameters of NNs. As a result, 6 NNs, i.e., 3 for Mitsubishi and 3 for

GE, are built (see Fig. 2.3). As the efficacy of NNs relies on the quality of training datasets,

i.e., how good different ramp events are labeled, a Bayesian optimization based method is

proposed to optimize the parameters of DSPOT for enhance the quality of the training

datasets and the corresponding performance of the NNs. Ultimately, the proposed DSPOT

enhanced self-evolving neural networks form a closed loop of optimizing the performance
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of wind farm generation forecast purely based on the data. In what follows, the design of

each component of the model is described in detail.

2.4.1 DSPOT Based Ramp Classifier

Based on extreme value theory, it is likely that extreme events follow a generalized Pareto

distribution (GPD) [20], which is observed in wind power ramps in Fig. 2.2. Thus mo-

tivated, we will develop a data fitting technique using the GPD model to determine the

dynamic threshold zqcat(t) for different ramp events, where the index cat ∈ {up, down} de-

notes the category of ramp events and qcat is the quantile of the corresponding ramp event

distribution used to determine the threshold zqcat(t) . The idea is to first estimate the param-

eters of the GPD and then use the estimated GPD to find zqcat(t) based on the quantile qcat.

To account for the time-varying dynamics of ramp events, the parameters of the GPD will

be updated using the recent observed wind power in a moving window with size d.

Specifically, let Pclass(t) denote the wind power output at time t, where the index class ∈

{GE,Mitsubishi} represents the class of wind turbines. In a specified time period l, ramp

up and ramp down events can be separately expressed as:

Pclass(t) − Pclass(t − l) = ∆Pl
class(t) > zqup(t),

Pclass(t) − Pclass(t − l) = ∆Pl
class(t) < −zqdown(t),

(2.1)

where l and qcat are parameters to be tuned by BO (see Section 2.4.3) to determine the ramp

events.

Based on the above definitions of ramp events, we classify the original dataset into ramp
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up, ramp down, and non-ramp datasets, i.e., 3 different datasets for each class of wind

turbines. Let Xclass
i , i ∈ {up, down, non} denote these 3 datasets, where Xclass

up denotes the

ramp up dataset, Xclass
down the ramp down dataset, and Xclass

non the non-ramp dataset. These

datasets will be used to train NNs in Section 2.4.2. Clearly, the quality of these datasets

(i.e., how well different ramp events can be separated) depends on the values of zqup(t) and

zqdown(t). In this section, we determine zqup(t) and zqdown(t) using the GPD model. For ease of

presentation, we present how to calculate the dynamic threshold zq(t) for ramp up events by

omitting the index cat in the following. Correspondingly, the dynamic threshold for ramp

down events can be determined using the same procedure.

2.4.1.1 Calculating zq(t)

We derive the log-likelihood of the GPD using the recent observations {∆Pl
class(t)}d in a

moving window with size d:

L(γ, ξ; {∆Pl
class(t)}d) = −d log ξ

+ ( 1
γ
− 1)

t∑
i=t−d+1

log(1 − γ∆Pl
class(i)
ξ

),
(2.2)

where γ and ξ are the parameters of the GPD (γ ̸= 0). To estimate the parameters of the

GPD, we find a solution (γ∗, ξ∗) of L by solving the following two equations:

∂L(γ, ξ; {∆Pl
class(t)}d)

∂γ
= 0, (2.3)

∂L(γ, ξ; {∆Pl
class(t)}d)

∂ξ
= 0. (2.4)

Grimshaw [20] has shown that if a solution (γ∗, ξ∗) is obtained in this equation, the argu-
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ment β∗ = γ∗/ξ∗ is the solution to the scalar equation u(β) · v(β) = 1, where

u(β) =
1
|Yq|

|Yq |∑
i=1

1
1 + βYi

, (2.5)

v(β) = 1 +
1
|Yq|

|Yq |∑
i=1

log(1 + βYi). (2.6)

Here a setYq = {Yi} is defined for a given quantile q, i.e., Prob(∆Pl
class(i) > Pth

q ) = q, where

Pth
q > 0 is the threshold associated with the quantile q. Yq contains all ∆Pl

class(i) larger than

Pth
q with Yi = ∆Pl

class(i) − Pth
q > 0. |Yq| denotes the cardinality of Yq. Based on Grimshaw

trick [20], ξ∗ and γ∗ can be obtained using β∗ by

γ∗ = v(β∗) − 1, (2.7)

ξ∗ = γ∗/β∗. (2.8)

As there are multiple possible solutions of β∗, we need to find all the solutions, in order

to best estimate the GPD parameters (γ, ξ) to fit the distribution of ramp events. It is noted

that 1+βYi must be strictly positive. As Yi is positive, we have β∗ ∈ (− 1
Ymax
,+∞). Grimshaw

also shows an upper-bound β∗max :

β∗max = 2
Ȳ − Ymin

(Ymin)2 , (2.9)

where Ȳ , Ymax, and Ymin are the average amount, the maximum amount, and the minimum

amount of Yq, respectively. Therefore, we can do a numerical root search and find all

possible solutions in (− 1
Ymax
, β∗max), in which we choose the solution that maximizes the

likelihood L.
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Based on the estimated GPD, we can calculate zq(t) by solving the probability Prob(∆Pl
class(i) >

zq(t)). Based on [5], we leverage the probability of the exceedances of ∆Pl
class(i) over the

threshold Pth
q ,

Prob{∆Pl
class(i) > zq(t)|∆Pl

class(i) > Pth
q }

= (1 + γ̂(
zq(t)−Pth

q

ξ̂
))−

1
γ̂ .

(2.10)

As Prob(∆Pl
class(i) > Pth

q ) = q, we can solve

Prob(∆Pl
class(i) > zq(t)) = q(1 + γ̂(

zq(t)−Pth
q

ξ̂
))−

1
γ̂ (2.11)

based on Bayesian theorem. Using (2.11), we can obtain zq(t) by

zq(t) = Pth
q +
ξ̂

γ̂

(q · d
|Yq|

)−γ̂
− 1

 . (2.12)

2.4.1.2 DSPOT Algorithm

Given a quantile qcat, the DSPOT algorithm determines the dynamic threshold zqcat(t) us-

ing the recent observations. Based on zqcat(t), wind generation difference ∆Pl
class(t) will be

labeled into ramp up, ramp down or non-ramp events, and the wind power of recent mea-

surement Pclass(t) will be added into the corresponding dataset Xclass
i . The details of the

DSPOT algorithm is provided in Algorithm 1.

Specifically, Algorithm 1 will first initialize the thresholds zqup(t) and zqdown(t) using the

first d+l wind power measurements. Then, Algorithm 1 will update zqup(t) and zqdown(t) using

the new wind power measurement in the moving window with size d in an online manner,

based on which the new wind power measurement will be added into the corresponding
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dataset Xclass
i . Algorithm 1 will be run for wind power measurements of each class of wind

turbines.

Algorithm 1 DSPOT

Input: {Pclass(t)}, d, l, qup, and qdown.
Output: Xclass

up , Xclass
down, and Xclass

non .
Initialization:
1) Calculate initial thresholds zqup , zqdown based on Section 2.4.1.1 using {Pclass(t)|t =
1, ..., d + l}.
2) Initialize Xclass

up , Xclass
down, and Xclass

non based on zqup and zqdown .
End Initialization
For every t > d + l in {Pclass(t)}
1) Update zqup(t) and zqdown(t) based on Section 2.4.1.1 using the recent observations
{∆Pl

class(t)}d.
2) Classify ∆Pl

class(t) based on zqup(t) and zqdown(t), and add Pclass(t) into the corresponding
dataset Xclass

i .

2.4.2 Self-Evolving Neural Network

A self-evolving neural network (SEN) will be built for each dataset Xclass
up , X

class
down, and Xclass

non .

When training the neural networks (NNs), each element Pclass(t + 1) in Xclass
i is treated as

the label and the corresponding features contain the wind speed Ws(t), the change of wind

direction degree Wdir(t), and current power measurements {Pclass(t), Pclass(t−1), ..., Pclass(t−

Lag)}, where Lag depends on the measurements (see the discussion in Section 2.5.1). As

demonstrated in Fig. 2.4, NEAT [53] is used to train a NN. NEAT leverages a genetic

algorithm (GA) to evolve the NN. It obtains the best network topology and the best weight-

ing parameters by minimizing the forecast error, i.e., min
∑

t(P̂class(t) − Pclass(t))2, where

P̂class(t) denotes the forecast from the NN.

As demonstrated in Fig. 2.4, the workflow of NEAT contains random population genera-

tion, crossover, mutation, speciation, and evaluation by the fitness function. In this chapter,
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Figure 2.4: Workflow of NEAT.

the fitness function is defined using the forecast accuracy:

Fit = −
∑

t

(P̂class(t) − Pclass(t))2. (2.13)

Each gene in the population set corresponds to a neural network. We aim to find the best

gene with the largest fitness value (i.e., the lowest prediction error). In NEAT, the topol-

ogy of a NN is directly encoded into the gene by a direct encoding scheme [35], in order

to avoid Permutations Problem [45] and Competing Conventions Problem [36]. Specifi-

cally, connection and node (list of inputs, hidden nodes, and outputs) are encoded. Every

unit of connection gene describes the connection weight (W), output node (O), input node

(I), enable gate (E), and the number of innovation (N) that corresponds to a consecutive

arrangement of new generated node. The workflow of NEAT will be elaborated in the

following.

First, initial population (i.e., a set of genes) is generated randomly. Each gene represents a

NN. Note that under this random generation, a neural network might contain no route from

inputs to outputs, and we will remove these NNs from the initial population. For example,
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Figure 2.5: Encoding of a NN with 1 output and 3 inputs.

Figure 2.6: Mutation by appending a connection, where the link from Node 1 to Node 4 is inserted.

Figure 2.7: Mutation by appending a node, where Node 6 is inserted between Node 1 and Node 5.

Fig. 2.5 shows a NN containing 3 inputs (Pclass(t),Ws(t),Wdir(t)) and 1 output (P̂class(t+1)),

where in the first unit of connect gene, I:1 O:5 W:0.5 indicates connection from Node 1 to

Node 5 with weight of 0.5, and E:1 means that this is an enabled connection.

After generating the initial population, NEAT iteratively optimizes the topology and con-



23

nection weights of NNs using crossover and mutation. Specifically, nodes and connections

of NNs are inserted or removed randomly based on the Poisson distribution [53]. For ex-

ample, Figs. 2.6 and 2.7 show possible mutations by appending a connection and a node to

a neural network, respectively. After crossover and mutation, topologically homogeneous

genes are classified as one speciation determined by compatibility distance [53].

Then the fitness of species will be evaluated. If the highest fitness of species does not

increase or the number of generation is achieved, NEAT will output the species with high

fitness value, which will be used for wind generation forecast.

2.4.3 Bayesian Optimization based Parameter Search

The performance of NNs depends on the quality of datasets Xclass
up , Xclass

down, and Xclass
non obtained

by the DSPOT based ramp classifier in Section 2.4.1. As the performance of the DSPOT

based ramp classifier relies on the parameters b = (l, d, qup, qdown), we develop a Bayesian

optimization based approach that can efficiently find the best parameters b∗. The idea is

to model the unknown function between the parameters and the training errors as a multi-

variate Gaussian distribution, and then use a computationally cheap acquisition function to

guide the search for the best parameters.

Specifically, we introduce an acquisition function ζ(·) as the optimization objective, which

characterizes the expected training error improvement under b,

ζ(b) = E
∑

class

∑
i

(Fclass
i (b∗) − Fclass

i (b))+
 , (2.14)
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where Fclass
i (b) denotes the training error of the NN trained under b using Xclass

i described

in Section 2.4.2 and Fclass
i (b∗) is the lowest error that has been obtained so far. It is as-

sumed that the training errors {Fclass
i (b)|i ∈ {up, down, non}, class ∈ {GE,Mitsubishi}} are

random variables following the multivariate Gaussian distribution G ∼ N(m(b),Σ(b)) with

mean m(b) and covariance Σ(b). In each attempt, we find b that maximizes the acquisition

function ζ(b). Then, we use this b as the input of Algorithm 1 to determine Xclass
up , Xclass

down,

and Xclass
non , based on which we evolve the NNs. Then, {Fclass

i (b)|i ∈ {up, down, non}, class ∈

{GE,Mitsubishi}} will be added into a sample set S, and the mean m(b) and covariance

Σ(b) ofGwill be updated based on Bayesian Optimization [52]. The details of the Bayesian

optimization based parameter search are given in Algorithm 3.

Algorithm 2 Bayesian optimization based parameter search

Initialization: Initialize S = {(b, {Fclass
i (b)})}.

For each attempt:
1) Find the parameter vector b̂ that maximizes ζ, i.e., b̂ = arg max(b,{Fclass

i (b)})∈S ζ(b).
2) Generate Xclass

up , Xclass
down, and Xclass

non based on Algorithm 1 using b̂, and evolve the NNs
accordingly.
3) Add the current training errors {Fclass

i (b̂)} into the sample set S = S ∪ (b̂, {Fclass
i (b̂)}),

and update the parameters of m(b) and Σ(b) using S.

2.4.4 Short-Term Wind Farm Generation Forecast

The proposed DSPOT enhanced self-evolving neural networks (DSN) will train multi-

ple NNs, which capture different dynamics of wind farm generation. When forecasting

wind farm generation, we will first leverage the DSPOT based ramp classifier to determine

whether the current state of wind farm generation is in ramp up, ramp down, or non-ramp.

Based on the classified state, we choose the corresponding NNs to forecast the wind farm

generation.
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Specifically, let the function Hclass
θi

(·) represents the neural network with parameters θi

(i.e., the best gene) trained using the datasets: Xclass
i (t) = {Ws(t),Wdir(t), Pclass(t), Pclass(t −

1), ..., Pclass(t − Lag)}, the output of the neural network is

P̂class(t + 1) = Hclass
θi

(Xclass
i (t)). (2.15)

Based on the results of the ramp classifier, we pick the corresponding NNs (i.e., the best

gene) for each class of wind turbines. Therefore, the wind farm generation forecast P̂ag(t +

1) can be achieved by:

P̂ag(t + 1) = P̂mit(t + 1) + P̂ge(t + 1). (2.16)

Eq. (2.16) is the point forecast of wind farm generation.

To efficiently integrate the wind generation, distributional forecasts are often needed to

manage the uncertainty [60]. To this end, we leverage the collection of genes generated in

NEAT and use the forecasts by these genes to develop distributional forecasts. Let {P̂( j)
ag (t)}

represent the set of forecasts offered by each gene j. It is assumed that the forecast error

of the point forecasts follows the standard normal distribution with the mean µt and the

variance σ2
t as follows:

µt =
1
J

J∑
j=1

P̂( j)
ag (t), (2.17)

σ2
t =

1
J

J∑
j=1

(P̂( j)
ag (t) − µt)2, (2.18)

where J is the number of genes. Under such assumption, we calculate the (1−α) confidence
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interval of the point forecasts (2.16) as follows:

[P̂ag(t + 1) − Z(1 −
α

2
)σt+1, P̂ag(t + 1) + Z(1 −

α

2
)σt+1], (2.19)

where Z(1 − α2 ) represents the point where the cumulative distribution function of the stan-

dard normal distribution is equivalent to 1 − α2 .

Remarks. The proposed SENs can be trained offline. As the learning process of each SEN

is based on different datasets, we can train these SENs on parallel. This can significantly

reduce the training time of these SENs. Furthermore, the learning of SENs needs no AI

experts to manually tune the topology and the hyperparameters; SENs can automatically

adapt to the changing dynamics of wind farm generation purely based on the data. This can

greatly facilitate the implementation of the proposed method in reality.

2.5 Experimental Evaluation

2.5.1 Experimental Setup

2.5.1.1 Data

The data used in case studies are described in Section 3.3.1. Specifically, we use the data

of year 2009 to train the proposed SENs, and the data of year 2010 to validate the forecast

performance of the proposed approach.
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2.5.1.2 Evaluation Metrics

Mean absolute error (MAE) and root-mean square error (RMSE) are employed to evaluate

the forecast performance, i.e.,

MAE =
1
Nt

∑
t

∣∣∣P̂ag(t) − Pag(t)
∣∣∣,

RMS E =

√
1
Nt

∑
t

∣∣∣P̂ag(t) − Pag(t)
∣∣∣2.

where Nt is the number of data points in the test dataset.

2.5.1.3 Parameter Tuning

The forecast performance of NNs greatly depends on the quality of training datasets, which

hinges on the parameters (l, d, qup, qdown) and Lag. To find the best (l, d, qup, qdown), Algo-

rithm 3 is run with 200 attempts. To optimize Lag, we evaluate MAE under different values

of Lag (see Fig. 2.8) and pick the one with the lowest MAE. It is observed that the lowest

MAE is achieved when the feature dimension is 9 (i.e., Lag = 7). Worth noting is that

1) for larger Lag, bad features would be incorporated because the non-stationary nature of

wind generation (see the increase of MAE when the feature dimension is larger than 9); and

2) the evolution process under larger Lag becomes substantially complex, which makes the

running time increase significantly.

2.5.1.4 Benchmark
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Figure 2.8: MAE versus feature dimension size.

We compare the forecast performance of the proposed approach with the following bench-

marks:

• The adaptive AR model [61],

• The Markov-chain-based (MC) model [22],

• The SVM enhanced Markov (SVM-MC) model [61],

• The Seasonal NEAT (SNEAT) model trained by different season data without split-

ting ramp events,

• The NEAT model trained by the entire year data without splitting ramp events,

• The Long Short-Term Memory (LSTM) model trained by the entire year data,

• The Seasonal Self-evolving Neural Networks (SSEN) model [32].

The Seasonal NEAT model considers four seasons; but it does not split ramp and non-

ramp events in the training process, which would lead to poor performance when ramp

events occur. We use a prevailing structure of 3 layers to build the LSTM with the same

configuration in our previous work [32].
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2.5.2 Experimental Results

2.5.2.1 10-min Ahead Forecast

In Tables 2.1 and 2.2, we compare 10-min ahead forecast under different models for the

whole year data and ramp events in year 2010, respectively. The forecast results in terms

of MAE and RMSE are normalized using the nominal capacity 300.5MW.

Table 2.1
Forecast under different models over the whole year 2010

Error AR MC SVM-MC NEAT SNEAT LSTM SSEN DSN
MAE(%) 2.441 2.413 2.214 1.734 1.778 1.799 1.704 1.661

RMSE(%) 3.974 3.524 3.342 3.030 3.074 3.072 3.023 2.996

Table 2.2
Forecast under different models over all ramps of the year 2010

Error AR MC SVM-MC NEAT SNEAT LSTM SSEN DSN
MAE(%) 2.945 2.856 2.657 2.363 2.416 2.469 2.320 2.288

RMSE(%) 4.403 3.837 3.654 3.593 3.667 3.679 3.534 3.518

From Tables 2.1 and 2.2, we observe that the proposed approach DSN outperforms the

benchmarks. Compared with the non-NN based benchmarks (AR, MC, and SVM-MC),

the proposed approach improves the MAE at least 24.9% for the whole year data and at

least 13.8% for ramp events, respectively. Compared with the NN based benchmarks,

the improvement of the proposed approach(DSN) in terms of MAE is at least 2.5% for

the whole year and at least 1.3% for ramp events. Such improvements are because of

the splitting of non-ramp and ramp events, which enables SEN to more effectively learn

different dynamics of GE and Mitsubishi turbines measurements under non-ramp and ramp

events.

Figs. 2.9, 2.10, and 2.11 illustrates the prediction intervals for 3 representative ramp
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Figure 2.9: January 5, 2010.

Figure 2.10: March 19, 2010.

events. January 5, 2010 is chosen because there is a wind power ramp up event from 4AM

to 5AM with a ramp up rate of 85 Megawatt per hour (MW/H). March 19, 2010 is chosen

because of the significant wind power fluctuation from 7PM to 9PM with both ramp up and

ramp down events of an average ramp rate around 100 MW/H. October 9, 2010 is chosen

because of a remarkable ramp down event from 3AM to 5AM with an average ramp rate of

66.5 MW/H. As demonstrated in those pictures, the actual wind farm generation is mostly

confined in the prediction interval achieved from (2.19), regardless of the sharp ramps.
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Figure 2.11: October 9, 2010.

2.5.2.2 Other Forecasting Horizons

In Tables 2.3 and 2.4, we compare forecast of different models under different horizons

using the whole year data and ramp events in year 2010, respectively. From Tables 2.3 and

2.4, we observe that the proposed approach outstrips the benchmarks under these forecast-

ing horizons. It is observed in most cases that seasonal NEAT do not outperforms NEAT

which is trained by entire year data. It is due to the data of one season might not enough to

train a good NN compared to the while year data.

Table 2.3
MAE of different models at different forecasting horizons over the whole year 2010

Model 30min 40min 50min 60min
AR 4.837 6.516 8.160 9.624
MC 4.733 6.233 7.551 8.727

SVM-MC 4.733 6.233 7.550 8.727
NEAT 4.804 5.851 6.939 7.640

SNEAT 5.064 6.322 7.681 8.277
LSTM 4.664 6.517 7.681 8.257
SSEN 4.852 5.970 7.095 7.862
DSN 3.755 4.220 4.746 5.069
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Table 2.4
MAE of different models at different forecasting horizons over ramp events of the year 2010

Model 30min 40min 50min 60min
AR 6.991 8.871 11.883 11.996
MC 6.592 8.426 10.654 11.091

SVM-MC 6.591 8.425 10.654 11.091
NEAT 7.255 8.379 10.366 10.274

SNEAT 7.427 8.612 10.471 10.385
LSTM 7.025 9.255 11.558 10.915
SSEN 7.092 8.182 9.727 9.849
DSN 5.420 5.595 7.023 6.197

For the 30-min ahead forecast, compared with the non-NN based benchmarks (AR, MC,

and SVM-MC), the proposed approach improves the MAE at least 20.6% for the whole

year data and at least 17.7% for ramp events, respectively; compared with the NN-based

benchmarks (NEAT, LSTM and SSEN), the enhancement of the proposed approach by

MAE is no less than 19.4% for the whole year data and at least 22.8% for ramp events.

For the 40-min ahead forecast, compared with the non-NN based benchmarks (AR, MC,

and SVM-MC), the proposed approach improves the MAE at least 32.2% for the whole

year data and at least 33.5% for ramp events, respectively; compared with the NN-based

benchmarks (NEAT, LSTM and SSEN), the enhancement of the proposed approach by

MAE is no less than 27.8% for the whole year data and at least 31.6% for ramp events.

For the 50-min ahead forecast, compared with the non-NN based benchmarks (AR, MC,

and SVM-MC), the proposed approach improves the MAE at least 37.1% for the whole

year data and at least 34% for ramp events, respectively; compared with the NN-based

benchmarks (NEAT, LSTM and SSEN), the enhancement of the proposed approach by

MAE is no less than 31.6% for the whole year data and at least 27.7% for ramp events.
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For the 60-min ahead forecast, compared with the non-NN based benchmarks (AR, MC,

and SVM-MC), the proposed approach improves the MAE at least 41.9% for the whole

year data and at least 44.1% for ramp events, respectively; compared with the NN-based

benchmarks (NEAT, LSTM and SSEN), the enhancement of the proposed approach by

MAE is no less than 33.6% for the whole year data and at least 37% for ramp events.

2.6 Conclusion

We develop a method to enhance situational awareness in short-term wind power fore-

casts by automatically splitting different dynamic data. Specifically, the proposed approach

initially classifies the wind farm generation data into ramp and non-ramp datasets using

DSPOT, which leverages dynamic ramp thresholds to account for the time-varying dy-

namics of ramp and non-ramp events. We then train different NNs based on each dataset

to learn different dynamics of wind farm generation by NEAT, which are able to obtain

the best network topology and weighting parameters. As the efficacy of the neural net-

works relies on the quality of training datasets (i.e., the classification accuracy of ramp and

non-ramp events), a Bayesian optimization based approach is developed to optimize the

parameters of DSPOT to enhance the quality of the training datasets and the corresponding

performance of the neural networks. Experimental results show the proposed approach is a

promising way to enhance situational awareness.
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CHAPTER 3

A MACHINE LEARNING FRAMEWORK FOR ROBUST EVENT

CLASSIFICATION USING IMPERFECT REAL-WORLD PMU DATA

3.1 Introduction

Growing miscellaneous faults (e.g., bad weather,time-worn power lines, wildfire and ani-

mal activities) in transmission make the complex grid more vulnerable. Recent years have

witnessed the booming deployment of phasor measurement units (PMUs) [2]. More than

2500 PMUs are installed in the North American power system. Compared to traditional

supervisory control and data acquisition (SCADA) systems, PMUs are of much higher

sampling rates (e.g., 30 or 60 samples per second in the U.S.), which provides golden op-

portunities to achieve high level of situational awareness (e.g., real-time event detection

and classification), in order to prevent large-scale blackouts (e.g., [1, 57])

However, large volumes of streaming data (i.e., 100 PMUs @60Hz could generate 600

GB raw data in one day) make detection and identification manually impossible, this calls

for automatic event classification. On the other hand, the real-world data is imperfect (e.g.,

bad data and missing data) and insufficient, directly using such data to build machine learn-

ing (ML) models can hardly get good results. Further, the raw data is in an overwhelmingly

large volume, so it can hardly use it directly as inputs of any ML models.

In this chapter, we proposed a framework to enhance the situational awareness on trans-

mission grid in terms of event classification that could work in imperfect real-world data.
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3.2 Related Works

Much effort has been made on the development of PMU based event detection and clas-

sification. For PMU based event detection, many methods have been developed (e.g.,

[12, 29, 30, 38, 48, 49, 59, 65]). Compared to PMU based event detection, large amounts

of high-quality labeled PMU datasets are critical for the development of PMU based event

classification, especially for the development of neural network based classifiers. How-

ever, based on our observations from large amounts of real-world PMU data (see Section

3.3), high-quality labeled PMU datasets are not available in practice. In fact, many existing

works on PMU based event classification consider a small amount of PMU data with a few

labeled events. For example, in [28], the dataset consists of only 32 labeled events; in [14],

only 4 PMUs are used in case studies; in [39], only 57 labeled line events are used to train

an event classifier; in [56], hundreds of labeled frequency events from the FNET/GridEye

system are used to train a Convolutional Neural Network (CNN) based frequency event

detector. The generalization of event classifiers trained using a small dataset can be poor.

To address the challenge of insufficient PMU data, some studies leverage synthetic data

generated by simulation or neural networks. For instance, in [30], simulated data with

man-made noises are used; in [63], Generative Adversarial Networks (GAN) are used to

generate synthetic event data. While synthetic data can increase the amounts of data for

training event classifiers, the events and grid characteristics hidden in the real PMU data

can hardly be represented by synthetic data. Thus, the generalization of event classifiers

trained using synthetic data can still be poor.

We leverage large amounts of real-world PMU data from the Western Interconnection of

continental U.S. transmission grid (see the data description in Section 3.3.1) for the devel-
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opment of event classifiers. By analyzing this large dataset, we find that it is challenging

to directly use this dataset to train event classifiers due to the low data quality. Specifically,

the real PMU data are noisy and contain bad data, dropouts, and timestamp errors. The

timestamps of labeled events provided in the event logs are inaccurate. Though the entire

dataset contains measurements from many PMUs over a two-year period, the total number

of labeled events is only a few thousands and the distribution of different event types is

highly imbalanced. Due to these issues, the performance of off-the-shelf machine learning

models directly trained using such dataset can be significantly degraded.

Recently, there have been several attempts using large-scale real PMU data to develop

event classifiers based on neural networks (e.g., auto-encoder model [24], Convolutional

Neural Network (CNN) [40], spatial pyramid pooling (SPP)-aided CNN [62], and informa-

tion loading enhanced Deep Neural Network (DNN) [50]). However, the hyperparameter

tuning of the neural network based approaches is challenging and the training time is long.

Though good classification results using neural networks are reported [24, 40, 50, 62], the

interpretability of neural networks is low, not to mention the adversarial vulnerability of

neural networks.

3.2.1 Main Contributions

To address these challenges, we develop a novel machine learning framework for training

event classifiers using large-scale imperfect real-world PMU data, which consists of three

main steps: data preprocessing, fine-grained event data extraction, and feature engineer-

ing. The goal is to obtain high-quality labeled PMU training data from the low-quality

real PMU data. Specifically, the data preprocessing step addresses the data quality issues
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of PMU measurements (e.g., bad data and missing data); the fine-grained event data ex-

traction step accurately localizes the events from the inaccurate event timestamps in the

event logs by using a model-free event detection method developed based on the low-rank

property of PMU data; and the feature engineering step constructs the event features based

on the patterns of different event types, in order to improve the performance and the inter-

pretability of the event classifiers. Based on the proposed machine learning framework, we

also develop a workflow for event classification using the real PMU data streaming into the

system in real time. One salient merit of the proposed framework is that large-scale real

PMU data is reduced to a small set of event features, which can be used to efficiently train

many off-the-shelf lightweight machine learning models. As the features are constructed

based on the event patterns, the contribution of any single PMU measurement to the fea-

tures is low, which can effectively mitigate the impact of bad and missing data and improve

the robustness of the event classifiers.

Using the two-year real-world PMU data from the Western Interconnection of continen-

tal U.S. transmission grid, we evaluate the performance of the proposed machine learning

framework. Many off-the-shelf lightweight machine learning models can be efficiently

trained in our framework and achieve good performance. For example, the training time of

the Random Forest model is less than 2 seconds while the testing accuracy of the Random

Forest model is 94%. Moreover, our framework demonstrates a strong robustness against

missing data. Even under the missing rate of 50%, the accuracy of the Random Forest

model can still achieve 87%. In summary, the proposed machine learning framework pro-

vides a promising way to train robust event classifiers with good interpretability and low

training cost.
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3.3 Data Description and Key challenges

In this section, we introduce the real-world PMU data used in this study and identify the

key challenges of using this dataset for the development of event classifiers.

3.3.1 Data Description

This paper uses real-world PMU data from the Western Interconnection of continental U.S.

transmission grid. The dataset is complied by the Pacific Northwest National Laboratory

(PNNL) to anonymize the data such that proprietary information (e.g., PMU locations,

event locations, and the system topology) is unavailable. The dataset contains measure-

ments from 43 PMUs over a two-year period (2016–2017). The sampling rates of PMUs

are either 30 or 60 frames per second. The size of the dataset is about 5 TB (stored in

Parquet format), which contains over 93 billion records. In each record, the measurements

contain: 1) coordinated universal time (UTC), 2) voltage magnitude of positive sequence,

A phase, B phase, and C phase, 3) voltage angle of positive sequence, A phase, B phase,

and C phase, 4) current magnitude of positive sequence, A phase, B phase, and C phase, 5)

current angle of positive sequence, A phase, B phase, and C phase, 6) frequency, 7) rate of

change of frequency (ROCOF), 8) PMU status flag, and 9) anonymized PMU ID.

Besides the raw PMU measurements, event logs are provided for the development of

event classifiers. In the event logs, four types of events (i.e., line outage, transformer out-

age, frequency event, and oscillation event) are recorded. For each event, start timestamp,

end timestamp, event type, event cause, and event description are provided. The total

number of events in the event logs is 4,854, including 3,667 line outages, 621 transformer
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Figure 3.1: PMU data availability.

outages, 465 frequency events, and 100 oscillation events.

3.3.2 Key Challenges

By analyzing the real-world PMU measurements and the event logs, we find that it is chal-

lenging to directly use this dataset to develop event classifiers as the data quality is low and

off-the-shelf machine learning approaches require high-quality training data. Specifically,

we face the following major challenges of using this dataset for the development of event

classifiers.

3.3.2.1 Incomplete and Noisy PMU Measurements

Fig. 3.1 illustrates the availability of PMU data, where the data from some PMUs are

completely missing in certain months. Moreover, the current magnitude of A phase, B

phase and C phase and the current angle of A phase, B phase and C phase are unavailable
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Figure 3.2: SNR of voltage magnitude of positive sequence of different PMUs.

in most cases. Fig. 3.2 illustrates the signal-to-noise ratio (SNR) of PMUs. Based on [6], 45

dB can be used as a threshold to indicate whether the PMU measures are noisy. As shown

in Fig. 3.2, three PMUs are below 45 dB. Therefore, the quality of PMU measurements

needs to be accounted for when preparing for the training dataset.

3.3.2.2 Inaccurate Event Timestamps of Event Logs

By analyzing the event logs, we observe that the timestamps of events provided in the event

logs are inaccurate. Fig. 3.3 illustrates the PMU measurements during different events,

where the red vertical line indicates the start time of the event provided in the event logs.

For example, in Fig. 3.3 (a), the actual start time of the frequency event is around 19:43:00,



41

while the start time provided in the event logs is 19:42:00. Clearly, the timestamps in the

event logs are not accurate. If such timestamps are used for event extraction, with high

probability, the event features would be missing and therefore the performance of event

classification would be degraded.

Figure 3.3: Example of different events.

3.3.2.3 Insufficient and Imbalanced Training Data

As shown in Fig.3.4 total number of events in the event logs is only less than five thou-

sands(i.e., total number of events in the event logs is 4,854, including 3,667 line outages,

621 transformer outages, 465 frequency events, and 100 oscillation events) and 75% of the

events are line outages. Directly applying off-the-shelf machine learning models on such

dataset can lead to overfitting issues, especially for neural network based models, where the

parameters of neural networks can be much larger than the number of events in the training

dataset. To address this challenge, recent works on neural networks (e.g., [50, 62]) lever-

age data augmentation and report good classification results; however, the training time of

neural networks is long and the interpretability of neural networks is low.
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Figure 3.4: Insufficient and imbalanced training data.

3.3.2.4 Incomplete Labeled PMU Data

As shown in Fig.3.5, about twenty-five hundred events in 2016 are covered in the event logs,

however we found there are at least one thousand events not been reported. In 2017, about

four thousand events need to be added. Also, those event logs are maintained manually, so

here is a chance to contain some errors.

Figure 3.5: The event logs are incomplete.
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As shown in the next section, different types of the events exhibit distinct features, based

on which good machine learning models with better interpretability and low training cost

can be built.

3.4 A Machine Learning Framework for Robust Event Classification

3.4.1 The Machine Learning Framework for Real-world PMU Data

To address the challenges of using the real-world PMU data for the development of event

classifiers, we propose a novel machine learning framework to handle these challenges,

as illustrated in Fig. 3.6. Specifically, we first do data preprocessing: 1) we coarsely

localize the events based on the inaccurate event timestamps in the event logs, where a

large time window (e.g., 10 minutes) around the event timestamp in the event logs is used

to ensure that the event features are included; 2) we then do data quality assessment to

filter out bad readings, which are treated as “missing” data; and 3) we complete all the

missing data based on our prior work [19]. Then, we do fine-grained event data extraction

to accurately localize the events using event detection, where a much smaller time window

(e.g., 5 seconds) will be used to ensure that only the event data is included. Based on the

fine-grained event data extraction, more distinct features can be constructed for each event

type. These features will be used to train event classifiers. In the following, we discuss the

details of each component in the proposed machine learning framework.
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Figure 3.6: The machine learning framework for robust event classification.

3.4.2 Data Preprocessing

As the event timestamps in the event logs are inaccurate, we extract the data in a large time

window (i.e., 10 minutes) centered at the start time of an event provided in the event logs

(i.e, 5 minutes before and 5 minutes after the start time), in order to preserve the event

features. In the raw PMU dataset, the measurements of all PMUs in each day are stored

in one Parquet file and these measurements are not ordered according to the timestamps.

When doing the event data extraction, we partition the data based on PMU ID and sort

the corresponding measurements based on the timestamps. As mentioned in Section 3.3,

certain signals (e.g., the current magnitude of A, B and C phases) are missing in most cases.

In the event data extraction, we extract the voltage magnitude and the current magnitude of

positive sequence and ROCOF for the development of event classifiers.

Then, we do data quality assessment to filter out bad data. As the PMU status flags

are provided, we first remove the measurements when PMUs were malfunctioning or in

test mode. After the status check, we further remove the bad data based on the following

criteria:
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• Remove the measurements out of physical bound, i.e., the angle measurement larger

than 180 or less than zero and the current or voltage magnitude less than zero.

• Remove the measurements that are 3 times greater than the standard deviation based

on the empirical distribution of the measurements.

The bad data are treated as “missing” data, which are completed based on our regularized

tensor completion approach [19].

3.4.3 Event Detection Based Fine-grained Data Extraction

The goal of fine-grained data extraction is to accurately extract the event data for better

constructing event features, as the event timestamps provided in the event logs are not

accurate. To this end, we develop a model-free event detection method based on the low-

rank property of PMU data to accurately localize the events. We observe that when the

disturbance occurs in the system, the low-rankness of PMU data will change (see Fig. 3.7),

which can be quantified using the singular values of PMU measurement matrices.

Specifically, let Mw
s (t) ∈ Cw×n be a PMU measurement matrix for an extracted signal

s ∈ S, which embraces the past w measurements before the timestamp t from n PMUs.

Here S denotes the set of extracted signals including the voltage magnitude and the current

magnitude of positive sequence and ROCOF. For Mw
s (t), we do the singular value decom-

position (SVD) and compute the ratio of the largest σ1 and the second largest singular σ2

values, i.e., ηt =
σ2
σ1

. Then, the average relative change of this ratio in the time window w is
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calculated as

ξw
s (t) =

ηt − ηt−w

ηt−w · w
. (3.1)

Based on these ξw
s (t) from different signals, we use a threshold-based OR rule to determine

whether there is an event. In other words, an event is detected, if one of these ξw
s (t) is greater

than a pre-determined threshold θs. Fig. 3.7 gives an example of detecting a frequency

event using the ROCOF signal, where ξw
f (t) changes significantly when the frequency event

occurs. When an event is detected, we extract the event data in a smaller time window W

(e.g., 5 seconds) centered at the detected event start time.

Figure 3.7: Frequency event detection based on the low-rankness of PMU data, where ξ150
f (t) of the ROCOF

signal is shown in the bottom and w = 150 is used.

The proposed event detection approach is model-free with the parameters of the window

size w and the detection thresholds θ = {θs} of extracted signals S. To optimize the de-

tection performance, we tune the parameters by a Baysian optimization algorithm, which

can efficiently search for the best parameters. The idea of Baysian optimization is to model

the unknown function between the parameters and the detection errors using a multivariate

Gaussian distribution, and then use a computationally cheap acquisition function to guide

the search. We introduce an acquisition function β(·) as the optimization objective, which
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characterizes the expected detection error improvement under (θ,w):

β(θ,w) = E[(e(θ∗,w∗) − e(θ,w))+], (3.2)

where e(θ,w) denotes the detection error under (θ,w), and e(θ∗,w∗) denotes the lowest de-

tection error that has been obtained so far. It is assumed that the detection errors are random

variables following the multivariate Gaussian distribution: G ∼ N(m(θ,w),Cov(θ,w)) with

mean m(θ,w) and covariance Cov(θ,w). In each iteration, we find (θ,w) that maximizes the

acquisition function β(θ,w). Then, (θ,w) and the corresponding e(θ,w) will be added into

a sample set S, and the mean m(θ,w) and covariance Cov(θ,w) of G will be updated ac-

cordingly [52]. The details of the Bayesian optimization based parameter search are given

in Algorithm 3.

Algorithm 3 Bayesian optimization based parameter search
Initialization: Initialize S = {((θ,w), e(θ,w))}.
For each iteration:
1) Find the parameters (θ̂, ŵ) that maximize β, i.e., (θ̂, ŵ) = arg max((θ,w),e(θ,w))∈Sβ(θ,w).
2) Use (θ̂, ŵ) for event detection and compute the corresponding detection error e(θ̂, ŵ).
3) Add ((θ̂, ŵ), e(θ̂, ŵ)) into the sample set S = S ∪ ((θ̂, ŵ), e(θ̂, ŵ)), and update the
parameters of m(θ,w) and Cov(θ,w) using S.

3.4.4 Feature Engineering

Using the event data from fine-grained data extraction, we construct the event features

based on the patterns of different event types. By carefully analyzing the PMU data during

events, we find that the shape and the duration of the signals under different event types are

distinct:



48

• The ROCOF measurements of frequency events tend to have a deeper and wider dip,

compared to a narrow spark of line and transformer outages (see Fig. 3.8(a)).

• The voltage magnitude measurements of transformer outages tend to have a cliff-like

drop with a longer duration time, compared with a narrow spark of line outages (see

Fig. 3.8(b)).

• The signal similarity among different PMUs under different event types is different.

Frequency events can be observed by all PMUs, while only a few PMUs can capture

line and transformer outages.

Based on these observations, we construct the event features.

Specifically, let Xs
i (t) denote the measurement of the ith PMU’s signal s ∈ S at time t.

In the event detection based fine-grained data extraction, we extract the event data in a

small time window W. LetW denote the set of timestamps in this time window W. Using

the measurements {Xs
i (t), t ∈ W} of each PMU’s signal in this window, we construct the

following six event features as illustrated in Fig. 3.9:

• Amplitude above the average:

F s
1(i) = max

t∈W
{Xs

i (t) − Xs
i } (3.3)

• Amplitude below the average:

F s
2(i) = max

t∈W
{Xs

i − Xs
i (t)} (3.4)
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Figure 3.8: Comparison of ROCOF and voltage magnitude in different events.

Figure 3.9: Example of created features.

• Ramp-up rate:

F s
3(i) = max

t1>t2,t1,t2∈W
{Xs

i (t1) − Xs
i (t2)} (3.5)
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• Ramp-down rate:

F s
4(i) = max

t1<t2,t1,t2∈W
{Xs

i (t1) − Xs
i (t2)} (3.6)

• Area above the average:

F s
5(i) =

∑
{t|Xs

i (t)>Xs
i ,t∈W}

(Xs
i (t) − Xs

i ) (3.7)

• Area below the average:

F s
6(i) =

∑
{t|Xs

i (t)<Xs
i ,t∈W}

(Xs
i − Xs

i (t)) (3.8)

where Xs
i is the average of the ith PMU’s signal s, i.e., Xs

i =
1
W

∑
t∈W Xs

i (t). These features

aim to capture the shape features of different event types shown in Figs. 3.9 and 3.8(b). Fig.

3.9 illustrates the constructed features for each event type, where Fig. 3.9(a) corresponds

to the typical shape of ROCOF in a frequency event, Fig. 3.9(b) corresponds to the typical

shape of voltage/current magnitude in a transformer outage, and Fig. 3.9(c) corresponds to

the typical shape of ROCOF in a transformer/line outage.

To capture the signal similarity among different PMUs, we compute the maximum F s,max
j ,

the minimum F s,min
j , and the mean F s

j values of each feature j = 1, ..., 6 based on n PMUs’

features {F s
j(i), i = 1, ..., n}. As the voltage magnitude, the current magnitude, and ROCOF

are considered in the extracted event data, the number of features constructed for each event

is 54 (6 × 3 × 3).

Based on our experiments, we find that the auxiliary ratio features {F s
1/F

s
2, F

s
5/F

s
6, F

s
5/(F

s
5+
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F s
6)} for ROCOF constructed based on F s

j can better capture the signal shape. Therefore, in

our experiments, we use these 57 (54+3) features of each event to build event classifiers.

Remarks. The proposed features are constructed based on the patterns of different event

types observed in real-world PMU data. Compared to neural network based approaches,

the number of features in our approach is much less than the large number of automatically

generated features (e.g., CNN), and the interpretability of our approach is much better.

Moreover, with the small number of good features, we need much less number of training

data to train a good event classifier, which can address the challenge of insufficient and

imbalanced training data, and the training time is negligible compared to neural network

based approaches.

3.4.5 Classification Model

In our machine learning framework, we address the challenges of using real-world PMU

data through data preprocessing, fine-grained event extraction, and feature engineering.

The proposed machine learning framework can significantly reduce the dimensionality of

the training data to a few number of good features, which can facilitate the use of many off-

the-shelf lightweight models. To train an event classification model, we use the constructed

features as input and the corresponding event type in the event logs as label. To find the

best model, we train different machine learning models and compare their performance.

In our experiments (see Section 4.4), we examine the performance of many off-the-shelf

models, in which the Random Forest model performs best.
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3.4.6 Event Classification Using Real-world PMU Data

Figure 3.10: The workflow for event classification using real-world PMU data.

To apply the trained event classifier in practice, we still need to deal with the incomplete

and noisy PMU measurements, which are streaming into the system in real time. Based on

the proposed machine learning framework, we develop a workflow for event classification

using real-world PMU data, as illustrated in Fig. 3.10. Specifically, the raw PMU data

are streaming into the system. The data preprocessing (i.e., data quality assessment and

missing data completion) developed in Section 3.4.2 is first applied on the raw PMU data

to fix the bad and missing data. Then, the event detection is used to determine whether

there is an event. If an event occurs, the PMU data in the small window W will be used to

calculate the features based on Section 3.4.4. The calculated features will be input into the

event classifier to determine the event type.
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3.5 Experimental Evaluation

3.5.1 Experimental Setup

3.5.1.1 Data

The data used in case studies are described in Section 3.3.1. For the 2-year PMU data, we

randomly split the PMU data in each month into 80% for training and 20% for testing, so

that the events across the entire year are fairly distributed between the training set and the

testing set. The event types provided in the event logs are used as the labels for classifi-

cation, except the line trip and the oscillation events, because the recorded line trip cannot

be determined as faults based on the current high-level description of the event logs and

oscillation events can be detected/classified by many existing approaches (e.g., [34, 37]),

which can be easily integrated into the proposed machine learning framework. Similar to

the related work [62], this paper focuses on the classification of line outages, transformer

outages, and frequency events.
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3.5.1.2 Evaluation Metrics

Four metrics are used to evaluate the classification performance, i.e., accuracy (ACC), pre-

cision (PRE), recall (REC), and F1 score, which are defined as follows:

ACC = (TP+FN)/(TP+TN+FP+FN),

PRE = TP/(TP + FP),

REC = TP/(TP + FN),

F1 = 2 × (PRE × REC)/(PRE + REC),

where TP (i.e., True Positive) and TN (i.e., True Negative) denote the number of positive

and negative instances that are correctly classified, respectively. FP (i.e., False Positive) and

FN (i.e., False Negative) denote the number of misclassified negative and positive instances,

respectively. The precision represents how good the proposed model is at excluding false

alarms. The recall represents how good the proposed model is at not missing true events.

3.5.1.3 Parameter Tuning

In the proposed machine learning framework, there are two key parameters, i.e., the number

of measurements w for event detection and the window size W for feature calculation.

Based on Algorithm 3, we find the best w is 120 (detection accuracy: 99.3%), which is

used throughout the experiments. To show the impact of w on the event detection, Fig.

3.11 illustrates the event detection accuracy obtained under different w.

For the window size W, we optimize W based on the classification accuracy. In Fig.
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Figure 3.11: Event detection accuracy versus w.

Figure 3.12: Event classification accuracy versus W.

3.12, we evaluate the classification accuracy under different W and find the best accuracy

is achieved when W is 10 seconds, where the Random Forest model is used.

3.5.1.4 Benchmark

We evaluate the performance of different classification models under the proposed machine

learning framework:
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• The Random Forest (RF) model,

• The Gradient Boosting Decision Tree (GBDT) model,

• The K-Nearest Neighbor (KNN) model,

• The Logistic Regression (LR) model,

• The Support Vector Machine (SVM) model,

• The Decision Tree (DT) model.

We use the radial basis function (RBF) as the kernel of SVM. We fine-tune the hyperpa-

rameters of all these models via grid search. We also compare the performance of these

models with neural network models, i.e., the Long Short-Term Memory (LSTM) model

and the Convolutional Neural Networks (CNN) model, where the features are automati-

cally generated based on the input signals. Specifically, for LSTM and CNN, 3-minute

measurements of each event (1 minute before and 2 minutes after the start timestamp of a

detected event) are used as input to train the classifiers. When training these models, 5-fold

cross-validation is used. The trained models are then evaluated using the testing dataset.

3.5.2 Classification Results

Table 3.1
event classification performance under different models.

Model ACC(%) PRE(%) REC(%) F1(%)
RF 94 95 88 91

GBDT 93 94 88 91
KNN 85 78 63 66
LR 93 81 66 69
DT 81 78 81 79

SVM 92 86 74 79
CNN 69 23 33 27

LSTM 69 23 33 27
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Figure 3.13: Confusion matrix of the RF model for the testing data.

Table 3.1 compares the performance of different classification models using the testing data.

The performance of the RF model outperforms the other models in all evaluation metrics.

From Table 3.1, we can observe that the performance of non-neural network models (i.e.,

RF, GBDT, KNN, LR, SVM, DT) trained using the proposed machine learning framework

is better than the neural network models (i.e., CNN, LSTM) trained directly using the PMU

data. For the non-neural network models, the performance of RF and GBDT are close, and

both performs much better than KNN, LR, SVM, and DT. Compared to KNN, LR, SVM,

and DT, RF and GBDT are ensemble methods, which consist of a pool of trees that can

better capture the features of different types of events and deal with the imbalanced training

data.

Fig. 3.13 illustrates the confusion matrix of the RF model based on the testing data,

where the rows represent the estimated event type, the columns represent the true event

type, and the value of each cell represents the classification accuracy of the corresponding

event type. The diagonal and off-diagonal cells in Fig. 3.13 represent the events that are

correctly and incorrectly classified, respectively. From Fig. 3.13, it is observed that most

of the events (i.e., 94% on average) can be classified correctly. For the misclassified events,

4.6% of line outages are misclassified as transformer outages, and 5.3% of frequency events
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are misclassified as line outages. By analyzing these misclassified events, we find that the

reasons for misclassifying these events are 1) the patterns of some line and transformer

outages are similar and 2) the patterns in the ROCOF signal of some frequency events are

buried by noise due to the low SNR.

For the neural network models, the classification results in Table 3.1 agree with the find-

ings in [50, 62] that directly using the PMU data to train neural networks cannot achieve

good classification results. This is because 1) directly applying such imbalanced data can

cause severe overfitting problems; 2) the number of labeled events is only a few thousands,

which is not enough for training a good neural network; and 3) neural network based auto-

matic feature generation using the PMU data cannot well capture the event patterns. Hence,

the performance of off-the-shelf neural network models directly trained using such a dataset

can be significantly poor.

Table 3.2
Training time of different non-neural network models.

Model RF GBDT KNN LR DT SVM
Training time(secs) 1.59 25.39 0.01 0.37 0.21 3.48

Table 4.4 compares the training time of different non-neural network models in a server

with dual-sockets Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz and 64 GB of memory.

The training of all these models takes only a few seconds, compared with hours of training

time for neural networks reported in [50, 62]. Specifically, the RF model, which achieves

the best classification performance, takes only 1.59 seconds for training. In comparison, the

training time of the GBDT model is about 25 seconds. These results show that the proposed

machine learning framework provides a promising ways to train good event classifiers with

good interpretability and low training cost.
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3.5.3 Robustness Analysis

Event classifiers trained under the proposed machine learning framework are robust against

the low-quality PMU data (e.g., bad and missing data described in Section 3.4.2). To

evaluate the robustness, we compare the classification performance under different data

missing rates in the testing dataset. Specifically, the PMU data are assumed to be missing

randomly with a probability. The missing data will be first recovered in our framework

using our regularized tensor completion approach [19]. Then, the recovered PMU data will

be used to calculate the features for event classification.

Table 3.3
Event classification performance of the RF model under different missing rates

Missing Rate(%) ACC(%) PRE(%) REC(%) F1(%)
10 94 94 88 91
20 87 93 87 85
30 87 89 63 69
40 88 91 65 71
50 87 91 64 69

Table 3.3 compares the classification performance using the RF model under different

missing rates. It is observed that the classification performance under 10% missing rate is

almost the same as the results in Table 3.1. As the missing rate increases, the classification

performance slightly drops but still remains at a high level, while the classification perfor-

mance of the neural network model in [62] drops significantly. This is because the proposed

machine learning framework leverages the features constructed based on the event patterns

and does not depend on the specific PMU measurements for event classification. Therefore,

even with high missing rates, our approach can still perform well as long as the patterns are

preserved.
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3.6 Conclusion

We have developed a machine learning framework for training robust event classifiers to

enhance the situational awareness of power systems using imperfect PMU data. Our frame-

work has addressed the challenges of using real-world PMU data, such as incomplete and

noisy PMU measurements, inaccurate event timestamps in the event logs, and insufficient

and imbalanced training data. One salient merit of the proposed framework is that large-

scale real-world PMU data is reduced to a small set of event features, which can be used to

efficiently train many off-the-shelf lightweight machine learning models. As the features

are constructed based on the event patterns, the contribution of any single PMU measure-

ment to the features is low, which can effectively mitigate the impact of bad and missing

data and improve the robustness of the event classifiers. Numerical experiments using the

real-world dataset from the Western Interconnection of the U.S power transmission grid

show that the event classifiers trained under the proposed framework can achieve high clas-

sification accuracy while being robust against low-quality data. Experimental results show

the proposed approach is a promising way to enhance situational awareness with good in-

terpretability and low training cost.
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CHAPTER 4

AUTOMATIC LABELING REAL-WORLD PMU DATA

4.1 Introduction

As there are more than 2500 phasor measurement units (PMUs) deployed in North America

with high sampling rates (e.g., 30 or 60 samples per second in the U.S.), it provides golden

opportunities to achieve high level of situational awareness, but it also trigger the alarm

that makes the event labeling works prohibitively costly. Because it requires significant

efforts from domain experts to maintain the event logs (i.e., labels) and even hand-label

the events. And high volume data makes the event labeling works impossible (e.g., 100

PMUs @ 60Hz sampling rate incessantly generate 600GB raw data in 1 day). On the other

hand, the real-world data is imperfect (e.g., bad data and missing data). Therefore, one

fundamental open question is how to deal with automatic labeling work using imperfect

real-world PMU data.

In this chapter, we focus on events auto labeling. Basically, we consider the scenario with

very limited labeled data.
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4.2 Related Works

One key task for the automatic data labeling is to build a better event classifier, however, it

usually requires sufficient labeled PMU data.

To address the challenge of insufficient labeled PMU data, some studies leverage syn-

thetic data by simulation [30] or Generative Adversarial Neural Networks [63] to train

event classification models. Although these approaches can increase the number of labeled

data for training event classifiers, the event and grid characteristics hidden in the real-world

PMU data can hardly be represented by synthetic data. Thus, the generalization of event

classifiers trained using synthetic data can be poor.

In order to leverage the large amount of unlabeled PMU data, semi-supervised learning

(SSL) based methods (e.g., self-training [13, 25], hidden structure semi-supervised ma-

chine [64], and adversarial SSL [18]) have been proposed, which leverage both labeled and

unlabeled data. The idea of SSL is to use limited labeled data to guide the labeling process

for the unlabeled data, which can be used for training event classifiers. However, these SSL

based methods rely on well-developed and non-customizable models to label the unlabeled

data, and the performance of these models largely depends on the amount of available la-

beled data. With scarce labeled data, the performance of SSL based methods could be

poor. Moreover, the SSL based methods cannot easily incorporate the domain knowledge

on different types of events, which can provide useful information for event classification.

Different unsupervised learning based labeling approaches have been proposed to deal

with no labeled data scenario, e.g., clustering techniques [15], low-rank techniques [27],

PCA based techniques [9, 26], and convolutive dictionary based techniques [48]. One key
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challenge is how to determine the correct number of clusters (i.e., the number of event

types). As no labeled PMU data are utilized, it is challenging for the unsupervised learning

approaches to accurately capture the features of different types of events. Thus, it is highly

possible that different types of events may be identified as the same type or normal opera-

tions could be considered as events, which would introduce modeling error in auto labeling

results.

To address these challenges, we proposed auto labeling framework both limited labeled

data and no labeled PMU data, which can use noisy and low-quality PMU data [66]. For

limited labeled data scenario, we use Snorkel [46], an open-source system for quickly

assembling training data through weak supervision, to employ the central principles of the

data programming paradigm [47], in which developers create labeling functions to label

the data and employ supervised learning techniques to assess the accuracy of these labeling

functions. For no labeled data scenario, we use K-means algorithm for different labeling

function learning, then we use the Snorkel to refine the estimated labels. Compare to the

recent framework in 2 scenarios, our method can easily incorporate the domain knowledge

and potentially use low-quality unlabeled PMU data to achieve auto labeling task.

4.2.1 Main Contributions

We develop an auto labeling framework for both limited labeled and no labeled PMU

data using imperfect real-world PMU data. The key idea is to estimate the labels of large

amounts of unlabeled PMU data.

Specifically, for a limited labeled data scenario, we first learn a series of labeling functions
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based on the knowledge of different types of events, which can generate initial estimates of

the labels. As these labeling functions are learnt using the same dataset with scarce labels,

the estimated labels are often correlated and the estimates can be noisy and biased. Directly

using such estimates cannot generate good event classifiers. To enhance the accuracy of the

estimated labels, a generative model(i.e., snorkel and T-cherry junction tree) is developed

to characterize the correlations among the estimated labels, based on which the estimated

labels from labeling functions are combined in a probabilistic manner to generate the “true”

labels. Then, the refined labels from the generative model are used to train event classi-

fiers. It is worth noting that using such an approach, less efforts are required from domain

experts to maintain the event logs for building event classifiers; by examining the labeling

performances, domain experts can further enhance the classification models. The findings

in our work can shed the light on using imperfect real-world PMU data with scarce labels

for event classification.

Using the two-year real-world PMU data from the Western Interconnection of the conti-

nental U.S. transmission grid, we evaluate the performance of the proposed auto labeling

framework. The experimental results show that in limited labeled data scenario (i.e., only

5% labeled data), the average accuracy of the estimated labels using our approach can be

around 70.9%, 73.8% and the average accuracy of the corresponding event classifier can

achieve about 78.4%, 81.2% for Snorkel and T-cherry junction tree respectively.

This shows a promising way for auto labeling under extremely insufficient labeled data.
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4.3 Auto Labeling by Limited Labeled Data

4.3.1 Learning Framework

Figure 4.1: Learning framework of limited label data.

We propose a learning framework for limited labeled data(see Fig. 4.1) to estimate the

labels of large amounts of unlabeled PMU data for training event classifiers. As the raw

PMU data are often of low quality (e.g., bad data, dropouts, and timestamp errors), we

first fix the data quality issues before using the proposed framework to estimate the labels,

where the data preprocessing proposed in our recent work [33] is carried out and construct

event features from the PMU data. Then, we estimate the labels of unlabeled PMU data in

two main steps: labeling function learning and generative model based label estimation.

• Labeling function learning. Labeling functions (LFs) can be treated as event clas-

sifiers. Given the input PMU data, a LF outputs a label (i.e., event type), e.g., line

outage, transformer outage, or frequency event. In the proposed framework, multiple

LFs are learnt to characterize the features of different event types. Due to the limited
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labeled PMU data, the learnt LFs can be noisy and biased. Therefore, directly using

the estimates from the LFs cannot generate good event classifiers.

• Generative model. To enhance the accuracy of the estimated labels from the LFs,

a generative model is developed. As LFs are learnt using the same dataset, the es-

timated labels from the LFs are correlated. The goal of the generative model is to

characterize the dependency structure of the LFs, based on which we can better com-

bine the estimated labels from the LFs to generate better estimates without knowing

the ground truth.

Using the estimated labels from the generative model together with the limited labeled

data, we train event classifiers, where different off-the-shelf machine learning models (e.g.,

random forest) can be used. In the following, we discuss the details of each main step in

the proposed framework.

4.3.2 Labeling Function Learning

From our previous work [33], we find that the patterns of the PMU measurement signals

under different event types are distinct, as illustrated in Fig. 4.2. For example, frequency

events have a deep and wide V-shape; line outages have a narrow spark; and transformer

outages are similar to a step function. Based on these event characteristics, we construct

multiple event features F s
i for each measurement signal s (see Fig. 4.2) to train event

classifiers, which are more robust and accurate than event classifiers trained using the PMU

measurements directly. Therefore, we learn multiple LFs based on these domain specific

knowledge of different types of events.
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Figure 4.2: Illustration of constructed features for different event types.

Let C = {(x1, y1), ..., (xl, yl), xl+1, xl+2, ..., xm} denote the training dataset with m training

samples, where xi denotes the set of constructed features F s
i of the training sample (event)

based on our previous work [33]. In the training dataset C, only l samples are labeled,

where yi denotes the event label for i = 1, ..., l. In practice, the number of labeled data is

much smaller than the total number of data, i.e., l ≪ m.

Using these l labeled samples, we train multiple LFs using different machine learning

models, e.g., Random Forest (RF), Logistic Regression (LR), K-Nearest Neighbor (KNN),

and Gradient Boosting Decision Tree (GBDT). Specifically, we use event features con-

structed from different measurement signals (including voltage magnitude, current magni-

tude, and rate of change of frequency (ROCOF)) and their combinations to train different

machine learning models. Table 4.1 shows the possible LFs that we can build using differ-
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ent features and models, where each LF is denoted as λ j.

Table 4.1
LFs built by different features and classifiers

FeatureClassifier RF LR KNN GBDT
Voltage magnitude λ1 λ2 λ3 λ4
Current magnitude λ5 λ6 λ7 λ8

Rocof λ9 λ10 λ11 λ12

Suppose k LFs (i.e., {λ j, j = 1, 2, ..., k}) are learnt using the l labeled samples. The output

of each LF, i.e., λ j(xi) for i = l + 1, ...,m, is the estimate of the event label of the unlabeled

data. Let Λ be the label matrix generated by the k LFs for the unlabeled data, where

Λi, j = λ j(xi) for i ∈ [l+ 1,m] and j ∈ [1, k]. For a given unlabeled data xi, the outputs from

k LFs (i.e., Λi, j for j ∈ [1, k]) can be treated as noisy votes. From these noisy votes, we aim

to estimate the “true” label without knowing the ground truth.

As LFs are learnt using the same dataset with scarce labels, the estimated labels (i.e., Λi, j)

are often correlated and the estimates can be noisy and biased. Simply using the majority

vote to combineΛi, j for j ∈ [1, k] cannot obtain good estimate, as the majority vote assumes

that the LFs are independent. To enhance the accuracy of the estimated labels, it is of

paramount importance to characterize the correlations among the LFs, based on which Λi, j

for j ∈ [1, k] can be better combined.

4.3.3 Generative Model

4.3.3.1 Snorkel

To better estimate the true labels Y using Λ, we assume the outcome of different labeling

function can form a conditionally independent graph. Therefor, a conditionally indepen-
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dent model is leveraged, where the output of each LF, i.e., Λi, j, is modeled as a random

variable. Using the observation matrix Λ̄ (i.e., the outputs of Λ using the unlabeled data),

we estimate the joint distribution Prob(Λ,Y) of this generative model. Prob(Λ,Y) will be

used to estimate the accuracy of each LF, based on which we can better combine Λ to

estimate Y . Specifically, the joint distribution can be specified as:

Prob(Λ,Y) ∝ exp

 m∑
i=l+1

∑
d∈D

θdϕd(Λi, yi)

 , (4.1)

where Λi = (Λi,1, ...Λi,k) denotes the vector of the estimated labels from k LFs for the

training sample i. D is a set of tuples that describe the dependencies between LFs, denoted

by ϕd(Λi, yi), and θd denotes how correlated the LFs are. For example, if d refers to the

dependency between two LFs j1 and j2, we have ϕd(Λi, yi) = ϕ j1, j2(Λi, yi) = 1{Λi, j1 ,Λi, j2},

where the indication function 1{Λi, j1 ,Λi, j2} represents whether LFs j1 and j2 depend on

each other.

As Y is unknown for the unlabeled data, we therefore estimate the distribution Prob(Λ).

As the number of possible dependencies increases at least quadratically with the number

of LFs, we leverage the approach in [4] to efficiently learn the dependencies by changing

the optimization objective to the log marginal pseudolikelihood of output of a single LF λ j

conditioned on the outputs of the other LFs λ\ j using L1 regularization, i.e.,

arg min
θ={θd ,∀d∈D}

(− log Prob(Λ̄ j|Λ̄\ j) + ϵ ||θ||1)

= arg min
θ

(−
m∑

i=l+1

log
∑

yi

Prob(Λ̄i, j, yi|Λ̄i\ j) + ϵ ||θ||1),
(4.2)

where ϵ > 0 is a hyperparameter. This problem can be solved efficiently using the stochastic

gradient descent method [4].
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After solving (4.2), we select the dependencies based on θ that have a sufficiently large

magnitude to estimate Prob(Λ,Y). For each unlabeled sample i, the estimated label ŷi can

be obtained by ŷi = arg maxyi
Prob(yi|Λ̄i) for i = l + 1, ...,m.

4.3.3.2 T-Cherry Junction Tree

T-cherry junction tree is another way to determine the joint distribution. The reason why

we want to use the T-cherry junction tree because Snorkel is one solution and it do not nec-

essarily be the optimal approximation; it has been proved [54] that such T-cherry junction

tree gives the best possible approximation (in the sense of Kullback-Leibler) of all approx-

imations. In other words, the best possible approximation is contained is the junction tree

sets, therefore, it might be able to get more accurate estimated labels by this measure. Then,

we can build a Bayesian Network [23] to train such a classifier.

We will discuss how we introduce the T-cherry junction tree in our task.

We use the same notation as in section 4.3.3.1, we aim to estimate the “true” label without

knowing the ground truth.

As Λi = (Λi,1, ...,Λi,k) denotes the vector of the estimated labels from k LFs for the train-

ing sample i. Our goal is to find joint distribution of Prob(Λ1, ...,Λk). But to solve it directly

generally lead to a large overhead. So we switch to calculate the marginal distributions by

using a small subset from Λ1, ...,Λk. This is also known as junction tree.

We define a junction tree as a tree structure over different LF with each node is the out-

come of the LF. It contains cluster and separator [44]:
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• Each of the node of the junction tree is subset of the outcome of the LF, also known

as a cluster denoted as ΛC with the distribution Prob(ΛC).

• A separator is a edge that contains two clusters, it can be denoted as ΛS = ΛC1∩ΛC2.

The separator is also a subset of the outcome of the LF and its distribution can be

defined as Prob(ΛS ).

• The union of all clusters is the entire set: Λ1, ...Λk

So the joint distribution can be as:

Prob(Λ1, ...,Λk) =

∏
C∈C

Prob(ΛC)∏
S∈S

(Prob(ΛS ))vS−1 , (4.3)

where C is the set of cliques and S is the set of separators of the junction tree. vS is the

number of those clusters which contain all of the variables involved in separator S. An

example of 4 nodes corresponding to the outcome of 4 LFs is shown in Fig 4.3, so the

estimation of the joint distribution junction is:

Prob(Λ2,Λ3,Λ4; Y) =
Prob(Λ2,Λ3,Y)Prob(Λ3,Y,Λ4)

Prob(Λ3,Y)

Figure 4.3: Illustration of Junction Tree:(a) triangulated graph (b) the corresponding junction tree.

However, we can find lots of combination to form junction trees.Our goal is to find the
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minimum difference between approximation and the actual distribution.

We denote the entropy of such vector as H(Λ). Let the information content be defined as:

I(Λi) =
k∑

j=1

prob(Λi, j)log
(

prob(Λi, j)
prob(Λi,1)...prob(Λi,k)

)
(4.4)

The optimal solution is achieved, when the Kullback-Leibler divergence between a junc-

tion tree approximation and the actual distribution reaches the minimum value [54]. It can

be denoted as:

KL(prob(Λ), probtree(Λ)) = −H(Λ) −
∑
C∈C

I(ΛC) +
∑
S∈S

(vS − 1)I(ΛS ) +
∑

i

H(Λi) (4.5)

The first term and last term are not determined by the junction tree. So it is equivalent to

maximize the weight W of the junction tree:

W =
∑
C∈C

I(ΛC) −
∑
S∈S

(vS − 1)I(ΛS ) (4.6)

But to find the tree that maximizes W is an NP hard problem [55]. T-cherry junction trees

are guaranteed to contain the maximum weight junction tree. We define a b-order T-cherry

junction tree that satisfies: each cluster contains b variables and each separator contains b-1

variables. Next we want to construct such b-order T-cherry junction trees (i.e., via b
(

k
b

)
in

total possible cluster-separator pairs).

We use a Greedy Puzzling Algorithm [55] for searching. Once the searching is done,
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the outcome of the set of clusters C and the set of separators S. After that we can form a

Bayesian Network [23] with the T-cherry tree as a moral graph.

4.4 Experimental Evaluation

4.4.1 Experimental Setup

4.4.1.1 Data

We use real-world PMU data from the Western Interconnection of continental U.S. trans-

mission grid. The measurement data is collected from 23 PMU streams over a two-year

period (2016–2017). The sampling rate of PMUs is 60 samples per second. The measure-

ments used in the experiments are voltage magnitude of positive sequence, current magni-

tude of positive sequence, frequency, and rate of change of frequency (ROCOF). Besides,

event logs for the period of two years are provided, where start timestamp, end timestamp,

event type, event cause, and event description for each event are provided.
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4.4.1.2 Evaluation Metrics

Four metrics are used to evaluate the classification performance, i.e., accuracy (ACC), pre-

cision (PRE), recall (REC), and F1 score, which are defined as follows:

ACC = (TP+FN)/(TP+TN+FP+FN),

PRE = TP/(TP + FP),

REC = TP/(TP + FN),

F1 = 2 × (PRE × REC)/(PRE + REC),

where TP (i.e., True Positive) and TN (i.e., True Negative) denote the number of positive

and negative instances that are correctly classified, respectively. FP (i.e., False Positive)

and FN (i.e., False Negative) denote the number of misclassified negative and positive

instances, respectively.

4.4.2 Performance of Auto Labeling by Limited Labels

To evaluate the learning model, we use 3,877 events in the event logs, including 2,507 line

events, 921 transformer events, and 449 frequency events. For these events, we randomly

split these events in each month into 80% for training (i.e., 3098 events) and 20% for testing

(i.e., 779 events), in order to ensure the events across the entire year are fairly distributed

between the training set and the testing set. For the training data, we preserve 5% data

as labeled data (i.e., 154 events) and remove the labels for the remaining training data, in

order to evaluate the performance of the proposed event classification. We test the event

classification (Snorkel) performance over 20 runs, and in each run, the data are randomly
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selected.

Table 4.2
Performance of event classification(Snorkel) under different models using the testing data.

Model Accuracy (%) Precision (%) Recall (%) F1 (%)
RF 78.4±1.0 81.2±3.0 63.8±2.8 63.9±1.3

GBDT 77.5±3.3 77.2 ±7.5 62.6 ±10.2 64.8 ±8.5
SVM 71.1±0.1 35.7±21.4 33.63±0.9 28.3±2.0
LR 71.6±3.4 58.9±26.07 38.4±4.7 36.0±6.8

KNN 74.1±2.0 69.2±6.0 54.7±8.4 56.0±7.9
DT 74.9±3.3 70.6±7.3 62.1±8.4 64.3±6.8

Table 4.2 compares the average performance of different machine learning models over

20 runs, including Random Forest (RF), Gradient Boosting Decision Tree (GBDT), Sup-

port Vector Machine (SVM), Logistic Regression (LR), K-Nearest Neighbor (KNN), and

Decision Tree (DT). Each model is trained using the training data with the estimated labels

obtained using the weakly supervised learning and then tested using the testing data. It is

observed that RF outperforms the other models in terms of accuracy, precision, and recall,

and F1 score of RF is close to GBDT but with less variation. Thus, RF is used to train the

weakly supervised event classifier.

Figure 4.4: Confusion matrix of the weakly supervised RF model for the testing data.

Fig. 4.4 illustrates the confusion matrix of the weakly supervised event classifier using

RF, where the rows represent the estimated event type, the columns represent the true event

type. The diagonal and off-diagonal cells in Fig. 4.4 represent the events that are correctly
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and incorrectly classified, respectively. From Fig. 4.4, it is observed that with only 5%

labeled data, the proposed weakly supervised event classification can correctly classify the

majority of the events (i.e., 78.4% on average). The misclassified events are due to the facts

that 1) the patterns of line events and transformer events are similar and 2) the patterns in

the ROCOF signal of some frequency events are buried by noise due to low signal-to-noise

ratio (SNR). With scarce labeled data, it is challenging for the event classifier to correctly

classify these events. We believe domain experts can further enhance the classification per-

formance by examining the classification results, e.g., adding additional LFs using domain

knowledge.

4.4.2.1 Comparison with Semi-Supervised Learning

We compare the performance of the proposed event classification Snorkel and T-cherry

Junction Tree(order number b =3) with the semi-supervised learning based event classifi-

cation approaches in [25]. For the semi-supervised learning, we compare the self-training

under different models in [25] (i.e., LF, KNN, SVM, DT, Naive Bayes (NB), and the ma-

jority vote (Maj) based on these 5 models).

Table 4.3
The accuracy of the estimated labels under different models for the 95% unlabeled training data.

Model Label Accuracy(%)
T-cherry 73.8±0.3
Snorkel 70.9±0.6

Semi-DT 62.1±1.2
Semi-NB 64.7±0.3

Semi-SVM 64.7±0.1
Semi-LR 64.2±0.3

Semi-KNN 65.7±2.3
Semi-Maj 64.7±0.8
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Table 4.3 compares the accuracy of the estimated labels using the proposed weakly super-

vised learning and the semi-supervised self-training under different models over 20 runs.

It is observed that our method outperforms the semi-supervised models. Compared with

the semi-supervised models, the proposed weakly supervised learning can easily incorpo-

rate the domain knowledge using different LFs, and thereby enhance the accuracy of the

estimated labels.

Table 4.4
Testing performance under different models.

Model Accuracy (%) Precision (%) Recall (%) F1 (%)
Fully supervised 94.3±0.1 95.1±0.3 87.9±0.2 91.0±0.2

T-cherry 81.2±1.2 86.0±2.5 62.3±2.2 68.0±0.6
Snorkel 78.4±1.0 81.2±3.0 63.8±2.8 63.9±1.3

Semi-DT 69.9±1.4 74.3±1.2 56.0±2.5 48.9±2.5
Semi-NB 71.6±0.1 58.2±19.1 34.1±1.3 29.2±6.2

Semi-SVM 71.6±0.1 57.2±0.1 34.0±0.1 29.1±0.1
Semi-LR 71.3±1.5 54.4±25.7 35.2±9.9 31.3±13.8

Semi-KNN 73.3±0.5 79.5±5.9 42.8±10.8 43.6±13.7
Semi-Maj 71.6±0.3 58.9±31.7 34.1±1.4 29.2±2.7

Table 4.4 compares the average performance of the weakly supervised event classification

using RF and different semi-supervised approaches. The fully supervised learning case in

our recent work [33] is also provided, where all the labels are provided in the training data.

From Table 4.4, the proposed weakly supervised event classification outperforms the other

semi-supervised models in all metrics by at least 5.1%, 1.7%, 7.8%, and 15% improvement

in accuracy, precision, recall and F1 score, respectively.

Compared to the fully supervised case, the weakly supervised event classification can ob-

tain satisfactory results using only 5% labeled training data. Due to the scarce labeled data,

the label estimation errors would degrade the performance of the event classification mod-

els. In the future, we will explore the use of other LFs developed using domain knowledge

to enhance the classification performance.
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4.5 Conclusion

We have developed a weakly supervised learning framework for training event classifiers

using imperfect real-world PMU data with scarce labels to enhance the situational aware-

ness. One salient merit of the proposed framework is easy to incorporate the domain

knowledge by adding labeling functions so that domain experts can further enhance the

classification models. Another advantage is that less efforts are required from domain ex-

perts to maintain the event logs for building event classifiers. Numerical experiments using

the real-world PMU data from the Western Interconnection of the U.S power transmis-

sion grid show that the event classifiers trained under the proposed framework when the

training data has only 5% labeled data, a satisfactory classification accuracy of 78.4% and

81.2% are still achieved under Snorkel and T-cherry junction tree model. In conclusion,

the proposed framework offers a promising way to train event classifiers using scarce and

low-quality labeled PMU data.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

This dissertation aims to develop Machine Learning (ML) methods and provide fundamen-

tal understanding and systematic exploitation of ML for situational awareness using large

amounts of imperfect data collected in power systems, in order to improve the reliabil-

ity and resilience of power systems. Specifically, we address challenges of heterogeneous

dynamics, low data quality and insufficient and imbalanced training data in real-world ap-

plication. The main contributions are summarized below:

• First, we propose Drifting Streaming Peaks-over-Threshold (DSPOT) enhanced self-

evolving neural networks based short-term wind farm generation forecast, adaptive

machine learning for wind farm generation forecasting, which addresses the chal-

lenges of the non-stationarity and the ramp dynamics of wind farm generation and

can greatly facilitate the integration of wind generation in reality. Based on the pro-

posed neural networks, both distributional and point forecasts are developed. Exper-

imental results corroborate the superior performance of the proposed approach over

other forecast approaches.

• Then, we propose robust event classification using imperfect real-world PMU data,

which addresses the challenges of low-quality real-world PMU data, such as incom-

plete and noisy PMU measurements, inaccurate event timestamps in the event logs,

and insufficient and imbalanced training data. One salient merit of the proposed

framework is that large-scale real-world PMU data is reduced to a small set of event
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features, which can be used to efficiently train many off-the-shelf lightweight ma-

chine learning models. As the features are constructed based on the event patterns,

the contribution of any single PMU measurement to the features is low, which can

effectively mitigate the impact of bad and missing data and improve the robustness

of the event classifiers. Numerical experiments using the real-world dataset from

the Western Interconnection of the U.S power transmission grid show that the event

classifiers trained under the proposed framework can achieve high classification ac-

curacy while being robust against low-quality data. The proposed machine learning

framework provides a promising way to train robust event classifiers with good in-

terpretability and low training cost.

• Finally, automatic labeling real-world PMU data is studied. Automatic labeling can

significantly reduce the efforts from domain experts to maintain the event logs for

developing event classifiers. One salient merit of the proposed framework is that we

can easily incorporate the domain knowledge by adding labeling functions so that

domain experts can further enhance the classification models. Another advantage

is that less efforts are required from domain experts to maintain the event logs for

building event classifiers. Numerical experiments using the real-world PMU data

from the Western Interconnection of the U.S power transmission grid show that the

event classifiers trained under the proposed framework when the training data has

only 5% labeled data, a satisfactory classification accuracy of 78.4% using Snorkel

and 81.2% using T-cherry junction tree method are achieved. In conclusion, the

proposed framework offers a promising way to train event classifiers using scarce

and low-quality labeled PMU data.

In the future, we will study PMU data labeling without any labeled PMU data, as it is

observed that real-world PMU data from the Texas Interconnection of continental U.S.



81

transmission grid do not provide any labeled PMU data. Along this line, we will explore

unsupervised learning methods. The idea is to first cluster the PMU data using the features

extracted from the PMU data. Clearly, these clusters would not be pure such that different

types of events may be clustered together under the unsupervised learning methods. Using

such noisy clusters, we will then train a series of labeling functions, which would generate

noisy labels. Using the generative model, we will further enhance the labeling accuracy.

We will explore different unsupervised learning methods and feature extraction methods,

in order to achieve the best labeling accuracy.
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[55] Tamás Szántai and Edith Kovács. Discovering a junction tree behind a markov net-
work by a greedy algorithm. Optimization and Engineering, 14(4):503–518, 2013.

[56] Weikang Wang, He Yin, Chang Chen, Abigail Till, Wenxuan Yao, Xianda Deng, and
Yilu Liu. Frequency disturbance event detection based on synchrophasors and deep
learning. IEEE Transactions on Smart Grid, 11(4):3593–3605, 2020.

[57] David White, Amy Roschelle, Paul Peterson, David Schlissel, Bruce Biewald, and
William Steinhurst. The 2003 blackout: solutions that won’t cost a fortune. The
Electricity Journal, 16(9):43–53, 2003.

[58] Qunli Wu and Chenyang Peng. Wind power generation forecasting using least squares
support vector machine combined with ensemble empirical mode decomposition,
principal component analysis and a bat algorithm. Energies, 9(4):261, 2016.

[59] Le Xie, Yang Chen, and PR Kumar. Dimensionality reduction of synchrophasor data
for early event detection: Linearized analysis. IEEE Transactions on Power Systems,
29(6):2784–2794, 2014.

[60] L. Yang, M. He, V. Vittal, and J. Zhang. Stochastic optimization-based economic
dispatch and interruptible load management with increased wind penetration. IEEE
Transactions on Smart Grid, 7(2):730–739, 2016.

[61] Lei Yang, Miao He, Junshan Zhang, and Vijay Vittal. Support-vector-machine-
enhanced markov model for short-term wind power forecast. IEEE Transactions on
Sustainable Energy, 6(3):791–799, 2015.

[62] Yuxuan Yuan, Yifei Guo, Kaveh Dehghanpour, Zhaoyu Wang, and Yanchao Wang.
Learning-based real-time event identification using rich real pmu data. IEEE Trans-
actions on Power Systems, 2021.

[63] Xiangtian Zheng, Bin Wang, Dileep Kalathil, and Le Xie. Generative adversarial



88

networks-based synthetic pmu data creation for improved event classification. IEEE
Open Access Journal of Power and Energy, 8:68–76, 2021.

[64] Yuxun Zhou, Reza Arghandeh, and Costas J Spanos. Partial knowledge data-driven
event detection for power distribution networks. IEEE Transactions on Smart Grid,
9(5):5152–5162, 2017.

[65] Yuxun Zhou, Reza Arghandeh, Han Zou, and Costas J Spanos. Nonparametric event
detection in multiple time series for power distribution networks. IEEE Transactions
on Industrial Electronics, 66(2):1619–1628, 2018.

[66] Zhi-Hua Zhou. A brief introduction to weakly supervised learning. National Science
Review, 5(1):44–53, 2018.
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