4,996 research outputs found

    Thermodynamic Conditions in Quenching Chamber of Low Voltage Circuit Breaker

    Get PDF
    Práce se zabývá studiem procesů probíhajících při zhášení silnoproudého oblouku ve zhášecí komoře jističe. Je zaměřena na výpočet dynamiky tekutin a teplotního pole v okolí elektrického oblouku. V práci je dále popsán vliv vzdálenosti plechů v komoře a vliv tvarů plechů z hlediska aerodynamických podmínek uvnitř komory. Dalším cílem dosaženým touto prací je poskytnutí informací o vlivu polohy elektrického oblouku na termodynamické vlastnosti uvnitř komory. Toto je důležité, zejména pokud je oblouk do komory vtahován jinými silami, např. elektromagnetickými a během tohoto vtahovacího procesu mění svůj tvar i polohu. Za účelem co nejjednoduššího, ale zároveň co nejefektivnějšího řešení úkolu, byl vyvinut software určen speciálně pro výpočet dynamiky tekutin numerickou metodou konečných objemů (FVM). Tato metoda je, v porovnání s rozšířenější metodou konečných prvků (FEM), vhodnější pro výpočet dynamiky tekutin (CFD) zejména proto, že režie na výpočet jedné iterace jsou menší v porovnání s ostatními numerickými metodami. Další výhodou tohoto softwarového řešení je jeho modularita a rozšiřitelnost. Cely koncept softwaru je postaven na tzv. zásuvných modulech. Díky tomuto řešení můžeme využít výpočtové jádro pro další numerické analýzy, např. strukturální, elektromagnetickou apod. Jediná potřeba pro úspěšné používání těchto analýz je napsáni solveru pro konečné prvky (FEM). Jelikož je software koncipován jako multi–thread aplikace, využívá výkon současných vícejádrových procesorů naplno. Tato vlastnost se ještě více projeví, pokud se výpočet přesune z CPU na GPU. Jelikož současné grafické karty vyšších tříd mají několik desítek až stovek výpočetních jader a pracují s mnohem rychlejšími pamětmi, než CPU, je výpočetní výkon několikanásobně vyšší.Work deals with the study of processes that attend the electric arc extinction inside the quenching chamber of a circuit breaker. It is focused on several areas. The first one is concerned to fluid dynamics calculations (CFD) and the second one is aimed at thermal field calculations. In this work effects of metal plates distance together with metal plates shapes are described from aerodynamical point of view. Another objective solved by this work is to give information about influence of an electric arc position in a quenching chamber, which changed its shape due to forces acting on it during extinction process. For purpose of this work a new software solution for CFD was developed. Whole software concept is based on plug-ins. Due to this solution, the software§s calculation core can be used for other numerical analyses, like structural, electromagnetic, etc. The only requirement is to write a plug-in for these analyses. Because the software is designed as multi-threaded application, it can use the fully performance of current multi-core processors. Above mentioned property can be especially shown off, when a calculation is moved from CPU to GPU (Graphics Processing Units). Current high-end graphic cards have tens to hundreds cores and work with faster memories than CPU. Due to this fact, the simulation performance can raised manifold.

    Computational fluid dynamics

    Get PDF
    An overview of computational fluid dynamics (CFD) activities at the Langley Research Center is given. The role of supercomputers in CFD research, algorithm development, multigrid approaches to computational fluid flows, aerodynamics computer programs, computational grid generation, turbulence research, and studies of rarefied gas flows are among the topics that are briefly surveyed

    Institute for Computational Mechanics in Propulsion (ICOMP)

    Get PDF
    The Institute for Computational Mechanics in Propulsion (ICOMP) is a combined activity of Case Western Reserve University, Ohio Aerospace Institute (OAI) and NASA Lewis. The purpose of ICOMP is to develop techniques to improve problem solving capabilities in all aspects of computational mechanics related to propulsion. The activities at ICOMP during 1991 are described

    CFDNet: a deep learning-based accelerator for fluid simulations

    Full text link
    CFD is widely used in physical system design and optimization, where it is used to predict engineering quantities of interest, such as the lift on a plane wing or the drag on a motor vehicle. However, many systems of interest are prohibitively expensive for design optimization, due to the expense of evaluating CFD simulations. To render the computation tractable, reduced-order or surrogate models are used to accelerate simulations while respecting the convergence constraints provided by the higher-fidelity solution. This paper introduces CFDNet -- a physical simulation and deep learning coupled framework, for accelerating the convergence of Reynolds Averaged Navier-Stokes simulations. CFDNet is designed to predict the primary physical properties of the fluid including velocity, pressure, and eddy viscosity using a single convolutional neural network at its core. We evaluate CFDNet on a variety of use-cases, both extrapolative and interpolative, where test geometries are observed/not-observed during training. Our results show that CFDNet meets the convergence constraints of the domain-specific physics solver while outperforming it by 1.9 - 7.4x on both steady laminar and turbulent flows. Moreover, we demonstrate the generalization capacity of CFDNet by testing its prediction on new geometries unseen during training. In this case, the approach meets the CFD convergence criterion while still providing significant speedups over traditional domain-only models.Comment: It has been accepted and almost published in the International Conference in Supercomputing (ICS) 202
    corecore