648 research outputs found

    Multi-criteria analysis: a manual

    Get PDF

    An Examination of the Decision Analysis Approach to R&D Portfolios

    Get PDF
    A portfolio can be defined as “a purposeful combination of items” (Chien and Sainfort 1998). As the topic relates to research and development (R&D) the items in question are technologies, projects or products under consideration for inclusion in a given portfolio. As described by surveys from Cooper et al (1998), companies have widely varying practices for portfolio selection. This thesis examines existing literature to determine the key characteristics of good portfolio and portfolio method. The approach needs to handle multiple objectives, account for project interactions, and address the social aspect of decision making. The resulting portfolio should be aligned with business strategy, balanced, and of maximum value. It introduces general concepts that have been used to select single projects and reviews five specific applications and assesses them against the key characteristics from the literature. After identifying gaps in the current approaches, a comprehensive approach is proposed. This approach would (1) apply multi-attribute decision analysis at the portfolio level, (2) apply constraints for common inputs to cost such as resources, and (3) apply probabilistic methods to account for project interaction. This approach incorporates successful elements from existing approaches and addresses the two areas that are not adequately addressed with current approaches

    Conflicting Objectives in Decisions

    Get PDF
    This book deals with quantitative approaches in making decisions when conflicting objectives are present. This problem is central to many applications of decision analysis, policy analysis, operational research, etc. in a wide range of fields, for example, business, economics, engineering, psychology, and planning. The book surveys different approaches to the same problem area and each approach is discussed in considerable detail so that the coverage of the book is both broad and deep. The problem of conflicting objectives is of paramount importance, both in planned and market economies, and this book represents a cross-cultural mixture of approaches from many countries to the same class of problem

    Methodological review of multicriteria optimization techniques: aplications in water resources

    Get PDF
    Multi-criteria decision analysis (MCDA) is an umbrella approach that has been applied to a wide range of natural resource management situations. This report has two purposes. First, it aims to provide an overview of advancedmulticriteriaapproaches, methods and tools. The review seeks to layout the nature of the models, their inherent strengths and limitations. Analysis of their applicability in supporting real-life decision-making processes is provided with relation to requirements imposed by organizationally decentralized and economically specific spatial and temporal frameworks. Models are categorized based on different classification schemes and are reviewed by describing their general characteristics, approaches, and fundamental properties. A necessity of careful structuring of decision problems is discussed regarding planning, staging and control aspects within broader agricultural context, and in water management in particular. A special emphasis is given to the importance of manipulating decision elements by means ofhierarchingand clustering. The review goes beyond traditionalMCDAtechniques; it describes new modelling approaches. The second purpose is to describe newMCDAparadigms aimed at addressing the inherent complexity of managing water ecosystems, particularly with respect to multiple criteria integrated with biophysical models,multistakeholders, and lack of information. Comments about, and critical analysis of, the limitations of traditional models are made to point out the need for, and propose a call to, a new way of thinking aboutMCDAas they are applied to water and natural resources management planning. These new perspectives do not undermine the value of traditional methods; rather they point to a shift in emphasis from methods for problem solving to methods for problem structuring. Literature review show successfully integrations of watershed management optimization models to efficiently screen a broad range of technical, economic, and policy management options within a watershed system framework and select the optimal combination of management strategies and associated water allocations for designing a sustainable watershed management plan at least cost. Papers show applications in watershed management model that integrates both natural and human elements of a watershed system including the management of ground and surface water sources, water treatment and distribution systems, human demands,wastewatertreatment and collection systems, water reuse facilities,nonpotablewater distribution infrastructure, aquifer storage and recharge facilities, storm water, and land use

    Structured Preference Representation and Multiattribute Auctions

    Full text link
    Handling preferences over multiple objectives (or attributes) poses serious challenges to the development of automated solutions to complex decision problems. The number of decision outcomes grows exponentially with the number of attributes, and that makes elicitation, maintenance, and reasoning with preferences particularly complex. This problem can potentially be alleviated by using a factored representation of preferences based on independencies among the attributes. This work has two main components. The first component focuses on development of graphical models for multiattribute preferences and utility functions. Graphical models take advantage of factored utility, and yield a compact representation for preferences. Specifically, I introduce CUI networks, a compact graphical representation of utility functions over multiple attributes. CUI networks model multiattribute utility functions using the well studied utility independence concept. I show how conditional utility independence leads to an effective functional decomposition that can be exhibited graphically, and how local conditional utility functions, depending on each node and its parents, can be used to calculate joint utility. The second main component deals with the integration of preference structures and graphical models in trading mechanisms, and in particular in multiattribute auctions. I first develop multiattribute auctions that accommodate generalized additive independent (GAI) preferences. Previous multiattribute mechanisms generally either remain agnostic about traders’ preference structures, or presume highly restrictive forms, such as full additivity. I present an approximately efficient iterative auction mechanism that maintains prices on potentially overlapping GAI clusters of attributes, thus decreasing elicitation and computation burden while allowing for expressive preference representation. Further, I apply preference structures and preference-based constraints to simplify the particularly complex, but practically useful domain of multi-unit multiattribute auctions and exchanges. I generalize the iterative multiattribute mechanism to a subset of this domain, and investigate the problem of finding an optimal set of trades in multiattribute call markets, given restrictions on preference expression. Finally, I apply preference structures to simplify the modeling of user utility in sponsored-search auctions, in order to facilitate ranking mechanisms that account for the user experience from advertisements. I provide short-term and long-term simulations showing the effect on search-engine revenues.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/61670/1/yagil_1.pd

    gamification of farmer participatory priority setting in plant breeding design and validation of agroduos

    Get PDF
    ABSTRACTParticipatory methods to characterize farmers' needs and preferences play an important role in plant breeding to ensure that new varieties fulfill the needs and expectations of end users. Different farmer-participatory methods for priority setting exist, each one responding differently to trade-offs between various requirements, such as replicability, simplicity, or granularity of the results. All available methods, however, require training, academic skill, and staff time of specially qualified professionals. Breeding and variety replacement may be accelerated by empowering non-academic organizations, such as NGOs and farmer organizations, to carry out farmer-participatory priority setting. But for this use context, currently no suitable method is available. A new method is needed that demands relatively low skill levels from enumerators and respondents, engages farmers without the need for extrinsic incentives, and gives statistically robust results. To achieve these objectives, we followed prin..

    Developing A Group Decision Support System (gdss) For Decision Making Under Uncertainty

    Get PDF
    Multi-Criteria Decision Making (MCDM) problems are often associated with tradeoffs between performances of the available alternative solutions under decision making criteria. These problems become more complex when performances are associated with uncertainty. This study proposes a stochastic MCDM procedure that can handle uncertainty in MCDM problems. The proposed method coverts a stochastic MCDM problem into many deterministic ones through a Monte-Carlo (MC) selection. Each deterministic problem is then solved using a range of MCDM methods and the ranking order of the alternatives is established for each deterministic MCDM. The final ranking of the alternatives can be determined based on winning probabilities and ranking distribution of the alternatives. Ranking probability distributions can help the decision-maker understand the risk associated with the overall ranking of the options. Therefore, the final selection of the best alternative can be affected by the risk tolerance of the decisionmakers. A Group Decision Support System (GDSS) is developed here with a user-friendly interface to facilitate the application of the proposed MC-MCDM approach in real-world multiparticipant decision making for an average user. The GDSS uses a range of decision making methods to increase the robustness of the decision analysis outputs and to help understand the sensitivity of the results to level of cooperation among the decision-makers. The decision analysis methods included in the GDSS are: 1) conventional MCDM methods (Maximin, Lexicographic, TOPSIS, SAW and Dominance), appropriate when there is a high cooperation level among the decision-makers; 2) social choice rules or voting methods (Condorcet Choice, Borda scoring, Plurality, Anti-Plurality, Median Voting, Hare System of voting, Majoritarian iii Compromise ,and Condorcet Practical), appropriate for cases with medium cooperation level among the decision-makers; and 3) Fallback Bargaining methods (Unanimity, Q-Approval and Fallback Bargaining with Impasse), appropriate for cases with non-cooperative decision-makers. To underline the utility of the proposed method and the developed GDSS in providing valuable insights into real-world hydro-environmental group decision making, the GDSS is applied to a benchmark example, namely the California‘s Sacramento-San Joaquin Delta decision making problem. The implications of GDSS‘ outputs (winning probabilities and ranking distributions) are discussed. Findings are compared with those of previous studies, which used other methods to solve this problem, to highlight the sensitivity of the results to the choice of decision analysis methods and/or different cooperation levels among the decision-maker
    corecore