31,524 research outputs found

    Applying forces to elastic network models of large biomolecules using a haptic feedback device

    Get PDF
    Elastic network models of biomolecules have proved to be relatively good at predicting global conformational changes particularly in large systems. Software that facilitates rapid and intuitive exploration of conformational change in elastic network models of large biomolecules in response to externally applied forces would therefore be of considerable use, particularly if the forces mimic those that arise in the interaction with a functional ligand. We have developed software that enables a user to apply forces to individual atoms of an elastic network model of a biomolecule through a haptic feedback device or a mouse. With a haptic feedback device the user feels the response to the applied force whilst seeing the biomolecule deform on the screen. Prior to the interactive session normal mode analysis is performed, or pre-calculated normal mode eigenvalues and eigenvectors are loaded. For large molecules this allows the memory and number of calculations to be reduced by employing the idea of the important subspace, a relatively small space of the first M lowest frequency normal mode eigenvectors within which a large proportion of the total fluctuation occurs. Using this approach it was possible to study GroEL on a standard PC as even though only 2.3% of the total number of eigenvectors could be used, they accounted for 50% of the total fluctuation. User testing has shown that the haptic version allows for much more rapid and intuitive exploration of the molecule than the mouse version

    On the emergence and evolution of artificial cell signaling networks

    Get PDF
    This PhD project is concerned with the evolution of Cell Signaling Networks (CSNs) in silico. CSNs are complex biochemical networks responsible for the coordination of cellular activities. We are investigating the possibility to build an evolutionary simulation platform that would allow the spontaneous emergence and evolution of Artificial Cell Signaling Networks (ACSNs). From a practical point of view, realizing and evolving ACSNs may provide novel computational paradigms for a variety of application areas. This work may also contribute to the biological understanding of the origins and evolution of real CSNs

    Evolving Gene Regulatory Networks with Mobile DNA Mechanisms

    Full text link
    This paper uses a recently presented abstract, tuneable Boolean regulatory network model extended to consider aspects of mobile DNA, such as transposons. The significant role of mobile DNA in the evolution of natural systems is becoming increasingly clear. This paper shows how dynamically controlling network node connectivity and function via transposon-inspired mechanisms can be selected for in computational intelligence tasks to give improved performance. The designs of dynamical networks intended for implementation within the slime mould Physarum polycephalum and for the distributed control of a smart surface are considered.Comment: 7 pages, 8 figures. arXiv admin note: substantial text overlap with arXiv:1303.722

    Synthetic biology and microdevices : a powerful combination

    Get PDF
    Recent developments demonstrate that the combination of microbiology with micro-and nanoelectronics is a successful approach to develop new miniaturized sensing devices and other technologies. In the last decade, there has been a shift from the optimization of the abiotic components, for example, the chip, to the improvement of the processing capabilities of cells through genetic engineering. The synthetic biology approach will not only give rise to systems with new functionalities, but will also improve the robustness and speed of their response towards applied signals. To this end, the development of new genetic circuits has to be guided by computational design methods that enable to tune and optimize the circuit response. As the successful design of genetic circuits is highly dependent on the quality and reliability of its composing elements, intense characterization of standard biological parts will be crucial for an efficient rational design process in the development of new genetic circuits. Microengineered devices can thereby offer a new analytical approach for the study of complex biological parts and systems. By summarizing the recent techniques in creating new synthetic circuits and in integrating biology with microdevices, this review aims at emphasizing the power of combining synthetic biology with microfluidics and microelectronics

    Capacity Based Evacuation with Dynamic Exit Signs

    Full text link
    Exit paths in buildings are designed to minimise evacuation time when the building is at full capacity. We present an evacuation support system which does this regardless of the number of evacuees. The core concept is to even-out congestion in the building by diverting evacuees to less-congested paths in order to make maximal usage of all accessible routes throughout the entire evacuation process. The system issues a set of flow-optimal routes using a capacity-constrained routing algorithm which anticipates evolutions in path metrics using the concept of "future capacity reservation". In order to direct evacuees in an intuitive manner whilst implementing the routing algorithm's scheme, we use dynamic exit signs, i.e. whose pointing direction can be controlled. To make this system practical and minimise reliance on sensors during the evacuation, we use an evacuee mobility model and make several assumptions on the characteristics of the evacuee flow. We validate this concept using simulations, and show how the underpinning assumptions may limit the system's performance, especially in low-headcount evacuations
    corecore