6,019 research outputs found

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Multi-authored monograph

    Get PDF
    Unmanned aerial vehicles. Perspectives. Management. Power supply : Multi-authored monograph / V. V. Holovenskiy, T. F. Shmelova,Y. M. Shmelev and oth.; Science Editor DSc. (Engineering), T. F. Shmelova. – Warsaw, 2019. – 100 p. - ISBN 978-83-66216-10-5.У монографії аналізуються можливі варіанти енергопостачання та управління безпілотними літальними апаратами. Також розглядається питання прийняття рішення оператором безпілотного літального апарату при управлінні у надзвичайних ситуаціях. Рекомендується для фахівців, аспірантів і студентів за спеціальностями 141 - «Електроенергетика, електротехніка та електромеханіка», 173 - «Авіоніка» та інших суміжних спеціальностей.The monograph analyzes the possible options for energy supply and control of unmanned aerial vehicles. Also, the issue of decision-making by the operator of an unmanned aerial vehicle in the management of emergencies is considered.

    Enhancing Detection of Remotely-Sensed Floating Objects via Data Augmentation for Maritime SAR

    Get PDF
    A figure of 33,000 search and rescue (SAR) incidents were responded to by the UK’s HM Coastguard in 2020, and over 1322 rescue missions were conducted by SAR helicopters during that year. Combined with Unmanned Aerial Vehicles (UAVs), artificial intelligence, and computer vision, SAR operations can be revolutionized through enabling rescuers to expand ground coverage with improved detection accuracy whilst reducing costs and personal injury risks. However, detecting small objects is one of the significant challenges associated with using computer vision on UAVs. Several approaches have been proposed for improving small object detection, including data augmentation techniques like replication and variation of image sizes, but their suitability for SAR application characteristics remains questionable. To address these issues, this paper evaluates four float detection algorithms against the baseline and augmented datasets to improve float detection for maritime SAR. Results demonstrated that YOLOv8 and YOLOv5 outperformed the others in which F1 scores ranged from 82.9 to 95.3%, with an enhancement range of 0.1–29.2%. These models were both of low complexity and capable of real-time response

    Can Rats Reason?

    Get PDF
    Since at least the mid-1980s claims have been made for rationality in rats. For example, that rats are capable of inferential reasoning (Blaisdell, Sawa, Leising, & Waldmann, 2006; Bunsey & Eichenbaum, 1996), or that they can make adaptive decisions about future behavior (Foote & Crystal, 2007), or that they are capable of knowledge in propositional-like form (Dickinson, 1985). The stakes are rather high, because these capacities imply concept possession and on some views (e.g., Rödl, 2007; Savanah, 2012) rationality indicates self-consciousness. I evaluate the case for rat rationality by analyzing 5 key research paradigms: spatial navigation, metacognition, transitive inference, causal reasoning, and goal orientation. I conclude that the observed behaviors need not imply rationality by the subjects. Rather, the behavior can be accounted for by noncognitive processes such as hard-wired species typical predispositions or associative learning or (nonconceptual) affordance detection. These mechanisms do not necessarily require or implicate the capacity for rationality. As such there is as yet insufficient evidence that rats can reason. I end by proposing the ‘Staircase Test,’ an experiment designed to provide convincing evidence of rationality in rats

    Automatic CNN channel selection and effective detection on face and rotated aerial objects

    Get PDF
    Balancing accuracy and computational cost is a challenging task in computer vision. This is especially true for convolutional neural networks (CNNs), which required far larger scale of processing power than traditional learning algorithms. This thesis is aimed at the development of new CNN structures and loss functions to tackle the unbalanced accuracy-effciency issue in image classification and object detection, which are two fundamental yet challenging tasks of computer vision. For a CNN based object detector, the main computational cost is caused by the feature extractor (backbone), which has been originally applied to image classification.;Optimising the structure of CNN applied to image classification will bring benefits when it is applied to object detection. Although the outputs of detectors may vary across detection tasks, the challenges and the design principles among detectors are similar. Therefore, this thesis will start with face detection (i.e. a single object detection task), which is a significant branch of objection detection and has been widely used in real life. After that, object detection on aerial image will be investigated, which is a more challenging detection task.;Specifically, the objectives of this thesis are: 1. Optimising the CNN structures for image classification; 2. Developing a face detector which enables a trade-off between computational cost and accuracy; and 3. Proposing an object detector for aerial images, which suppresses the background noise without damaging the inference efficiency.;For the first target, this thesis aims to automatically optimise the topology of CNNs to generate the structure of fixed-length models, in which unnecessary convolutional kernels are removed. Experimental results have demonstrated that the optimised model can achieve comparable accuracy to the state-of-the-art models, across a broad range of datasets, whilst significantly reducing the number of parameters.;To tackle the unbalanced accuracy-effciency challenge in face detection, a novel context enhanced approach is proposed which improves the performance of the face detector in terms of both loss function and structure. For loss function optimisation, a hierarchical loss, referred to as 'triple loss' in this thesis, is introduced to optimise the feature pyramid network (FPN) based face detector. For structural optimisation, this thesis proposes a context-sensitive structure to increase the capacity of the network prediction. Experimental results indicate that the proposed method achieves a good balance between the accuracy and computational cost of face detection.;To suppress the background noise in aerial image object detection, this thesis presents a two-stage detector, named as 'SAFDet'. To be more specific, a rotation anchor-free-branch (RAFB) is proposed to regress the precise rectangle boundary. Asthe RAFB is anchor free, the computational cost is negligible during training. Meanwhile,a centre prediction module (CPM) is introduced to enhance the capabilities oftarget localisation and noise suppression from the background. As the CPM is only deployed during training, it does not increase the computational cost of inference. Experimental results indicate that the proposed method achieves a good balance between the accuracy and computational cost, and it effectively suppresses the background noise at the same time.Balancing accuracy and computational cost is a challenging task in computer vision. This is especially true for convolutional neural networks (CNNs), which required far larger scale of processing power than traditional learning algorithms. This thesis is aimed at the development of new CNN structures and loss functions to tackle the unbalanced accuracy-effciency issue in image classification and object detection, which are two fundamental yet challenging tasks of computer vision. For a CNN based object detector, the main computational cost is caused by the feature extractor (backbone), which has been originally applied to image classification.;Optimising the structure of CNN applied to image classification will bring benefits when it is applied to object detection. Although the outputs of detectors may vary across detection tasks, the challenges and the design principles among detectors are similar. Therefore, this thesis will start with face detection (i.e. a single object detection task), which is a significant branch of objection detection and has been widely used in real life. After that, object detection on aerial image will be investigated, which is a more challenging detection task.;Specifically, the objectives of this thesis are: 1. Optimising the CNN structures for image classification; 2. Developing a face detector which enables a trade-off between computational cost and accuracy; and 3. Proposing an object detector for aerial images, which suppresses the background noise without damaging the inference efficiency.;For the first target, this thesis aims to automatically optimise the topology of CNNs to generate the structure of fixed-length models, in which unnecessary convolutional kernels are removed. Experimental results have demonstrated that the optimised model can achieve comparable accuracy to the state-of-the-art models, across a broad range of datasets, whilst significantly reducing the number of parameters.;To tackle the unbalanced accuracy-effciency challenge in face detection, a novel context enhanced approach is proposed which improves the performance of the face detector in terms of both loss function and structure. For loss function optimisation, a hierarchical loss, referred to as 'triple loss' in this thesis, is introduced to optimise the feature pyramid network (FPN) based face detector. For structural optimisation, this thesis proposes a context-sensitive structure to increase the capacity of the network prediction. Experimental results indicate that the proposed method achieves a good balance between the accuracy and computational cost of face detection.;To suppress the background noise in aerial image object detection, this thesis presents a two-stage detector, named as 'SAFDet'. To be more specific, a rotation anchor-free-branch (RAFB) is proposed to regress the precise rectangle boundary. Asthe RAFB is anchor free, the computational cost is negligible during training. Meanwhile,a centre prediction module (CPM) is introduced to enhance the capabilities oftarget localisation and noise suppression from the background. As the CPM is only deployed during training, it does not increase the computational cost of inference. Experimental results indicate that the proposed method achieves a good balance between the accuracy and computational cost, and it effectively suppresses the background noise at the same time
    corecore