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Abstract

Balancing accuracy and computational cost is a challenging task in computer vision.

This is especially true for convolutional neural networks (CNNs), which required far

larger scale of processing power than traditional learning algorithms. This thesis is

aimed at the development of new CNN structures and loss functions to tackle the

unbalanced accuracy-efficiency issue in image classification and object detection, which

are two fundamental yet challenging tasks of computer vision. For a CNN based object

detector, the main computational cost is caused by the feature extractor (backbone),

which has been originally applied to image classification. Optimising the structure of

CNN applied to image classification will bring benefits when it is applied to object

detection. Although the outputs of detectors may vary across detection tasks, the

challenges and the design principles among detectors are similar. Therefore, this thesis

will start with face detection (i.e. a single object detection task), which is a significant

branch of objection detection and has been widely used in real life. After that, object

detection on aerial image will be investigated, which is a more challenging detection

task. Specifically, the objectives of this thesis are: 1. Optimising the CNN structures

for image classification; 2. Developing a face detector which enables a trade-off between

computational cost and accuracy; and 3. Proposing an object detector for aerial images,

which suppresses the background noise without damaging the inference efficiency.

For the first target, this thesis aims to automatically optimise the topology of CNNs

to generate the structure of fixed-length models, in which unnecessary convolutional

kernels are removed. Experimental results have demonstrated that the optimised model

can achieve comparable accuracy to the state-of-the-art models, across a broad range

of datasets, whilst significantly reducing the number of parameters.
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To tackle the unbalanced accuracy-efficiency challenge in face detection, a novel

context enhanced approach is proposed which improves the performance of the face

detector in terms of both loss function and structure. For loss function optimisation, a

hierarchical loss, referred to as ”triple loss” in this thesis, is introduced to optimise the

feature pyramid network (FPN) based face detector. For structural optimisation, this

thesis proposes a context-sensitive structure to increase the capacity of the network

prediction. Experimental results indicate that the proposed method achieves a good

balance between the accuracy and computational cost of face detection.

To suppress the background noise in aerial image object detection, this thesis

presents a two-stage detector, named as “SAFDet”. To be more specific, a rotation-

anchor-free-branch (RAFB) is proposed to regress the precise rectangle boundary. As

the RAFB is anchor free, the computational cost is negligible during training. Mean-

while, a centre prediction module (CPM) is introduced to enhance the capabilities of

target localisation and noise suppression from the background. As the CPM is only

deployed during training, it does not increase the computational cost of inference. Ex-

perimental results indicate that the proposed method achieves a good balance between

the accuracy and computational cost, and it effectively suppresses the background noise

at the same time.
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Chapter 1

Introduction

This chapter will give a brief introduction of the motivation as well as the contributions

of this thesis. At the end of this chapter, the organisation of the whole thesis will be

introduced.

1.1 Aims and motivations

Convolutional Neural Network (CNN) is originally inspired by the structure of cat’s

primary visual cortex [1], where cells are sensitive to a small region (known as recep-

tive field). Having been developed and refined for more than two decades, CNN is now

widely used in many computer vision tasks as a deep learning architecture, e.g. clas-

sification [2], detection [3], super resolution [4], restoration [5], and segmentation [6].

This thesis focus mainly on the applications of CNNs in classification, face detection

and aerial object detection.

Image classification is a fundamental task for a wide range of fields. Traditional

algorithms conduct classification tasks in two steps: Feature extraction which is hand-

crafted [7–9], and Classification using a statistical classifier [10–13]. While some user-

selected features of traditional algorithms can be beneficial in a specific context, it

may not be the case once the context changes. In recent years, CNNs have become

a dominant computer vision approach in image classification. Compared with the

two-step traditional classification pipelines, CNN processes the task using an end-to-
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Chapter 1.

Figure 1.1: The average absolute filter weights of convolutional layers in DenseNet40
(G = 12), trained on the CIFAR-10 dataset. The colour patch (s, t) denotes the average
L1 normalised (by number of input depth) weights in the layer “t” which takes input
from the layer “s” in the same block. The last column of each block denotes the
transition layer for the first two blocks and the fully connected layer for the last block
respectively.

end method, which consists of both feature extractor and classifier. The self-feature

generation approach improves the robustness of CNN, producing the state-of-the-art

results in many fields [2, 14,15].

To generate higher level feature maps, the number of convolutional layers of the

state-of-the-art CNN has been increased generation by generation [2, 16]. More re-

cently, Residual Network (Resnet) [17] and Densely Connected Convolutional Networks

(Densenet) [18] have expanded this number to more than 100 layers. However, the

channels in the inputs of a layer may not be all necessary. Veit et al. [19] has found

that the deep residual network performs as a combination of several shallow networks.

The heat map of Densenet (shown in Fig. 1.1) demonstrates the same effect: i.e. not

all channels in the concatenated input feature maps are essential for the classification

tasks. Only a few channels are weighted with a relatively high value, which will be

used in the following layers. The remains, however, are of low values, which is not that

necessary and can be removed. As discovered by Goodfellow et al. [20], a CNN may

be misled when adding the input feature map by a small value (0.007 for example).

The redundant information from these low significance inputs will not only impede the

prediction accuracy, but also cause a waste of computational resource.

Image classification predicts the category of an image, while object detection locates

and identifies objects in an image. However, the features required for decision making

6
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Figure 1.2: Examples of easy, medium and hard faces on WIDER FACE dataset,
which are highlighted using blue, green and red boxes, respectively. According to the
detection difficulty, which is measured by the average recall of EdgeBox detector [21]
with 8,000 proposals per image, faces are split into three subsets: easy, medium and
hard. For WIDER FACE dataset, the rates for these three subsets are 92%, 76%, and
34%, respectively.

in those two application are similar, which makes it possible to apply CNNs, although

originally trained for classification, to object detection as feature extractors.

Face detection is a basic task in various computer vision and face related applica-

tions [22]. According to the level of difficulty in detection, which is measured by the

average recall of EdgeBox detector [21] with 8,000 proposals per image, faces are split

into three subsets: easy, medium and hard. For WIDER FACE dataset, the rates of

these three subsets are 92%, 76%, and 34%, respectively. Examples of easy, medium and

hard faces are shown in the Figure 1.2. At first, handcrafted feature extractor played

an important role, such as Haar-like features proposed by Viola-Jones [23], in which

the face image is segmented to several patches via multi-scale sliding windows. For

each patch, the classification work is conducted by a two-class cascade classifier. Based

on this pipeline, the following subsequent works [24–27] improve the accuracy by opti-

mising the cascade detectors. Limited by the complexity of Haar-like features, cascade

7
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classifier is only sensitive to the frontal face. To improve the robustness, deformable

part models (DPM) [28,29] build features by considering the relationship of deformable

facial parts. However, handcrafted features are effective only on specific poses and an-

gles, which are unable to handle multi-scale and multi-angle faces [30, 31] in the wild.

Thanks to the breakthrough on the convolutional neural networks (CNN), which ex-

tract features automatically without manual work, a series of CNN based models are

proposed on object detection. Studies on Faster-RCNN [3] find that an end-to-end

CNN is more robust and accurate than handcrafted object detector. To increase the

inference speed, Single Shot MultiBox Detector (SSD) [32] proposed a multi-stage pre-

diction structure, which could predict objects from low-level to high-level feature maps.

However, as the low-level feature maps are in lack of semantic information [33], SSD

has difficulty in detecting small objects. To tackle this drawback, feature pyramids are

proposed, with a “backward path”, which can link the high-level feature map to the

low-level feature map for more effective feature fusion. Due to different requirements of

fields, Faster-RCNN, SSD and Feature Pyramid Network (FPN) are widely used in face

detection [34–43]. However, detection of hard faces is still a challenging task. Com-

pared with easily detected faces, the resolution of hard faces is always low, which are

interfered by, such as, blurry, occlusion, illumination and makeup. Those interferences

cause the lack of visual consistency [41].

Object detection is one of the basic tasks in computer vision. Most of existing CNN

detectors are anchor based, which is a predefined rectangle. During box prediction,

detector predicts the difference between anchor and the actual box size. Hence, the se-

lection of anchor is important for accurate prediction. There are two types of anchors:

horizontal anchor and rotate anchor, which are shown in Figure 1.3. For horizontal

anchor, the edges of anchors are horizontal with the image edges. For rotate anchor,

however, anchor edges are rotated with a rotation angle. In aerial image, object detec-

tion tends to locate and identify objects from bird-views. Different from general object

detection [44, 45], the bounding boxes in aerial images are arbitrarily oriented, rather

than horizontal as in other images. Furthermore, the complex background in aerial

images increases the difficulty of feature extraction, which makes it hard for detector

8
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Figure 1.3: Examples of horizontal anchor (a) and rotate anchor (b). In each example,
the anchors are highlighted by blue and the prediction results are coloured using green

to distinguish the (small) foreground objects. Existing methods [46–50] have reached

promising results by utilizing two-stage detectors [3,51,52], i.e. to select the regions of

interest (ROIs) via a region proposal network (RPN) followed by a two-branch subnet

for subsequent category classification and box regression.

Most existing methods predict ROIs based on horizontal anchors [3]. However, as

horizontal proposals are along with the image edge, the extracted feature of an object

may contain features of the background and the surrounding objects, especially for

objects with a high aspect ratio or those densely positioned. The misalignment [48,

53] between extracted feature and object feature will interfere the following detection

procedure. Examples of misalignment are shown in Figure 1.4, where the majority area

of the bounding box is the background (a) and the surrounding objects (b). There are

two main solutions to the misalignment problem, i.e. either replacing the horizontal

anchors by the rotate anchors [54–59] or enhancing the capability of noise suppression

[48, 54, 60]. However, on the one hand, rotate anchors need to take the predefined

angle (or orientation of object) into account, hence the number of anchors can be

9
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Figure 1.4: Examples of misalignment caused by (a) background feature and (b) feature
from surrounding objects. In each example, the extracted feature is highlighted by blue
and the object feature is coloured using orange

dramatically increased. On the other hand, the capability of feature extraction relies on

certain assistant modules [39,60,61], such as multiple convolutional layers for enhanced

feature extraction. As a result, both solutions mentioned above increase the total

computational cost and are not practically ideal due to the poor efficiency.

Therefore, the aim of research presented in this thesis is to develop novel CNN

structures to tackle the imbalance of accuracy and computational cost, which can be

utilised in classification, face detection and aerial object detection. In summary, the

objectives of this thesis are defined as follow:

1. Optimise the topology of CNNs for classification, in which unnecessary convolutional

kernels are reduced.

2. Propose an effective face detector of small, blurred and partially occluded faces in

the wild. Meanwhile, reach a trade-off between computational cost and accuracy.

3. For aerial image detection, address the misalignment caused by horizontal proposals

and the interference caused by highly complex backgrounds.
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1.2 Main contributions of this thesis

By achieving the objectives highlighted in Section 1.1. The key contributions of this

thesis can be summarised as follow:

1. A mechanism is proposed that automatically optimises the topology of

CNNs to generate the structure of fixed length models.

i. An effective GA training pipeline is proposed to select the key input channels

of CNN layers automatically;

ii. With limited computational resources, mechanisms are proposed to optimise the

GA process by applying ’weight inheritance’ to reduce the total computational

cost without degrading the training or testing accuracy of the models;

2. Improve the detection performance on hard face through the optimisation

of both the structure and the loss function.

i. Based on FPN, a training strategy is proposed which calculates losses through

different pathways, while during inference, the backward pathway is applied for

prediction, which increases the accuracy without causing additional computa-

tion cost.

ii. A feature fusion module is proposed, which consists of a mixed network structure

to enhance the capability of feature extraction from the fused feature maps.

iii. When compared with other VGG-16 based face detector, the proposed method

achieves superior performance over a number of state-of-the-art methods on

the hard subset of WIDER FACE dataset and reaches a balance between the

accuracy and speed. With an appropriate anchor setting, the proposed method

can reach the state-of-the-art on the easy and medium subsets, while keeping

the considerable performance on the hard subset at the same time.

3. A two-stage semi-anchor-free detector is proposed for object detection of

aerial images.
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i. A semi-anchor-free detector (SAFDet) is proposed for effective detection of ori-

ented objects in aerial images;

ii. A rotate-anchor-free branch (RAFB) is proposed to tackle the misalignment

problem caused by horizontal anchors, which can predict the OBB directly with-

out any predefined anchor setting;

iii. A center prediction module (CPM) is implemented to enhance the capability of

feature extraction during the training of RPN, hence it saves the computational

cost of inference;

1.3 Thesis organisation

The remaining parts of this thesis is organised as follows:

Chapter 2 introduces related works with respect to the research topics, including

CNN structure optimisation, face detection and aerial object detection. Since both

face detection and aerial object detection are sub-classes of object detection. The

background of general object detection is also reviewed to build a solid understanding.

Chapter 3 presents the main theoretical backgrounds which form the mathematical

foundation of this thesis. First, the principle of evolutionary algorithms is introduced,

which is applied to optimise the structure of CNN in this thesis. After that, theoretical

knowledge of CNN are discussed in detail, including widely used layers, the structure

of CNN, and the commonly used loss functions.

Chapter 4, 5, and 6 present the main contribution of this thesis by tackling the

challenges on CNN structure optimisation, hard face detection, and background noise

suppression for aerial object detection, respectively.

Chapter 7 concludes the work of this thesis, and it points out the possibilities

for future work that can be expected to further improve the performance of current

methods.
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Background and Related Work

2.1 Introduction

As previously described, the main topics of this thesis include the optimisation of the

Convolutional Neural Network (CNN) structure on image classification, face detection

and oriented aerial object detection. Since most CNN frameworks of object detec-

tion are adopted from CNN models on image classification, the development of CNN

architecture design on image classification will be fully explored first, including the

manually designed methods and the self-structure-generation methods. This chapter

presents a comprehensive review of the generic object detection, followed by discussion

over related works of both face detection and oriented aerial object detection separately.

2.2 CNN Architecture Design for Image Classification

Balancing the computational efficiency and the accuracy is a critical task in designing

a convolutional neural network, as it can help to reduce the computational cost and

facilitate more portable implementations i.e. on mobile or low power devices [62–64].

Two possible optimisation approaches include: i) Optimising the connection method

between layers [17,18,65]; and ii) Optimising the convolutional paradigm, e.g. the kernel

size [16, 66], and the activation function [67]. These two methods can be conducted

both by manual design and self-generation. Manual-design-based methods are more

robust but required several attempts to achieve the best solution. Self-learning-based
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methods, on the other hand, can optimise the model architecture but may suffer from

overspecialised.

2.2.1 Manually Designed CNN Architectures

Manually designed CNN achieved great early success firstly on the MNIST dataset [2].

After that, Alexnet [14] was proposed for large-scale practical image classification,

where the state-of-the-art results were reported on the ILSVRC 2012 classification

dataset [15]. However, a large CNN kernel size is inefficient, causing huge computa-

tional cost. To tackle this drawback, in NIN (Network in Network) [66], 1 × 1 kernel

convolution is introduced to improve the efficiency of channel-wise information trans-

mission. In VGG [16], only 3 × 3 and 1 × 1 convolutional kernels were applied, pro-

ducing a deeper network with higher accuracy. Inception structure was proposed in

GoogleNet [65], where the kernel size of filters can vary within a layer, increasing the

information transmission pathways between layers.

Batch normalisation [67] reshapes the distribution of the input, which significantly

improves the training efficiency. With increasing numbers of layers, the issue of gra-

dient vanishing or gradient exploding [68] emerges, where the weights of the network

struggle to converge (gradient vanishing or gradient exploding: As weights in neural

networks upgrade according to the backpropagation, which gets gradients via the chain

rule. Under the certain method, extreme gradients from the high-level layers are am-

plified layer by layer, and eventually cause the gradients of low-level layers vanishing

or exploding. As a result, the training failed). To ease this training difficulty, the

Residual Network (ResNet) [17, 69] was proposed to allow groups of layers of the net-

work to learn the difference between input and output rather than the input-to-output

transformation for each layer. This has significantly reduced the total number of the

parameters and allowed the number of layers to be extended to over 100. However, it is

found that there are many redundant layers in the ResNet [19,70]. To further improve

the efficiency of the information transformation, in Huang et al. [18], a dense connec-

tion strategy, DenseNet, is proposed to connect the outputs of all formal layers as the

input of the following layer rather than sum all outputs in the ResNet. A comparable
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accuracy to ImageNet was achieved while the number of parameters was reduced to

1/3 of the original ResNet. However, there still exists many unnecessary layers in the

DenseNet, leaving potential for further optimisation.

2.2.2 Neural Evolution Method

To simulate the genotype-based evolution process of nature, evolutionary algorithms

(EAs) have been presented in the literature to optimise a model by encoding it to a

binary string or even a string of integers or floating-point numbers. At the early stage,

EAs were used as adaptive mechanisms to update the weights in neural networks while

fixing the network architecture [71]. As presented by Stanley et al. [72], the network

architecture evolved using the Neuro Evolution of Augmenting Topologies (NEAT)

algorithm, in which the connection or disconnection between nodes was evolved through

mutation. When combined with the compositional pattern producing networks [73],

NEAT can be used to evolve a larger scale neural network [74].

A straightforward way for coding the model is direct coding [72], where all the nodes

and their connection strategies are stored in its genotype. Direct coding performs well

when training the network completely using EAs. However, the information of a direct-

coding-based genotype string may be redundant when using EAs to optimise only one

hyperparameter. Thus, an alternative mechanism, indirect coding, has been presented

in the literature to optimise a specific hyperparameter of the neural networks [75–79].

These include i) kernel reformation for a fixed architecture [79], ii) optimisation of

the connections [75, 76, 78, 80], and iii) adjustment of the number of filters at each

layer [75,77].

When introducing the backpropagation algorithm [81] for optimising the weights of

the neural networks, it becomes unnecessary to train such weights using an EA. This

is because backpropagation algorithm helps to converge the weights to the global min-

imum more easily and quickly. In order to gain the benefit of both back-propagation

and EAs, one strategy is to combine them [82–84], where they can be used to simultane-

ously train the weights of the neural network and optimise the architecture. Although

these methods achieve comparable results to manually designed CNN models, they can
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only optimise the coding method and the training efficiency rather than the scale of

the whole model. This has led to their models being too small to cope with large-scale

image classification tasks. For instances, to fit the scale of ImageNet where the model

is originally searched on CIFAR10, GeNet [76] stacks manually designed layers and

LEMONADE [85] enlarges the number of layers per block. More recently, the scale

of the model has been considered in the network architecture [75, 77, 80] that evolves

the process to design the optimised architecture with a large searching space achieving

comparable results on the CIFAR-10 dataset [86].

2.2.3 Neural Architecture Search (NAS)

Neural Architecture Search (NAS) is a process of automatic architecture engineering.

In image classification, NAS methods have outperformed most of manually designed

models. In this chapter, two widely used NAS approach, gradient based NAS and

the reinforcement learning based NAS, will be summarised. Other methods such as

Bayesian Optimisation (BO) [87], pruning based [88], and meta-learning [89] will not

be covered here, because of inefficiency [90] or low performance [91].

Reinforcement Learning NAS. As presented by Zoph et al. [92], reinforcement

learning was used to generate a fixed length structure of a CNN layer by layer. Further-

more, the addition or removal of identical connections is also considered, which helps

the model achieve state-of-the-art results. A similar training framework was utilised by

Baker et al. [93], where Q-learning was applied to explore the structure of the model

in each layer. Instead of training with a fixed length of “Gene string”, the number of

layers was determined within the reinforcement learning itself. Reinforced Evolutionary

Neural Architecture Search (RENAS) [94] integrated reinforced mutation into an evo-

lution algorithm to increase the evolve efficiency. Mobile NAS (MNAS) [95] proposed

a factorised hierarchical search space to balance the flexibility and the search space

size, which was applied for light-weight network generation. PROXYLESSNAS [91]

removed the proxy task learning via path-level binarisation. To reduce the scale of

network, Facebook-Berkeley-Nets (FBNets) [96] utilised a layer-wise search space to

specify the type of blocks for each layer.
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Gradient NAS. Instead of searching the structure via an ”agent”, gradient NAS

optimises the structure using gradient descent. A differentiable NAS method (DARTS)

was proposed in DARTS [90], applied on both convolutional and recurrent networks.

To increase the computational efficiency, stochastic NAS (SNAS) [97] replaced the

feedback mechanism with more efficient gradient feedback from generic loss.

With the rapid development of deep learning, there are plenty of CNN architec-

tures proposed in recent years. Here the effective CNN architectures based on manual

designed and NAS are listed in the Table 2.1 and Table 2.2, respectively. More archi-

tectures are introduced in [98–100]

2.2.4 Training Strategy of Evolution Based CNN

To optimise the architecture of the CNN, each network model is considered as an “in-

dividual” and its fitness value is measured based on the classification accuracy on the

validation datasets [75–77, 80, 110]. After the mutation and crossover (excluding [75],

which replaces the crossover by computing a huge number of combinations), the model

is retrained to determine the fitness value individually. Each new individual can be

either fully trained i.e. trained 100 epochs on the CIFAR-10 dataset [75, 76, 80, 110]

or partially trained [77] i.e. 5 epochs on the same dataset. In comparison to the fully

trained approach, partial training improves the training efficiency but suffers from

overestimation or under estimation caused by random initialisation from a Gaussian

distribution [111]. In Real et al. [75], it is found that an alternative training strategy

inherits benefits from both fully and partial training, where each “individual” is par-

tially trained after structure evolution from full training. If a variable is reused, its

value will be taken from the last generation instead of being reinitialised from scratch.

Similar works have been conducted by Real et al. [75] and Xie et al. [76]. The search

space of the proposed method is the input channels of each layer, while in Real et al. [75]

and Xie et al. [76] the search space is the connection method between different layers.

Even the elements of a layer are also considered in Xie et al. [76]. A large search space

makes both methods hard to be optimized under limited computational resources. To

improve the training speed and reduce the computational cost, the proposed method
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Table 2.1: Summary of manual designed CNN

Model Key Features

Architectures with Stacked layers

AlexNet [14] Use large size kernels (maximum 11)

ZFNet [101] Reduce the maximum kernel size to 7

NIN [66] Use 1× 1 convolution as channel-wise MLP

VGG [16]
Reduce the maximum kernel size to 3

Enlarge layer number to 19

Architectures with Skip connections

Inception [65] Output is concatenated by multiple convolutional layer with dif-
ferent kernel size

HighwayNet [102] Output of low layer can be added to the high layer after passing
a sigmoid function

ResNet [17] Output of low layer is added to the high layer

DenseNet [18] Output of low layer is concatenated to the next layer

Variants of ResNet and DenseNet

SENet [103] Add one more branch into the residual block, where the input is
the average along height and width of the original input feature
map

FractalNet [104] Replace the convolution layer in ResNet by residual block

ResNext [105] Replace the convolution layer in ResNet by inception block

HRNet [106] Fuse feature maps from different resolutions

Res2Net [107] Replace the convolution layer in ResNet by dense block

Light-weight methods

SqueezeNet [62] Use residual block with fewer channels

MobileNet [63] Replace convolution by separable convolution

ShuffleNet [64] For each layer, take partial channels from the former outputs

in Chapter 4 does not discard the crossover step as proposed in Real et al. [75]. Exper-

imental results in Section 4.3 show that, by using crossover, the total computational

cost can be dramatically reduced whilst maintaining the test accuracy. The original

weight inheritance method [75] is optimized for the residual structure which is not fit

for the densely connected structure. As a result, in Chapter 4, a new pre-trained weight

inheritance method is proposed to initialize the weights of the model, which are more
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Table 2.2: Summary of NAS

Model Searching Method

NASNet [108] Reinforcement Learning

GeNet [76] Genetic algorithm

LEMONADE [85] Evolutionary algorithm

SNAS [97] Gradient from backpropagation

Proxyless [91] Gradient from backpropagation and reinforcement learning

DTARS [90] Gradient from backpropagation

FBNet [96] Gradient from backpropagation

RENASNet [94] Gradient from backpropagation

MnasNet [95] Reinforcement Learning

AmoebaNet [109] Evolutionary algorithm

suitable for densely connected structures.

2.3 CNN for Object Detection

2.3.1 Generic Detection

Image classification specifies the categories of an image, but is unable to localise the

exact positions of objects. To further discover the semantic information in an image, it

is essential to precisely estimate the sizes and the coordinates of objects in an image.

This task to solve the challenge is referred as object detection. According to the

application scene, there are plenty of the sub-classes in object detection, such as ship

detection [112], face detection [35–37] and scene text detection [47,113].

Before the existence of CNN-based object detection methods, the pipeline of tradi-

tional object detection methods intend to tackle this task as regional image classifica-

tion. As the positions and sizes of objects are varied in images, it is a natural choice to

”scan” an image via a pre-defined rectangle, which refers to as ”sliding window”. Each

time the sliding window moves a specified distance (known as ”stride”) along x-axis or

y-axis, a classifier will conduct a classification to the sliding window region. An object

is detected if the result is true and its coordinate and the size will be described by the

existing position and the size of the sliding window. The classification process on each
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sliding window region can be mainly divided into two steps: feature extraction and

classification.

Before classification, a feature extractor is applied on grey-scale image to extract

visual features, such as Haar-like [23], Histograms of Oriented Gradients (HOG) [7],

Local Binary Patterns (LBP) [8] and Scale-invariant Feature Transform (SIFT) [9].

After that, a classifier,e.g. adaboost [10], support vector machine (SVM) [11], ran-

dom forests [12] and artificial neural network [13], will assign the region an category

({foreground, background} for single class detection and {class 1,class 2, ... class n,

background} for multi-class detection) based on the extracted features.

Based on these manual-designed local feature extractors and shallow learning archi-

tectures, state of the art results have been achieved on the PASCAL VOC object de-

tection competition [44] before 2012. However, the limitations of the detection pipeline

are obvious: For the sliding window design, different objects may exist in any positions

of the image with arbitrary aspect ratio and scale, single scale sliding window may be

unable to precisely fit the object. As a result, image should be scaled multiple times

(image pyramid), which is computationally expensive and produces lots of background

windows. As for the feature extraction, those hand-crafted features only produce ben-

efits in specific applications and may fail once transferred to a new application.

In recent years, CNN based object approaches have become the dominant on object

detection. During the process of Two-Dimensional (2D) convolution, a kernel convolves

images from top-left to the bottom-right, making the convolution kernel a naturally

sliding window. Compared with the two-step traditional detection pipelines, CNN

processes the task using an end-to-end method, i.e. the network generates the desired

feature maps itself from low level to high level. The self-feature-generate approach

improves the robustness of CNN, producing state-of-the-art experimental results in

many applications: from single-class object detection tasks [35–37, 47, 112, 113], to

more complex large-scale object detection tasks [3, 32, 33, 114]. On the other hand,

CNN detector locate an object by regressing the difference between the predefined

rectangles (the rectangles are known as ”anchors”) [3, 32, 33, 114] or the coordinates

of the pixel [115–122] (these methods are known as ”anchor-free”), which makes the
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localisation more accurate than the traditional methods.

Following the work in [123], the frameworks of the CNN based object detection

approaches can mainly be divided into two categories: multi-stage detectors and single-

stage detectors. For multi-stage detectors, the category classification and the box re-

gression are cascaded, which is similar to [23], while single-stage detectors conduct clas-

sification and the regression only once. Multi-stage detectors mainly include Regions

with CNN features (R-CNN) series [3,51–53], Spatial Pyramid Network (SPPnet) [124],

Region-based Fully Convolutional Networks (R-FCN) [125], Feature Pyramid Network

(FPN) [33], cascade RCNN [126], RefineDet [127], Libra R-CNN [128], and Light-Head

R-CNN [129], while the single-stage methods mainly includes MultiBox [130], Atten-

tionNet [131], Gird-CNN (G-CNN) [132], YOLO [116], Single Shot MultiBox Detector

(SSD) [32], Deconvolutional Single Shot Detector (DSSD) [133], Deeply Supervised

Object Detectors (DSOD) [134], Receptive Field Block Network (RFBNet) [135], Reti-

naNet [114], and TridentNet [136], as well as the anchor-free methods [115–122]. Multi-

stage detectors take the advantage of accuracy while single-stage detectors are better

at computational speed.

2.3.2 Face Detection

Back to 1990s, face detection became increasingly important in computer vision, which

has been widely used in multiple applications such as face recognition, facial expression

recognition, and face tracking [22]. At early stage, face detection mainly extracted

feature using a hand-crafted feature extractor, such as Haar-like features [23], control

point set [137] and the Deformable Part Model (DPM) [28,29]. These detectors reached

promising detection accuracy and high efficiency at the same time.

Recently, results in [3,36] indicate that CNN can extract more powerful features than

hand-crafted face detectors. As a result, CNN based face detectors become dominating

in face detection in the last decade [35,39–42,138,139].
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2.3.2.1 Structures of CNN Face Detector

According to the structure of CNN, most of existing CNN face detectors can be divided

into two categories, i.e. multi-step detectors (SSD-like [32], one stage only.) and single-

step detectors (faster-RCNN-like [3], containing one stage [37] or two [36]). A single-

step detector [32, 34, 35] produces a promising accuracy using the feature map, which

is extracted from the deepest layer of its backbone. However, the stride of the deep

layer is often quite large (usually 16 [36] or 32 [140]). As a result, the information

of tiny faces may vanish. To tackle this issue, multi-step detectors detect faces on

feature maps extracted from different depths of CNN, where shallow layers are for

detecting small faces and deeper layer for large faces. However, due to the limitation

caused by the insufficient capability of feature extraction, shallow layers are not rich

enough for extracting semantic information as deep layers [33]. In order to enrich the

semantic information on shallow layers, [33] proposed a top-down pathway, where the

feature maps of deep layers and shallow layers are fused together, using addition [35],

element-wise multiplication [141] or concatenation [140].

2.3.2.2 Feature Extraction Module

Faster-RCNN (RCNN, Regions with CNN features) [3] firstly presented a convolutional

subnet for face detection, in which the subnet contains a single 3×3 convolutional layer,

followed by two sibling 1×1 convolutional layers (also called ”detection head”) for clas-

sification and box regression, respectively. To reduce the computational cost, SSD [32]

replaced the two subnets in the Faster-RCNN with a subnet with two 3×3 convolutional

layers. To further increase the capabilities of classification and regression, based on the

SSD detection head, RetinaNet [114] inserts four additional 3× 3 convolutional layers

before the last two layers. However, a 4-layer subnet has significantly increased the

computational cost: for a typical FPN-based face detector, there are in total 6 feature

maps which means 12 additional feature extraction subnets will be added. Even though

the weights of subnets are shared in between, the computational costs for each subnet

are independent to each other. To balance the accuracy and the computational cost,

in recently proposed methods, a series of inception based subnets [67] are introduced
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to replace the four-layer subnet. For example, FANet [40] and Pyramidbox [41] have

found that a simple two-branch inception module can keep the accuracy as retina head

(consists of 5 convolutional layer for feature extraction and 1 convolutional layer for

prediction) when using the SSD head (consists of 1 convolutional layer for prediction).

Selective Refinement Network (SRN) [42] introduced a four-branch residual-inception

subnet [142], as a replacement of the first two layers of Retina head. Dual Shot Face

Detector (DSFD) [141] applied the dilation convolution into the subnet, which expands

the receptive field without increasing the computational cost significantly.

2.3.2.3 Loss Function Design

Imbalanced ratio of positive examples and negative samples during training impedes

the performance significantly, especially for SSD-like detectors [114, 143, 144]. To ad-

dress this issue, online hard example mining (OHEM) [143] automatically selects hard-

negative examples as three times of positive examples. In order to further make use of

easy-negative examples, Lin et al. [114] proposed a focal loss which weights the loss of

examples according to the difficulty of learning. Another two applicable strategies are

multi-task prediction and hierarchical learning. For multi-task prediction, detection

head will be assigned additional face-related prediction tasks, such as key points detec-

tion [139], head-body detection [41], face attention [39], and face segmentation [138].

Different from multi-task prediction, tasks of the hierarchical learning are the same

as the ordinary object detection training yet predicting objects from different “path-

ways”. FANet [40] applied the FPN [33] structure in evaluation but predicted faces

from one forward and two backward pathways during training. DSFD [141] narrowed

the range of prediction layers to two pathways and assigning different anchor sizes for

each pathway. SRN [42] cascaded prediction results from both pathways, which reduced

easy-false-positive examples significantly.

However, existing methods cannot well balance the accuracy and the computational

cost. Large scale models, with multiple pathways and deep backbones [39,42,138,141],

improve the accuracy with a sacrifice of computational cost. On the other hand, the

structures of high-efficiency face detectors are always shallow [140]. As a result, the
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accuracy is not high enough in some dense detection scenes [31]. To address this issue,

a novel context enhanced approach, as well as the triple loss training strategy, are

detailed in the Chapter 5.

2.3.3 Oriented Aerial Object Detection

2.3.3.1 Anchor based oriented aerial object detection

For general object detection, existing methods, such as SSD [32], faster-RCNN [3], fea-

ture pyramid network [33], and RetinaNet [114], predict the bounding box of the object

by regressing the difference between a number of candidate boxes at each pixel location

(known as “anchor”) and the actual one (the ground truth) in the image. For object

detection in aerial images, however, there is no angle element in the horizontal anchor

setting and the rotate angle is fixed to 90 degrees. This increases the difficulty of rotated

angle regression. Moreover, horizontal anchors usually contain more background area

than the rotate anchor, which has resulted in the problem of misalignment between the

detected ROI and the ground truth. To address this challenge, rotated anchor setting is

introduced [54,58,59,61,112], in which anchors at different angles are predefined. How-

ever, the increased number of anchors (”numscales× numaspectratios× numangles”
compared with ”numscales× numaspectratios”) makes it more time-consuming than

the horizontal anchor setting in object detection.

2.3.3.2 Anchor-free Object Detection

The anchor-free strategy is originally designed for general object detection [115–122,

145]. Different from anchor-based methods [3,32,33,114], anchor-free methods predict

one bounding box per pixel. Instead of regressing the difference between the actual

bounding box and the anchor, anchor-free methods predict the bounding box based

on the coordinates of the feature map. However, the regression formats are different

between anchor-free methods. DenseBox [115], CornerNet [117] and FoveaBox [120]

predict the upper-left and bottom-right coordinates of the bounding box, known as the

“XYXY” mode. YOLO [116], DuBox [145] and CSP [121] predict the center coordinate,

and the associated width and height of the bounding box, known as the “XYWH”
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mode, which is the same mode as used in the anchor-based methods. Different from

these two prediction modes, FCOS [119] predicts the distances between the center point

and the four boundary lines of the bounding box, respectively. Anchor-free methods

can actually reduce the computational cost on the box regression branch. However,

due to the lack of anchors in anchor-free methods, the original intersection over union

(IoU) matching scheme cannot be applied. Thus, the positive assignment becomes a

challenging task [119–121,145].

2.3.3.3 Multi-task Loss of Oriented Aerial Object Detection

Previous works apply multi-task prediction [53, 60, 139], i.e. jointly conduct multiple

prediction tasks on each object during training, such as bound box prediction, key point,

and segmentation, to enhance the capacity of box prediction. Apart from bounding

box regression and category classification, multi-task prediction can also be applied in

other important tasks such as determining the keypoints [139], image segmentation [53]

and attention detection [40, 60]. As mentioned in [146], existing challenges contain

low resolution, noise, and crowd. Previous works tackle these challenges by using

attention structures [39,60,103,147,148], where supervised attention structures [39,40,

60] consider all the pixels within the boxes as the foreground. However, the anchors

centered at the boundary of the bounding boxes, especially for those with large aspect

ratios (height/width), may have low IoU matching values than the predefined threshold.

These boundary pixels are supposed to be categorised as the background rather that

the foreground.

For aerial object detection, there are challenging scenarios including small objects

and dense arrangement. Thus, in Chapter 6, a two-stage aerial object detector is

proposed. To gain the benefits from both anchor-based and anchor-free regression

schemes, an anchor-free branch is introduced in the region proposal network (RPN)

during training and apply anchor-based regression branch during inference. In order to

locate the position of objects more precisely, a centreness loss is presented in the RPN,

which predict the centre of objects only. Details will be described in the Section 6.2.
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2.4 Summary

In this chapter, the background and related works of CNN based image classification

and the CNN based object detection have been comprehensively reviewed. The CNN

based image classification part introduced the development of CNN structure, including

manually designed methods and self-structure-generation methods. Then the review

of objection detection presents the development of generic object detection, which acts

as the stem of the following works. After that, studies on the two branches of general

object detection, namely face detection and oriented aerial object detection, are further

reviewed with an exploration of the detection framework and the multi-task training

strategy. According to the review, related mathematical backgrounds will be detailed

in Chapter 3, while the contributions within these fields will be developed in Chapter

4, 5 and 6.
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Theoretical Background

3.1 Introduction

The content of this chapter forms the theoretical and mathematical foundations of the

whole research, which lies in mainly two folds: 1. evolutionary algorithms (EAs) and

2. convolutional neural networks (CNNs).

First of all, the mechanism of Evolutionary Algorithms (EAs) are detailed. Since

EAs are widely used in many fields and it is impractical to cover all, the introduction

of EAs in this chapter focuses on the role of EAS in the network optimisation, to which

the work presented in Chapter 4 makes a significant contribution. After that, the

mathematical foundations of CNNs are introduced in Section 3.3, which starts from a

review of different types of layers, to the loss functions of CNNs.

3.2 Evolutionary Algorithms in NAS

EAs are a heuristi c-based framework for solving problems that would take expen-

sive computational cost to optimise. There are plenty sub-classes of EAs, which

are frequently used by industry and research, including Evolutionary Strategy (ES),

Genetic Algorithms (GA), Genetic Programming (GP) , Genetic Improvement (GI),

Grammatical Evolution (GE), Linear Genetic Programming (LGP), Cartesian Genetic

Programming (CGP), Differential Evolution (DE) and Gene Expression Programming

(GEP) [149]. The general processes of EAs are similar [150], as concluded in Figure
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3.1. Within the steps in the process, there exists many variations. In recent years, EAs

are widely used in NAS [85, 109, 151–158] to optimise the structures of CNN models.

As the aim of adopting EAs in this thesis is to optimise the structure of CNN, the

introduction of EAs in this section will be focused on the application of EAs in NAS.

Before the process starts, a string is defined to present the structure of CNN, which

refers to individual. At the first step, a number of individuals (known as population)

are initialised. The quality of each individual is determined by a predefined objective

function, where the procedure referred to as fit. For the NAS, this could be the loss on

the test set of the target dataset, such as CIFAR [86], ImageNet [15] and COCO [45].

To obtain this, a model, where a string presents, will be trained on the train set

of the target dataset. However, the value of the string will not be modified during

training. Based on this fitness value, three evolutionary operations are conducted to

evolve the value of the string(also the architecture of the model): selection, crossover

and mutation.

Selection. In order to keep the well-performing structure and remove the bad-

performing ones, a selection step is firstly applied to the population. Take tournament

selection [159], which is applied in the Section 4.1, as an example. In each generation,

the population is randomly sampled to S(S<I) individuals I times, where each “indi-

vidual” might be resampled, forming I candidate groups. Only the best individual is

selected from each of the candidate groups, which is a “parent” of the next generation

(the “parent group” is denoted as “P”) and all the other individuals in each candidate

group are discarded.

Crossover. After generating the “parent” individuals, the “child” individuals can

be generated by combining the “parent” individuals in a pairwise manner and conduct-

ing crossover on each pair of the “parent” individuals. In crossover, bits from different

individuals but at the same position in the string are randomly “swapped”. The prob-

ability of crossover for each pair is PC and the probability of crossover of a bit is PbC .

Crossover modifies the structures of a pair simultaneously. When the structures of a

paired individuals are modified, the fitness values of the pair will be re-evaluated.

Mutation. After crossover, each “child” individual flips some of its bits randomly,
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Figure 3.1: Basic process of evolutionary algorithms. The order of crossover and mu-
tation can be altered according to the specified cases.

which is known as mutation. Selection and crossover remove the bad structures, while

mutation brings more variance to the structure. The probability of mutation for each

29



Chapter 3.

pair is PM and the probability of mutation of a bit is PbM . If the structure of a “child”

individual is mutated, its fitness value will be re-evaluated. There exists a special

situation that binary bits of a layer are all zero. This means no feature map inputted

to this layer. To avoid overspecialised, the first and the last bits are automatically

flipped to “1” rather than discarding the layer as did in Real et al. [75], Xie et al. [76],

and Sun et al. [77]. Experimental results in Real et al. [75] indicates that, without

this constraint, the model generated on CIFAR-10 has fewer layers. However, when

applying on CIFAR-100 dataset, the generated structure becomes suboptimal. As a

result, the number of layers should not be stabilised during the evolution process.

Eventually, the algorithm will terminate, where one of two situations emerges (some-

times both): 1. the number of generations has achieved the maximum; 2. the fitness

value has reached the predefined threshold. When the algorithm is terminated, indi-

viduals of the current generation are all returned.

3.3 Convolutional Neural Networks

A convolutional neural network (CNN) is a class of artificial neural network (ANN),

that consists of one or more layers and are used mainly for image processing, such

as classification, segmentation, and image super resolution. There are various types of

layers for different functionality, including feature extraction, dimension reduction, data

regularisation, data biasing, decision making, and so on. In this section, at first, the

related types of layers are introduced, followed by the loss functions and the methods

of gradient descent, which is applied for network training. After that, the commonly

used structures of CNN are presented.

3.3.1 Layer Types in CNN

3.3.1.1 Fully Connect Layer

Starting from multilayer perceptron (MLP) [160], fully connected (FC) layers are widely

used in the machine learning models [160–164]. In fully connected layers, a basic com-

putational unit is node, also known as neuron. A connection between nodes refers to
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a linear transfer function across two layers. Nodes at the same layer are not connected.

In FC, a node connects all the nodes from its former layer and add them together as

the input. Then, the input is subject to an activationfunction, which generates the

output of the node.

Assuming that there are two FC layers in CNN, which are denoted as l and l + 1

respectively. The output of node j in the layer l + 1 can be mathematically expressed

by:

Z l+1
j = f(

N∑
i=1

(wlijZ
l
i + blij)) (3.1)

where Z li is the output of node i in the layer l. Z l+1
j is the output of node j in the

layer l+ 1. wlij denotes the weight and blij is the bias element, respectively. f(∗) is the

activation function. Simply use linear transformation makes it difficult to fit nonlinear

problems. As a result, non-linearity is achieved via activation function. By using

nonlinear functions, a network can approximate an arbitrarily function, given that it is

sufficiently large [165–167] Figure 3.2 shows an example of two FC layers’ subnet.

For image classification and detection, the commonly used activation functions are

sigmoid, softmax and rectified linear unit (ReLU). The Sigmoid function is also known

as logistic function [168]. Before the existence of ReLU, the Sigmoid function is a

non-linear function (as visualised in Figure 3.3) which used mostly in Artificial Neural

Network (ANN) [169]. The formula of sigmoid function is given below:

f(x) =
1

1 + e−x
(3.2)

As seen in Eq. 3.2, sigmoid function tends to predicting probability based on output.

Thus, it always appears in the output layers, achieving a success in binary classifica-

tion problems. Recently, [114] proves that sigmoid functuion can also been applied in

multi-class prediction problems (i.e. the number of classes is larger than 2), where the

probability of each class is predicted individually. At early stage, the sigmoid function

31



Chapter 3.

Figure 3.2: An example of two FC layers’ subnet. weights are expressed by arrow. +1
indicates the bias elements

are also used in the hidden layers (layers between the input layer and the output layer)

of shallow ANNs as it is easy to understand [170]. However, when apply sigmoid as the

activation function of hidden layers, there exists two major drawbacks. Firstly, the ex-

ponential function in the sigmoid increases the computational cost, reducing the total

speed of the network. Secondly, sigmoid suffers sharp damp gradients, slow conver-

gence and gradient saturation [167] in the backpropagation algorithm [81], increasing

the training difficulty of ANNs.

Similar to the sigmoid function, the Softmax function [171] is another class of acti-

vation function to compute probability based on output. However, instead of predict
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Figure 3.3: The sigmoid activation function

the probability of each node individually, the softmax function predicts the probability

distribution from all nodes in the output layer. The probability of a node i in the

output layer can be mathematically expressed by:

f(Zouti ) =
eZ

out
i∑

j=1 e
Zout
j

(3.3)

where Zouti denotes the output of node i. From the Eq. 3.3, the range of a node is

[0, 1], and the summation of the probabilities equals to 1. When the number of classes

equals to 2, i.e. binary classification problems, the softmax function becomes identity

with the sigmoid function.

The ReLU was proposed in [172], and has been widely applied in deep learning

applications [171, 173]. The ReLU thresholds each input node, where negative values

are set to zero while keeping non-negative values unchanged. The formula of ReLU is

given by:

f(x) = {
x if x ≥ 0

0, if x < 0
(3.4)

As the ReLU is a combination of linear functions, it maintains the properties of linear
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functions [169]. Thus, it is easier to optimise, when compared with the sigmoid function

[171]. It also performs the better capability on generalisation compared to the sigmoid

function [174, 175]. However, the ReLU has a significant drawback that it discard the

nodes with negative values. As a result, the gradients are also zero on negative-value

nodes, which makes the training easy to fail, i.e. gradients are all zeros on a layer,

causing the weight update interrupted. To tackle this issues, the leaky ReLU and the

parametric Rectified Linear Units (PReLU) are proposed.

The leaky ReLU activation functiuon (LReLU) assigns a negative slope (e.g. 1e-2

in Pytorch [176]) to the ReLU to the weight updates through all nodes during the

backpropagation process [177]. The LReLU function is defined as:

f(x) = {
x if x ≥ 0

αx, if x < 0
(3.5)

where the parameter α is the negative slope introduced as above. However, as the

magnitude of the negative slope is small, the performance improvement of network

using the LReLU function is not obvious when compared with that using the ReLU

function [169,177].

The parametric ReLU [111], denoted as PReLU, is a variant of the LReLU function.

The format of PReLU is the same as the LReLU, except that the negative slope α

is a node-wise trainable variable which can be optimised using the backpropagation

algortithm. As reported in He et al. [111], by adopting the PReLU, the performance is

marginally improved in large scale image recognition tasks [15], when compared with

the network using ReLU function.

3.3.1.2 Convolution Layers

One limitation of FC is the huge number of parameters. If apply a MLP, where the

number of the hidden layer is 1024, to CIFAR dataset [86]. As the size of CIFAR images

is 32 × 32 × 3, the number of parameters on the hidden layer is 32 × 32 × 3 × 1024 =

3, 145, 728. As reported in Pascanu et al. [178], for a shadow ANN, such amount of

parameters increases the training difficulty, causing gradient exploding or vanishing
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gradients. To tackle this, convolution layer is proposed to reduce the number of pa-

rameters. In a convolution layer, each output node only takes local-wise input nodes,

rather than global-wise. The operation of multiple dimensional discrete convolution

can be mathematically expressed by:

Y =
∑
k1

∑
k2

· · ·
∑
kM

X(k1, k2, · · · , kM )h(k1, k2, · · · , kM ) (3.6)

where X is the input feature map. h is the convolution kernel. M denotes the number

of dimensions. In CNN, M = 2 [16,17,105] and M = 3 [179,180] are widely used, which

refers to Two-Dimensional (2D) and Three-Dimensional (3D) convolution, respectively.

The process of convolution can be visualised in Figure 3.4. As shown, the kernel moves

on the feature map from the top-left to the bottom-right. The number of pixels that

each time the kernel moves is the stride of the kernel. The shape of feature map is

commonly expressed by B×H×W ×C, where B, H, W , C are the batch size (i.e. the

number of images), height, width and the number of channels, respectively (e.g. for a

single RGB image, the size can be expressed by 1 ×H ×W × 3). During convolution

operation, the weights of kernels are assigned separately for each channel.

Different from FC, which takes all nodes as input, nodes in convolution layers are

affected by a region of nodes in the feature map. Thus, the receptive field of a node

is proposed to measure the number of nodes (or ”pixels” in CNN) with respect to the

original image, that make contributes to the result. The method of calculating the

receptive field is given by:

RFout = RFin + (k − 1) ∗ stot (3.7)

where RFout and RFin are the receptive field of the output and the input feature

maps, respectively. k is the size of kernel. stot is the total stride of the existing layer,

which is obtained by the size of input image divided by the size of the input feature

map. Knowing the receptive field of each layer is important for network design and

diagnose [181]. It is critical for each pixel of the output layer to have an adequate
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Figure 3.4: An example of the convolution layer. The blue square presents the input
feature map, where the orange square is the convolutional kernel, and the green square
is the output feature map. The four subplot of feature maps on the figure indicates the
moving path of the convolutional kernel: from the top-left to the bottom-right

large receptive field [182], especially for the pixel-wise prediction tasks, such as object

detection [35], stereo matching [183] and semantic image segmentation [184].

As seen in Eq. 3.7, there are three methods to increase the receptive field of the out-

put layers: stacking more layers, increasing the kernel size and adopting sub-sampling

layers (pooling layers). Increasing the kernel size remarkably enlarges the receptive

field [185]. However, the number of parameters also increases, causing training difficulty

and reduction of computational cost. An alternative method is dilated convolution [186]

(also known as ”atrous convolution” [187]).

Dilated convolutions are applied to increase the receptive field of output nodes with-

out increasing the number of kernel parameters, which is a low cost method compared

with enlarging the kernel size. To be concrete, dilated convolutions expand the kernel

size by inserting spaces between the kernel elements [188]. The distance between each

kernel elements are dilated rate (denoted as r), which is a hyperparameter conntrolling

the ”actual” size of kernel. When the r = 1, dilated convolutions becomes the basic

convolution. An example of dilated convolution operation is shown in Figure 3.5, where
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Figure 3.5: An example of the dilated convolution layer (r = 2).

the dilated rate is 2.

The input of dilated convolution is ”sampling” in a region, rather than depends

on all nodes. As a result, the dilated convolution may lost information during for-

ward propagation, when compared to large-kernel convolution. It is recommended

that deploy dilated convolution layers at the end of CNNs as high-level feature extrac-

tors [135,141].

Specifically, when the kernel size is reduced to 1, as shown in Figure 3.6, such

convolutional layer becomes ”channel-wise MLP”, which is capable of enhancing model

discriminability and regularising feature map. As the network going deeper, 1 × 1

convolution layer also becomes a key role in adjusting the depth of feature map.

3.3.1.3 Pooling Layers

Pooling layer is another important module in CNNs. On the one hand, as introduced in

the Eq. 3.7, a pooling layer reduce the size of feature map, which rapidly increases the

receptive fields of the following convolution layers. On the other hand, it reduces the

computational cost of CNNs. Under limited computational resources, this operation
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Figure 3.6: Example of the 1× 1 convolution layer. The kernel size shown in the figure
is 1× 1× 7× 3

helps CNNs implement more layers, which increases the prediction performance [16].

There are two widely used pooling layers: average pooling and max pooling. The

mechanism of pooling layers are similar to the regular convolution: a kernel slides from

the top-left to the bottom-right of the input feature map, where the size reduction

is achieved via large stride (typically s = 2 [16, 17]). For pixels in the kernel, average

pooling takes the average value over all pixels as output, while max pooling outputs the

max value. To interpret another way, max pooling captures the most important pixel

in a region, while average layer only smooth feature map. As a result, for image-like

data, max pooling is outperforms average pooling [189]. A variant of average pooling

is global average pooling (GAP) [17], which takes average value through all the pixels

in a channel, where the output is fed to FCs for final prediction.

3.3.1.4 Normalisation Layers

During backpropagation, weights (and bias) of each layer update synchronously. The

input distributions of high-level layers is affected after each iteration, which is amplified

as the network goes deeper. Thus, lower learning rate (a hyperparameter to control
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the magnitude of weights update at each iteration) is required to stabilise the train-

ing. However, reducing the learning rate increases training iterations while reduces

prediction accuracy [17, 67]. This phenomenon is referred to as internal covariate

shift (ICS) [67]. To tackle this, batch normalisation (BN) layer [67] is proposed. The

operation of BN is given by [67]:

µB =
1

m

m∑
i=1

xi

σ2B =
1

m

m∑
i=1

(xi − µB)2

x̂i =
xi − µB√
σ2B + ε

yi = γx̂i + β

(3.8)

where B is the set of mini-batch (B = {x1, x2 . . . xm}) and m is the mini-batch size.

µB and σ2B are the mean and variance over a mini-batch, respectively. γ and β are

two trainable variables for reshaping the distribution of input. ε is a small constant

for avoiding the propagation crush when zero variance. For convolution layer, m =

B × H × W , where B, H, W are the batch size, height and width of feature map,

respectively. As seen in Eq. 3.8, the input data xi is whitened, i.e. linear transform

data to zero means and unit variances (using µB and σB). However, simply whiten

data will constrain the representation ability [67, 190]. Thus, the whitened data is

then reconstructed via a linear transformation (via γ and β). As the functionality

of BN layers is reshape the distribution of the activation input. The BN Layer is

implemented after a convolution layer or a FC Layer, but before the activation function.

As illustrated by Ioffe et al. [67], the BN layer also acts as a regulariser for reducing

overspecialised.

As mentioned above, the BN layer normalise data along the dimensions of B×H×
W . A small batch size causes inaccurate estimation of the means and variance of mini-

batch [190], causing model errors increase. As a result, a large batch size is essential for

BN to work (typically 32 per GPU [67, 142]). However, for applications requires large
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image size for training (e.g. detection [3, 191] and segmentation [184]), the batch size

is vary small (ranged between 1 [3] to 8 [119] per GPU). The demand of batch sizes

is impractical. Other variants of BN, such as batch renormalisation (BR) [192] and

synchronized BN [193], alleviates the demand on large batch size, but still unable to

tackle it effectively. Thus, group normalisation (GN) [190] is proposed for small batch

training.

The mechanism of GN is the same as BN, except the definition of mini-batch. In

GN, the feature map is firstly divided into G groups, i.e. the feature size of each group

is (B × H ×W × C
G). Here G is a pre-defined hyper-parameter which is assigned as

32 by default [190]. For each group, GN conducts normalisation along (H ×W × C
G)

axes, without on B axis. Thus, the mini-batch size of GN is (H × W × C
G) which

gets rid of the restriction on batch-size. Experimental results in GN [190] indicates

that, for image recognition, when the batch size is below 16 per GPU, GN outperforms

BN dramatically. However, when the batch size is above 16 per GPU, BN slightly

outperforms GN. This indicates that BN is superior than GN, when the computational

resource is sufficient.

3.3.2 Network Structures

The sections above introduce the different types of layers, where the structures of CNNs

are built based. In this section, the architectures of CNN, related to this thesis, are

reviewed.

3.3.2.1 AlexNet Style

The structure of AlexNet style (as shown in Figure 3.7) is straight forward, which

simply stacks layers one after another. Convolution layers and max pooling layers

are the main components. At the end of the network, three FC layers are used for

the final prediction output. The size of feature map is reduced jointly by convolution

layer and max pooling layer. For AlexNet style CNNs, due to the limited number of

layers, the size of feature map is reduced rapidly. The represents CNNs of this style

are AlexNet [14] and ZFNet [101], as concluded in Figure 3.8.
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Figure 3.7: Architecture of AlexNet. layers colored by grey indicate pooling layers. For
each layer, the input size is shown on the y-axis and the number of channels is taged on
the x-axis. The architecture of ZFNet is omitted as it is the same as AlexNet, except
the size of the first convolution layer. The details are compared on the Figure 3.8.

3.3.2.2 VGG Style

VGG style (as detailed in Figure 3.9) is a milestone in the development of CNN struc-

ture, where the core ideas are still used in the lateral CNN structures. Starting from

VGG network [16], the structures of CNN gets deeper. For VGG, the maximum depth

reaches 19 [16]. The structure of VGG style is similar to AlexNet style, which also cas-

caded connected. In VGG, the feature map is reduced by four times, which is realised

by max pooling layers with out using convolution layers. Convolution layers between

two max pooling layers are formatted as a ”module”, i.e. the sizes of output feature

map are identical in a module. The decision making layer is also the same as AlexNet.

The kernel sizes of convolution layers in VGG are small, which are 3× 3 and 1× 1. By

stack small size kernel layer, model discriminability are enhanced [16, 65, 66] without

hurting the receptive field [16]. A generalised structure of VGG is expressed in Figure

3.10, which is also applicable for Inception nets [65, 67, 142, 194], ResNet [17, 69] and

Densely Connected Network (DenseNet) [18].
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(a) AlexNet (b) ZFNet

Figure 3.8: Structures of AlexnNet and ZFNet. The expression format of convolution
layer and max pooling layer is: ”layer type”, ”kernel size”, ”stride”, e.g. ”Conv 11 ×
11 s-4” indicates a convolution layer where the kernel size is 11 with stride as 4. The
strides omitted are 1 by default.
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Figure 3.9: Architecture of VGG16. layers colored by grey indicate pooling layers. For
each layer, the input size is shown on the y-axis and the number of channels is taged
on the x-axis.

A CNN architecture can be described via the implementation method of each layer

and the type of each layer. The number of channels, however, is varied with the tasks.

Thus, to simplify the description, the remaining part of this chapter will focus on

introducing the layer connection method and the layer type as in Figure 3.10

3.3.2.3 Inception Style

As suggested in VGG, a straightforward way to improve the accuracy is that increase

the number of layers. However, on the one hand, this brings the computational cost

significantly. On the other hand, the efficiency of the network is also decreased [18,65],

i.e. some of kernel weights are close to zero. Thus, to increase the network scale while

maintaining the utilisation efficiency of computational cost, inception block [65,67,142,

194] is proposed.

Technically speaking, the inception block, describes the connection method between

layers, rather than the structure of whole network as VGG. The inception is firstly

proposed in GoogleNet [65], which is also known as ”inception-v1”. The inception block

utilises the multiple kernel convolution layers in parallel. The outputs of different layers

are then concatenated along the channel axis (”C” axis for B × H ×W × C) as the

input of the next inception module. With the utilisation of inception block, the depth
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Figure 3.10: A generalised structure of VGG. This structure is also applied in Inception
nets, ResNet and DenseNet. The ”Stem” refers to the first module. The ”Feature
Reduction” is the layer where the size of feature map is reduced. ”Decision Making”
is the module where the prediction is made. For VGG, this module includes three FC
layers.

of network achieves 22 layers. Compared to VGG, the error rate is reduced by 0.83%

on ImageNet dataset [15] (a large scale image classification dataset), while the number

of parameters is about 21 times fewer (6.7977 million for GoogleNet vs 144 million for

VGG).
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There are another three variances of inception block. The structure of inception-

v2 [67] adopts BN into GoogleNet. In inception-v3 [194], a combination of 1 × n

and n × 1 kernels are introduced as a replacement of n × n, which further reduce the

number of parameters. In inception-v4, the residual connection [17] is combined, which

is introduced in the following section. Examples of each inception variance are shown in

Figure 3.11 Inception networks outperform other manually designed CNNs. However,

it also brings additional manual work on network design, e.g. the number of blocks in

each module, the number of kernel types in each block and the kernel size of 1×n and

n× 1 layers.

3.3.2.4 ResNet and DenseNet Style

For VGG style CNNs, there exists degradation problem [17,18,102,195]: as the network

goes deeper, the accuracy increased. However, when the number of layers exceeds a

certain value, depends on the scale dataset, the accuracy drops rapidly. This problem

is caused by network optimisation (e.g. vanishing or exploding gradient, inappropriate

weight initialisation methods and high learning rate) rather than overfitting [17, 18,

102, 195]. To tackle the degradation problem, deep residual network (ResNet) [17,

69] has been proposed, which extent the number of layers over 1,000 without having

degradation.

In ResNet, the general structure is the same as VGG, while introduced residual

block in each module. The structure of residual block can be shown in Figure 3.12a.

There are two 3 × 3 convolution layers in each block. The input ”skip connects” to

the output directly in a residual block, which can bypass the necessary layers. As a

result, the desire layers are generated by the network during training. As the number of

layer increases, the computational burden increase. To reduce the computational cost,

a bottleneck residual block is also presented in ResNet [17]. The structure is visualised

in Figure 3.12b. In the bottleneck residual block, the number of channels is quartered

by a 1× 1 kernel. After conduct a 3× 3 convolution, the channel number is recovered

by another 1× 1 convolution layer.

The skip connection in ResNet bypasses unnecessary layers, but also increases the
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(a) Inception-v1

(b) Inception-v3

(c) Inception-v4

Figure 3.11: Example blocks of inception-v1 (GoogleNet), inception-v3 and inception-
v4. The Inception-v2 is omitted as it adopts the same structure as inception-v1 except
adding BN layers. The ”Concat” indicates the concatenation layer, where feature
maps from different layers are concatenated along C axis. The ”Addition” indicates
the addition layer, where feature maps from different layers are added. The expression
formats are the same as in Figure 3.10.
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(a) Original residual block (b) Bottleneck residual block

Figure 3.12: Structures of residual block.

unnecessary computational cost. To increase the utilisation efficiency of network,

densely connected network (DenseNet) is proposed. The densely block in DenseNet

is visualised in Figure 3.13. In dense block, feature map are directly concatenated

as GoogleNet, without using summation as in residual block. Experimental results in

DenseNet [18], DenseNet only use 1
3 parameters of ResNet, while reaching a similar

performance.

3.3.3 Loss Functions

A loss function is used to measure the difference between the prediction values of CNNs

and the corresponding labels. During training, weights are updated via backpropaga-

tion, in order to reduce this difference. The format of loss function is varied with the

task of CNN. In this section, the loss functions applied in the following chapters are

introduced.

3.3.3.1 Cross-entropy

Cross-entropy loss (also called log loss) is widely used for optimising discrete probability

prediction tasks, e.g. image classification [14, 16, 17], bounding box classification in

object detection [3,52] and segmentation [53,184]. Thus, the range of network prediction
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(a) Original dense block (b) Bottleneck dense block

Figure 3.13: Structures of dense block, the concatenation layers are omitted for clarity.
Each arrow points to a layer where the output of the existing layer will be used as
input. Feature maps from different layers are concatenated firstly. Figure (a) is the
original implementation. As the network going deeper, the number of input channels
increases rapidly, which will cause a huge computational burden. To tackle this, in
the bottleneck structure (b), the number of input channels will be reduced by a 1× 1
convolution layer at first, then it will be passed to a 3 × 3 convolution layer as the
original setting.
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is [0, 1]. Cross-entropy can be mathematically expressed by:

Lcross−entropy = − 1

N

N∑
i=1

yi log (pi) (3.9)

where N is the number of samples. yi is the label and pi is the prediction result

from sigmoid or softmax function. For binary classification problems, the cross-entropy

becomes:

Lcross−entropy = − 1

N

N∑
i=1

yi log (pi) + (1− yi) log (1− pi) (3.10)

3.3.3.2 Focal Loss

Focal loss [114] is a variant of cross-entropy for tackling class imbalance in object

detection. As shown in Eq. 3.9, the loss of each instance equally contributes to the total

loss. However, in object detection, only few pixels represents foreground. As a result,

negative instances take majority during training. On the one hand, this phenomenon

will reduce the training efficiency as most of them are easy instances, which is easy

to be classified, providing no contributions for optimisation. On the other hand, the

training is misled by the dominated negatives, causing model degeneration [3, 52, 114].

The principle of focal loss is that suppress the contribution of easy instances (both

positive and negative) and enhance the contribution of hard instances. The formula of

focal loss is given by:

Lfocal = − 1

N

N∑
i=1

α(1− pti)γ log (pi) (3.11)

where α and γ are two balanced variants. By default, α = 0.25 and γ = 2 [42,114,196].

pti is the scaling factor defined by [114]:

pti =

 pi if y = 1

1− pi otherwise
(3.12)
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3.3.3.3 L1 and L2 Loss

Mean absolute error (also know as L1 loss) and mean squared error (also know as L2

loss) are widely used in continuous regression tasks, e.g. bounding box regression [3,32],

image super resolution [197,198]. The L1 loss is given by:

L1 =
1

N

N∑
i=1

|yi − pi| (3.13)

and the L2 loss is given by:

L2 =
1

N

N∑
i=1

(yi − pi)2 (3.14)

L1 is often applied as an auxiliary loss in CNNs [197, 198] to guarantee sparseness

of representations [199]. L2 loss constrains the magnitude of weights in CNN, which

prevents the network from overfitting. Thus, L2 loss is often used as regularisation

loss [16,17,105,200].

3.3.3.4 Smooth L1 Loss

Smooth L1 loss [52] is a variant of L1 loss, which is applied to bounding box regression

in object detection [3,32,52]. Assume that the output of bounding box regress is v, the

smooth L1 loss is defined by:

Lsmooth−L1(x) =

 0.5x2 if |x| < 1

|x| − 0.5 otherwise
(3.15)

where x = y−v. Previous object detection methods use L2 loss for regression [51,124],

which is unstable caused by the unbounded ground-truth. To tackle this, learning rates

should be tuned carefully. The comparison between L2 loss and smooth L1 loss can be

visualised in Figure 3.14. Compared to L2 loss, smooth L1 loss is insensitive to outlier

targets [52], which enhances the robustness of training.

When applied CNNs into object detection
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Figure 3.14: Comparison between smooth L1 loss and L2 loss.

3.4 Summary

This chapter provides the review of the mathematical background used in this thesis.

In Section 3.2, the mathematical foundation of EAs are reviewed. EAs optimises the

performance of population by conducting evolutionary operations in multiple iterations.

There are three optional operations: selection, crossover and mutation. When applying

EAs in NAS, individual presents the structure of CNN, and the fit value of individual

is evaluated by the accuracy (or error rate) of the CNN, which the individual presents

for. After several iterations, the population with the best performance will be selected

as the final output of EAs.

Then, the technical background of CNNs is reviewed. There are four commonly

used layers: FC, convolution, pooling and normalisation. The structure of CNN is

built by stacking those layers. According to the development of CNN, four styles of
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CNN structures are summarised. At the end of this section, loss functions, which is

utilised for the optimisation of layer weights, are introduced.

The review of mathematical background is essential for the work within the follow-

ing chapters. Chapter 4 investigates the architecture searching method using genetic

algorithm, which is introduced in the Section 3.2. The effective manual designed CNN

architectures introduced in the Section 3.3 act as the feature extractor for CNN based

object detection discussed in the Chapter 5 and Chapter 6. Considering that one of the

contributions in Chapter 5 and Chapter 6 is loss optimisation, it is essential to bring

in the knowledge of loss functions as introduced in the Section 3.3.3 as well.
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Optimising the Convolutional

Neural Network with

Pre-Trained Weight Inheritance

and Genetic Selection of Input

Channels

4.1 Introduction

In this thesis, a robust approach is proposed to achieve a better trade-off between ef-

ficiency and accuracy by selecting key channels from inputs. The whole structure is

self-generated without manual interference. Generating the model with a large search-

ing space [75, 92, 93], e.g. a searching space including layer types, connection methods

between layers (cascade, addition or concatenation), and the number of channels per

layer, would involve a huge amount of computational cost, and the generated model

could easily suffer from overspecialised. Thus, the framework of the model is con-

strained, which is learnt using state-of-the-art Convolutional Neural Network (CNN)

models [17,18], as the “prior knowledge” of the model. Finding the best one by enumer-
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ating all the combinations is impractical, because the number of permutations increases

exponentially with the number of layers. Rather than a full search of all the combina-

tions, a more effective solution to optimise the structure is to use neural architecture

search (NAS), which may be based on an evolutionary algorithm (EA) [75], [76], [77],

reinforcement learning (RL) [92], [94], [95], gradient descent [90], [91], or other meth-

ods [89] [87]. For the existing approaches, there exist the following drawbacks:

i. High computational complexity and cost: For neural evolution methods [75],

[76], [77], [80], [110], denote the number of populations as I and the number of the

generation as NG, the whole training procedure will be required to train I × NG

individuals. In order to achieve a higher performance, the values of both numbers

should be large, e.g. 1,000 in GeNet [76]. In Real et al. [75], experiments were

conducted on about 250 high-end computers. A similar limitation also exists in

the reinforcement learning and gradient descent based method. The “discover”

process also consumes a huge amount of computational resource. In Baker et

al. [93], which adopts reinforcement learning, about 10 Graphic Processing Units

(GPUs) were deployed.

ii. Additional hyperparameters are required to control the searching process: hy-

perparameters are the parameters defined before starting the learning process.

Compared with manual designed methods, NAS requires more hyperparameters to

define the training process, such as searching space, agent setting (reinforcement

learning based), and the range of each bit on the evolutionary string (EA based).

iii. The transferability is weak: models trained by evolutionary algorithm (EA)

perform well on the dataset, where the architectures learned, but poorly on new

datasets.

To tackle these challenges, in this chapter an improved pipeline is proposed for

training, in which a Genetic algorithm (GA) is employed to optimise the self-generated

model. As the method focuses mainly on reducing the computational cost, a binary

encoding method is applied to represent the structure of the model in a binary string

where “1” and “0” indicates whether the feature is allowed to pass into a layer or
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not. Three GA operations, selection, crossover and mutation, are employed to evolve

the structure. After conducting the selection on each generation, poorly-performing

structures are discarded. The performance of the model is measured by evaluating the

accuracy on a validation/test dataset.

To improve the training efficiency, a variable-inheritance-fine-tune training method

is proposed. Following the experimental settings in Real et al. [75], instead of training

each “individual” from scratch, the proposed method applies “variable inheritance” to

reduce computational cost on each “individual”. This means that a reused kernel will be

reinitialised using the values obtained from training on the previous generation rather

than randomly generated from a Gaussian distribution. The proposed method utilises

the structure of the Densely Connected Network (Densenet) as the baseline framework.

Compared with the baseline, the optimised model reduces the number of parameters by

up to 30% whilst maintaining the same accuracy. Although the GA procedure is mainly

conducted on CIFAR-10 [86], the model produced also performs well on other datasets

and is easily transferred onto large-scale datasets. The experiments can be conducted

on a single GTX1080Ti GPU hence the model is very portable and affordable.

The remaining parts of this chapter are organised as follows. The design of the GA

training pipeline and the experimental results are detailed in Section 4.2 and Section

4.3, respectively. Finally, some concluding remarks of this chapter are given in Section

4.4.

4.2 The Proposed Algorithm

In this section, a detailed description of the proposed approach is presented which

discusses how a GA-based method can be used to remove the redundant convolutional

kernels. Training from scratch without any constraints is not feasible. Even with very

few constraints, the training process can be significantly speeded up whilst reducing

the risk of overspecialised to the referenced dataset (“referenced dataset” refers to the

dataset where each “individual” is trained). To this end, the proposed approach borrows

from the frameworks of manually designed models to constrain the model architecture.

Specifically, the model is based on two state-of-the-art architectures, the ResNet
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(b) Layer coding

Figure 4.1: Example of how the channel coding method (a) and the layer coding method
(b) filter the input of a convolutional layer. The layer has two preceding layers with
G = 3. A channel coding string to represent the input (from the layer ”0” and layer ”1”)
of the last convolutional layer (layer ”2”), calculated using Eq. 4.1, will be “101-011”
Thus, for the channel coding method, the length of the binary string is 6, where each bit
presents a single channel of the input. While for the layer coding method, if represented
as “0-1 using Eq. 4.2”. As a result, the length will become only 1/3 of the channel
coding.

(Residual Network, as seen in Figure 3.12) and the DenseNet (as seen in Figure 3.13)

styles with skip-connect inputs between different layers using dense connection. More

details of the constraints are discussed in Section 4.2.1. As the GA is applied to evolve

the architecture of the model, in Section 4.2.2, two binary coding methods are proposed

based on previous work [75–77]: channel coding and layer coding. In Section 4.2.3, a

simple but efficient genetic process is detailed, which consists of the selection, crossover

and mutation operations.

To improve the training speed without degrading the model performance, in Sec-

tion 4.2.4 two strategies are proposed: 1. a partial-training and fine-tuning strategy

to obtain the fitness value of the evolved structure and 2. a pre-trained weight inheri-

tance method to initialise the weights of the model, which is more suitable for densely

connected structures and easy to implement.
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4.2.1 Pre-defined Elements of the Model

The literature suggests that the architecture of a model generated by a large searching

space [75,77,92,110] is more efficient than manually designed model, because the benefit

of the high probability of mutation. However, the self-generated structure paradigm

may be less robust than manually designed methods [75, 86]. On the other hand,

generating a model without constraints consumes a huge amount of computational

resources [75, 92]. As a result, in this chapter, to increase the transferability while

reducing the computational cost, the following constraints are predefined by taking

some manually-designed structures [17,18,70] as the “prior” of the proposed model:

i. Similar to ResNet [17] and DenseNet [18], the network will be split into N blocks,

in which the size of the feature remains the same in each layer. Its width and height

will be halved by a “transmission layer” [18] before passing to the next block.

ii. A “transmission layer” consists of 1) a 1-by-1 convolutional layer for fusing all

channels and 2) a 2-by-2 mean pooling layer for down-sampling the feature maps.

The depth of the output of a transmission layer will either remain the same or be

halved depending on the structure of a “convolutional layer”. This allows consistent

comparisons with other approaches. Therefore, if a convolutional layer contains

only one 3-by-3 kernel followed by a batch normalisation (BN) layer [67] and a

ReLU layer [69], the depth remains the same. If a convolutional layer contains two

convolutional sublayers, one with a 1-by-1 kernel and the other with a 3-by-3 kernel

(both with BN-ReLU before each convolution as well), known as the “bottleneck

structure”, the depth will be halved. this chapter labels the “compressed-bottleneck

structure” as BC, and only the BC structure will be used after the architecture is

generated.

iii. The depth of the output of the convolution layer is unchanged in each block,

denoted as “growth rate” G [18].

iv. The number of layers in each block is fixed during training.

v. The skip-connection is allowed. Features from different layers will be processed by
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concatenation as in DenseNet [18], instead of addition [17].

4.2.2 Coding Method

To improve the training speed and attain a comparable performance while reducing

the computational cost, binary coding [76] and a genetic algorithm are used to evolve

the architecture of the model, instead of integer/float number coding [75, 77, 110]. For

each convolutional layer, a binary string is assigned to “gate” the input, which is a

concatenation of the outputs of all the previous convolutional layers. Hence, the search

space corresponds to a binary string representing the structure of the model. For each

bit, “1” and “0” means the associated feature can “pass” into the layer or “bypass”

the layer respectively. Each bit of the string can represent either a single channel or

multiple channels of the input feature map. Here this chapter proposes two binary

coding methods, i.e. Channel coding and Layer coding.

4.2.2.1 Channel Coding

In channel coding, each bit represents only one channel of the concatenated feature

map. Therefore, for a three-convolutional-layer block with the number of initial input

channels of Ninit and a growth rate of G, the length of the strings for all three layers

are Ninit, Ninit +G and Ninit + 2G, respectively. Thus, the length of the string of the

block is 3Ninit + 3G. As such, the length of binary string L for a single block is

Lchannel = (Ninit +G) + (Ninit + 2G) + · · ·+

(Ninit + (C − 1)G)

= C ×Ninit +
C(C − 1)

2
G

(4.1)

where C is the number of convolutional layers in the block.

In channel coding, the model can be more flexible than the plain DenseNet for

training as it can fit a densely connected structure with an arbitrary number of layers

and an arbitrary number of filters in each layer if G is small enough and Ninit is large

enough. An example is illustrated in Fig. 4.1. Assume a single CNN block has 3 layers
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(labelled as ”0”, ”1”, and ”2”) with a growth rate of 3, a channel coding string to

represent the input (from the layer ”0” and layer ”1”) of the last convolutional layer

(layer ”2”) will be “101-011”.

4.2.2.2 Layer Coding

Channel coding works well when the scale of the model is small. When the number

of layers and the growth rate are large, the length of the string for the whole model

becomes very long and difficult to train. For a model with Ninit = 24, C = 12 and

G = 12, when the number of blocks is 3 (N = 3), the length of the binary string for

the first block, calculated from Eq. (4.1), will be 1080. An effective way to reduce the

length of the binary string is “bit-sharing”, which is referred to as “Layer coding” in

this chapter. In layer coding, each bit represents the status of the channels from the

same convolutional layer. The length of the layer coding can be determined by

Llayer = 1 + (1 + 1) + (1 + 2) + · · ·+

(1 + (C − 1))

=
C(C + 1)

2
,

(4.2)

where C is the number of convolutional layers in the block.

The layer coding above can significantly reduce the training difficulty, however, it

only fits to a model whose layer depth is the magnitude of the growth rate (ignoring the

initial filter size). Taking the same model in Fig. 4.1 for example, if apply layer coding

to the third layer, the length will become only 1/3 of the channel coding if represented

as “0-1”.

Although channel coding is more flexible, the length of its string is limited by the

fixed growth rate and will increase the training difficulty under limited training steps.

On the other hand, the model generated by layer coding can support arbitrary growth

rates according to the scale of the dataset. Experimental results in Section 4.3 indicate

that channel coding leads to slightly higher accuracy than the layer coding on the

MNIST dataset but performs worse when transferred to the CIFAR-10 dataset. Thus,
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Genetic process of structure evolution

I: initial population
T: The number of generations to conduct evolving process
P: parent population is denoted

Weight Initialization
Fully train the baseline (i.e. DenseNet) on the reference dataset D
Individual Initialization
(1) Generate individuals in I via B(0.5)
(2) Partially train and evaluate the individuals on D
for i in range(T):

P = [ ]
for ii in range(length(I)):

Random select S individuals from I
Select the best individual, and save it into P

Crossover
for iii in range(length(I)/2):

Conduct crossover for P[iii] and P[iii+ 1] with Pc and Pbc

Mutation
for iiii in range(length(I)):

Conduct mutation for P[iiii] with Pm and Pbm

Evaluation
Evaluate P on D
Best Selection
Save and store the best individual in the generation i

Algorithm 1: A Python style pseudocode of the genetic process in the proposed
method. For the selection operation, tournament selection is utilised. After that,
in the crossover part, bits from different individuals but at the same position in
the string are randomly “swapped”. The probability of crossover for each pair is
PC and the probability of crossover of a bit is denoted as PbC . During crossover,
the structures of a pair are modified simultaneously, and mutation are conducted
to bring more variance to the structure. The probability of mutation for each pair
is PM and the probability of mutation of a bit is PbM .

to balance the computational cost and the accuracy, the proposed method will apply

the layer coding method to code the model.

4.2.3 GA-based structure evolution

The genetic process for evolving the architecture of the model is given in Algorithm.

1. In the Weight initialisation step, after pre-training the baseline model, weights

will be initialised using the values from the baseline model which will be detailed in

Section 4.2.4. As the possible values of each bit in the binary string are ’0’ and ’1’,
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each bit is randomly initialised using the Bernoulli distribution with a probability of

0.5, i.e. B(0.5). The fitness value for each “individual” in the first generation is the

classification accuracy of the model on the validation dataset D after fine-tuning of

training. The number of individuals, i.e. “population size” I, in the first generation

will remain the same during the following iterations. The evolving process will conduct

T generations. Following the suggestions in [76, 77], three evolutionary operations are

assigned to evolve the architecture of the model: selection, crossover and mutation.

Specifically, the initialization method is kept as in [76, 77] for making a fair com-

parison. However, such method discards half of features at the first generalisation,

which might increase the number of searching generations. This leaves future works to

optimise the initialisation method.

For the selection operation, tournament selection [159] is utilised as commonly used

in [75, 76]. After that, in the crossover part, bits from different individuals but at the

same position in the string are randomly “swapped”. The probability of crossover for

each pair is PC and the probability of crossover of a bit is denoted as PbC . During

crossover, the structures of a pair are modified simultaneously, and mutation are con-

ducted to bring more variance to the structure. The probability of mutation for each

pair is PM and the probability of mutation of a bit is PbM . To avoid overspecialised,

the first and the last bits are automatically flipped to “1” rather than discarding the

layer as did in [75–77]. Experimental results in Real et al. [75] indicates that, without

this constraint, the model generated on the CIFAR-10 has fewer layers. However, when

applying on the CIFAR-100 dataset, the generated structure becomes suboptimal. As

a result, the number of layers should not be stabilised during the evolution process.

4.2.4 Pre-trained Weight-inheritance based Individual Training Strat-

egy

After the structure evolution, some “individuals” need to be retrained to determine the

fitness value. Using the approach, which is partially trained from scratch [77, 110], is

hard to converge the weights to the global optimal, causing underestimation or over-

estimation of the model. Meanwhile, the fully trained method [76] has an extremely
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high computational cost and takes too long to train. In the original weight inheri-

tance partially training method, weights inherit their values from the last update and

are reused during the training instead of initializing from scratch, generating a well-

performed model structure. The original weight inheritance method [75] guarantees

that reused weights are actually fully trained, without being constrained by the limited

training steps of each generation. However, this strategy assumes that the model takes

the residual structure as baseline without implementing a concatenation operation. In

residual structure, the output can be interpreted by

Xn+1 = F (Xn)n +Xn, (4.3)

where Xn is the input of the nth layer, F (∗)n is the convolution operation of layer n

which may contain two convolution sublayers with a batch normalisation and ReLU

connected after each of those [69], or three convolutional sublayers known as “bottle-

neck” [17]. In a densely connected structure, the output can be formatted as

Xn+1 = F ([Xn, Xn−1, . . . , X1])n, (4.4)

where [Xn, Xn−1, . . . , X1] is the concatenated inputs from all former layers of the layer

n.

As seen in ResNet, the convolutional operation minimises the residual error between

the input and the output, hence its magnitude is usually very small. As suggested

in Veit et al. [19] that the performance of ResNet will not be significantly affected

when removing several layers. Thus, the modification of the weights in a layer only

slightly affects the outputs of the following layers and can be easily fine-tuned by a

few training steps. However, in a densely connected structure, the output of a layer

will be connected as part of the input to all the following layers, which has a direct

affect. The modification of a layer in a densely connected structure will strongly affect

the structure of the model, leading to possible oscillation of the optimisation process.

Experimental results in Section 4.3 shows that the performance of the densely-connected

model trained using the original weight inheritance strategy is almost equivalent to that
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trained from scratch. The fitness values of individuals oscillate with a small margin

between generations. On the other hand, the original weight inheritance method must

record all the latest trained variables regardless of whether they will be reused or not,

which is flexible for models without a predefined framework. However, in the proposed

training pipeline, the total number of variables is fixed, and the framework is predefined.

Recalling the weights and reformatting the structure each time the training starts is

inefficient and redundant.

To tackle this issue, a pre-trained weight inheritance strategy is proposed for train-

ing each “individual”. Before the evolutionary procedure starts, this strategy first sets

all bits on the genotype string to one as the baseline and fully train the baseline. The

length of the model is fixed, and its growth rate remains the same during the proce-

dure, the structure of which is the same as the plain DenseNet. When the evolutionary

procedure starts, the weights from each “individual” will be initialised using the values

from the well-trained baseline instead of from scratch. Each “individual” will be fine-

tuned for several epochs to optimise the fitness value, i.e. each “individual” is partially

trained. All fine-tuned weights will not be inherited by the next generation, and the

weights of the next generation will be initialised using the values from the baseline

as well. To achieve this, during the fine-tuning procedure, the binary string will be

partitioned back onto each layer (when conducting evolutionary steps, binary strings

from different layers are concatenated together as discussed in Section 4.2.2.2) and act

as a binary mask for each channel of the input. For each filter, the forward-propagation

process and the back-propagation process are interpreted as follow

Forward :

Xm
n+1 =

D∑
i=1

bini × F (Xi,K
m
i )n

=


∑D

i=1 F (Xi,K
m
i)n, if bini = 1

0, if bini = 0

;

(4.5)
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Backward :

∂Loss

∂Km
i

=
∂Loss

∂Xn+1
× ∂Xn+1

∂Km
i

=
∂Loss

∂Xn+1
× bini × ∂F (Xi,K

m
i )n

=



∂Loss
∂Xn+1

× ∂F (Xi,K
m
i )n,

if bin = 1

0,

if bin = 0

(4.6)

where Xm
n+1 denotes the mth channel of the input for the layer n+1; D is the depth

of the input X; bini denotes the binary bit of the ith channel of X (channels generated

by the same layer will have the same bit value, as described in Section 3.2.2); Km
i

denotes the mth channel of the kernel and F(*)n denotes the convolutional operation

of the layer n.

Let the size of the input X of a layer be 32× 32× 3, it can be generated by three

convolutional layers beforehand, and the size of baseline kernel (denoted as K) of the

layer is 3 × 3 × 3 × 24. The length of the corresponding binary string will be 3. If

the string is “1 − 1 − 0”, it is obvious that the first two channels of each filter can

be trained using the back-propagation algorithm. However, the last channel of each

filter is excluded from both forward propagation and backpropagation as its input is

an all-zero feature map.

4.3 Experimental Results and Discussions

4.3.1 Datasets and pre-processing

4.3.1.1 MNIST

The MNIST [2] is a handwritten digit dataset for recognition tasks of digits from 0 to 9,

which contains 60,000 images for training and 10,000 images for testing. As the number

of the epochs for fully training is small, e.g. 20 epochs in this section, the experiment
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does not split a validation dataset during training. No data augmentation or pre-

processing is applied during training for this dataset in order to reproduce consistent

conditions to other approaches.

4.3.1.2 CIFAR-10 and CIFAR-100

The CIFAR-10 and CIFAR-100 datasets [86] contain colored natural images in 10 classes

and 100 classes, respectively. Both datasets have 50,000 images for training and 10,000

images for testing and each image has 32 × 32 pixels. A split of 5,000 images from

the 50,000 training images are collected as the validation dataset and the remaining

45,000 images are kept for training. The data augmentation method for the two CIFAR

datasets is the same as used in [17,18,66,69,104,195,201–203], where 4 pixels are padded

on each side of the original image or its horizontal flip. A 32 × 32 image is cropped

randomly from the padded image. When testing, the input images remain the same as

the original without padding and randomly cropping. For pre-processing, pixel-based

normalisation is used to normalise the image using the channel means and the channel

standard deviations. To make a fair comparison with other methods [18,69,76,77,80],

the model uses the CIFAR-10 training dataset as the reference dataset (in the genetic

process) to generate the structure of model and the benchmark dataset (in the model

evaluation process). After that, the structure is fixed and the CIFAR-10 and CIFAR-

100 datasets are chosen as benchmark datasets to evaluate the performance of the model

as in [18, 69, 70, 104, 111, 201]. For the CIFAR-10 dataset, the model is not trained on

the validation dataset when it acts as a reference dataset. When it acts as a benchmark

dataset, the model is trained on the validation dataset only at the final epoch as in

DenseNet [18].

4.3.1.3 SVHN

Similar to the MNIST dataset, the Street View House Numbers (SVHN) dataset [204]

is also an image dataset of 0 − 9 digits with a size of 32 × 32 pixels each. In addition

to 73,257 training images and 26,032 testing images, there are 531,131 images for extra

training. the SVHN dataset is only utilised as the benchmark dataset. For a fair
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comparison with other models, no data augmentation step is applied and the model is

trained using all images from the training dataset and the extra training dataset except

for 6,000 images used as a validation dataset as in [18, 66, 70, 202, 205, 206]. The range

of the images is normalised from [0, 255] to [0, 1] as data pre-processing [18, 207]. The

model loads the weights with the lowest validation error during training and evaluate

it on the test dataset.

4.3.1.4 ImageNet

The ILSVRC 2012 classification dataset [15] is a large-scale image dataset. which con-

sists of 1.2 million training images and 50,000 validation images, uniformly distributed

in 1,000 classes. The augmentation method is used as in [17, 18, 69], where the per-

pixel normalised image is resized without modifying the width/height ratio as scale

augmentation. A 224 × 224 sub-image is randomly cropped from the scaled image or

its horizontal flip with color augmentation. As most of methods evaluate their results

on the validation set [16–18, 69, 85, 90, 109] the proposed model is also tested on the

validation set in the same way, and the single-crop classification errors are reported.

4.3.2 Channel Coding vs Layer Coding

To fairly compare the performances between the channel coding and the layer coding

methods, the structure of the model is generated using the MNIST dataset and evaluate

the results on both the MNIST and CIFAR10 datasets. the model are assigned by 3

blocks, i.e. N = 3, and 8 convolutional layers without a bottleneck structure in each

block. The number of outputs of each convolutional layer is 8, i.e. G = 8. The depth

of the input image is expanded to 16 using a 3-by-3 convolutional layer before entering

the first block. The model is completed with a global average pooling, a 10-output

fully-connected layer, and the softmax output. As the MNIST is easy to train, weight

inheritance strategy is not applied, and every individual is fully trained from scratch.

Training implementation. Weight decay is assigned by 0.0001 and the model is

optimised using Stochastic Gradient Descent (SGD) with a momentum of 0.9. Weights

are initialised by using the method in [18,111]. These models are trained with a batch
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size of 64 on a single GTX1080Ti GPU, where each “individual” is trained by 20 epochs

on the MNIST dataset. learning rate is initialised by 0.1, then is divided by 10 at 5

epochs, 10 epochs and 15 epochs. When the generated architecture of the model is

transferred to the CIFAR-10 dataset, the structure is fixed. Then, the structure-fixed

model is fully train from scratch. Following the settings on [18], the model is trained by

300 epochs on the CIFAR10 dataset and the learning rate is initialised as 0.1, divided

by 10 at 150 and 225 epochs with the same weight decay and batch size as used on the

MNIST dataset.

Genetic hyperparameters. Following the approaches used in [75, 76], the pop-

ulation size is I = 20. The number of generations is T = 30 with the sample size of

tournament selection S = 3. The probability of the pair-wise crossover and the bit-wise

crossover for each “individual” are PC = 0.2 and PbC = 0.2 respectively. The proba-

bility of the individual mutation and the bit mutation are PM = 0.8 and PbM = 0.05,

respectively. It takes about 10 GPU days to conduct each genetic process, and the

experimental results are given in Fig. 4.2.

A similar setting for the number of generations and the population size can be found

in [75, 76], the number of population is 20 and the number of generations is 50. The

generated model has no specific gains after 30 generations. In [75], the method with

a population size of 2 has the best result at an early stage. For the proposed model,

when the number of generations is set to 50, the best model is found from the 24th

generation as shown in Fig. 4.3.

This is because: 1). MNIST and CIFAR are small datasets, for which it is easy

to find the optimal models; 2). Compared with manually designed models such as

DenseNet and ResNet with over 100 layers, the model sizes of self-structure generation

from [75,76] and the proposed approach are relatively small, i.e. around 20-30.

the model is fully trained with the best structure on the CIFAR-10 dataset, where an

accuracy of 88.3% and 92.3% are achieved from the channel-coding based model and

layer-coding based model, respectively. When tested on the reference dataset (MNIST),

channel coding slightly outperforms layer coding but underperforms the layer coding

by a large margin on transfer learning. a similar experiment is also conducted on the

67



Chapter 4.

Figure 4.2: The distributions of Test accuracy (%) in each generation on the MNIST
dataset, using the two coding methods. The genetic process conducts 30 generations
for both methods separately. The best performance the through the whole generations
is highlighted via a dashed line. When comparing with the best architecture between
two methods, it is obvious to see that the result trained using channel coding method
(denoted by dash red) outperforms the layer coding method-based training (denoted
by dash blue) by 0.13%. However, when compared with the accuracy growth between
generations, layer coding outperforms channel coding.

CIFAR-10 dataset for both methods, and the results are shown in Table 4.1. It turns

out that the channel coding method requires 66% more generations than the layer

coding to reach the same test accuracy (92.6%).

In summary, the channel coding method is capable of generating a more competitive

model than the layer coding as long as the number of generations is sufficiently large,

while layer coding performs better at transfer learning. To balance the training cost

and the performance of transfer learning, layer coding is applied in all the following
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Figure 4.3: Test accuracy (%) of the model on the CIFAR-10 dataset using the pro-
posed training pipeline given in Section 3 with the genetic process conducted over 30
generations. The baseline (Generation 0: 90.2%) is denoted using the red dash line
and highlight the key generation IDs using a black box. With the performance compa-
rable to the baseline at Generation 10 (90.2%), the model outperforms the baseline
starting from Generation 20 (90.5%) and achieves the best among all individuals at
Generation 24 (90.8%).

Table 4.1: Relationship between the Number of Generation and the Test Accuracy on
CIFAR-10

Test accuracy of the fully trained best structure(%)

#Generations Channel coding Layer coding

10 90.40 90.30

20 90.87 91.10

30 91.23 92.63

50 92.69 92.60

experiments.
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Figure 4.4: Comparison of test accuracy on the CIFAR-10 dataset using the original
(blue line) and the proposed (red line) weight inheritance methods.

4.3.3 Weight Inheritance Methods

This section compares the difference between the original weight inheritance and the

proposed pre-trained weight inheritance strategy, where the layer coding method is

utilised to derive the architecture of the model during the genetic process. The base-

line structure of the model is the same as discussed in Section 4.3.2 with the same

weight decay. the CIFAR-10 dataset is used as the reference dataset D and implement

the Adam optimiser [208] in a weighted training pipeline. For the original method,

each “individual” is trained around 30 epochs with a fixed learning rate of 0.01 and

evaluated on the validation dataset. After the evolutionary steps, each model inherits

the weights trained from the last generation. For the proposed pre-trained weight in-

heritance method, it first fully trains the model with all bits set to 1 in the binary string

under the same learning rate fixed at 0.01, which makes it similar to the DenseNet.

All weights are stored in a “checkpoint model”. During the fine-tuning procedure, each

“individual” is trained for 30 epochs, which is the same as the original method. The
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Table 4.2: Architecture of the Model

Block Layer ID Output points to

1

0 1, 2, 3, 6, 8, 9
1 2, 3, 4, 5, 7, 9, 10
2 6, 8, 9
3 5, 6, 8, 9
4 6, 8, 10
5 8, 9, 10
6 10
7 10
8 -
9 -

Transition 1

2

0 1, 2, 6, 7, 8, 10
1 2, 5, 6, 9
2 -
3 7
4 7, 10
5 6, 9, 10
6 7, 9
7 -
8 -
9 -

Transition 2

3

0 1, 3, 4, 5, 6, 7, 8, 9, 10
1 4, 7
2 3, 4, 5, 7, 8, 9, 10
3 5, 7, 9, 10
4 5, 6, 7
5 6, 10
6 7
7 -
8 9
9 10

Global Average Pooling

FC-Softmax

learning rate decays by 10, i.e. 0.001, to avoid the weights oscillating between the

local minima and the global minima. The genetic hyperparameters are the same as in

Section 4.3.2 except that the number of generations is reduced to 10, i.e. T = 10. Each
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of the genetic training procedure takes about 10 days on a single GTX1080Ti.

Experimental results are summarised in Figure 4.4. As seen, the increment of the

test accuracy from the validation dataset is insignificant during the training process

when using the original weights inheritance method. The weights of the model can

inherit very limited information of the last generation. The reason behind this is the

structural difference of the models, where the original weight inheritance method is

designed for the residual structure while the proposed model is for the densely connected

structures. In addition, the proposed pre-trained weight inheritance method is more

efficient. The weights can therefore inherit more information from the last generation

using the proposed method, and the model can even reach the same test accuracy as

the baseline. The experiments in Section 4.3.4 indicate that if the model is evolved by

more generations, the self-structure-generating model can even outperform the baseline

but using fewer parameters.

4.3.4 Generating the Model Architecture on the CIFAR-10 Dataset

In the previous two sections, the coding methods and the individual weight optimisation

strategies are introduced. In this section the final training pipeline of the proposed GA

based self-generating structure method. Following the work in [75,76,92], the proposed

method assigns the CIFAR-10 dataset as the reference dataset D. For the baseline

design, the number of layers of the model is slightly upscaled for transfer learning on

different scales of the datasets while the number of the growth rate is downscaled to

improve the training speed. As a result, the model consists of 10 convolutional layers in

each block without the bottleneck structure and the growth rate is assigned as G = 4.

Thus, the total length of the binary string is 162. The depth of the initial feature

map is 32. Other settings are the same as that in the per-training weight inheritance

strategy as discussed in Section 4.3.3.

Evolutionary results of each generation are presented in Fig. 4.3, where the test

accuracy of the baseline is 90.23%. After 10 generations, the derived model reaches

a similar accuracy as the baseline. After 20 generations, it outperforms the baseline,

achieving an accuracy of 90.8% on the validation dataset at the 24th generation. Indi-
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viduals in the later generations perform worse than the former generations due to the

high individual mutation rate PM . A high mutation rate brings benefits of generating

a high-performance model but fails to guarantee the mutation variance. the details of

the best individual is displayed in Table 4.2, which summarises the structure of the

model and layer connections in each block. The model generated using the GA consists

of three blocks with 10 convolutional layers in each block. At the end of the first two

blocks, a transition layer is connected to fuse the feature map. The third block consists

of a global average pooling layer and a fully connected layer to make the final predic-

tion. Layer id ”0” indicates the input of the block and the “Output points to” column

denotes the layers to which the output of the current layer will be fed. ”-” means that

the output of the current layer will only be fed to the transition layer. As the output

of the last convolutional layer can only be fed to the transition layer, the last layer is

omitted in the table.

The first block, i.e. the most densely connected one is visualised in Fig. 4.5. As

seen, the connection path of the model is sparser than the baseline (Densenet). The

feature maps from the first three layers are frequently reused in each block, and the

reuse frequency of each layer output is reduced with the increasing layer id. This

validates the importance of the shallow feature map in the final classification. This

phenomenon is also found in many manually designed CNN models [6, 17,18].

4.3.5 Classification Test on Multiple Datasets

With the selected best structure, it is also tested on multiple benchmark datasets.

Apart from the single convolutional layer structure, the “bottleneck” structure is also

considered in the model, where the number of layers is either 34 (without bottleneck)

or 64 (with bottleneck). The genetic generated densely connected model is denoted

as “GADNet” for the non-bottleneck structure and “GADNet-BC” for the bottleneck

structure. The proposed model will be compared with other manually designed models,

especially the variance of the ResNet and the DenseNet, as well as other self-structure-

generating approaches. The proposed method is trained and tested by 5 times. The

average result is displayed when compared with other methods.
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Table 4.3: Test Error Rates on Multiple Datasets

Model #Params (M) #Layers C10 C100 SVHN

Manually designed methods

HighwayNet [102] - - 7.72 32.39 -

FractalNet [104] 38.6 21 4.60 23.73 1.87

ResNet by [70] 1.7 110 6.41 27.22 2.01

with Stochastic Depth 1.7 110 5.23 24.58 1.75

Wide ResNet [206] 36.5 28 4.17 20.50 -

With Drouput 2.7 16 - - 1.64

DenseNet [18] 1.0 40 5.24 24.42 1.79

DenseNet (K=12) 4.0 100 4.10 20.20 1.67

DenseNet (K=24) 27.2 100 3.74 19.25 1.59

DenseNet-BC (K=40) 25.6 190 3.46 17.18 -

Evolutionary algorithm methods

Evolution-C10 [75] 5.4 - 5.40 - -

Evolution-C100 40.4 - - 23.00 -

CGP-CNN [84] 3.9 - 23.48 - -

CGP-CNN (ResSet) 0.8 - 23.47 - -

GeNet#1 [76] - 12 7.19 29.03 1.99

GeNet#2 - 12 7.10 29.05 1.97

The proposed methods

GADNet (G=12)* 0.7 34 6.03 26.00 1.81

GADNet (G=12) 0.6 34 5.71 25.50 1.74

GADNet (G=32)* 4.8 34 4.39 21.83 1.65

GADNet (G=32) 3.9 34 4.35 21.10 1.61

GADNet-BC (G=32)* 2.4 64 4.06 21.00 1.71

GADNet-BC (G=32) 2.0 64 4.02 20.50 1.70

(* indicates the baseline of the model)

4.3.5.1 Test on the CIFAR-10, CIFAR-100 and SVHN datasets

Experimental results, shown in Table 4.3, indicate that the proposed model has advan-

tages over manually designed and other self-structure-generating models on accuracy,
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transfer capability, parameter saving and efficiency of feature reuse as explained below.

Accuracy. The best-performance model with 64 layers only lags the state-of-

the-art method (DenseNet-BC (K=40) with L = 190) by no more than 0.6% on the

CIFAR-10 and SVHN datasets and no more than 2% on the CIFAR-100 dataset. This is

due to the large margin of the length between models (169 layers for the best DenseNet,

which is 2.6 times longer than the proposed model), as the proposed model surpasses

the baseline by a slight margin. It is conceivable that the proposed model can reach

a more com-parable result by extending the length of the model. Apart from the

DenseNet, the performance of the proposed model on the CIFAR-10 dataset surpass

FractalNet with drop-path regularisation [104] and wide ResNet by 15% lower and

5% lower respectively. On the CIFAR-100 and SVHN datasets, the proposed model

produces similar results to the wide ResNet.

Saving of parameters and computational cost.The relationship between the

number of the parameters and the test accuracy on the CIFAR-10 dataset is shown in

Fig. 4.6. As seen, the proposed method outperforms state-of-the-art manually designed

models, while using significantly fewer parameters and less computation time to achieve

the comparable results. When comparing the parameter requirement with the densely

connection and the genetic connection, they show a similar trend. For instance, the

best model lags the best DenseNet by 0.5% but with 92.2% fewer parameters. As the

number of FLOPs (floating point operations) required is in proportion to the number of

parameters, models generated using the GAs can, as a result, reduce the computational

cost significantly while achieving comparable classification accuracy. This section also

measures the evaluation times (forward propagation only) on the CIFAR-10 dataset for

both the DenseNet and the proposed method, as shown in Fig. 4.7. As seen, under a

similar test accuracy, this method only requires 1/3 of the computational time than the

DenseNet. Compared with the best model of DenseNet, i.e. DenseNet-BC190 (K=40),

the proposed model GADNet-BC64(G=32) lags 0.5% on accuracy but improves the

evaluation speed by about 6 times, directly benefiting from the fewer parameters of the

model.

High efficiency of feature reuse. Following the measurement method in DenseNet
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[18], this section measures the efficiency of feature reuse in each convolutional layer us-

ing the absolute average weights of the input channels. A higher value in the layer l

whose input is from the layer s denotes that the feature map from the layer s is strongly

used in layer l. In Figure 4.8, this section plots the heat maps of a 34-layer model using

both densely connected (baseline, shown in (Figure 4.8a)) and the genetic connected

(the proposed method, shown in (Figure 4.8b)) methods. Compared with the densely

connected method, the proposed method maintains almost all the strong features whilst

discarding the weakly used features from the input of each convolutional layer. This

has indicated that the GA improves the efficiency of feature reuse significantly. There

are also few “cold zones” in the heat map of the proposed method, possibly due to the

hyperparameter settings of the GA, which is left for future investigation.

4.3.5.2 Test on large-scale dataset of the ImageNet

This section also evaluates the proposed model on the ImageNet by upscaling its depth

and width. As the size of the images in ImageNet is far larger than the CIFAR and

SVHN dataset, the feature maps of the model is down sampled as in [14, 16–18,76] by

connecting a densely connected block with 6 bottleneck layers [18] at the input end of

the model. As a result, the first block is densely connected and the following three are

genetically connected. different growth rates are assigned in each block, which are 32,

32, 64 and 128 for each of the four blocks, respectively. Experimental results are given

in Table 4.4. As seen, the proposed genetic connection model (denoted as ”GADNet-

expand”) can yield comparable results to manually designed methods as well as other

self-structure-generating approaches. This has validated that this model is robust even

with the scale variance, while most of the self-generating structure methods may fail

on large scale classification tasks such as ImageNet.

Comparison with other manually designed light-weight models. This sec-

tion also compares the proposed approach with other manually designed light-weight

models, such as SqueezeNet [62], MobileNet [63] and ShuffleNet [64]. As shown in

Table 4.4, The proposed method leads SqueezeNet by 9.1% on top-1 but with a 54%

parameter reduction. Although the number of parameters is the same as ShuffleNet,
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Table 4.4: Validation Error Rate on ImageNet

Model #Params (M) Top-1 Err. Top-5 Err.

State-of-the-art methods

AlexNet [14] 60 43.45 20.91

VGG-19 [16] 144 27.62 9.12

ResNet-18 [17] 11.7 30.24 10.92

ResNet-34 [17] 21.8 26.70 8.58

ResNet-152 [17] 60.2 21.69 5.94

DenseNet-121 [18] 7.2 25.35 7.83

DenseNet-169 [18] 13.0 24.00 7.00

Manually designed light-weight methods

SqueezeNet [62] 7.7 41.2 18.0

MobileNet-224 [63] 4.2 29.4 10.5

ShuffleNet [64] 5.0 29.1 10.2

Self-structure-generating methods

NASNet-A (4@1056) [108] 5.3 26.0 8.4

GeNet [76] 30.6 27.87 9.74

LEMONADE [85] - 28.3 9.6

SNAS [97] 4.3 27.3 9.2

DTARS [90] 4.7 26.7 8.7

FBNet-C [96] 5.5 25.1 -

MnasNet-A3 [95] 5.2 24.3 6.7

AmoebaNet-A3 [109] 469 17.1 3.4

GADNet-expand (Proposed) 5.0 27.35 8.91

GADNet outperforms it by 1.3%. When compared with the proposed method, the

MobileNet-224 has 16% less parameters whilst its classification accuracy is 1.6% lower

than GADNet. The existing manually designed methods optimise the structure by

either optimising the convolutional operation (MobileNet, ShuffleNet) or connecting

additional short-cut (SqueezeNet), which are all local optimisation methods. On the

contrary, GADNet optimises the connection routine across the whole network, which is

a form of global optimisation. The results in Table 4.4 have clearly indicated that the

global optimisation is more efficient than local optimisation. Nevertheless, the proposed
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Table 4.5: GPU Requirements of NAS and the proposed method

Model #Params (M) #GPUs C10 Err. (%)

NAS methods

MetaQNN [93] - 10 7.02

NAS v3 [92] 7.1 39 4.47

Progressive NAS [209] 3.2 100 3.63

NASNet-A [108] 3.3 450 3.41

AmoebaNet [109] 3.2 450 3.34

DARTS [90] 3.9 1 2.95

LEMONADE [85] 13.1 16 2.58

The Proposed Method

GADNet-EXT 2.0 1 3.34

GADNet-EXT+ 5.3 1 2.91

(The model is searched using DARTS by 5 runs

and the best performance is released)

method did not optimise the convolutional structure. It is deduced that a combination

of both global and local optimisation methods can further improve the optimisation

performance.

4.3.5.3 NAS vs. GA

Specifically, this section compares the proposed GA based optimisation method with

Neural Architecture Search (NAS). Most existing NAS methods [90, 91, 94, 97, 108,

109] report their results based on additional enhancements such as cutout [210], path

dropout [108] and auxiliary towers [90]. For a fair comparison, these enhancements

are also adopted on the ”GADNet-BC (G=32)”and the enhanced model is labeled as

”GADNet-EXT” in Table 4.5. Results in Table 4.5 indicate that the model derived by

the proposed method reaches comparable results as those from NAS, but with fewer

parameters. For example, the proposed method achieves a comparable error rate as

AmoebaNet, but with a reduction of 37.5% on parameters. A similar conclusion can
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be seen when compared on ImageNet, as shown in Table 4.4. On the other hand, the

proposed method aims to improve the computational efficiency of CNN while NAS

is designed to improve the accuracy, causing the difference of improved performance.

This section also compares, shown in Table 4.5, the computational resources required

by NAS and the proposed GA method. As can be seen, some NAS methods need a RNN

to guide the structure of CNN, which naturally requires more GPUs than GA. Some of

the NAS methods even require 100+ GPUs [108,209], raising the impractical difficulty

of implementation, particularly in research labs. Although LEMONADE and DARTS

outperform the proposed method by 0.39%, at least 75% increase on the parameters

is significant. As the performance of deep learning models is closely related to its

scale [16–18], to validate the transferability under a larger scale, the model is upscaled

by adding 10 densely connected layers at the end of the third block. At the same time,

this section sets the growth rate as 40, which is denoted as ”GADNet-EXT+” in Table

4.5. The results indicates that by using more layers, the proposed method achieves a

similar performance as DARTS. When comparing with LEMONADE, the error rate

lags by 0.33% but saves about 66% parameters, reaching a good balance between the

computational cost and the accuracy. On the other hand, NAS based approaches need

adaptation and additional training for testing on a large dataset such as ImageNet. In

contrast, the proposed method does not need such adaptation and additional training

when migrating from a small dataset to larger ones, where the scalability can help to

significantly save the computational cost.

4.3.5.4 More implementation details

The batch size is 64 for all datasets (CIFAR, SVHN and ImageNet) and each model

is trained using the stochastic gradient descent (SGD) optimiser with a Nesterov mo-

mentum [211] of 0.9 without dampening. The weight decay is fixed to 0.0001 on each

dataset. The learning rate is initialised as 0.1. When training on the CIFAR and

SVHN datasets, the learning rate is divided by 10 on 150 and 225 epochs and the

training terminates at 300 epochs. When training on the ImageNet, the learning rate

is divided by 10 on 30 and 60 epochs and the training stops at 90 epochs. When train-
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ing on the SVHN dataset, a dropout layer is added [212] as in [18, 104, 207], with the

dropout rate to 0.2. All experimental tests on the evaluation section are conducted

using Pytorch [213].

4.4 Summary

This chapter applied the GA to optimise the structure of the CNNs. The GA assigns

a binary bit to each layer of the input to remove the redundant features from the fea-

ture map. This chapter first proposes two encoding methods which enable the GA to

evolve the structure of the model. Then this chapter applies a simple but effective

genetic process containing selection, crossover and mutation. Conventional evaluation

methods, in which each “individual” is fully trained, consumes extremely high compu-

tational resources and takes a very long time for training. Previous work that optimises

the individual training by using weight inheritance between generations, is restricted

by the residual structure. Thus, the proposed approach, a pre-trained weight inheri-

tance method can not only reduce the individual training time, but it also releases the

constraints of the residual structure. Experimental results indicate that the proposed

model can reach competitive classification accuracy, while requires significantly fewer

parameters.

Rather than generating structures with a large searching space, the proposed method

is built based on predefined constraints, which has significantly reduced the compu-

tational cost and is capable of generating a well performing structure under limited

training generations. When tested on the CIFAR-10 dataset, the proposed model saves

more than 90% of the parameters in comparison to the state-of-the-art models. The

comparable results from the ImageNet has validated that the proposed model is robust

in both the variance and the scale of the classification tasks. At the current stage, the

proposed approach is only validated on CNN. In the future, it will be evaluated using

other popular deep learning networks, such as RNN and LSTM.
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Figure 4.5: Visualisation of the first block. Each numbered circle denotes a convo-
lutional layer. Connections between layers are expressed by colour arrows. ”Conv1”
denotes the first convolutional layer before the first block.
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Figure 4.6: The number of parameters (M) and the corresponding test accuracy (%)
of each model on the CIFAR-10 dataset. The proposed models are labelled using large
squares, while the baseline models are marked as large triangular. Other models are
denoted by dots.
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Figure 4.7: Comparison of the evaluation times (S) of the proposed method (marked by
squares) and the DenseNet (labelled by triangles). Evaluation times are measured on
the CIFAR-10 test dataset, where only forward propagation is conducted. All models
are run on a single GTX1080ti during the time measurement.
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Chapter 5

Triple Loss for Hard Face

Detection

5.1 Introduction

Though previous Convolutional Neural Network (CNN) based face detectors have made

a remarkable progress, detection of hard faces, i.e. faces with low resolution (<20

pixels) and high interference, is still a challenging task. Compared with easily detected

faces, the resolution of hard faces is always low, which are interfered by, such as,

blurry, occlusion, illumination and makeup. Those interferences cause the lack of visual

consistency [41]. Existing methods tackle this challenge from both structure and loss

function optimisations in the deep learning framework. Structure optimisation aims

to improve the performance by enhancing the capability of feature extraction, which

can be conducted in two ways. The first is to apply a deeper CNN feature extractor

(backbone) [37,141,214], e.g. ResNet-101 [17], ResNet-152 [17], ResNeXt-101 [105] and

DenseNet [18]. The second is to assign a subnet in the backward pathway [40–42,141]

to enhance the merged feature extraction. As the scale of the network grows larger

[37,138,141], the accuracy on the hard face detection improves, but the computational

cost increases at the same time. Instead of increasing the scale of the model, the

loss optimisation strategy [39–41, 138, 139, 141] optimises the weights of each layer by

assigning multiple tasks during the training, such as key point [139], attention [39],

85



Chapter 5.

segmentation [138], and head-body detection [41].

This chapter presents a novel mechanism to optimise the performance on hard

face detection through optimisation of both the structure and the loss function. For

structure optimisation, a new feature fusion module (FFM) embedded in the backward

pathway is proposed to make full use of the high-level and low-lever features. To

avoid increasing the computational cost significantly, both dilated convolution and

small-size-kernel convolution (1-by-N and N-by-1 kernels) are utilised in the FFM.

For loss optimisation, a “triple loss” training strategy is proposed, which covers three

resources in the training process: i.e. forward path (the first level), backward path

(the second level) and the extended path (the third level). The first two paths are

the same as Feature Pyramid Network (FPN) and the feature maps of the extended

path are simply extracted from the features of the backward path, by an additionally

proposed FFM. However, during inference, only results predicted from the second level

will be considered, i.e. all the irrelevant layers will be discarded. Through this training

and inference strategy, the proposed network suppressed the increase of computational

cost when compared with other FPN based methods [39–42,138,141]. By taking VGG-

16 [16] as the backbone, the proposed model achieves comparable results with other

models which utilise much deeper backbones. When evaluated on the WIDER FACE

database, compared with other VGG-16 based face detector, the proposed method

reaches the state-of-the-art on the hard subset. Although accuracy and computational

cost seem to conflict to each other in face detection, by using the proposed FFM and

the triple loss training, the proposed method reaches a good balance between these

two metrics. Experimental results show that, without considering the non-maximum-

suppression (NMS), the proposed method can detect faces by taking 29.7ms for a

VGA-resolution image with 640 pixels in width and 480 pixels in height.

The rest of the chapter is organised as follows: Section 5.2 details the proposed

FFM and triple loss training strategy. Section 5.3 presents the experiment results,

including the ablation learning, comparison analysis and further discussions. Finally,

some concluding remarks are given in Section 5.4.
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Figure 5.1: The proposed network structure trained with the “triple loss” training
strategy. Feature maps of the first layer are generated through “Conv3-3”, “Conv4-
3”, “Conv5-3”, “Conv-fc7”, “Conv6-2”, and “Conv7-2”, where the first four are from
VGG-16, and the last two are from newly added layers. Two newly added layers are
for detecting large scale faces, which are the same as used in Single Shot MultiBox
Detector (SSD) and Single Shot Scale-invariant Face Detector (SFD). The reduced
sizes of feature maps related to the original image are 4, 8, 16, 32, 64, and 128. The
feature maps of the second level are denoted as {P2-1, P3-1, P4-1, P5-1, P6-1, P7-1}.
For the third level, a single FFM is assigned for each layer, where the input of each
FFM is the feature map derived from the second level, to obtain the feature maps of
the third level. Feature maps of the third level are labelled as {P2-2, P3-2, P4-2, P5-2,
P6-2, P7-2}. The structure of FFM on the third level is the same as the second level
without weight sharing. Details of FFM (denoted by ”F”) are shown in Figure 5.2

5.2 The Proposed Approach

This section presents the proposed triple loss training strategy, as well as the feature

fusion module for face detection. First, the whole network structure will be illustrated,

followed by the structure of the proposed feature fusion module. After that, the triple

loss training strategy will be detailed.
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5.2.1 Overall Network Structure

Figure 5.1 illustrates the structure of the proposed network, which is composed of

three levels according to the predicted outputs of triple loss. In the first level, feature

maps are generated through a pre-trained backbone. As the triple loss is designed for

generalised face detection, in this thesis, VGG-16 [16] is mainly considered as used

in [35,40,41]. As a result, following the structure in SFD [35], feature maps of the first

layer are generated through “Conv3-3”, “Conv4-3”, “Conv5-3”, “Conv-fc7”, “Conv6-

2”, and “Conv7-2”, where the first four are from VGG-16, and the last two are from

newly added layers. Two newly added layers are for detecting large scale faces, which

are the same as used in SSD and SFD. The reduced sizes of feature maps related to

the original image are 4, 8, 16, 32, 64, and 128.

Feature maps from the deeper layer have more semantic information extracted [33].

In order to obtain more semantic information for low-level feature maps, feature maps

are normalised using 1× 1 convolutional kernels in the top-down routine as suggested

in [141]. From “Conv3-3” to “Conv6-2”, normalised feature map is up-sampled from

up-layer and conduct elementwise product with the current one. After that, a feature

fusion module is deployed to enhance the capability of feature extraction and increase

the receptive field. Hence, feature maps extracted by FFM are used to form the second

level. Results in [40–42, 141] show that such a module is helpful for improving the

performance of the detector, and the experiments as detailed in Section 5.3 have also

verified this point. The third level is simply extracted from the second level by a

proposed additional FFM without any top-down connection, whilst there are two top-

down connections in FANet. However, experimental result shows that the proposed

method outperforms FANet by 0.3% in detecting small faces without assigning the

top-down connection at the third level.

Letting the feature map of the layer j (j ∈ [1, 6]) from the level i (i ∈ [1, 3]) be Φ(i,j),

the feature map of the next level Φ(i+1,j), in FANet, can be mathematically defined as:

Φfusion = feleprod
(
f1×1

(
Φ(i,j)

)
, f1×1

(
Φ(i,j+1)

))
Φ(i+1,j) = f1×1 (fconcat (finception (Φfusion)))

(5.1)
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where f1×1, feleprod and fconcat indicate the operations of 1 × 1 convolution, element-

wise production, and feature concatenation respectively; Φfusion is the fused feature

map after elementwise production; and finception indicates a inception subnet structure.

On the other hand, in the proposed method, the feature map in level 2 and level 3 can

be expressed by:

Φfusion = feleprod
(
f1×1

(
Φ(1,j)

)
, f1×1

(
Φ(1,j+1)

))
Φ(2,j) = f1×1 (fconcat (finception (Φfusion)))

Φ(3,j) = f1×1
(
fconcat

(
finception

(
Φ(2,j)

))) (5.2)

Similar to [32,35,40–42] feature maps of the first level are extracted from the forward

path. For the second level, as given in Eq. 5.2, the initial feature map and the feature

map derived from its upper layer are convolved by a 1×1×256 kernel, respectively. The

two normalised feature maps are fussed via elementwise product, which is taken as the

inputs to the FFM of the second level. Afterwards, it will pass a three-branch inception

subnet, which is the dominant part for FFM and will be detailed in the next section.

The outputs from different branches are concatenated and the number of channels is

normalised to 256. The feature maps of the second level are denoted as {P2-1, P3-1,

P4-1, P5-1, P6-1, P7-1}. For the third level, a single FFM is assigned for each layer,

where the input of each FFM is the feature map derived from the second level, to

obtain the feature maps of the third level. Feature maps of the third level are labelled

as {P2-2, P3-2, P4-2, P5-2, P6-2, P7-2}, see in Figure 5.1. The structure of FFM on

the third level is the same as the second level without weight sharing.

5.2.2 Feature Fusion Module

In this section, a feature fusion module is proposed to enhance the capability of feature

extraction, where the fused feature map is extracted through the backward pathways,

as well as to increase the receptive field. At present, the mostly used backbone for face

detection are VGG-16 [34, 35, 40, 41] and Residual Network (ResNet) [39, 42, 138, 141],

where the kernel shapes are 3 × 3 and 1 × 1. As a result, the effective receptive field

of each layer is in a square shape. However, experimental results in RFB [135] indicate
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Input 256

1× 1× 96

1× 7× 128

7× 1× 160

3× 3× 256
3× 3× 160
rate = 2

1× 1× 128

concat

1× 1× 256

Figure 5.2: The proposed feature fusion module (F-block in Figure 5.1).

that for some non-square objects (i.e. aspect ratio is not 1), the shapes of effective

receptive field may not be the typical shape of squares. As illustrated in SRN [42],

this issue seems not crucial for frontal face detection, because the aspect ratio is about

1. However, this is important for multi-pose face detection as the aspect ratios can

vary between 0.5 and 2. To tackle this challenging problem, a feature fusion module

with multiple shapes of kernels is presented. The structure of the proposed FFM is

shown in Figure 5.2. Following the design in [40–42,141], the inception structure [65] is

utilised in the proposed feature fusion module, which consists of three branches. The

first branch has a single 3 × 3 convolutional layer to smooth feature as in FPN [33].

Inspired by RFB [135] and Dual Shot Face Detector (DSFD) [141], the second branch

consists of two dilation convolutional kernels, in order to further increase the receptive

field sparsely. As illustrated in SRN [42] a densely feature extractor is also important

for refining the effectiveness of the receptive field. However, using N ×N kernels will

increase the computational cost significantly. Hence, to balance the computational cost
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and detection accuracy, in the third branch, a 1×N and N × 1 structure is employed

to extract dense features. At the end of the module, feature maps from the three sub-

networks are concatenated together and then smoothed by a 1-by-1 convolutional layer.

Experimental results show that the proposed FFM, using the combination of dilation

convolution and 1×N (with N×1), performs better than the existing ones [40–42,141].

5.2.3 Triple Loss Training Strategy

This section will introduce the proposed triple loss training strategy in details. As

described in Section 5.2.1, feature maps are splitted into three levels. During training,

a classification layer and a regression layer are assigned on each feature map in all three

layers. To improve the inference efficiency, the model only uses two 3× 3 convolutional

layers for classification and regression (detection head) separately [39,42,141], without

a retina head [114]. The triple loss function (TL) is defined as follows:

TL(Φ(1,1),Φ(1,2), ...,Φ(2,j), ...Φ(i,j),A)

=

3∑
i=1

ωiL(Φ(i,1),Φ(i,2), ...,Φ(i,j), Ai)
(5.3)

where Ai and ωi denote respectively the anchor setting and the adjusting parameter

with respect to level i (i ∈ [1, 3]) as there exist three levels in triple loss. Experimental

result shows that the magnitudes of the loss from all three levels are the same, i.e. the

contribution of each level to the loss is the same, which is similar to those reported

in DSFD [141] and FANet [40]. The proposed method uses the cross-entropy loss (as

in [39, 41, 141]) and the smooth L1 loss [3] to determine the classification loss and the

regression loss, respectively. To be more specific, the total loss function of each level

can be expressed as below:

TL(p, p∗, t, t∗) =

3∑
i=1

1

Nconf
Liconf (pi, p

∗
i )

+
1

Nloc
[p∗i = 1]Liloc(ti, t

∗
i )

(5.4)
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where, for level i, Liconf and Liloc are the confidence prediction loss and the localisation

loss terms, respectively; pi, p
∗
i , ti and t∗i refer respectively to the predicted probability,

ground truth probability, predicted regression target and ground truth box regression

target. The Iverson bracket indicates a function [p∗i = 1] outputs 1 when the condition

holds true, i.e. only the regression loss of positive instances will be minimised during

the training.

The anchor setting is another key factor that affects the performance of face detec-

tor. As suggested in DSFD [141], assigning small anchor size on the forward pathway

improves the prediction performance, even it is not used during inference. Hence, the

anchor sizes of the first level are halved compared with the following levels, as shown in

Table 5.4. The aspect ratio is set as 1.25 for all three levels as suggested in SRN [42].

During inference, the second layer is selected to conduct face detection. The de-

tection heads of the first and the third levels, as well as the additional feature fusion

modules in the third level, are discarded. Hence, the proposed face detector will not

add additional parameters and computational cost compared to other FPN based meth-

ods [39–41,141].

5.3 Experiment Results and Discussions

First, the proposed method is analysed in detail to clarify the effectiveness of the

contributions. The final model is evaluated on two commonly used face detection

benchmark datasets, FDDB [30], and WIDER FACE [31].

5.3.1 Training Datasets and Hyperparameters

The ablation learning is conducted on the WIDER FACE dataset [31], which consists of

393,703 annotated face bounding boxes in 32,203 images. Images in WIDER FACE are

splitted into three sub-datasets: training, validation and test dataset. Performance is

evaluated in terms of average precision (AP) with the Interception-of-Union (IoU) set to

0.5, and the AP is measured by sampling the precision values where the corresponding

recall values are 0, 0.1, 0.2, . . . , 1. Instead of describing the result by a single mean
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average precision (mAP) over the whole validation dataset or test dataset, there are

three subsets according to the detection difficulty levels: Easy, Medium, and Hard,

based on the detection rate of EdgeBox [21]. The training dataset, which has 12,880

images, is applied as the only training dataset in this thesis. Results of ablation learning

are compared on the validation dataset with 3,226 images. In the end, the proposed

model is evaluated on the test datasets (with 16,097 images) and the results are collected

from the official test server.

The training procedure adopts the same data augmentation method as [41, 141]:

At first, it conducts random flipping, colour distortion, etc., which is the same as

in SSD [32]. For image resizing, with a probability of 0.6, it conducts the original

image resize method as introduced in SSD. Otherwise, it resizes the image using data-

anchor-sampling as in Pyramidbox [41]. To balance the ratio of positive and negative

training instances, the online hard example mining (OHEM) is used in a similar way

as [32,35,41,141] and assign the ratio of positive: negative is set as 1:3. In the end, a 640

× 640 patch will be resized from each cropped image patch. Image expansion [35, 42]

is also included in augmentation but the results seemed quite poor. It is deduced that

expansion may not fit for low batch size training. As a result, expansion is not include

in the augmentations.

The backbone network is initialised by the pretrained VGG on ImageNet. All newly

added convolution layers’ parameters are initialised by the ‘xavier’ method [215]. SGD

with momentum is adopted for weight optimisation and weight decay is set as 0.9 and

0.0005 to train the models. The batch size is set to 12. The learning rate is initialised to

1e-3 and is decayed by 10 when at 80K and 100K steps, respectively. During inference,

the settings of hyper parameters are the same as in [32, 35, 41, 141]. The second level

predicts the top 5K high confident detections, followed by non-maximum suppression,

with the Jaccard overlap of 0.3, to produce the top 750 high confident bounding boxes

per image.
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5.3.2 Model Analysis

In this section, a series of ablation experiments will be conducted on the WIDER FACE

dataset to analyse how each contribution module improves the performance in detail.

For a fair comparison, the parameter settings are kept the same, including anchor

setting, training hyper parameters, data augmentations, etc., for all the experiments.

As the structures of recent proposed face detectors [39–42,141] contain both bottom-

up and top-down pathway as FPN, the ablation study uses FPN as a baseline to

make a fair comparison. The anchor setting of the baseline is the same as SFD and

PyramidBox, which is [16, 32, 64, 128, 256, 512], and the aspect ratio is 1.25 as in

SRN [42]. All models in this section are trained on the training set and evaluated on

the validation set.

5.3.2.1 Feature Fusion Module

First, this section will show how the proposed feature fusion module improves the

performance of the baseline. In Table 5.1, the performance of different feature fusion

modules are compared on the WIDER FACE validation dataset. As observed, with

the same backbone (VGG-16) and the network structure (FPN), the proposed feature

fusion module surpasses the baseline by 0.7%, 1.1% and 4% on the easy, medium and

hard subsets, respectively. When compared with other feature fusion modules, the

proposed module reaches the best on the medium and the hard subsets, which leads

the state-of-the-art method by 0.1% on the medium subset and 0.4% on the hard

subset, respectively. It is deduced that such improvement of increased accuracy is

contributed by the combination of dilated convolution and the ordinary convolution.

Under a similar computational cost, dilated convolution increases the receptive field of

the feature map significantly [135]. However, a large receptive field may also harm the

performance of small object detection [41].

To balance the performance on various scales, a concatenation of feature maps from

both convolutional layers is needed. It is noticed that when compared with CPM [41],

the proposed feature fusion module lags by 0.1% on easy subset. It is deduced that

this is caused by the larger output channel number of CPM: the number of the output
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Table 5.1: Effectiveness of various feature fusion approaches in terms of AP.

Component Easy Medium Hard

Baseline [40] 94.3 92.9 83.8

+CEM [40] 94.8 93.6 84.4

+CPM [41] 95.1 93.9 87.4

+RFE [42] 94.9 93.8 87.2

+FEM [141] 94.9 93.9 87.5

+FFM (Proposed) 95.0 94.0 87.8

+FFM-512 (Proposed) 95.2 94.0 87.9

channels from CPM is 512, which is the double of the proposed FFM. This large scale

of the subnet will consume a huge amount of computational cost, which will be shown

in Section 5.3.2.5 later. On the contrary, the proposed FFM is more light-weighted,

reaching the balance between accuracy and the inference efficiency. To validate the

performance of the proposed FFM on a larger number of output channels, the structure

is kept unchanged but expand the output channels to 512 and add batch normalisation

[67] before each convolutional layer as used in CPM, labelled as “FFM-512” in the

table. As seen, when the number of output channels is doubled, the proposed FFM

outperforms the CPM on all three subsets.

5.3.2.2 Triple Loss Training

This section evaluates the performance of the triple loss training strategy in detail. An

ablation learning is conducted to show how each level affects the model. SSD is used

as the baseline, which calculates the loss only using the first level. The loss from the

second and the third level are calculated separately, where the proposed feature fusion

module will be applied. Finally, level by level, it combines the losses from different levels

into training. During evaluation, for single level loss training, the result is obtained

from that training level, while for multi-level training, the results are collected from

the deepest level. Experimental results are given in Table 5.2.

From the first three rows in Table 5.2, it is clear to see that the accuracy increases

as the scale of the network increases, when using the single level loss training. However,
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Table 5.2: Results of the triple loss on the WIDER FACE validation subset.

Component Easy Medium Hard

1st level 94.0 93.0 83.5

2nd level 95.0 94.0 87.8

3rd level 95.2 94.3 88.0

1+2 levels 95.6 94.7 89.1

1+2+3 levels 95.8 94.8 89.7

the increasement between levels decreases at the same time. To balance the computa-

tional cost of training and the evaluation accuracy, the fourth level is not added in the

experiment. It is deduce that the contribution from the fourth layer might be minor

for face detection.

When using multi-level training, which is shown in the last two rows, it is worthy to

find out that the performance of the model is increased significantly. When compared

with the models trained on a single level (on the third level), the performance of the

model measured using detection accuracy, trained via triple loss, is increased by 0.6%,

0.5%, 1.7% on the three subsets, respectively. Experimental results indicate that when

the scale of the model is fixed, the multi-level training strategy helps to increase the

performance of the model, especially on the medium and the hard subsets.

5.3.2.3 Prediction Level

Predicting using the third-level feature map increases the performance. However, it

also increases the computational cost. As the anchor in the second and the third levels

are identical, it is possible to predict via the second level. When evaluating through

the second level, feature maps from the third level will be omitted hence the total

computational cost is reduced. The result comparison of different prediction levels is

presented in Table 5.3. In this test, after trained using triple loss, the model predicts

result through the second and the third level separately. Compared the result predicted

from the third level, the AP predicted through the second level is the same on the

easy subset, and 0.1% better on the medium and hard subset. This indicates that

the third level is essential during training but seems unnecessary during evaluation. In
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Table 5.3: Comparison of results on different prediction levels.

Prediction Level Easy Medium Hard

3rd 95.8 94.8 89.7

2nd 95.8 94.9 89.8

2nd + 3rd 95.7 94.7 89.5

summary, the proposed triple loss training strategy improves the AP without increasing

the computational cost during inference.

Furthermore, to validate the performance of multi-level prediction, the prediction

results predicted from both the second and the third levels are also collected, which

is shown in the last row of Table 5.3. Apparently, prediction from two levels does

not bring an increase but a decrease on the prediction result. On the other hand, as

prediction heads from both levels are applied, this will increase the computational cost.

As a result, multi-pathways inference is not utilised in the model.

5.3.2.4 Effect of Anchor Design

As anchor design is a key factor of the box size regression [40, 42, 141], this section

discusses how the anchor size affects the performance. In DSFD, experimental results

show that a smaller anchor size on the forward pathway (first level), which is halved

compared to the backward pathway, can further improve the performance. Motivated

by this observation, the anchor size is fix by [8, 16, 32, 64, 128, 256], as suggested in

DSFD, on the first level and vary the anchor sizes on the second level and the third

level. Based on the findings in Section 5.3.2.3, the second level is used as the prediction

level during inference.

Experimental results are shown in Table 5.4. When the anchor size increases pro-

gressively, the third level impedes the final prediction during inference. Then the anchor

size is swapped between the second level and the third level. As a result, the model

further improves the AP by 0.4% and 0.3% on the easy and medium subsets respec-

tively (see row 2 of Table 5.4), when compared with the identity setting (row 1). It is

not surprising to see the poor performance on the hard subset because the large anchor
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Table 5.4: Comparison of results on different anchor assignments.

Predefined anchor sizes:

A1: [16, 32, 64, 128, 256, 512]

A2: [32, 64, 128, 256, 512, 1024]

A3: [(16,32), (32,64), ..., (512,1024)]

Anchor applied Easy Medium Hard

A1 (2nd, 3rd) 95.8 94.9 89.8

A1 (2nd), A2 (3rd) 96.2 95.2 82.5

A3 (2nd), A2 (3rd) 96.1 95.0 88.6

size is unsuitable for detecting small faces, which mainly belong to the hard subset.

Consequently, the number of anchors in the second level is doubled, as shown in row 3,

to gain benefits of both designs. In summary, the identity setting is important for hard

face detection, while progressive setting brings increase on the other two subsets.

5.3.2.5 Comparison with Other Face Detectors

This section presents the comparison between the proposed method with other algo-

rithms. The APs of three subsets on the WIDER Face are respectively given in Figure

5.3, Figure 5.4, Figure 5.5, of which the model uses the identity anchor setting on the

second and the third levels. As the accuracy relates to the scale to backbone, the back-

bones of the state-of-the-art methods are summarised in Table 5.5. As observed, the

proposed model reaches the best performance on the hard subset, when compared with

other VGG-16 based models; it also attains the best AP on the easy and medium sub-

sets, when using the progressively anchor setting (labelled by “TL-LA”). Even when

compared with the state-of-the-art methods on the hard subset, as shown in Figure 5.6,

the proposed method only sacrifices the accuracy by about 0.6% but with much more

computational saving.

5.3.2.6 Effects of Backbone

To evaluate the robustness of the proposed detector, the performance on the Resnet-50

is also validated, which is shown in the last two rows of Table 5.5. As most of the
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Figure 5.3: Precision-recall curves on WIDER FACE validation and test sets (Easy).
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(b) Test: Medium

Figure 5.4: Precision-recall curves on WIDER FACE validation and test sets (Medium).
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(b) Test: Hard

Figure 5.5: Precision-recall curves on WIDER FACE validation and test sets (Hard).
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Table 5.5: Result comparison on the WIDER FACE validation set.

Methods Backbone Easy Medium Hard

ScaleFace [216] ResNet-50 86.8 86.7 77.2

HR [37] ResNet-101 92.5 91.0 80.6

Face R-FCN [217] ResNet-101 94.7 93.5 87.4

Zhu [214] ResNet-101 94.9 93.3 86.1

RetinaNet [42] ResNet-50 95.1 93.9 88.0

SRN [42] ResNet-50 96.4 95.2 90.1

DSFD [141] ResNet-152 96.6 95.7 90.4

RetinaFace [218] ResNet-50 96.5 95.6 90.4

RetinaFace [218] ResNet-152 96.9 96.1 91.8

CMS-RCNN [219] VGG16 89.9 87.4 62.4

MSCNN [220] VGG16 91.6 90.3 80.2

Face R-CNN [36] VGG19 93.7 92.1 83.1

SSH [34] VGG16 93.1 92.1 84.5

S3FD [35] VGG16 93.7 92.5 85.9

PyramidBox [41] VGG16 96.1 95.0 88.9

FANet [40] VGG16 95.6 94.7 89.5

TL (Proposed) VGG16 95.8 94.9 89.8

TL-LA (Proposed) VGG16 96.2 95.2 82.5

TL-res50 (Proposed) ResNet-50 95.7 94.7 88.6

TL-res50-RH ResNet-50 96.0 94.9 88.4

ResNet-based face detectors [39,42,138,141] apply retinanet prediction head as in Lin

et al. [114], for a fair comparison, both Single Shot MultiBox Detector (SSD) prediction

head and retinanet prediction head are deployed in the model. During the training, the

batch size is increased to 16 as DSFD did. Limited by the computational resource, the

training procedure can only use a batch size of 12 when training on the retinanet head.

Compared with the retinanet, the proposed method increases the performance by more

than 0.6% on all three subsets. By using the retinanet head, the performance has been

further improved by 0.3% and 0.2% on the easy and medium subset, respectively. As for

the decrease on the hard subset, it is might caused by the decrease of batch size because

both batch size and training image size are crucial for the final performance [196]. This

102



Chapter 5.

Figure 5.6: Time consumption among the state-of-the-art methods.

will be solved such issues when more computational resource is available in the future.

When compared with VGG-16, ResNet-50 outperforms on the easy subset without

using the large anchor setting. However, the hard set AP is lower by 1.2%. It is deduced

that this is caused by the nature of ResNet: the scales of the hard set are always small,

which are detected by the low-level feature maps. As suggested in ISRN [196], ResNet

reduces the feature map size earlier than VGG, consequently losing the information

of small objects. On the other hand, however, it will be more efficient because of

the early reduction of size. In summary, ResNet based methods are more suitable for

speed-prioritised applications, while VGG backbone can be applied for detection of

small faces.

When compared with other ResNet-50 based detectors, the proposed method out-

performs most of them on easy and medium subsets, except for Selective Refinement

Network (SRN) and RetinaFace [218]. In SRN, the prediction results from the first

and the second levels are cascaded to reduce the number of false positives and refine
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the positions of boxes, which improves the AP but also sacrifices the computational

efficiency. However, with a slight decrease of the AP, the proposed method can achieve

a good balance between the AP and the computation cost, as discussed in the next

section. RetinaFace [218] achieves the state-of-the-art performance on the hard subset

with the ResNet-152 used as backbone. For a fair comparison, RetinaFace with ResNet-

50 as backbone is benchmarked with the proposed approach. As seen in Table 5.5, the

proposed method lags by 1.8% on hard subset than RetinaFace when using ResNet-50

as backbone. The small difference is caused mainly by extra information such as facial

landmarks and Three-Dimensional (3D) positions used in RetinaFace, in addition to

Two-Dimensional (2D) face bounding box, which is the only information required in

the proposed triple loss training model. On one hand additional features have led to

significantly increased dimension of the prediction layer (from 6 to 160) and the associ-

ated computational cost. On the other hand, this inspires the future work to combine

3D information to further improve the proposed model. Furthermore, the face land-

mark prediction in RetinaFace relies on supervised training, which requires additional

work for manual labelling the samples. In contrast, such extra labelling is avoided in

the proposed approach. The training using ResNet-152 as backbone is also conducted,

limited by computational resources, where both the batch size and the learning rate

are reduced to 8 and 5e-4, respectively, whilst doubling the training epochs. As shown

in Table 5.5, even the model is affected by the low batch size in training, the proposed

method slightly lags RetinaFace (ResNet-152) by 0.7% and 0.6%, on easy and medium

subset without using any additional labeled samples. This has further validated the

efficacy of the proposed approach.

5.3.2.7 Inference Speed

As described in the last section, the proposed triple training strategy and FFM can bal-

ance between the detection accuracy and the computational cost. Figure 5.6 illustrates

the inference speed, accompany with the accuracy, among the state-of-the-art methods.

For a fair comparison, all the methods are deployed on Pytorch [176] without conduct-

ing the non-maximum suppression. All the tests are conducted on a single GTX1080Ti.

104



Chapter 5.

Figure 5.7: FDDB Discrete ROC Curves.

As seen, a deep backbone [141] or a heavy subnet for feature extraction [40–42] improves

the detection accuracy by sacrificing the speed. However, a light-weight network struc-

ture [35] seems insufficient. As a result, the proposed FFM can improve the accuracy by

slightly increasing the computational cost during inference. Different from the existing

training methods [40, 42], the proposed triple loss training strategy only increases the

computational cost during training without affecting the inference efficiency.

5.3.2.8 Evaluation on FDDB

To validate the performance on multiple datasets, the model is also evaluated on the

FDDB dataset [30], where the proposed model is trained on the WIDER FACE dataset.

In FDDB, there are 5,171 faces in 2,845 images taken from the faces in the wild dataset.

Different from the WIDER FACE, faces in FDDB are labelled by ellipses. To show

the robustness of the proposed method, the ellipses regressor is not trained offline.
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Instead, the ellipses regressor in SFD [35] is adopted to transform the final prediction

results from rectangle to ellipse. There exist unlabeled faces in the original dataset.

For a fair comparison, additional annotations are added as in [35, 40, 41, 141] and the

results are reported on discontinuous ROC curves [30], as shown in Figure 5.7. As

seen, the proposed method achieves 98.4% when the number of false positives equals to

1,000. When compared with other state-of-the-art methods [35,40,41,141], the proposed

method lags by no more than 0.8% by applying a relatively light-weight backbone. By

applying a deeper backbone, FPN-based face detectors [35,40,42,141,196,218] all show

a certain degree of improved performance. To verify the performance of the proposed

approach under a deeper backbone, additional experiments are conducted on the FDDB

dataset using the ResNet-152 as backbone, which is trained on the WIDER FACE

dataset. Due to limited available computational resources, the training procedure has

selected a low batch size of 8 for comparison (learning rate = 5e-4, training steps =

240k), where the accuracy achieved from ResNet-152 and VGG-16 became 98.0% and

97.6%, respectively. This on one hand has shown that a low batch size indeed leads

to degraded accuracy, as a larger batch size with VGG-16 can produce an accuracy of

98.4%. On the other hand, it validates that a deeper backbone can further improve the

classification accuracy. As the proposed method is also FPN-based, it is deduced, by

using the same batch size training, its performance can also be further improved when

using a deeper backbone.

5.4 Summary

In this chapter, a novel training strategy is proposed, as well as an accuracy-computational

cost balanced feature fusion strategy for single shot face detector, which is applied on

the problem of unconstrained face detection.

A feature fusion module is introduced to balance between the computational cost

and the accuracy of the face detector. The module combines both dilated convolution

and the small-kernel-size convolution in the module, which marginally improves the

accuracy, especially on small objects. Furthermore, a training strategy is proposed,

106



Chapter 5.

which refers to triple loss training, for FPN based face detector. During training, it

takes the advantage of hierarchical loss from both forward and backward paths. During

the evaluation module, however, only feature maps from the second level will be utilised,

which improves the accuracy without affecting the inference efficiency.

Experimental results indicate that the proposed FFM and the triple loss training

strategy are effective for identifying hard faces. Taking VGG-16 as the backbone,

the proposed model achieves the state-of-the-art on the hard subset of the WIDER

FACE validation dataset, when compared with other VGG-16 based face detectors. By

assigning a larger anchor size, the performance can be further improved on the easy and

medium subset. Without bells and whistles, the proposed method achieves comparable

results on multiple common face detection benchmarks, when compared with other

large-scale face detectors.

As the performance of the proposed network relies heavily on the scales of anchor

setting, the future work will focus on the removal of anchor prior, i.e. anchor free

[119,121], to the model.
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SAFDet: A Semi-anchor-free

Detector for Effective Detection

of Oriented Objects in Aerial

Images

6.1 Introduction

Object detection aims to detect the existence of objects, rather than focusing on the

outline of object as the segmentation task. As a result, the shape of an object is

represented by a rectangle, which is referred to as ”bounding box” (bbox). By us-

ing bbox, the size of an object can be easily described by the height and the width.

More specifically, the target of detection becomes finding out the centre coordinate,

height and width of the object bbox. For Convolutional Neural Network (CNN) based

object detection, detector extracts feature map using a CNN extractor, and then it

uses two sibling convolution layers (detection head) to conduct classification (classi-

fier) and bbox regression (regressor) at each pixel. For foreground pixels, the regressor

regresses the sizes and the centre coordinates of bboxes based on either a predefined

bbox or the stride and the pixel coordinates of the feature map. Thus, the predefined

bbox, defined with human priority, is known as ”anchor”, and the detector based on
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anchor is called ”anchor-based” detector. As opposed to anchor-based detectors, de-

tectors regress bboxes from the stride and the pixel coordinates of the feature map are

”anchor-free”.

Bboxes can be split into two categories: horizontal bounding box (HBB) and ori-

ented bounding box (OBB), as shown in Figure 6.3. Edges in HBB are parallel with

the image edges, so a HBB can be mathematically expressed by [x, y, h, w], which are

the centre coordinate, height and width of bbox, respectively. Different from HBB,

OBB is rotated based on its horizontal position. As a result, an OBB can be expressed

by [x, y, h, w, θ], where θ is the rotation angle with respect to the x-axis.

Oriented bounding box (OBB) is more preferable than horizontal bounding box

(HBB) in accurate object detection. Most of existing work utilise a two-stage detector

for locating the HBB and OBB, respectively, which have suffered from the misaligned

horizontal proposals and the interference from the complex background. To tackle these

issues, region of interest transformer and attention models were proposed, yet they are

extremely computationally intensive.

In this chapter, a semi-anchor-free detector (SAFDet) is proposed for effective de-

tection of oriented objects, in which two novel modules are introduced to suppress

the noise caused by horizontal anchors from Region Proposal Network (RPN) without

sacrificing the computational efficiency. First, a rotate-anchor-free branch (RAFB) is

utilised to compensate the limitation caused by horizontal anchors. As illustrated in

Figure 6.1, the RAFB network directly predicts the OBB without any predefined rotate

anchors. Thus, for each object, RPN can jointly predict the HBB and OBB. Exper-

imental results indicate that, by using the horizontal ROIs for the ROI pooling [3],

RAFB improves the detection performance by 1.6% without increasing the inference

computational cost. Second, a center prediction module (CPM) is proposed on RPN

for suppressing the noise caused by background. In CPM, only the pixels around the

object’s center are classified as the foreground, rather than to consider all the pixels

in the bounding box [39, 60]. Moreover, CPM is implemented during training only,

hence it will not increase the computational cost of inference yet further improves 1%

of accuracy in the experiments.
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(a) (b) (c)

Figure 6.1: Examples of ROI prediction using horizontal anchor (a), rotate anchor (b)
and the proposed method (c), respectively. In each example, only a single anchor is
shown for clarity. Anchors are denoted by red, while the predicted bounding boxes are
labeled by yellow. As the rotate ROIs in the proposed method are predicted via anchor
free, they are specially highlighted by dashed blue.

The remaining parts of this chapter are organised as follows: 1. Section 6.2 in-

troduces the design of the proposed approach, especially the RAFB and the CPM

modules; 2. Section 6.3 presents the experimental results, including ablation study and

discussion; 3. Some concluding remarks are drawn in Section 6.4.

6.2 The Proposed Method

6.2.1 Overall Architecture

The flowchart of the proposed SAFDet detector is sketched in Figure 6.2. Following the

work in [48, 60], the ResNet [17] is taken as the backbone and denote the outputs for

“conv2”, “conv3”, “conv4”, and “conv5” of the Residual Network (ResNet) as {C2, C3,

C4, C5}, respectively. Existing two-stage networks [47,48] adopt the C4 as the feature

map, where the total stride(s) is large (s=16). As a result, the resolution of the feature

map is too coarse for detecting small objects, such as vehicles, ships and bridges. When

applying the feature pyramid network (FPN) [33] on the backbone, the total stride will

be reduced to 4, causing an increase on the computational cost of the prediction. To

balance the accuracy and the computational cost, the {C3, C4} are used in the FPN.

Hence, the total stride becomes 8. In the FPN, only a single convolutional layer is

applied on C3 to adjust the number of channels without using any other enhancement
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Figure 6.2: The proposed network structure.

modules [54, 60]. For regressing the bounding box of RPN, the horizontal anchor is

utilised to save the computational cost and predict the corresponding rotate bounding

box (RBB) using an anchor-free method. The horizontal ROIs will be used in the

following ROI pooling layer [3]. For the fast RCNN, the network predicts both OBB

and the corresponding HBB as in [47,60,61,221]. Relevant details are presented in the

following sections.

6.2.2 Rotation Anchor Free Branch

As described in R3Det [61], the rotate anchor setting in the RPN achieves a better per-

formance when compared with horizontal box prediction. However, rotate anchor set-

ting generates more boxes at each point of the feature map, which significantly increases

the computational cost at the same time. To improve the performance without increas-

ing the computational cost, for each horizontal box prediction, the proposed method

additionally predicts its corresponding OBB using an anchor-free method, which acts
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as an auxiliary loss during the training. For the original horizontal branch, the typical

four-element presentation method [3,32,47] is adopted. The four elements can be math-

ematically expressed as (xc, yc, whbb, hhbb), denoting respectively the center coordinates,

the width and the height of a box. Similarly, the OBB is encoded in the same way

as the HBB with one additional element for the rotation angle. As a result, the five

elements are (xc, yc, wrot, hrot, θ), where wrot and hrot denote the width and the height

of a rotate box, respectively. Consistent with OpenCV [222], θ is the acute angle to

the x-axis, ranging in [−90, 0). As the center coordinates of HBB and OBB are the

same [146], during training, the prediction of the center coordinates is shared between

HBB and RBB. To summarise, the output of the RPN for each box prediction, after

the decoding method, has in total seven elements, i.e. (xc, yc, whbb, hhbb, wrot, hrot, θ).

6.2.2.1 Regression Scheme of the Rotation Branch

As the rotation branch is anchor free, only horizontal anchors are defined for the RPN.

An OBB is assigned as the foreground if its corresponding HBB is assigned as the

foreground, i.e. the OBB matching is based on the intersection over union (IoU) value

between the horizontal ground truth box and the horizontal anchor, as in [32, 52]. For

rotate box regression in RPN, the regression method of the centre coordinates are the

same as in HBB due to coordinate sharing, and directly predict the size (wrot, hrot) and

the rotation angle (θ) using:

wrot = exp (wout) ∗ s;

hrot = exp (hout) ∗ s;

θ = −90◦ +
θout
π
∗ 180◦;

(6.1)

where wrot, hrot and θ are the predicted width, height and the rotation angle by detec-

tor, respectively; wout, hout and θout are the corresponding encoded outputs from the

prediction layer, respectively; s indicates the total stride of the feature map. Similar

to [3, 119, 121], the exponential function, denoted as “exp()” above, is applied to keep

the output in positive. As the prediction is conducted on the feature map, which is
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down-sampled by the total stride (s), the s is multiplied to scale the predicted box

size to its actual size. The range of θ is in [−90, 0), the magnitude of which is quite

larger than other elements. To balance the magnitude between different elements, the

regressor predicts the radian using Eq. 6.1. As a result, the range of θout is in [0, π2 ).

6.2.3 Center Prediction Module

As mentioned in [60,146], existing challenges contain low resolution, noise, crowd, and

freely oriented objects. Previous works tackle these challenges by using supervised

attention structures [39,60], which consider all the pixels within the boxes as the fore-

ground. However, on the one hand, the anchors where the centres are located at the

boundary of the bounding boxes, may have low IoU matching values than the prede-

fined threshold, especially for those boxes with large aspect ratios (height/width). On

the other hand, the receptive field of boundary pixels are the same as the centre pixel.

It means that the boundary pixels contain more background information, which may

interfere with the feature extraction. As a result, these boundary pixels are supposed

to be categorised as the background rather than the foreground, which indicates that

previous labelling methods of attention structures may introduce more noise. To re-

move the ambiguous instance and enhance the foreground features against the complex

background, a supervised centre prediction module (CPM) is proposed, as illustrated

in Figure 6.2. To be more specific, the structure consists of four convolutional layers

for feature extraction and one binary prediction layer, which is the same as the Reti-

naNet [114]. Different from the existing labelling methods [39,60], only the centre pixel

is taken as the foreground, and the remaining pixels in the bounding box are all labelled

as the background. Let the prediction score and the ground truth at the position (i, j)

be pij and yij , respectively. the variant focal loss is deployed as in [118,121]:

LCPM = − 1

N

H/s∑
i=1

W/s∑
j=1

αijFL (pij , yij) ; (6.2)

where H and W denote the height and the width of the original image, respectively;

s is the total stride, which is the same as in Eq. 6.1; N is the normalisation factor.
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Specifically, FL(∗) is the original focal loss [114] and αij is the adjusting factor:

FL (pij , yij) =

 (1− pij)2 log (pij) , if yij = 1

(pij)
2 log (1− pij) , otherwise

; (6.3)

αij =

 1, if yij = 1(
1−maxk=1,2,...,K Gk

(
i, j, xkc , y

k
c , wk, hk

))4
, otherwise

; (6.4)

where K is the total number of objects. xkc , y
k
c , wk, and hk are the center coordinates,

width and height of the horizontal bounding box k, respectively. Gk(∗) is a Two-

Dimensional (2D) Gaussian mask centred at the bounding box k, which is formulated

as:

Gk

(
i, j, xkc , y

k
c

)
= exp

(
−
((

i− xkc
)2

2σ2wk

+

(
j − ykc

)2
2σ2hk

))
; (6.5)

where the variances (σ2wk
, σ2hK ) are proportional to the width (wk) and height (hk) of

individual objects.

Experimentally, assigning N as the number of all instances on the feature map

gives a better performance than the original setting, where the loss is normalised by

the number of objects in the image.

6.2.4 Loss Function

In summary, the total loss of the network is defined as:

Ltot = λ1LCPM + λ2Lrotaf + LRPN + LFRCNN ; (6.6)

where λ1 and λ2 are the weight factors; LCPM and Lrotaf are the losses of center

prediction module and the anchor-free rotate box prediction branch, respectively. LRPN

is the total loss of the region proposal network as in Faster-RCNN [3]. LFRCNN is the

total loss of the fast RCNN (Regions with CNN features) subnet [3], including HBB

regression loss, OBB regression loss and the category prediction loss as in [47, 60, 61].

To balance the magnitudes between loss elements, λ1 = 1 and λ2 = 0.1 are assigned
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during the following experiments.

6.3 Experiments and Analysis

Two benchmark datasets, DOTA [146] and HRSC2016 [57], are chosen for ablation

study and performance evaluation, which are well known for oriented object detection.

Relevant details are presented as follows.

6.3.1 Datasets and Implementation Details

6.3.1.1 DOTA

The benchmark DOTA (Dataset for Object deTection in Aerial images) [146] is an

aerial image dataset for object detection. Images of DOTA are sampled from multiple

sensors and platforms, where the sizes range from around 800 × 800 to 4, 000 × 4, 000

pixels. There exist 2,806 aerial images and 188,282 instances in total. The annotations

of objects are various on scales, oriented angles, and aspect ratios, which are classified

in 15 commonly used categories. The names of these categories and their abbrevi-

ations used in the chapter are PL-Plane, BD-Baseball diamond, BR-Bridge, GTF-

Ground field track, SV-Small vehicle, LV-Large vehicle, SH-Ship, TC-Tennis court,

BC-Basketball court, ST-Storage tank, SBF-Soccer-ball field, RA-Roundabout, HA-

Harbor, SP-Swimming pool, and HC-Helicopter. The ratios of the training set, valida-

tion set, and test set are 1/2, 1/6 and 1/3 of the total number of samples, respectively.

There are two detection tasks in the DOTA dataset, where task 1 is for OBB regres-

sion, while task 2 is for HBB regression. As the aim of this chapter is for improving

the performance on OBB detection, the task 1 is focused in the experiments.

6.3.1.2 HRSC2016

The HRSC2016 dataset (high resolution ship collections 2016) [57] collects 1061 images

with 2976 annotated instances from six famous harbors, which are widely used for ship

detection. The scenarios contain ships both on sea and close inshore. The image sizes
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range from 300×300 to 1, 500×900 pixels. The numbers of the training set, validation

set, and test set are 436, 181 and 444 images, respectively.

6.3.1.3 Implementation Details and Evaluation Metrics

When training on DOTA, the original images are uniformly cropped to patches of

800× 800 pixels with a stride of 200 pixels. In ablation study, only the training set is

utilised, and the result is evaluated on the validation set. When compared with other

detectors, both the training and validation sets are applied for training and the results

are tested on the test set, which are then submitted to the official evaluation server for

evaluation. For image pre-processing, each images patch is first subtracted by the mean

values of the ImageNet on the RGB channels. Afterwards, randomly flipping is adopted

with a probability of 0.5. The learning rate is initialised as 3e-4 and is divided by 10

at 100k and 200k iterations, respectively. The training terminates at 300k iterations.

For the HRSC2016 dataset, both the training and validation sets are utilised for

training. The training images are resized to (800, 1024), where 800 and 1024 indicate

respectively the short and the maximum size of the image. The pre-processing steps are

the same as used for training on DOTA. Thus, no additional augmentation methods,

e.g. image pyramid and image rotation, are applied. The total iterations are 12k. The

initial learning rate is 5e-4, which is divided by 10 on 9k iterations. Results are tested

on the original image size, and then evaluated using the standard VOC-style Average

Precision (AP) metrics [48,61,221].

6.3.2 Ablation Study

In this section, a serious of ablation studies are conducted to validate the effect of each

component in the proposed approach. During the ablation study, the ResNet-50 is

taken as the backbone, and relevant models are implemented by the Tensorflow [223].

6.3.2.1 Baseline Setup.

As the proposed method is an improved two-stage object detector, the baseline starting

built on the Faster-RCNN. Previous works [47,48,60,112] indicate that jointly predict-
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ing the OBB and its boundary rectangle (HBB) can improve the performance of OBB

prediction. As a result, in the baseline, HBB is also predicted during training, which

was actually an example of R2CNN [47] with a single ROI pooling kernel rather than

multiple ROI pooling kernels in the original R2CNN.

The total stride is another key factor that affects the performance of the object

detectors. Faster-RCNN sets the total stride as 16, which is too large for detecting

small objects (e.g. ship, small vehicles, and bridge et al.) for DOTA. Thus, a top-down

pathway is essential for increasing the resolution of the feature map [33,60]. With the

decreased total stride, the accuracy increases, especially for small object detection, as

highlighted in Table 6.1. As can be seen, the R2CNN has the lowest computational

speed when the total stride is 16, though it achieves the highest mean average precision

(mAP) when the total stride is 4. As a result, to balance the computational cost and

the accuracy, the total stride is set to 8 in the baseline R2CNN.

6.3.2.2 Effect of Rotation Anchor Free Branch.

As discussed in Section 6.2, Multi-task bounding box regression brings benefits for

performance improvement. The effect of rotation-anchor-free-branch (RAFB) is sum-

marised in Table 6.2. As seen, the performance is improved by 1.59% without increasing

the computational cost of the detector. As for each category, RAFB further improves

the detection performance on instances with large aspect ratios and/or low resolutions,

e.g. 5.7% on bridges, 5.8% on helicopters, and 7.5% on ground field tracks.

Anchor vs Anchor Free. To make a contrast, the network is also trained using

RAFB for proposal prediction on RPN, which directly predicts the OBB rather than

the HBB. As the original IoU matching scheme is unsuitable for anchor-free methods,

the matching scheme as in CSP [121] is directly used. However, the mAP is only 38%.

This is different from the observations on HBB detection [118,119,121], that anchor-free

outperforms anchor-based methods. It is deduced that is caused by two folds. First,

for two-stage HBB detection, a slight shift on the x-y coordinate does not significantly

affect the feature extraction as most of object region is still within the bounding box.

However, for OBB detection, a slight error on the rotate angle will cause missing on
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(a) HBB (b) OBB

Figure 6.3: Examples of bounding box prediction on HBB (a) and OBB (b). Ground
truth bounding boxes are denoted by blue, while predicted bounding boxes are colored
by yellow. Only the centre target are labelled for clarity

most of the regions, leading to information loss on feature extraction, especially for

instances with large aspect ratio. The information loss on feature extraction will then

affect the performance of the second stage prediction. Similar observations, on the

effect of angle error, are reported in [47, 48]. An example of HBB detection and OBB

detection on the same object is shown in Figure 6.3. Second, the CSP matching scheme

is originally designed for HBB box prediction. As proposed in [119,224], the matching

scheme is vitally important for anchor-free detectors, which motivates the future work

for proposing an anchor-free matching scheme for OBB detection.

6.3.2.3 Effect of Center Prediction Module.

As previously discussed, the center prediction module (CPM) is beneficial to locate

the center of objects. The CPM is only implemented during training, hence it will not

increase the computational cost of inference, as shown in Table 6.2. With the CPM, the

mAP of detector is further improved by 1%. Compared with RAFB, which improves

the performance on low-resolution objects, CPM can further bring benefits on detection

of large-scale objects, e.g. baseball diamond, basketball court and soccer-ball field.

An additional experiment is conducted, in which CPM is replaced by the attention

module and the results are shown in Table 6.2 for comparison. When adopting the
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attention module into the detector, the mAP increases by 0.2% only. On the one hand,

this improvement is not as significant as CPM is applied. On the other hand, it also

increases the computational cost of the detector. When assigning the attention module

as an auxiliary loss, the mAP drops by about 0.6%. Therefore, the results indicate that

CPM is more effective than the attention module for OBB detection in aerial images.

6.3.3 Comparison with the State-of-the-Art Detectors

6.3.3.1 DOTA

When compared with the state-of-the-are methods, image pyramid is popularly utilised

[60,61,221]. Deeper backbone, such as ResNet-101, is adopted for a fair comparison. As

image pyramid requires resize and redetect an image multiple times, it is meaningless

to measure the inference time. Same as the previous works, when compared with

other methods, the inference time is not measured on DOTA. The proposed semi-

anchor-free detector is denoted as “SAFDet”. As shown in Table 6.3, the good results

from RoI-Transformer, SCRDet and R3Det are gained from feature extraction and

feature fusion, in which the improved accuracy costs on the significantly decreased

computational speed. SAFDet lags SCRDet by about 1.3%, but it has no additional

feature extraction or fusion module, reaching a good balance between the accuracy and

computational cost. Experimental results in R3Det [61] indicate that SCRDet improves

the accuracy at a cost of much-degraded efficiency. As a result, the speed of SCRDet

is lower than R3CNN. On the contrary, a comparison of inference speed, as detailed in

the next section, shows that the proposed method is much faster than R3Det.

6.3.3.2 HRSC2016

Table 6.4 illustrates the results in comparison to the state-of-the-art methods on the

HRSC2016 dataset. As seen, the proposed method reaches 89.38% mAP without adopt-

ing any image pyramid, which outperforms all other methods. The inference speed with

respect to each detector are also listed in Table 6.4. The relationship between the accu-

racy and inference is illustrated in Figure 6.4. As seen, the proposed method achieves

11 fps on the HRSC2016 dataset, which further validates that the SAFDet method has
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Figure 6.4: Accuracy versus speed on HRSC2016 dataset.

apparent advantages in well balancing between the accuracy and the computational

cost.

6.4 Summary

In this chapter, a semi-anchor-free detector (SAFDet) is proposed for effective detec-

tion of oriented objects in aerial images. Two new modules are introduced to tackle

the detection difficulty of low-resolution, noisy, large aspect ratio and freely oriented

objects. Rotation anchor free branch is introduced to assist the HBB prediction on

RPN, with negligible extra computation cost during the training. Similar to the atten-

tion module, CPM is proposed to suppress the background information and enhance

the foreground information. However, CPM is only implemented for training, so that it

does not increase inference cost. By adopting those two modules, the proposed model

improves the mAP by about 3% without bringing any additional computational cost on

inference. When compared with the state-of-the-art detectors, the proposed method
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achieves effective results on the challenging DOTA and HRSC2016 datasets without

lowering its high efficiency.
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Table 6.4: Results comparison with the state-of-the-art methods on HRSC2016 (%).
As the HRSC2016 is a ship detection dataset, so mAP is also the AP of ship detection.

Methods mAP Inference Speed

R2CNN [47] 73.07 3fps

RC1 & RC2 [225] 75.70 1fps

RRPN [58] 79.08 4.8fps

R2PN [59] 79.60 1.3fps

RetinaNet [61] 82.89 16fps

RRD [226] 84.30 slow

RoI-Trans. [48] 86.20 9fps

R3Det [61] 89.14 6fps

SAFDet
(proposed)

89.38 11fps
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Conclusions and Future Works

7.1 Conclusions

The general objective of this thesis is to develop accuracy-efficiency balanced techniques

for Convolutional Neural Network (CNN) applications of RGB image. These include

various methodologies for classification, face detction and aerial object detection, as

presented in Chapters 4, 5 and 6 respectively. The main contributions of the thesis are

summarised in detail as follows.

i. In Chapter 4, the genetic algorithm (GA) is adopted to optimise the structure of

the CNNs, where the input channels are encoded by a binary string for remov-

ing the redundant features from the feature map. Firstly, two encoding methods

are proposed to enable the GA to evolve the structure of the model. Then, three

genetic operations are adopted, including selection, crossover and mutation. To

further reduce the computational cost during training, a pre-trained weight inher-

itance method is proposed, where the structure is fine-tuned on a pretrained base-

line. Experimental results indicate that the proposed model can reach competitive

classification accuracy, while requires significantly fewer parameters. Rather than

generating structures with a large searching space, the proposed method is built

based on predefined constraints, which has significantly reduced the computational

cost and is capable of generating a well performing structure under limited train-

ing generations. When tested on the CIFAR-10 dataset, the proposed model saves
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more than 90% of the parameters in comparison to the state-of-the-art models.

The comparable results from the ImageNet has validated that the proposed model

is robust in both the variance and the scale of the classification tasks.

ii. Chapter 5 presents a novel single shot face detector to tackle the problem of un-

constrained face detection, which improves the performance by optimising both

structure and loss function. To be concrete, an accuracy-computational cost bal-

anced feature fusion module as well as a novel training strategy are proposed. The

proposed feature fusion module is introduced to balance the computational cost

and the accuracy of the face detector. Dilated convolution has been combined with

the small-size-kernel convolution in the module, which marginally improves the

accuracy, especially on small objects. Furthermore, a training strategy named as

triple loss training has been proposed for Feature Pyramid Network (FPN) based

face detector. It takes the advantage of hierarchical loss from both forward and

backward paths during training. while within the evaluation, only feature maps

from the second level will be utilised, which improves the accuracy without affect-

ing the inference efficiency. Experimental results indicate that the proposed FFM

and the triple loss training strategy are effective for identifying hard faces. Taking

VGG-16 as the backbone, the proposed model achieves the state-of-the-art accu-

racy on the hard subset of the WIDER FACE validation dataset, when compared

with other VGG-16 based face detectors. By assigning a larger anchor size, the

performance can be further improved on the easy and medium subset. Without

bells and whistles, i.e. no augmentation methods applied to the input image, the

proposed method achieves comparable results on multiple common face detection

benchmarks when compared with other large-scale face detectors.

iii. Chapter 6 focuses on tackling the detection difficulty of low-resolution, noisy and

large aspect ratio on oriented aerial image detection. Two modules have been

proposed to optimise the performance of the commonly used two-stage detector.

First, RAFB is introduced to assist the HBB prediction on RPN, which predicts

the OBBs of objects with HBB simultaneously. However, as no anchors are re-
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quired on RAFB, the increase in computation cost is negligible. After that, CPM

is proposed to suppress the background information and enhance the foreground

information. The structure of CPM is similar to the attention module, but it is only

implemented as an auxiliary module and will be discarded during inference. By

adopting those two modules, the proposed model improves the mAP by about 3%

without bringing any additional computational cost on inference. When compared

with the state-of-the-art detectors, the proposed method achieves comparable re-

sults on the challenging DOTA and HRSC2016 datasets, without impeding its high

efficiency.

7.2 Future Works

Followed by the results and conclusions highlighted in this thesis, the potential direc-

tions for future research are summarised as follows.

1. For the CNN channel selection method proposed in Chapter 4:

(1). At the current stage, the proposed approach is only validated on CNN. In the

future, it can be evaluated using other popular deep learning networks, such as

RNN and LSTM.

(2). The proposed approach improves the performance by optimising the CNN struc-

ture, which is a global optimisation strategy, while local optimisation methods,

which improve the performance of CNN by optimising the layers in CNN, have

also achieved remarkable results. This inspires the future work to explore the

possibility of combining the global optimisation methods with local optimisa-

tion methods.

(3). Existing methods initialise genotype string by a B(0.5), but it is not optimal

as half of the channels are discarded in the initial generation. The future work

may also investigate into the initialisation method to reduce the total evolving

iterations.

(4). Recent NAS methods search the architectures via the gradient during training,

which can further reduce the training cost, but the hyperparameter setting is
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still complex. Therefore, the future work could find an approach to reduce the

hyperparameters with machine learning algorithm.

(5). Existing works search architectures based on supervised learning. However, for

some of the classification tasks, the sample size is small. Searching architectures

using few-shot learning or unsupervised learning is still a challenging task.

2. For the single shot face detector proposed in Chapter 5:

(1). Since the performance of the proposed network relies heavily on the scales of

anchor setting, the future work could study on the removal of anchor prior, i.e.

anchor free.

(2). At the current stage, the proposed approach is constrained by the batch size. It

is essential to propose a low-batch-size-trained (batchsize < 16) detector whose

performance is still comparable with models trained by large batch size.

(3). Experimental results indicates that combining Three-Dimensional (3D) infor-

mation with Two-Dimensional (2D) information significantly improves perfor-

mance on accuracy. In the future, face detection may be conducted via both

2D and 3D for improving the detection accuracy.

3. For the SAFDet proposed in Chapter 6:

(1). Existing anchor-free matching schemes is originally designed for HBB regres-

sion, which can not well address the OBB regression challenges. This encourages

the development of a new anchor-free matching scheme for OBB matching.

(2). Existing anchor-based matching schemes match ground truths to anchors via

IoU threshold. However, this value is always low for OBB matching, causing a

higher possibility of mismatching on positive proposals. A rotate IoU matching

method is required especially for the OBB in the future work.

4. Future works for general object detection

(1). Current CNN detectors still consist of lots of post-processing steps, such as de-

coding and non maximum suppression (NMS), which requires additional manual
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work to adjust those hyperparameters. These post-processing steps should be

simplified in the future work.

(2). An object is presented by a bounding box, but it is inappropriate if part of the

object is blocked. An alternative method could be inferring an object based on

”smaller” segments, such as eyes, nose, ears for face detection.

(3). The cost of bbox labelling is tremendous, and more studies on applying few-shot

learning or unsupervised learning to object detection are needed.

(4). There are plenty of publicly available datasets about 3D object detection, which

enables further investigation into 3D object detection.

(5). Most foreground objects take the minority area in images, while the entire im-

ages are convolved by multiple convolution layers during feature extraction. The

computational cost can be expected to be reduced by removing the background

patches at a early stage of CNN.
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