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Abstract
A figure of 33,000 search and rescue (SAR) incidents were responded to by the UK’s HM Coastguard in 2020, and over 1322 
rescue missions were conducted by SAR helicopters during that year. Combined with Unmanned Aerial Vehicles (UAVs), 
artificial intelligence, and computer vision, SAR operations can be revolutionized through enabling rescuers to expand ground 
coverage with improved detection accuracy whilst reducing costs and personal injury risks. However, detecting small objects 
is one of the significant challenges associated with using computer vision on UAVs. Several approaches have been proposed 
for improving small object detection, including data augmentation techniques like replication and variation of image sizes, 
but their suitability for SAR application characteristics remains questionable. To address these issues, this paper evaluates 
four float detection algorithms against the baseline and augmented datasets to improve float detection for maritime SAR. 
Results demonstrated that YOLOv8 and YOLOv5 outperformed the others in which F1 scores ranged from 82.9 to 95.3%, 
with an enhancement range of 0.1–29.2%. These models were both of low complexity and capable of real-time response.

Keywords Remote sensing · Maritime SAR · Data augmentation · Float detection

Introduction

In 2020, the UK’s HM Coastguard responded to 33,000 inci-
dents for search and rescue (SAR) missions, conducting over 
1322 SAR helicopter missions between April and September 
(Maritime and coastguard agency. GOV.UK, 2022; Bullock, 
2021). The SAR helicopters completed 1226 rescues and 

232 assistance missions in the year ending March 2021, with 
46% being rescues or recovery missions (Alemohammad 
et al., 2020). In the US, 19,951 SAR missions were con-
ducted by the Coast Guard in 2017, resulting in 618 lives lost 
(Baetens et al., 2019). A total of 16,573 cases of SAR saved 
3417 lives in one year (Baetens et al., 2019). Finding miss-
ing people and items is one of these operations’ most chal-
lenging and costly aspects. Hence, UAVs have been used to 
aid SAR missions. Helicopters and drones now use an array 
of tools, including cameras, reflectors, transponders, track-
ing systems, and detectors for mobile phones. SAR opera-
tions are also revolutionized by using artificial intelligence 
and computer vision to process images captured by UAVs.

These technologies enable rescuers to cover more ground 
in less time with greater accuracy, enhancing the chances of 
locating missing individuals and items. Moreover, deploying 
these tools minimizes the risk of human injury in challeng-
ing terrains or hazardous environments. A drone or other 
unmanned vehicle allows rescuers to cover vast areas with-
out risking their lives. Ongoing technological advancements 
continually improve these tools, offering exciting possibili-
ties for saving more lives and reducing the costs associated 
with search and rescue missions.
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Utilizing computer vision on unmanned vehicles poses 
challenges, specifically in small object detection on the 
surface area, defined as regions with dimensions ≤ 32 by 
32 pixels (Lin et al., 2014). While current state-of-the-art 
models excel in detecting medium and large-sized objects, 
detecting small objects remains challenging due to lim-
ited information. This makes it hard to distinguish from 
the background or other categories. Deep architecture, 
with sequential pooling layers, attenuates small areas to 
reduce noise-induced distortions. However, this may lead 
to imprecise object locations, especially when the object 
appears in multiple places. Precision requirements for 
small object detection are essential.

Several approaches aim to improve small object detec-
tion. One method, presented in Kisantal et  al. (2019), 
enhances data by copying and pasting small objects mul-
tiple times. This increases the number of images in the 
dataset with small objects, enhancing alignment between 
predicted anchors and small ground-truth objects. The 
approach reports a relative improvement of over 7% dur-
ing the object detection phase. This technique effectively 
addresses the challenge of detecting small objects.

This paper presents a modified network training 
approach involving images with differing scales and com-
paring a ground truth image with objects within a specified 
range (Singh & Davis, 2018). By addressing the challenge 
of learning objects of radically different scales together, 
this technique significantly reduces computational com-
plexity (Singh et al., 2018). Therefore, this paper improves 
the performance of float detection using the suggested data 
augmentation algorithm for maritime SAR. In the case of 
minority classes, the data augmentation produces artificial 
samples that assist in detecting them. For this work, we 
utilized four float detection algorithms. Finally, we evalu-
ated and compared the performance of aerial datasets’ 
baseline version with augmented ones. We used Efficient-
Det, Faster R-CNN, YOLOv5, and YOLOv8 algorithms. 
Faster R-CNN is a widely used algorithm; meanwhile, Effi-
cientDet excels in accuracy and efficiency, and recent stud-
ies highlight the real-time high detection accuracy poten-
tial of YOLOv5 and YOLOv8 algorithms. This evaluation 
compares the baseline dataset and augmented data, dem-
onstrating the algorithm’s effectiveness. Furthermore, we 
assessed the effectiveness of our approach through com-
parisons with two benchmark studies.

This paper is organized as follows: Sect. 2 examines 
the existing studies on similar applications and existing 
datasets. Section 3 describes the architecture, data aug-
mentation and remote detection algorithms, dataset and 
evaluation metrics. Section 4 discusses the results. Finally, 
Sect. 5 summarizes the findings of the study and addresses 
the future work.

Related Works

Datasets containing aerial images are primarily considered 
in this application. These aerial images are usually acquired 
using UAVs equipped with standard cameras or satellite 
imaging systems. Due to these varied capture methods, 
there is a significant difference in the spatial resolution of 
the collected images. Satellite cameras can have resolutions 
as low as 30 m per pixel, while drone-mounted cameras typi-
cally yield 1–10 cm per pixel (Burke et al., 2019). It may 
be challenging to train machine learning models on aerial 
image datasets due to the discrepancy in spatial resolution. 
Some classes may have fewer high-resolution images avail-
able than others, which may cause class imbalances. Con-
sequently, some classes can have very few instances for the 
training process. The model generated from such a dataset 
will have a reduced ability to learn from underrepresented 
classes, resulting in reduced accuracy and performance 
(Krawczyk, 2016; Das et al., 2022).

Many satellite datasets have a low spatial resolution, 
which is typically used to classify scenes (e.g. industrial, 
residential, river, forest, crop, etc.) such as Eurostat (Hel-
ber et al., 2019, 2018) BigEarthNet (Sumbul et al., 2019). 
Moreover, the SARSAT system has been used to detect 
emergency beacons on individuals, vessels, and aircraft 
(Comps, 1984). Another approach to SAR involves collect-
ing and analysing environmental and oceanographic data 
(Futch & Allen, 2019). Furthermore, some studies have 
used datasets of past SAR incidents to analyse the spatial 
distribution and frequency of such incidents called SISAR 
(Stoddard & Pelot, 2020). SISAR data covers all of Canada’s 
coastal SAR areas. There are approximately 36,000 incidents 
in the dataset, each of which has a georeferenced position 
associated with it. Visualizing the spatial distribution of 
incidents can be accomplished by plotting the location of 
incidents on the analysis map. Two large datasets are avail-
able for detecting objects in satellite photographs: xView 
(Lam et al., 2018) and DOTA (Xia et al., 2018), which have 
spatial resolutions of 20–40 cm. Both cases involve pas-
senger cars as the smallest marked objects. XView includes 
more than one million instances of artificial objects from 
60 categories, all taken from WorldView-3 satellites at a 
resolution of 0.3 m per pixel. On the other hand, the DOTA 
dataset contains 188,282 objects that are grouped into 15 
categories. The photos have a wide variety of spatial resolu-
tions, with bounding boxes that are horizontal and oriented. 
Furthermore, the Ship Detection Challenge Dataset is an 
application-specific dataset derived from satellite images 
(Helber et al., 2019). Airbus developed the system to help 
SAR services locate missing ships from an aerial perspec-
tive. The dataset consists of 131 thousand instances of ships 
annotated on satellite images with a resolution of 1.5 ms.
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On the other hand, Medium spatial resolution data 
(1–10 m) captured by UAVs are used for more challeng-
ing semantic segmentation tasks. For example, the Land-
CoverNet (Alemohammad et al., 2020) contains seven land 
classifications (e.g., water, snow, woody), LandCover.ai 
(Boguszewski et al., 2021) with three types of land alloca-
tion (building, woodland, and water), and 95-Cloud ALCD 
Reference Cloud Masks aimed at semantic segmentation of 
clouds (Mohajerani & Saeedi, 2019; Mohajerani et al., 2018; 
Mohajerani & Saeedi, 2020; Baetens et al., 2019).

In addition to the higher spatial resolution of drone data-
sets, the primary difference between them is the variation in 
camera orientation, i.e. the pitch angle of the camera. Images 
from satellites are always oriented vertically in datasets 
containing satellite images. The most closely related aerial 
datasets to the SAR, which are publicly available, are listed 
as shown in Table 1. Most of the data acquired by drones is 
devoted to detecting and tracking people and cars. A dataset 
containing 10,209 images and 263 video clips containing 
almost 180 thousand frames is called Vis-Drone (Zhu et al., 
2020). More than 235,000 objects are identified in this data-
set, primarily consisting of urban images in which most of 
which are taken vertically and with low-angle, oblique cam-
era orientation. The objects are grouped into ten classes (e.g. 
pedestrian, car, bus, truck, bicycle). Furthermore, the Stan-
ford Drone Dataset (Robicquet et al., 2016) consists of over 
920 thousand video frames with 185281 labelled objects 
categorized into six classes (pedestrian, bicycle, skateboard, 
cart, car, bus). This tool was developed primarily for track-
ing and trajectory forecasting in urban environments. Addi-
tionally, drone datasets are frequently produced for a specific 
purpose (Bonet et al., 2020; Gasienica-Jozkowy et al., 2021; 
Jiang & Zhang, 2020; Liu et al., 2020; Ren et al., 2015). 
Because the paper only concerns SAR missing persons, it 

focuses on utilizing the AFO (Ga̧sienica-Józkowy et al., 
2021).

As previously mentioned, training machine learning mod-
els on aerial image datasets can be challenging due to spa-
tial resolution discrepancies. Some classes may have fewer 
high-resolution images available than others, which may 
cause class imbalances, and some classes may have very 
few instances for training. Therefore, a data augmentation 
method is discussed in this study to address this issue effec-
tively by generating synthetic images with desirable char-
acteristics, such as rotation, flip, noise, contrast, and bright-
ness, for underrepresented classes. The augmented images 
can increase the instances of these classes in the dataset, 
improving the balancing of classes and providing the model 
with more training data. The model may be trained more 
robustly and correctly on aerial image datasets by selectively 
applying data augmentation to under-represented classes 
while keeping instances of well-represented classes.

Methodology

Architecture

Our proposed processing pipeline (see, Fig. 1) consists of 
four key components, such as data storage, data augmenta-
tion, float detection algorithms, and performance evaluation. 
The flow begins with data management which includes data 
acquisition, data pre-processing, and data storing. This func-
tionality ensures that the data used in the processing is suit-
able for the purpose, i.e., detecting the floating object. Next, 
the existing data is enhanced by applying data augmentation 
techniques, which essentially produce artificial samples of 
the minority class. Careful operation is required in this step 

Table 1  The most related aerial 
datasets to SAR

Name Classes Size Application

AFO (Ga̧sienica-Józkowy et al., 2021) 6 3647 images Maritime SAR
(i.e., humans, boats, kayak, etc.)

Vis-Drone (Zhu et al., 2020) 10 10,209 images Urban detection
(i.e., pedestrian, car, bus, etc.)

Stanford Drone (Robicquet et al., 2016) 6 920 videos Mobility prediction
(i.e., pedestrian, bicycle, etc.)

Fig. 1  Processing flow for mari-
time SAR detection
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as we need to minimize the generation of majority classes’ 
instances. Following this method, four algorithms of float-
ing object detection are then applied. These algorithms 
are EfficientDet, Faster-RCNN, YOLOv5, and YOLOv8, 
which all rely on a certain construction from a neural net-
work architecture. An example of such an architecture is 
given for YOLOv8 in Fig. 2 where multi-layered functional 
building blocks interact to carry out object detection tasks. 
Finally, several performance metrics, e.g., Recall, Precision, 
F1 score, mAP50, and mAP50-90, are used to evaluate the 
performance of the proposed algorithms. The performance 
metrics provide unique insights into the performance of the 
system. This step compares the developed model and obtains 
the processing flow for future use.

Samples Augmentation Process

The augmentation of the data plays a crucial role in the 
proposed architecture, as it contributes to the expansion of 
the dataset and improves the model’s ability to learn from 
diverse data sets. A data augmentation technique can be 
used to address the issue of class imbalance by generating 
synthetic samples of minority classes and providing more 
training data for algorithms for detecting minority classes. 
This can improve detection performance, particularly for 
underrepresented classes of floating objects.

The augmentation procedure applies image processing 
to targeted instances to synthesize new ones. This engineer-
ing process is commonly used in computer vision-related 

learning processes as such a procedure can generate new 
images with desired characteristics, e.g., rotated, skewed, 
flipped, or distorted. According to work in Shorten and Kho-
shgoftaar (2019), the classifier developed from the combina-
tion of good and noised input has less chance of overfitting, 
making the model more robust. However, such a procedure 
must be designed carefully as it can reduce the model’s per-
formance metric. We apply pixel and spatial-level engineer-
ing, such as rotation, flip, noise, contrast, and brightness, to 
image-annotation pairs, producing variants of the instance.

This process follows a top-down approach, starting from 
determining the new dataset’s final imbalance ratio � (Buda 
et al., 2018) to identify target instances, as shown in Fig. 3 
and adapted from Kurniawan et al. (2023). The selection 
process for object detection problem datasets is not as 
straightforward as the classification ones, where one image 
file is paired exactly with one label file. The first step can be 
performed by calculating the ratio of the highest and lowest 
number of class instances. This fraction marks the original � . 
Next, a recap of class distributions found in each annotated 
image is built, from which augmentation priority is decided. 
The prioritization is done by sorting these files based on the 
� in descending order and picking them as candidates. This 
sorting process uses the merge sort technique with a runtime 
complexity of Θ(n log n) , where n is the number of files in 
the dataset. Any images with the highest number of under-
represented classes and, at the same time, having the low-
est possible number of most-represented classes should be 
prioritized. Such a procedure is done to avoid increasing the 

Fig. 2  YOLOv8 architecture
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number of most-represented classes too much. It also aims 
at achieving the final � efficiently. Finally, the engineering 
process is executed for the targeted images and their annota-
tions. The image data are modified using the Albumentation 
library (Buslaev et al., 2020). The runtime complexity for 
such a process is Θ(m) , where m is the number of candidate 
files. The Θ notation refers to the asymptotic value, which 
indicates a tight bound for a runtime complexity (Singh 
et al., 2018).

Remote Float Detection

An evaluation of four different object detection algorithms in 
an image was conducted in this study. We used EfficientDet, 
Faster R-CNN, YOLOv5, and YOLOv8 algorithms. Faster 
R-CNN is a popular and widely used algorithm in object 
detection, while EfficientDet is known for its high accuracy 
and efficiency. Several recent studies have demonstrated the 
potential of YOLOv5 and YOLOv8 algorithms. Below is a 
brief description of each algorithm:

EfficientDet (Tan et al., 2020) utilizes a compound scal-
ing method is employed to achieve high accuracy as well as 
efficiency. Bidirectional feature pyramid networks (BiFPNs) 
fuse features across scales to improve accuracy and robust-
ness. Aside from that, it has been demonstrated that it is 
more accurate and faster than other object detection models 
(Chen et al., 2021).

Faster R-CNN (Ren et al., 2015) utilizes a two-stage 
detection process. A Region Proposal Network (RPN) gener-
ates object proposals, while a classification network is used 
to classify the proposals. The RPN generates a set of object 
proposals by analyzing the input image’s spatial positions 
and scales. Using each proposal as input, the classification 
network produces a class label and bounding box coordi-
nates for the objects in the proposal.

You Only Look Once (YOLO) (Redmon et al., 2016) uses 
a neural network to predict bounding boxes for each object 
in an input image while simultaneously predicting class 
probabilities for each object. Two versions of YOLO are 
used in this study, YOLOv5 and YOLOv8, each with its own 
strengths and weaknesses. The YOLOv5 version is simpler, 
while the YOLOv8 version is more accurate and faster. The 
accuracy is expected to be enhanced by 3.2−9.3% depending 
on the dataset size (AugmentedStartups, 2023).

Dataset

As previously mentioned, the AFO (Aerial dataset of Float-
ing Objects) (Ga̧sienica-Józkowy et al., 2021) is a publicly 
available dataset containing images of floating objects. The 
dataset can be useful for developing an object detector sys-
tem for beach lifeguards or evacuation purposes. There are 
six classes in this dataset, each of which represents possible 
objects found on the beach, such as human (class id 1), wind/
sup-board (2), boat (3), buoy (4), sailboat (5), and kayak (6). 
The default training set configuration provided by its author 
contains more than 6000 class instances and is dominated by 
the human class. In terms of the imbalance ratio � , defined in 
(Buda et al., 2018), this dataset has the 1∕� ≤ 0.1.

After the augmentation process, the new dataset has bet-
ter distribution across classes, thus reducing the imbalance 
ratio. A visual representation of the dataset through sam-
ples in Fig. 4 provides insights into images with different 
compression percentages. Although the size of the data-
set may be reduced by using compression techniques, this 
information is essential for detection tasks. The key features 
and characteristics of small objects can be preserved when 
compression methods are carefully selected, enhancing or 
maintaining the detection accuracy of small objects.

Evaluation Metrics

Several performance metrics are used to evaluate the meth-
odologies used, including; Precision, Recall, F1score, 
mAP50 and mAP50-90, as follows. Precision refers to the 
proportion of objects detected by the correct model, e.g., the 
model’s ability to detect accurately detect vessels, buoys, or 
life rafts relevant to SAR missions. This metric is defined as

where TP and FP are the rates of True Positives and False 
Positives, respectively. Recall measures the model’s capabil-
ity to identify all relevant objects within the SAR image that 
may require search and rescue efforts, that is, the model’s 
ability to detect all actual objects within the SAR image. 
This metric is denoted by

Precision =
TP

TP + FP
,

Fig. 3  Flowchart of the augmentation process
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where FN describes the number of False Negatives. An F1 
score measures the model’s performance in detecting objects 
relevant to the SAR mission in aerial images by combining 
Precision and Recall. This score is given by

The final two metrics, mAP50 and mAP50-95, evaluate how 
successful the model is at identifying objects relevant to 
SAR missions in aerial images, even when they are partly 
obscured or overlapped. A model’s ability to detect relevant 
objects is assessed using Intersection over Union (IoU) 
thresholds. This metric is defined as

A comparison of all the above-mentioned metrics obtained 
from the training process utilising baseline and augmented 
datasets is performed. This step is applied to measure the 
enhancement level made by these datasets.

Results and Discussion

As seen in Fig.  5, the sample augmentation algorithm 
maintains the number of the two most-represented classes’ 
instances while increasing the least-represented ones. The 
kayak instances’ have increased significantly by two mag-
nitudes. This is obtained by setting the final 1∕� to 0.5. This 

Recall =
TP

TP + FN
,

F1 = 2 ×
Precision × Recall

Precision + Recall
.

mAP =
1

N

N
∑

i=1

AP
i
.

indicates the sample augmentation process has been applied 
carefully to prevent an excessive increase in instances for 
well-represented classes. A careful balance of class instances 
through augmentation is necessary to ensure that the dataset 
continues to reflect the real-world distribution of objects. 
Taking into account the class imbalance issue in aerial detec-
tion. Having fewer instances of some classes leads to biased 
model performance and decreased accuracy for underrepre-
sented classes. It is intended that the algorithm will provide 
the model with a wider variety of examples of the least-
represented classes, which will enhance its ability to detect 
and classify those classes in real-life situations.

To evaluate performance for baselines and augmented 
datasets, we have used EfficientDet, Faster C-RNN, 
YOLOv5 and YOLOv8, as shown in Table 2. We provided a 

Fig. 4  Samples of the dataset

Fig. 5  Comparison of two dataset versions’ class distribution. The 
y-axis is in the log scale
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comprehensive analysis of the results by showing the results 
for each class to depict the enhancement of the imbalanced 
issue in comparison between the baseline and augmented 
datasets. Table 3 presents a mapping of the names of classes.

The performance is evaluated using Recall, Precision, 
F1score, mAP50, and mAP50-90. It can be demonstrated 
that YOLOv8 and YOLOv5 perform better than Efficient-
Det and Faster C-RNN. This may be due to YOLO’s han-
dling of small objects, which is crucial in float detection for 

maritime SAR. As previously mentioned, using a feature 
pyramid network, YOLO detects small objects at multiple 
scales. YOLO also employs anchor boxes to predict object 
sizes and locations, allowing it to handle objects of varying 
sizes better. Faster C-RNN and EfficientDet also use anchor 
boxes. However, their effectiveness in handling small objects 
may not be as great as that of YOLO.

Generally, both YOLO algorithms have outperformed 
each other for different classes. Several factors contribute 
to this, including the dataset’s nature and the objects’ char-
acteristics within different classes. In classes with objects 
of similar sizes and shapes, YOLOv5 may perform better 
than YOLOv8, while in classes with more complex and 
diverse objects, YOLOv8 may perform better than YOLOv5. 
Compared to the Recall for classes 0, 2, 3 and 5, YOLOv5 
outperformed them all. In contrast, YOLOv8 successfully 
detected objects in classes 4 and 1 after augmentation. 
This shows the ability of both algorithms to detect all rel-
evant objects within each class. Moreover, the Precision 
of YOLOv5 and YOLOv8 has varied from 90.5 to 99.1 

Table 2  Performance 
evaluation of the Results using 
EfficientDet, Faster C-RNN, 
Yolov5 and Yolov8 for baseline 
and augmented data

Algorithm Class Recall Precision F1 mAP50 mAP50-90

B A B A B A B A B A

EfficientDet A 7.2 28.4 73.8 83 13.12 42.32 4.7 30.2 1.5 12.4
0 3.1 23.3 12.6 53.5 4.95 32.46 1.9 27.5 3.9 7.24
1 0 0 100 100 0 0 0 2.10 0 3.38
2 0 0 100 70.6 0 74.56 4 72.8 1.5 30.6
3 0 0 100 100 0 0 0 4 0 1.3
4 0 0 100 100 0 0 0 2.3 0 5
5 43.40 68.3 30.40 73.8 35.76 70.94 26.3 72.2 8.6 35.7

Faster C-RNN A 21.6 33.6 85.6 90.5 36.5 52.1 25.6 53.3 11 27.2
0 37.8 27.7 59.1 66.2 42.5 31.4 45.3 35.3 13.5 9.5
1 0 0 100 100 0 0 0 0.51 0 0.1
2 0 85.4 71.6 100 0 91.8 7.46 85.9 2.3 38.8
3 0 0 100 100 0 0 1.1 3.85 0.32 0.8
4 0 0 100 100 0 0 6.3 99.5 2.58 59.7
5 91.8 88.3 76.8 83.2 83.4 82.5 93.6 94.8 47.5 45.3

YOLOv5 A 95.4 96.2 93.9 94.5 94.64 95.3 95.3 95.8 57.1 57.2
0 89.1 90.1 94.1 93.9 91.53 91.9 92.7 92.7 41.8 41.2
1 0 00 0 0 0 0 0 0 0 0
2 100 100 90.5 92.8 95.01 96.2 99.5 99.5 79.4 79.5
3 92.5 94.6 92.1 92.3 92.29 93.4 89.4 91.6 33.2 33.1
4 0 0 0 0 0 0 0 0 0 0
5 100 100 98.9 99.1 99.44 99.5 99.5 99.5 73.8 75.1

YOLOv8 A 75.3 92 92.4 89 82.9 90.2 78 92 46.4 57.7
0 84.1 86.6 91.9 84.5 87.8 85.3 90.2 87.4 38 37.7
1 0 92.8 100 96.5 0 87.1 0 93.6 0 52.3
2 100 96.3 87 97.5 93 96.8 97.1 95.4 64.1 80.1
3 68.2 62.8 90.2 86.5 77.6 87.8 83.3 76.4 29.7 22.9
4 100 100 85.9 70.7 92.4 82.2 98 99.5 75.6 79.6
5 99.5 99.5 99.5 98.1 99.5 99.2 99.5 99.5 71.2 73.8

Table 3  Mapping of the class 
names with the notations in the 
results

Notation Class name

A All
0 Human
1 Wind/Sup-board
2 Boat
3 Buoy
4 Sailboat
5 Kayak
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and 70.7 to 100, respectively, for all classes. This meas-
ures the model’s accuracy by calculating the ratio between 
correctly detected objects and the total number of objects 
detected. However, for both baselines and augmented data-
sets using YOLOv5 and YOLOv8, the F1 score is 94.64%, 
95.3%, 82.9% and 90.2%. Furthermore, the performance has 
been evaluated among a confidence threshold of 50% and 
an average between 50% and 90% through using mAP50 
and mAP50-90. Both algorithms have relatively the same 
results in the mAP50-90 YOLOv8 outperformed by 0.5%. 
On the other hand, for mAP80, YOLOv5 has a higher value 
of 10.7% for all classes.

Depending on the performance metrics, there is a range 
of enhancement between the two datasets of 0.1% to 29.2%, 
indicating the efficacy of the augmentation techniques 
applied as shown in Fig. 6. The results of this study dem-
onstrate the importance of enhancing datasets to improve 
the performance of computer vision models. A dataset 
augmentation is expected to yield increased performance 
improvements as the model complexity and diversity of data 
increase. YOLOv8 and YOLOv5 are designed to capture a 
wide range of objects, backgrounds, and lighting conditions 
and require large and diverse datasets for high accuracy of 
training. Adding noise or rotating images to the dataset can 
increase the diversity of the dataset, allowing the model to 
learn from more varied and representative examples. The 
generalization and performance of the model can there-
fore be improved when applied to real-world data, thereby 
improving its generalization.

Moreover, both YOLO algorithms can perform real-
time detection due to their lower complexity than their 
counterparts. The complexity of YOLOv8 and YOLOv5 
is O(n2 ) and O(n), respectively, in which n is the number 

of bounding boxes generated per image. This is due to 
YOLOv8’s use of sparse attention, an approach to object 
detection that reduces the number of computations 
required. Rather than analysing the entire image simul-
taneously, sparse attention focuses on only a few spatial 
locations. Consequently, YOLOv5 and YOLOv8 can sup-
port real-time detection. This can be helpful for areas 
without internet access, but it will not affect the ability to 
report the presence of any human beings in the area.

Two studies, (Zhu et al., 2023; Wang et al., 2022), have 
utilized the same dataset. Yolov5-Augmented leads with 
the highest MP50 value of 95.8%, indicating superior 
performance in small object detection as shown in Fig. 7. 
Following closely is Yolov8-Augmented with an MP50 
value of 92%, demonstrating effective capabilities in SAR 
scenarios. Other notable performers include Yolov5 (Wang 
et al., 2022; Zhu et al., 2023) with an MP50 of 84.5%, and 
Yolov7+C2f+SimAM (Wang et al., 2022, 2023) with an 
MP50 of 83.12%. These evaluations highlight the strengths 
of specific models in addressing the challenge of detecting 
small floating objects, with Yolov5-Augmented leading 
the pack.

Figure 8 indicates that three classes, namely "Human," 
"Wind/sup," and "Kayak," exhibit substantial performance 
improvements in the augmented models compared to the 
baseline Yolov5 (Zhu et al., 2023). Specifically, "Human" 
detection increases from 83.2 to 93.9%, "Wind/sup" goes 
from 97.7 to 96.5%, and "Kayak" sees a slight improve-
ment from 99.5 to 99.1%. However, it’s noteworthy that 
"Sailboat" detection in the augmented models drops sig-
nificantly from 91.6 to 70.7%. These variations highlight 
the nuanced impact of augmentation on different object 
classes, emphasizing the need for targeted evaluation and 
improvement strategies.

Fig. 6  Enhancement percentage 
between baseline and aug-
mented data for the detection of 
floating objects
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Conclusion and Future Work

This paper has proposed a data augmentation technique 
through enhancement procedures, which can reduce over-
fitting by combining good and noised inputs, but they 
should be used cautiously to avoid reducing performance. 
The procedures have included utilizing pixel and spa-
tial-level design to image-annotation pairs, emphasizing 

images with under-represented classes while preventing 
imbalanced data, with the ultimate objective of efficiently 
achieving the desired dataset characteristics. Four algo-
rithms were evaluated using the maritime SAR dataset 
with imbalanced issues using Recall, Precision, F1score, 
mAP50, and mAP50-90. A comparison of YOLOv8 and 
YOLOv5 with EfficientDet and Faster C-RNN has shown 
that YOLOv8 and YOLOv5 are more efficient across dif-
ferent performance metrics. For both baselines and aug-
mented datasets, the F1 scores of YOLOv8 and YOLOv5 
ranged from 82.9 to 95.3%, with an enhancement range of 
0.1–29.2%. These models were both low-complexity and 
capable of real-time response.

This work can be extended to include the temporal con-
text in the data augmentation (Kim et al., 2020). The models 
may be able to more accurately depict dynamic changes in 
the marine environment over time by expanding the current 
pixel and spatial-level designs to include information from 
successive frames. This temporal enhancement may be sig-
nificant in situations where the evolution of characteristics 
is important, like ship motions.

A second future work is to create an adaptive augmenta-
tion technique, which dynamically modifies the degree of 
enhancement depending on the properties of incoming data 
(Wang et al., 2021). This should be used to autonomously 

Fig. 7  Performance evaluation with the related studies using mAP50 metric

Fig. 8  Performance evaluation with the related studies using preci-
sion metric
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identify the best augmentation parameters for various marine 
situations by utilizing machine learning or reinforcement 
learning techniques. This tackles the problem of striking a 
balance between potential overfitting hazards and perfor-
mance improvements.

Supplementary Information

The dataset used in this study can be accessed from 
(Ga̧sienica-Józkowy et al., 2021).
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