2,157 research outputs found

    Task Allocation among Connected Devices: Requirements, Approaches and Challenges

    Get PDF
    Task allocation (TA) is essential when deploying application tasks to systems of connected devices with dissimilar and time-varying characteristics. The challenge of an efficient TA is to assign the tasks to the best devices, according to the context and task requirements. The main purpose of this paper is to study the different connotations of the concept of TA efficiency, and the key factors that most impact on it, so that relevant design guidelines can be defined. The paper first analyzes the domains of connected devices where TA has an important role, which brings to this classification: Internet of Things (IoT), Sensor and Actuator Networks (SAN), Multi-Robot Systems (MRS), Mobile Crowdsensing (MCS), and Unmanned Aerial Vehicles (UAV). The paper then demonstrates that the impact of the key factors on the domains actually affects the design choices of the state-of-the-art TA solutions. It results that resource management has most significantly driven the design of TA algorithms in all domains, especially IoT and SAN. The fulfillment of coverage requirements is important for the definition of TA solutions in MCS and UAV. Quality of Information requirements are mostly included in MCS TA strategies, similar to the design of appropriate incentives. The paper also discusses the issues that need to be addressed by future research activities, i.e.: allowing interoperability of platforms in the implementation of TA functionalities; introducing appropriate trust evaluation algorithms; extending the list of tasks performed by objects; designing TA strategies where network service providers have a role in TA functionalities’ provisioning

    Artificial Intelligence for Small Satellites Mission Autonomy

    Get PDF
    Space mission engineering has always been recognized as a very challenging and innovative branch of engineering: since the beginning of the space race, numerous milestones, key successes and failures, improvements, and connections with other engineering domains have been reached. Despite its relative young age, space engineering discipline has not gone through homogeneous times: alternation of leading nations, shifts in public and private interests, allocations of resources to different domains and goals are all examples of an intrinsic dynamism that characterized this discipline. The dynamism is even more striking in the last two decades, in which several factors contributed to the fervour of this period. Two of the most important ones were certainly the increased presence and push of the commercial and private sector and the overall intent of reducing the size of the spacecraft while maintaining comparable level of performances. A key example of the second driver is the introduction, in 1999, of a new category of space systems called CubeSats. Envisioned and designed to ease the access to space for universities, by standardizing the development of the spacecraft and by ensuring high probabilities of acceptance as piggyback customers in launches, the standard was quickly adopted not only by universities, but also by agencies and private companies. CubeSats turned out to be a disruptive innovation, and the space mission ecosystem was deeply changed by this. New mission concepts and architectures are being developed: CubeSats are now considered as secondary payloads of bigger missions, constellations are being deployed in Low Earth Orbit to perform observation missions to a performance level considered to be only achievable by traditional, fully-sized spacecraft. CubeSats, and more in general the small satellites technology, had to overcome important challenges in the last few years that were constraining and reducing the diffusion and adoption potential of smaller spacecraft for scientific and technology demonstration missions. Among these challenges were: the miniaturization of propulsion technologies, to enable concepts such as Rendezvous and Docking, or interplanetary missions; the improvement of telecommunication state of the art for small satellites, to enable the downlink to Earth of all the data acquired during the mission; and the miniaturization of scientific instruments, to be able to exploit CubeSats in more meaningful, scientific, ways. With the size reduction and with the consolidation of the technology, many aspects of a space mission are reduced in consequence: among these, costs, development and launch times can be cited. An important aspect that has not been demonstrated to scale accordingly is operations: even for small satellite missions, human operators and performant ground control centres are needed. In addition, with the possibility of having constellations or interplanetary distributed missions, a redesign of how operations are management is required, to cope with the innovation in space mission architectures. The present work has been carried out to address the issue of operations for small satellite missions. The thesis presents a research, carried out in several institutions (Politecnico di Torino, MIT, NASA JPL), aimed at improving the autonomy level of space missions, and in particular of small satellites. The key technology exploited in the research is Artificial Intelligence, a computer science branch that has gained extreme interest in research disciplines such as medicine, security, image recognition and language processing, and is currently making its way in space engineering as well. The thesis focuses on three topics, and three related applications have been developed and are here presented: autonomous operations by means of event detection algorithms, intelligent failure detection on small satellite actuator systems, and decision-making support thanks to intelligent tradespace exploration during the preliminary design of space missions. The Artificial Intelligent technologies explored are: Machine Learning, and in particular Neural Networks; Knowledge-based Systems, and in particular Fuzzy Logics; Evolutionary Algorithms, and in particular Genetic Algorithms. The thesis covers the domain (small satellites), the technology (Artificial Intelligence), the focus (mission autonomy) and presents three case studies, that demonstrate the feasibility of employing Artificial Intelligence to enhance how missions are currently operated and designed

    Development of a GIS-based method for sensor network deployment and coverage optimization

    Get PDF
    Au cours des dernières années, les réseaux de capteurs ont été de plus en plus utilisés dans différents contextes d’application allant de la surveillance de l’environnement au suivi des objets en mouvement, au développement des villes intelligentes et aux systèmes de transport intelligent, etc. Un réseau de capteurs est généralement constitué de nombreux dispositifs sans fil déployés dans une région d'intérêt. Une question fondamentale dans un réseau de capteurs est l'optimisation de sa couverture spatiale. La complexité de l'environnement de détection avec la présence de divers obstacles empêche la couverture optimale de plusieurs zones. Par conséquent, la position du capteur affecte la façon dont une région est couverte ainsi que le coût de construction du réseau. Pour un déploiement efficace d'un réseau de capteurs, plusieurs algorithmes d'optimisation ont été développés et appliqués au cours des dernières années. La plupart de ces algorithmes reposent souvent sur des modèles de capteurs et de réseaux simplifiés. En outre, ils ne considèrent pas certaines informations spatiales de l'environnement comme les modèles numériques de terrain, les infrastructures construites humaines et la présence de divers obstacles dans le processus d'optimisation. L'objectif global de cette thèse est d'améliorer les processus de déploiement des capteurs en intégrant des informations et des connaissances géospatiales dans les algorithmes d'optimisation. Pour ce faire, trois objectifs spécifiques sont définis. Tout d'abord, un cadre conceptuel est développé pour l'intégration de l'information contextuelle dans les processus de déploiement des réseaux de capteurs. Ensuite, sur la base du cadre proposé, un algorithme d'optimisation sensible au contexte local est développé. L'approche élargie est un algorithme local générique pour le déploiement du capteur qui a la capacité de prendre en considération de l'information spatiale, temporelle et thématique dans différents contextes d'applications. Ensuite, l'analyse de l'évaluation de la précision et de la propagation d'erreurs est effectuée afin de déterminer l'impact de l'exactitude des informations contextuelles sur la méthode d'optimisation du réseau de capteurs proposée. Dans cette thèse, l'information contextuelle a été intégrée aux méthodes d'optimisation locales pour le déploiement de réseaux de capteurs. L'algorithme développé est basé sur le diagramme de Voronoï pour la modélisation et la représentation de la structure géométrique des réseaux de capteurs. Dans l'approche proposée, les capteurs change leur emplacement en fonction des informations contextuelles locales (l'environnement physique, les informations de réseau et les caractéristiques des capteurs) visant à améliorer la couverture du réseau. La méthode proposée est implémentée dans MATLAB et est testée avec plusieurs jeux de données obtenus à partir des bases de données spatiales de la ville de Québec. Les résultats obtenus à partir de différentes études de cas montrent l'efficacité de notre approche.In recent years, sensor networks have been increasingly used for different applications ranging from environmental monitoring, tracking of moving objects, development of smart cities and smart transportation system, etc. A sensor network usually consists of numerous wireless devices deployed in a region of interest. A fundamental issue in a sensor network is the optimization of its spatial coverage. The complexity of the sensing environment with the presence of diverse obstacles results in several uncovered areas. Consequently, sensor placement affects how well a region is covered by sensors as well as the cost for constructing the network. For efficient deployment of a sensor network, several optimization algorithms are developed and applied in recent years. Most of these algorithms often rely on oversimplified sensor and network models. In addition, they do not consider spatial environmental information such as terrain models, human built infrastructures, and the presence of diverse obstacles in the optimization process. The global objective of this thesis is to improve sensor deployment processes by integrating geospatial information and knowledge in optimization algorithms. To achieve this objective three specific objectives are defined. First, a conceptual framework is developed for the integration of contextual information in sensor network deployment processes. Then, a local context-aware optimization algorithm is developed based on the proposed framework. The extended approach is a generic local algorithm for sensor deployment, which accepts spatial, temporal, and thematic contextual information in different situations. Next, an accuracy assessment and error propagation analysis is conducted to determine the impact of the accuracy of contextual information on the proposed sensor network optimization method. In this thesis, the contextual information has been integrated in to the local optimization methods for sensor network deployment. The extended algorithm is developed based on point Voronoi diagram in order to represent geometrical structure of sensor networks. In the proposed approach sensors change their location based on local contextual information (physical environment, network information and sensor characteristics) aiming to enhance the network coverage. The proposed method is implemented in MATLAB and tested with several data sets obtained from Quebec City spatial database. Obtained results from different case studies show the effectiveness of our approach

    A Practical Guide to Multi-Objective Reinforcement Learning and Planning

    Get PDF
    Real-world decision-making tasks are generally complex, requiring trade-offs between multiple, often conflicting, objectives. Despite this, the majority of research in reinforcement learning and decision-theoretic planning either assumes only a single objective, or that multiple objectives can be adequately handled via a simple linear combination. Such approaches may oversimplify the underlying problem and hence produce suboptimal results. This paper serves as a guide to the application of multi-objective methods to difficult problems, and is aimed at researchers who are already familiar with single-objective reinforcement learning and planning methods who wish to adopt a multi-objective perspective on their research, as well as practitioners who encounter multi-objective decision problems in practice. It identifies the factors that may influence the nature of the desired solution, and illustrates by example how these influence the design of multi-objective decision-making systems for complex problems
    • …
    corecore