1,322 research outputs found

    In Vivo Evaluation of the Secure Opportunistic Schemes Middleware using a Delay Tolerant Social Network

    Full text link
    Over the past decade, online social networks (OSNs) such as Twitter and Facebook have thrived and experienced rapid growth to over 1 billion users. A major evolution would be to leverage the characteristics of OSNs to evaluate the effectiveness of the many routing schemes developed by the research community in real-world scenarios. In this paper, we showcase the Secure Opportunistic Schemes (SOS) middleware which allows different routing schemes to be easily implemented relieving the burden of security and connection establishment. The feasibility of creating a delay tolerant social network is demonstrated by using SOS to power AlleyOop Social, a secure delay tolerant networking research platform that serves as a real-life mobile social networking application for iOS devices. SOS and AlleyOop Social allow users to interact, publish messages, and discover others that share common interests in an intermittent network using Bluetooth, peer-to-peer WiFi, and infrastructure WiFi.Comment: 6 pages, 4 figures, accepted in ICDCS 2017. arXiv admin note: text overlap with arXiv:1702.0565

    A SURVEY OF IMPLEMENTATION OF OPPORTUNISTIC SPECTRUM ACCESS ATTACK WITH ITS PREVENTIVE SENSING PROTOCOLS IN COGNITIVE RADIO NETWORKS

    Get PDF
    Recently, the expansive growth of wireless services, regulated by governmental agencies assigning spectrum to licensed users, has led to a shortage of radio spectrum. Since the FCC (Federal Communications Commissions) approved unlicensed users to access the unused channels of the reserved spectrum, new research areas seeped in, to develop Cognitive Radio Networks (CRN), in order to improve spectrum efficiency and to exploit this feature by enabling secondary users to gain from the spectrum in an opportunistic manner via optimally distributed traffic demands over the spectrum, so as to reduce the risk for monetary loss, from the unused channels. However, Cognitive Radio Networks become vulnerable to various classes of threats that decrease the bandwidth and spectrum usage efficiency. Hence, this survey deals with defining and demonstrating framework of one such attack called the Primary User Emulation Attack and suggests preventive Sensing Protocols to counteract the same. It presents a scenario of the attack and its prevention using Network Simulator-2 for the attack performances and gives an outlook on the various techniques defined to curb the anomaly

    A Secure Cooperative Sensing Protocol for Cognitive Radio Networks

    Get PDF
    Cognitive radio networks sense spectrum occupancy and manage themselves to operate in unused bands without disturbing licensed users. Spectrum sensing is more accurate if jointly performed by several reliable nodes. Even though cooperative sensing is an active area of research, the secure authentication of local sensing reports remains unsolved, thus empowering false results. This paper presents a distributed protocol based on digital signatures and hash functions, and an analysis of its security features. The system allows determining a final sensing decision from multiple sources in a quick and secure way.Las redes de radio cognitiva detectora de espectro se las arreglan para operar en las nuevas bandas sin molestar a los usuarios con licencia. La detección de espectro es más precisa si el conjunto está realizado por varios nodos fiables. Aunque la detección cooperativa es un área activa de investigación, la autenticación segura de informes locales de detección no ha sido resuelta, por lo tanto se pueden dar resultados falsos. Este trabajo presenta un protocolo distribuido basado en firmas digitales y en funciones hash, y un análisis de sus características de seguridad. El sistema permite determinar una decisión final de detección de múltiples fuentes de una manera rápida y segura.Les xarxes de ràdio cognitiva detectora d'espectre se les arreglen per operar en les noves bandes sense destorbar els usuaris amb llicència. La detecció d'espectre és més precisa si el conjunt està realitzat per diversos nodes fiables. Encara que la detecció cooperativa és una àrea activa d'investigació, l'autenticació segura d'informes locals de detecció no ha estat resolta, per tant es poden donar resultats falsos. Aquest treball presenta un protocol distribuït basat en signatures digitals i en funcions hash, i una anàlisi de les seves característiques de seguretat. El sistema permet determinar una decisió final de detecció de múltiples fonts d'una manera ràpida i segura

    Serverless Vehicular Edge Computing for the Internet of Vehicles

    Get PDF
    Rapid growth in the popularity of smart vehicles and increasing demand for vehicle autonomy brings new opportunities for vehicular edge computing (VEC). VEC aims at offloading the time-sensitive computational load of connected vehicles to edge devices, e.g., roadside units. However, VEC offloading raises complex resource management challenges and, thus, remains largely inaccessible to automotive companies. Recently, serverless computing emerged as a convenient approach to the execution of functions without the hassle of infrastructure management. In this work, we propose the idea of serverless VEC as the execution paradigm for Internet of Vehicles applications. Further, we analyze its benefits and drawbacks as well as identify technology gaps. We also propose emulation as a design, evaluation, and experimentation methodology for serverless VEC solutions. Using our emulation toolkit, we validate the feasibility of serverless VEC for real-world traffic scenarios.We would like to thank Asama Qureshi for his contribution to the traffic visualizer application. We would also like to acknowledge support through the Australian Research Council's funded projects DP230100081 and FT180100140. This work is also partially supported by the Spanish Ministry of Economic Affairs and Digital Transformation, the European Union-NextGenerationEU through the UNICO 5G IþD SORUS project and by the NWO OffSense, EU Horizon Graph-Massivizer and CLOUDSTARS projects

    HINT: from Network Characterization to Opportunistic Applications

    Get PDF
    The increasing trend on wireless-connected devices makes opportunistic networking a promising alternative to existing infrastructure-based networks. However, these networks offer no guarantees about connection availability or network topology. The development of opportunistic applications, i.e., applications running over opportunistic networks, is still in early stages. One of the reasons is a lack of tools to support this process. Indeed, many tools have been introduced to study and characterize opportunistic networks but none of them is focused on helping developers to conceive opportunistic applications. In this paper, we argue that the gap between opportunistic applications development and network characterization can be filled with network emulation. As proof of concept, we propose and describe HINT, a realtime event-driven emulator that allows developers to early test their opportunistic applications prior to deployment. We introduce the architecture and corresponding implementation of our proposal, and conduct a preliminary validation by assessing its scalability

    Receiver-driven routing for community mesh networks

    Get PDF
    Community wireless mesh networks are decentralized and cooperative structures with participation rules that define their freedom, openness and neutrality. The operation of these networks require routing algorithms that may impose additional unnecessary technical restrictions in the determination of routes that can restrict the freedom of community users. We propose a receiver-driven discretionary routing mechanism where each receiver (the intended destination of the packet) can freely specify delivery objectives and remain compatible with the collaborative approach of community networks. Each node has a unique identifier and can announce the description of its offer and also the description of its routing policy with preferences to deliver traffic to it. BMX6 provides a 'hash-based profile propagation mechanism' to disseminate descriptions. This receiver-driven routing can be applied to express preferences for desirable nodes and paths, or to restrict traffic to trusted nodes enabling trust and security aware routing. We validate our contributions with a proof of concept implementation of key concepts, as an extension of the BMX6 routing protocol, that confirms its feasibility and scalability.Postprint (author’s final draft

    Multipath optimized link state routing for mobile ad hoc networks

    Get PDF
    International audienceMultipath routing protocols for Mobile Ad hoc NETwork (MANET) address the problem of scalability, security (confidentiality and integrity), lifetime of networks, instability of wireless transmissions, and their adaptation to applications. Our protocol, called MP-OLSR (MultiPath OLSR), is a multipath routing protocol based on OLSR. The Multipath Dijkstra Algorithm is proposed to obtain multiple paths. The algorithm gains great flexibility and extensibility by employing different link metrics and cost functions. In addition, route recovery and loop detection are implemented in MP-OLSR in order to improve quality of service regarding OLSR. The backward compatibility with OLSR based on IP source routing is also studied. Simulation based on Qualnet simulator is performed in different scenarios. A testbed is also set up to validate the protocol in real world. The results reveal that MP-OLSR is suitable for mobile, large and dense networks with large traffic, and could satisfy critical multimedia applications with high on time constraints

    On the performance of social-based and location-aware forwarding strategies in urban vehicular networks

    Get PDF
    High vehicular mobility in urban scenarios originates inter-vehicles communication discontinuities, a highly important factor when designing a forwarding strategy for vehicular networks. Store, carry and forward mechanisms enable the usage of vehicular networks in a large set of applications, such as sensor data collection in IoT, contributing to smart city platforms. This work evaluates the performance of several location-based and social-aware forwarding schemes through emulations and in a real scenario. Gateway Location Awareness (GLA), a location-aware ranking classification, makes use of velocity, heading angle and distance to the gateway, to select the vehicles with higher chance to deliver the information in a shorter period of time, thus differentiating nodes through their movement patterns. Aging Social-Aware Ranking (ASAR) exploits the social behavior of each vehicle, where nodes are ranked based on a historical contact table, differentiating vehicles with a high number of contacts from those who barely contact with other vehicles. To merge both location and social aforementioned algorithms, a HYBRID approach emerges, thus generating a more intelligent mechanism. For each strategy, we evaluate the influence of several parameters in the network performance, as well as we comparatively evaluate the strategies in different scenarios. Experiment results, obtained both in emulated (with real traces of both mobility and vehicular connectivity from a real city-scale urban vehicular network) and real scenarios, show the performance of GLA, ASAR and HYBRID schemes, and their results are compared to lower- and upper-bounds. The obtained results show that these strategies are a good tradeoff to maximize data delivery ratio and minimize network overhead, while making use of mobile networks as a smart city network infrastructure.publishe
    corecore