
HINT: from Network Characterization
to Opportunistic Applications

Gwilherm Baudic
gwilherm.baudic@isae.fr

Antoine Auger
antoine.auger@isae.fr

Victor Ramiro
victor.ramiro@isae.fr

Emmanuel Lochin
emmanuel.lochin@isae.fr

Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO)
Université de Toulouse, 31055 Toulouse Cedex 4, France

ABSTRACT
The increasing trend on wireless-connected devices makes
opportunistic networking a promising alternative to exist-
ing infrastructure-based networks. However, these networks
offer no guarantees about connection availability or network
topology. The development of opportunistic applications,
i.e., applications running over opportunistic networks, is still
in early stages. One of the reasons is a lack of tools to sup-
port this process. Indeed, many tools have been introduced
to study and characterize opportunistic networks but none
of them is focused on helping developers to conceive oppor-
tunistic applications. In this paper, we argue that the gap
between opportunistic applications development and net-
work characterization can be filled with network emulation.
As proof of concept, we propose and describe HINT, a real-
time event-driven emulator that allows developers to early
test their opportunistic applications prior to deployment.
We introduce the architecture and corresponding implemen-
tation of our proposal, and conduct a preliminary validation
by assessing its scalability.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Store and forward networks

Keywords
DTN, Opportunistic networks, Emulation, Architecture

1. INTRODUCTION
Opportunistic networks are a special case of DTNs [7]

where nodes systematically exploit their mobility to benefit

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

from contacts to forward messages. This mobility introduces
delays when a node cannot forward its message. It also al-
lows routing protocols to exploit opportunistic contacts, in
absence of a stable end-to-end path, as a means to create a
temporal path for delivery. Opportunistic networks are also
suitable for communications in pervasive environments sat-
urated by other devices. The ability to self-organize using
the local interactions among nodes, added to mobility, leads
to a shift from legacy packet-based communications towards
a message-based communication paradigm.

However, dealing with the dynamics of opportunistic net-
works is complicated [5]. The continuously changing topol-
ogy, due to the nodes mobility and interactions, leads to
an explosion of the number of states needed to characterize
the behavior for any algorithm to be deployed. All these fac-
tors impact network performances, introducing delay, packet
losses or retransmissions. Up to now, the main focus of re-
search was to define an optimal routing strategy, without
considering the final application development.

With the current trend on connected devices, the idea
of opportunistic applications, i.e., applications running over
opportunistic networks, is getting closer to being a reality.
However, several obstacles prevent a massive deployment
over this paradigm, one of the biggest being the conception
of applications working on these networks. This can be ex-
plained by the complexity to evaluate the performance of an
opportunistic application before a real deployment.

Simulations offer a convenient way of getting insight in
the behavior of the network [4, 9, 10]. Unfortunately, they
do not give a simple way of thinking in terms of real appli-
cations, and typically focus on purely network-related per-
formance. Testbeds [3, 11, 8, 17, 19, 13, 12, 18] can offer an
almost real world feedback, but they are really expensive to
deploy in a development process.

Developers of opportunistic applications must not only
deal with network characterization, but also with its impact
on the application. Current development tools should be
able to fill this gap between network characterization and ap-
plication development. However, even the ability to quickly
test a simple DTN messaging application is missing today.
We need to better integrate how developers consider network
metrics obtained from the characterization phase into the
development process of opportunistic applications.

In this work, we focus on helping developers to conceive
their opportunistic applications. In particular, we propose

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/78385684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


a new hybrid emulation system for opportunistic networks.
In our system, nodes can be either real or virtual. Our
main contribution is two-fold: (i) we propose HINT, a cen-
tralized low complexity topology emulator for opportunistic
networks and (ii) we perform a first evaluation of its scala-
bility. We develop this emulator as a distributed real-time
event-driven system.

The rest of the paper is structured as follows. We high-
light the challenges in Section 2, before describing our pro-
posed emulation platform in Section 3. Then, we present a
preliminary evaluation of the scalability of our proposal in
Section 4. Section 5 reviews existing emulators. Finally, we
conclude in Section 6.

2. DEVELOPMENT CHALLENGES OF OP-
PORTUNISTIC APPLICATIONS

In this section, we discuss the challenges when developing
opportunistic applications from two perspectives: the way
developers deal with the network characterization, and the
way they assess the network impact on the application.

2.1 Opportunistic Networks Characterization
We now discuss the main challenges from a developer’s

point of view. We present the current available alterna-
tives (and their drawbacks) to characterize opportunistic
networks.

2.1.1 Analytical modeling
Several analytical models have been presented to charac-

terize opportunistic networks. The main goal of analytical
models is to provide a closed formula for a specific charac-
teristic. However, most of these models assume simplifying
hypotheses or cannot scale. Indeed, the number of states
needed to model DTNs increases with the interactions par-
ties have in the network, making these problems highly com-
binatorial ones. Most of them belong to the NP-class.

2.1.2 DTN simulators
Opportunistic networks simulators [10, 4, 9] mainly focus

on nodes mobility and routing. Indeed, most of the DTN
research has focused on message routing as the application.

On the one hand, we find many custom-made simulators
for specific cases. On the other hand, we find an effort to
standardize the results with the ONE [10]. The ONE simu-
lator does provide a simulated network stack, but its appli-
cation layer is just a basic handler class for messages passed
by from the simulated routing protocol. For a developer,
being unable to think in terms of a real user application,
independently of these complexities, is still a huge problem.

2.1.3 Traces collection
Another effort to better understand opportunistic net-

works and their dynamics has been the collection of contact
traces to characterize the contact and intercontact time dis-
tributions. Ideally, this abstraction should be independent
from the link layer, but this is not the case in reality. This
makes traces less representative than needed, and therefore
less useful to application developers.

2.1.4 DTN emulators and testbeds
Emulation naturally provides a bridge between the re-

peatability and scalability of simulation and the realism of

Emulated  
opportunistic network

Real world

Figure 1: High level architecture, showing the re-
lation between real world and emulated topology.
Solid lines denote emulated connections, dashed
lines represent real connections with the emulator.

real world testing [2], by putting together real and simu-
lated components in a single system. Real parts are most of
the time the application and underlying operating system,
while the network is simulated. However, scalability is often
achieved with testbeds, which are costly to setup.

2.2 Application Development
In an opportunistic network context, end-to-end delays,

delivery ratio and drop ratio are very important factors that
developers want to study before deploying their applications.
However, this set of network-related metrics is not sufficient
to describe the impact of those networks: developers also
need to test their applications from a user viewpoint, and
answer the question: Is my application working as expected?

On the one hand, the properties of opportunistic networks,
such as the non guarantee of end-to-end paths, make im-
possible to ignore network characterization when developing
opportunistic applications. On the other hand, developers
may not be able to benefit from the network characteriza-
tion. Instead, they want to know, preferably in a quick and
simple way, if their applications will still work within an op-
portunistic use case. Making hypotheses on the underlying
network characteristics often leads to over provisioning and
resources waste, which is highly problematic in the already
challenging context of opportunistic networking.

Hence, there is a gap in the way developers deal with
network metrics obtained from network characterization.

3. ARCHITECTURE OF AN OPPORTUNIS-
TIC EMULATOR

In [1], we addressed the limitations of current approaches,
highlighting the gap between network characterization and
development. This is a challenge that developers have to
face when conceiving opportunistic applications. We stated
the adequacy of an emulator to fill the gap between the
underlying network and applications. In the following, we
summarize the requirements stated in [1] and define the ar-
chitecture of our emulator based on these requirements.

3.1 Requirements in a Nutshell
In [1], we defined several requirements for an opportunis-

tic network emulator. We argued that such an emulator
should be able to run in real-time (E1). To abstract the
complexity of node mobility, we define contact-oriented em-
ulation (E2). To observe and tune the parameters during an



experiment, we also need real-time tuning (E3) and moni-
toring (E4). Then, to ensure validity of the results derived,
we highlighted the need for transparency from an application
point of view (E5) and repeatability (E6) to ease debugging.
Finally, to make an emulator really useful to application de-
velopers, availability (E7) is also a desirable feature.

3.2 High Level Architecture
We define two interaction levels: the real world and the

emulated world. In the real world, real devices (physical
Android mobile phones) run the application to be tested
and the emulator service. In the emulated world, virtual
devices and real devices interact in an opportunistic way. In
the following, the general term opportunistic node describes
either a virtual or a real device.

Our emulator creates and manages virtual nodes accord-
ing to user requirements. Therefore, the resulting emulated
opportunistic network is composed of several opportunis-
tic nodes. The emulator also defines the connections be-
tween opportunistic nodes at the emulated level, and ap-
plies changes in real-time according to contact opportuni-
ties. Note that real nodes can only communicate with the
emulator (at the real world level), and not directly with each
other. Hence, we ensure that all connections go through the
emulator. Several network topologies can be drawn, accord-
ing to the considered user scenario.

Figure 1 shows both interaction levels with the projection
of the different opportunistic nodes on the emulation plane.
Solid lines indicate that two opportunistic nodes are in range
(contact opportunity) while dashed lines represent real con-
nections (a mobile phone connected to our local network
hosting the emulator through Wi-Fi).

3.3 System Architecture
In this section, we propose the architecture of our real-

time event-driven emulator, called HINT. It stands for HINT
Is Not a Testbed. Since our system targets developers, it
should therefore be lightweight enough to fit into existing
development environments. This is the meaning of require-
ment (E7) about availability. A second feature is the ability
to give developers hints on their application behavior when
running on an opportunistic network, without requiring a
real world trial. Figure 2 presents the global architecture of
our proposal, which can be decomposed in five main parts:

3.3.1 Core Emulator
It is a real-time event-driven system, in charge of running

the emulation scenario. A scenario specifies the following
parameters: number of real and virtual devices, node char-
acteristics, contacts and intercontacts management, mes-
sage creation patterns, message forwarding or routing strat-
egy and buffer management. Events, such as contact du-
rations, intercontact durations, message creation and for-
warding, are created and scheduled for execution in an event
queue. Routing decisions and buffer management are also
handled for all nodes. Although the functionalities listed
above are very similar to those offered by a simulator (such
as The ONE [10]), the Core Emulator supports real-time
message delivery (and the corresponding payloads).

3.3.2 Message Broker
This module manages the interactions between nodes. We

use the message broker in order to store both system mes-

Core Emulator

Message Broker

Monitoring
& Tuning

Database

Real world

HINT emulator

App

ULL

App

ULL

App

ULL

Figure 2: HINT network emulator architecture.

sages and nodes’ messages. Indeed, events from the Core
Emulator generate meta-messages (i.e., announce connec-
tion start and duration) that are sent to the broker to a
system queue. Regular messages contain the actual appli-
cation data exchanged through the network and are stored
in dedicated queues for each node. Hence, the message bro-
ker allows the communication between each pair of nodes
(real or virtual). Since the number of pairs can be large, a
specialized service that can scale is needed.

3.3.3 User Link Layer (ULL)
It abstracts the communication between the emulator and

the real application, thus making the application unaware
of the emulator. It communicates messages from the node
queues to the real application, or from the application to
the node queues. This layer could also be used to plug-in
different DTN stack implementations.

3.3.4 Database
This module interacts with the Core Emulator to manage

nodes. It stores the characteristics of each node: node type,
ID, connection parameters, message creation frequency, etc.
It also contains data for the monitoring part, in order to
avoid unnecessary polling of the Message Broker queues.

3.3.5 Cross-layer Monitoring and Tuning
It is a cross-layer module where statistics are collected

and displayed in real-time. This layer also allows to change
parameters such as connections between nodes, message cre-
ation frequency, node buffer size or link speed.

The defined architecture complies with the requirements
presented in [1]. The Core Emulator is a real-time sys-
tem (E1). It produces a contact-oriented emulation (E2).
The Cross-layer Monitoring and Tuning part validates (E3)
and (E4), while the User Link Layer abstracts the commu-
nications with the emulator. This achieves (E5). Finally,
the Core Emulator will be able to replay a scenario with
the same contacts, routing and message generation settings,
which realizes (E6). To show the availability (E7) of our ar-
chitecture, we can note that deploying it only requires real
nodes, a computer to run the emulator, and an access point
to connect all these devices to the same network. This is a
much lighter setup than a full testbed.

3.4 Implementation
We now discuss a basic proof of concept of the proposed

architecture. We developed this prototype in Python 3.5



with the RabbitMQ message broker and MongoDB database.

3.4.1 Core Emulator
The Core Emulator defines an emulation scenario using

the World class, which contains Nodes. Node interactions
are modeled as events, divided in 3 categories. First, we
have the usual Contact and Intercontact events, required
by our contact-oriented approach. Then, to perform rout-
ing, we define Create, Copy, Forward, Delivered, Dropped
and Expired Messages. These events are also used to trig-
ger database updates for the monitoring system. Contact,
Intercontact and Create Message are generated in batches,
and we also define Refill events as system messages to cre-
ate new events when batches are almost consumed. This
regeneration happens on a pairwise basis. Finally, the Tun-
ing system creates Tuning events to propagate the changes
requested by the user through the web interface.

We use a priority task scheduler to handle all the events.
Each event keeps information about the pair of nodes in-
volved and its expected execution time. Events are then
chronologically executed in real-time. Contacts and inter-
contacts are generated according to user inputs, and can
come from real traces or statistical distributions as needed.
The number of virtual and real nodes is currently fixed for
the whole experiment length.

3.4.2 Message Broker
We use RabbitMQ, taking advantage of its high scalabil-

ity to enable the execution of all events in real-time with an
increasing number of nodes. Each node (real or virtual) is
responsible for creating three message queues that it will use
as buffers. Thus, each node has an Inbox queue, an Outbox
queue and a Storage queue. Each time that a connection is
started between a pair of nodes, both of them will process
the messages contained within their Inbox queues. All mes-
sages where the node is the final destination are moved to
the Storage queue. The rest of the messages are moved into
the Outbox queue for later processing by the specific routing
algorithm used by the node.

3.4.3 User Link Layer
For convenience and since final applications should com-

municate through it, we implemented the User Link Layer
as an Android service. Any developer who wants to use
the HINT emulator should include this service in its appli-
cation and provide suitable methods for communicate with
it. Thus, each real node (i.e., Android device) runs both
the application and the User Link Layer. No DTN stack is
currently supported.

3.4.4 Cross-layer Monitoring and Tuning
We implemented a web-based interface for Monitoring and

Tuning. Currently, three views are offered: full network,
node pairs and single node. Each of these views present real-
time node, network and pair statistics, respectively. We are
able to present the evolution over time of DTN performance
metrics such as message delay, delivery ratio or contact time
distribution, to name a few. Indeed, these metrics will be
required to validate the emulator results against other ap-
proaches like simulators. This web interface also allows us to
tune parameters during the experiment both at the network
or node level, such as node buffer size or message generation
frequency. Evaluation of the application behavior is done

directly on the real nodes.

3.4.5 Database
We use MongoDB. We store node characteristics, such

as their connection parameters, current list of neighbors or
degree. We also store the Message events (creation, copy,
forward, drop, delivery, expiration) required to compute and
display network metrics in the Monitoring system. Note
that this stage only require the storage of message metadata,
without the payload. Finally, general data on the emulation
scenario (such as the number of nodes, message generation,
contact and intercontact parameters) is also recorded.

3.4.6 User Application
Finally, we propose OppChat, a simple messaging appli-

cation developed for Android. OppChat takes advantage of
the User Link Layer to seamlessly exchange messages with
other nodes through the HINT Core Emulator, which han-
dles routing and buffer management. To send a chat mes-
sage, the application just needs to call the appropriate User
Link Layer method. To receive messages, the application
declares a standard Broadcast Receiver subclass that ap-
propriately filters and handles incoming chat messages from
the User Link Layer service.

3.4.7 Discussion
Emulation provides results that are at least as good as the

ones from simulation, while also allowing real devices inter-
action [2]. Although removing the communication layer can
be seen as too radical, we have defined a contact-oriented
emulation, where the total event length is known in ad-
vance. This differs from simulators, which instead use a
connection-oriented approach. Contacts can come from real
traces, statistical distributions or synthetic mobility models.

The three-layered architecture provides a good modular-
ity with separation of concerns (Core Emulator, Message
Broker and User Link Layer). This helps to keep track of
the big number of events and messages of the emulated net-
work, thus ensuring scalability. Also note that the compo-
nents themselves run on different machines: application and
User Link Layer run on the real nodes, while the other mod-
ules are found in the emulation machine. The Core Emula-
tor can be extended with more routing algorithms or buffer
management policies. The use of a message broker helps to
multiplex events and provides an original way to implement
node buffers. Also, several message queues (three per each
opportunistic node) are used and allow to provide node met-
rics such as buffer occupancy. The User Link Layer can be
replaced by DTN stacks, such as IBR-DTN [14].

In terms of scalability, the different layers are designed
as modules that can be distributed if necessary. Finally,
we provide a real-time execution emulator, with a negligible
cost compared to a testbed or a real world deployment.

4. ARCHITECTURE EVALUATION
We now evaluate the performance of our emulator imple-

mentation presented in Section 3. Before using it for actual
application development, we first need to check that it can
effectively fulfill the requirements introduced in [1].

4.1 Method
As a first step, we choose to validate our system by as-

sessing its capacity to scale to a large number of events per



300

0.00

0.25

0.50

0.75

1.00

10 1000
Events per second

M
is

se
d 

ev
en

ts
 r

at
io

T=1
T=0.1
T=0.01

Figure 3: Number of missed events for different time
thresholds (T ) and system loads (events/s).

second. In this experiment, we are interested in how many
contact (and intercontact) events our system can process
each second experiencing an acceptable delay. By doing so,
we want to evaluate the ability of the emulator to handle
real-time operation.

We only consider virtual nodes for this evaluation. Since
all buffers and events are managed within the Core Emu-
lator, independently of the node type, this should not re-
strict the applicability of the results. The emulation ma-
chine where resides the Core Emulator is a MacBook Pro
with 16 GB of RAM and with a 2.5 GHz Intel Core i7 pro-
cessor. We use contact and intercontact events with a fixed
duration of 1 second. The experiment duration is set to 20
seconds to allow us to repeat it several times. Although
such parameters are not realistic in an opportunistic net-
work setup, this experiment aims to find out the limitations
of our system rather than evaluate network performance.

4.2 Results
The results are presented in Figure 3. It shows the ratio of

delayed events (denoted as“missed events”) for different time
thresholds (T = 0.01, 0.1 and 1 s) and system loads. System
load refers to the number of events scheduled per second. We
compute each ratio by performing the mean over 5 emulation
runs. Please note that we use a logarithmic scale for the X-
axis. From the chart, it can be seen that a time threshold of
T = 0.01 s is not achievable with the current configuration
of the emulator. As a result, for this threshold, the number
of missed events increases exponentially as a function of the
system load. On the contrary, the emulator can handle up to
10 events per second with a constraint of T = 0.1 s. Finally,
with a time threshold of T = 1 s, our emulator is able to
schedule and execute up to 300 events per second with zero
additional delay.

Limitations come from the internal Python scheduler we
use. Indeed, with our current implementation, when an
event starts to experience a delay, the scheduler will fall
behind and the delay will be propagated to the following
events. Unsurprisingly, the values also depend on the hard-
ware specifications of the host computer running the sched-

Trace Average Maximum
Rollernet 26 146
MIT 180 days 0.008 34
Infocom 2005 0.22 26

Table 1: Average and maximum number of events
per second for three real traces.

uler, as well as various other options of the Python inter-
preter.

One could argue that the number of events that HINT can
handle per second is rather small, thus impeding the scala-
bility requirement of our proposal. At this point, it could be
interesting to compare the number of events that we are able
to execute in one second with the ones experienced in real
traces. We choose three traces for this analysis, and provide
for each one the average and maximum number of events per
second. Rollernet [16] and Infocom 2005 [15] are considered
in full, without any filtering. The MIT dataset [6] is con-
sidered for 180 work days, only with internal devices. The
aim of these choices is to leave as little data behind as pos-
sible, to derive meaningful upper bounds that HINT should
be able to handle. The values are presented in Table 1.

We should note that even on a very dense real trace like
Rollernet, the maximum number of events recorded in a sin-
gle second is 146. These figures are obtained on the raw,
unfiltered data, comprising all possible events and all 1112
nodes observed during the experiment. Actual values of
number of events per second are much smaller: for example,
the average value on the Rollernet dataset is 26 events per
second, which is the highest value of the three traces con-
sidered here. Furthermore, in our case the same event load
is applied consistently during the whole experiment, while
such values on an actual trace are only temporary and would
typically be surrounded by smaller values.

In this work, we provided a first evaluation of our emula-
tion system by assessing its ability to handle an increasing
load of contact and intercontact events in real-time. How-
ever, several other evaluations are required before we can
actually use HINT for application development. As a first
step, we will add message events in addition to contacts and
intercontacts. Then, it is possible to vary the total number
of nodes to derive the memory occupancy on the emulation
computer, although this factor is closely tied to the buffer
size chosen. In a second time, we will assess the realism of
our emulator, for example by comparing performance results
with other approaches like the ONE [10] in terms of delay,
delivery ratio, or any metric presented by the web-based
monitoring interface. Finally, we will include real nodes in
the network to test real applications.

5. RELATED WORK
A popular solution for network emulation is to use testbeds.

In this case, several hosts are used, each one running virtual
machines representing the nodes of the studied network. Ex-
amples include QOMB [3, 2], TUNIE [11], MoViT [8] or the
On/Off-based mobility emulator from [17].

Assembling real and virtual nodes in the same network
allows easier scaling without totally sacrificing realism. The
attempts made in this direction are called hybrid emulation
techniques. Indeed, the only real part in the above solutions



is software, other elements being virtualized. For instance,
in TWINE [19], simulated, emulated and real nodes interact
in the same testbed. The TROWA testbed [13] relies on a
discrete event simulation and also binds real and simulated
nodes. The authors of [12] chose to use real machines com-
municating over a synthetic network, with a VPN solution
being used to apply degradations.

In [3], the authors provide guidelines to include real nodes
in an existing testbed, and propose a solution to connect
them to both the experimental and control networks from
the testbed. The closest proposal to our work is [18]. In
this work, the authors use a central computer to emulate a
DTN with several nodes, while both ends of the network are
running on two other computers.

To the best of our knowledge, this is the first time that a
lightweight emulation system puts together real and virtual
nodes in a DTN context. Furthermore, none of the above
proposals consider application development.

6. CONCLUSIONS
Opportunistic networking is a promising alternative to

infrastructure-based networks, but its inherent complex dy-
namics make application development very challenging. Usu-
ally, some network characterization is needed to better un-
derstand the challenges we will face later on the development
phase. Existing tools like DTN simulators or testbeds do
not provide any integration with development. We argued
that current development tools should fill the gap between
network characterization and application development.

To bridge this gap, we designed HINT, a lightweight hy-
brid emulation system aimed at helping developers. Based
on requirements, we proposed an architecture for this op-
portunistic emulator. Our proposal is a centralized low-
complexity topology emulator for opportunistic networks,
with real and virtual nodes. We developed this as a dis-
tributed real-time event-driven system. We also provided
a proof of concept with a first implementation, as well as
an assessment of the scalability of our proposal in terms of
number of events per second. We show that HINT can suc-
cessfully handle a number of events per second of the same
order of magnitude as those observed in real traces.

As future work, we plan to continue the performance eval-
uation to validate our approach and integrate real nodes.
Then we will carry on real case studies of opportunistic
application developments. Finally, we will release an open
source version of HINT.

7. ACKNOWLEDGMENTS
The authors are grateful to Tanguy Pérennou for his sug-

gestions to improve this work. This research was supported
in part by the French Ministry of Defense through a financial
support of the Direction Générale de l’Armement (DGA).

8. REFERENCES
[1] G. Baudic, A. Auger, V. Ramiro, and E. Lochin.

Using emulation to validate applications on
opportunistic networks. Available:
http://arxiv.org/abs/1606.06925, June 2016.

[2] R. Beuran. Introduction to network emulation. Pan
Stanford Publishing, 2013.

[3] R. Beuran, S. Miwa, and Y. Shinoda. Making the Best
of Two Worlds: A Framework for Hybrid
Experiments. In ACM WiNTECH ’12, 2012.

[4] X. Chang. Network simulations with OPNET. In
ACM WSC’99, 1999.

[5] M. Conti and S. Giordano. Mobile ad hoc networking:
milestones, challenges, and new research directions.
IEEE Communications Magazine, January 2014.

[6] N. Eagle and A. S. Pentland. CRAWDAD data set
mit/reality. Downloaded from
http://crawdad.org/mit/reality/, July 2005.

[7] K. Fall. A delay-tolerant network architecture for
challenged internets. In ACM SIGCOMM, 2003.

[8] E. Giordano, L. Codecà, B. Geffon, G. Grassi, G. Pau,
and M. Gerla. MoViT: The Mobile Network
Virtualized Testbed. In ACM VANET ’12, 2012.

[9] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell,
and J. Kopena. Network simulations with the ns-3
simulator. SIGCOMM demonstration, 14, 2008.

[10] A. Keränen, J. Ott, and T. Kärkkäinen. The ONE
simulator for DTN protocol evaluation. In Simutools
’09. ICST, 2009.

[11] Y. Li, P. Hui, D. Jin, and S. Chen. Delay-tolerant
network protocol testing and evaluation. IEEE
Communications Magazine, 53(1), Jan. 2015.

[12] J. Liu, S. Mann, N. Van Vorst, and K. Hellman. An
Open and Scalable Emulation Infrastructure for
Large-Scale Real-Time Network Simulations. In IEEE
INFOCOM 2007, May 2007.

[13] K. Maeda, K. Nakata, T. Umedu, H. Yamaguchi,
K. Yasumoto, and T. Higashinoz. Hybrid Testbed
Enabling Run-Time Operations for Wireless
Applications. In PADS ’08, June 2008.

[14] S. Schildt, J. Morgenroth, W.-B. Pöttner, and
L. Wolf. IBR-DTN: A lightweight, modular and highly
portable bundle protocol implementation. Electronic
Communications of the EASST, Jan 2011.

[15] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and
A. Chaintreau. CRAWDAD data set
cambridge/haggle. Downloaded from
http://crawdad.org/cambridge/haggle/, January 2006.

[16] P. Tournoux, J. Leguay, F. Benbadis, V. Conan,
M. Dias de Amorim, and J. Whitbeck. The accordion
phenomenon: Analysis, characterization, and impact
on DTN routing. In IEEE INFOCOM, pages
1116–1124, April 2009.

[17] H. Yoon, J. Kim, M. Ott, and T. Rakotoarivelo.
Mobility emulator for DTN and MANET applications.
In ACM WINTECH ’09, pages 51–58, 2009.

[18] Z. Zhang, Z. Jin, H. Chen, Y. Shu, and C. Zhao.
Design and Implementation of a Delay-Tolerant
Network Emulator Based in QualNet Simulator. In
WiCom ’09, pages 1–4, Sept. 2009.

[19] J. Zhou, Z. Ji, and R. Bagrodia. TWINE: A Hybrid
Emulation Testbed for Wireless Networks and
Applications. In IEEE INFOCOM 2006, Apr. 2006.


